
Statistical Data Analysis
Obervables nonnegative. They are ordered according to their magnitudes as x(1) ≤ x(2) ≤289E
· · · ≤ x(n).

Si =
∑
i≤j

x(1) (1)

The curve obtained by connecting fi = Si/SN is called Lorenz’s curve, which is a convex
curve connecting the origin and (1, 1). The area enclosed by the diagonal and the curve has
an area equal to the mean difference

δ =
∑
i,j

|xi − xj|
N2

(2)

divided by 4 times the expectation value. G = δ/〈x〉 is called Gini’s coefficient.

Moment generating function M(θ)289G

M(θ) =
∫

eθxf(x)dx = E(eθx). (3)

ϕ(t) = M(it) is called the characteristic function.
Probability generating function

P (t) =
∑

i

fit
i. (4)

Factorial moment generating function

M̃(t) = P (t + 1) =
∑

i

ti

i!
fi. (5)

Factorial cumulant can be defined through

K̃(t) = log M̃(t) =
∑

i

κ(i)
ti

i!
. (6)

The Poisson distribution is characterized by κ(j) = 0 for all j ≥ 2.

Regression line y = a + bx (or better y = bvx + a, where vectors denote samples as x =289H
(x1, · · · , xN)):

∑
(yi − axi − b)2 is minimized.

b = 〈(x − 〈x〉)(y − 〈y〉)〉/σ2
x, a = 〈y〉 − b〈x〉. (7)

ei = yi − a − bxi is called the residual.

r2
xy = 1 −

∑
e2

i /
∑

(yi − 〈y〉)2. (8)

We can also define the regression of y to x: x = c + dy. The two regression curves cross at
(〈x〉, 〈y〉) and

|1/d| = |b/r2
xy| ≥ |b|. (9)

The regression analysis was initiated by F. Galton.
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We can generalize the above to more variable cases than two:289J
The matrix R = matr.(rij), where rij is the correlation coefficient between xi and xj (where
components are the sample observables), is called the correlation matrix. Multiple correlation

coefficients R̂i is defined as

R̂i =
√

1 − 1/(R−1)ii (10)

Here, R−1 is the inverse of R, so if Rii is the cofactor of R wrt to rii, we can write

R̂i =
√

1 − |R|/Rii (11)

This is the correlation between xi and the linear regression estimate. For xk = (xk1, · · · , xkN)
(N is the total number of samples), it is obtained by minimizing

Q =
N∑

s=1

xks − a0 −
k−1∑
j=1

ajxjs

2

. (12)

The coefficients a = (a1, · · · , ak−1) are determined by

V a = V k, (13)

where V is the the correlation matrix for i, · · · , k − 1, and V k = (Vk1, · · · , Vkk−1). a0 is
determined by

a0 = 〈xk〉 − a · 〈x〉. (14)

The minimized Q reads
Q = (1 − R2

k)σ
2
k. (15)

• Reconsiderations on regression
When we have a collection of points in a plane, we have a contour distribution. The accuracy
of the contour must be commensurate with the reliability of the data. The backbone of the
contour is the regression curve.

Coarse-grained contour may be obtained by truncated Fourier expansion. Where to
truncate? What is the substitute of AIC? AIC does not pay much attention to the reliability
of the points. It determines the degree of the polynomial by the number of data points.
Possible strategy:
(1) Make a coarse grained pattern by Fourier truncation, or moving spatial average.
(2) Choose the core.
(3) Each point is assigned the contour value (larger).
Thus, the key problem is to find reliable distribution cloud.
One answer to this problem is the resampling a la Efron. For a given coarse-graining scale,
if the resampling does not change the distribution appreciably that is the desired coarse-
grained result.

It is desirable to characterize this as a fixed point point of coarse-graining and resam-
pling. One idea may be to use resampling as a scaling. The density of the points determines
the natural cutoff scale. Coarse-grain at this scale. Then. reduce the number of points. This
should correspond to decimation. Thus, a fixed point may be obtained.
Q: AIC etc: what is the relation between this approach and the standard information based
approach?
Q: What is the Stückelberg-Petermann formalism? ⊓⊔
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Let i = (i1, · · · , ik) be the qualitative categorization of samples. Ni is the number of samples289K
in the category i. The table of Ni is called the k-way contingency table.

If the class is naturally ordered, we say that the observation is performed according to the289M
ordinal scale. To study the relationships among different ordinal scales, sometimes scores
are attached to each class according to each ordinal scale, These scores can be chosen to
maximize the correlation among different ordinal scales. For the case with two scales, let C
be the contingency table. Then, the Perron-Frobenius eigenvector for CCT is the answer.
In this case no original ordering is respected.

• What should we do with ordinal data?
Two scale cases: two categories are embedded into 1-space to define coordinates. Then, each
sample has a coordinate (x, y). This way, we have a distribution of the samples in 2-space
that relate xd and y. ⊓⊔

Statistical Inference
Mathematically, this is to find a probabilistic model describing the observed data. Let X286A
be the observed values. We wish to make f(x; θ, η), where θ is the unknown variables on
which we wish to estimate and η are parameters describing experiments, etc. Assuming the
observed data as iid sample, estimate f .286B

The Bayesian approach assumes that there is a certain prior density π(θ, η) for param-
eters and use the Bayes theorem

P (θ, η|x) =
f(x|θ, η)π(θ, η)∫

dθdη f(x|θ, η)π(θ, η)
(16)

P as the subjective probability can be axiomatized based on the consistency of individual
behaviors.1

The problem of statistical inference may be formulated as a problem of making a rule to286C
choose an element from the set of possible conclusions. The rule is evaluated by the prob-
ability derived from the observed sample set. From the objective probability point of view,
this probability is nothing but the relative frequency, so for each set of observed samples,
the probability does not have any direct sense. Thus, Neyman regarded statistical inference
not as inductive inference but as inductive action; in contrast, Fisher maintained that sta-
tistical inference is an inductive inference and its purpose is to derive the most appropriate
conclusions.

Fisher asserted that all the information must be used. From this he derived: ∗ Principle
of sufficiency: if there is a sufficient statistics (→ 293E), all the inferences must depend on
it.

1L. J. Savage, The foundation of statistics (Wiley, 1954; Dover, 1972). cf.
http://plato.stanford.edu/entries/epistemology-bayesian/ Difficulties in the Theory of Personal Prob-
ability Leonard J. Savage Philosophy of Science, Vol. 34, No. 4 (Dec., 1967) , pp. 305-310; Implications of
Personal Probability for Induction Leonard J. Savage Journal of Philosophy, Vol. 64, No. 19, Sixty-Fourth
Annual Meeting of the American Philosophical Association, Eastern Division (Oct. 5, 1967) , pp. 593-607
; Reading Suggestions for the Foundations of Statistics Leonard J. Savage American Statistician, Vol. 24,
No. 4 (Oct., 1970) , pp. 23-27
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∗ Principle of conditionality: if there is an ancillary statistic that do not depend on the pa-
rameters of the distribution, inference must be performed with the conditional distribution
conditioned by the ancillary statistics.

The idea of population and the test of goodness of fit were due to K. Pearson, who286E
generalized Galton’s regression and correlation ideas. Now, the population is understood as
a probability space with a measure containing unknown parameters.

Statistic293A

Statistic is a function of observables (sample values). It is introduced to characterize the
sample distribution and to distill the information wrt the population parameters (true dis-
tributions).

Let (Ω,B, P ) be a probability space, which is understood as a population. A random293B
sample of size n from the population is an iid stochastic variables X1, · · · , Xn. The probability
space induced by this sample is called the n-sample space. Sample values are described in
terms of lower case letters. Statistic Y is a measurable function of X. P (or Φn, the
distribution of {Xk}) may be know to belong to a parameter family Pθ (θ ∈ Θ; Θ is called the
parameter space. The most general formulation is in terms of a parameter set of probability
measures on some measurable space.

In terms of the population probability measure, population descriptive statisitcs may
be introduced as usual (called population characteristics; mean , variance, etc.)

Let (X ,U) be a measurable space and P be a family of probability measures on it. Then,293E
(X ,U ,P) is called a statistical structure. A subfamily B is sufficient for P , if for any A ∈ U
we can define conditional probability Pθ(·|B) for any θ.
Let t be a statistic. If B(t) (a family defined by the subset of the population characterized
by t) is sufficient, t is called a sufficient statistic. In short, if the set of samples compatible
with t ∪A for any A ∈ U is measurable, then we say t is sufficient. t is ancillary, if Pθ(t) is293H
independent of θ.

Sample Distribution338A
If {Xi} is iid n samples from N(0, 1),

Y =
n∑

i=1

X2
i (17)

obeys the chi-square distribution of degree of freedom n χ2(n):

fn(y) =
1

2n/2Γ(n/2)
yn/2e−y/2. (18)

If X ∈ N(0, 1) and Y ∈ χ2n,

T = X/
√

Y/n (19)
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obeys t(n) (the t-distribution of degree of freedom n).
Let Xi ∈ N(µ, σ2). The sample variance

S2 =
∑

i

(Xi − 〈X〉)2/(n − 1) (20)

Then, (n − 1)S2 ∈ χ2(n − 1) and the sample t-statistics

T =
√

n(〈X〉 − µ)/
√

S2 (21)

obeys t(n − 1) (according to Student). 〈X〉 and S2 are statistically independent (according
to Fisher).2

If X ∈ χ2(m) and Y ∈ χ2(n), the distribution of Z = (X/m)/(Y/n) obeys the F -
distribution of degree of freedom (m.n).

Generalization to multidimensional cases is straightforward.338C

If the number of samples is large, we may use CLT.338D

338E

Fn(x) = frac1n
n∑

i=1

Θ(x − xi) (22)

is called the empirical distribution functions. If X ∈ F , then almost surely (Glivenko-
Cantelli’s theorem)

∥F (x) − Fn(x)∥∞ → 0 (23)
√

n(Fn(t) − F (t)) converges in law to the Brownian bridge. This fact can be used to test a
hypothesis on F .

Let {Xi} ∈ F and {Yi} ∈ G are random samples. Then, the distribution of

Dmn = supx|Fm(x) − Gn(x)| (24)

does not depend on G nor F . This is the basis of the Kolmogorov-Smirnov test.

Let Xi ∈ F which is with mean µ and variance σ2. If F is absolutely continuous and has338F
ν-th moment, then

∑
(Xi − µ)/

√
n obeys Fn such that

Fn(x) = Φ(x) +
ν−2∑
k=1

Rk(x)

(
1√
n

)k

ϕ(x) + B(1/
√

n)ν−1. (25)

This is called the Edgeworth expansion. Here, ϕ is the density distribution of Φ, which is
N(0, 1), and B is a term bounded by a certain constant determined by F and ν. Rk is a
polynomial dependent on the cumulants γn of F . In particular,

R1 = −γ3(x
2 − 1)/6, (26)

R2 = −γ4(x
3 − 3x)/24 − γ2

3(x
5 − 10x3 + 15x)/72. (27)

There is a version for F on Z. Using the Edgeworth expansion, it is possible to determine
y such that Fn(y) = Φ(x) where

x = y +
ν−2∑
k=1

Ak(y)n−k/2 (28)

2If µ ̸= µ0 (the sample mean), T ∈ t(n − 1,
√

n(µ − µ0)/σ): non-central t.

5

Y OONO 

        MEMO



(Cornish-Fisher expansion). For ν = 3 there is a practical recipe (Wilson-Hilferty’s approx-
imation)3: √

9n/2
[
(X/n)1/3 − 1 + 2/9n

]
(29)

obeys N(0, 1). This is even reliable for small n.

Ordinal statistics X(1) ≤ · · · ≤ X(n) can be constructed from n samples. The simultaneous338G
density distribution function for p of them Y1 = X(α), · · · , Yp = X(η) can be obtained explicitly
in terms of F .

Gnedenko proved the following:4

Let {an} be a real sequence and {bn} a positive sequence. If X(n) − an/bn converges to a
nondegenerate distribution G, then there are only three cases modulo positions and scales:

G1(x) = exp(−x−γ)Θ(x), (30)

G2(x) = exp(−(−x)−g)(1 − Θ(x)), (31)

G3(x) = exp(−e−x). (32)

The domains of attraction for Gi are completely characterized. The distributions of X(n) −
X(1) (the sample range) and (X(n) + X(1))/2 are also characterized.

If F has a bounded density and characteristic function is definable, then X1, · · · , X9 can338H
uniquely determine F .5

Statistical Model
According to Fisher the process of statistical inference consists of the following three steps:290A
(1) Specifying the model,
(2) Estimating the unknown parameters,
(3) Test of fitness.
Thus, the process is realized as the introduction and selection of the models.

We must be able to compare distributions. The KL entropy290B

B(f ; g) =
∫

dxf(x) log
g(x)

f(x)
(33)

This is essentially the average of the logarithmic likelihood. log g gives the unbiased estimator
of the logarithmic likelihood of the true distribution.
Comment: This is justified better by Sanov’s theorem.

Let f(x|θ) be a parameter family of distributions. log f(x|θ). θ that maximizes this is called290F
the maximum likelihood estimate of θ and is denoted by θ(x).
1)Log likelihood ratio analysis The ratio is defined as f(x|θ(x))/f(x|θ′(x)). χ2-test is used,

3PNAS 17, (1931).
4Ann. Math. 44 (1943).
5Yu. V. Prokhorov, TPA 10 438 (1965) (Russian original).
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but the choice of the significant level is not unique.
2) Minimizing AIC: AIC = −2 log f(x|θ(x))+d(θ), where d is the dimension of the parameter
space. If we regard exp(−AIC/2) as the likelihood of f(·|θ), we wish to maximize it.

We can use Bayesian models assuming a priori distribution π(θ) for the parameters.290G ∫
dθ f(x|θ)π(θ) (34)

is the Bayesian likelihood. The point of view common to AIC and Bayes is that the goodness
of the statistical model is determined by the balance between the information given by data
and the complexity of model. This point of view was obtained first by introducing the
concept of information into the statistical modeling.6

• Information requires basic uniformity. That is, the reason for − log p is a good measure
of information presupposes that the uniform state is the least informative. This depends
on how you define the a priori distribution. Therefore, we need a different more objective
approach driven by data. We should notice that statistical mechanics has the same defect.
It must be formulated in a much more data driven fashion; that is, thermodynamically. ⊓⊔

Statistical Estimation
This is the problem of inferring the parameters or the value of a function g(θ) at the true287A
parameter value from the samples.
The the point estimation is to determine g(θ) = φ(x) when the sampled value of X is x.287B
φ(X) is called the estimator of g(θ).
The estimator should exhibit some sort of unbiased nature wrt g. If Eθ(φ(X)) = g(θ) for all287C
θ, ϕ is called the (mean) unbiased estimator for g. If g has such ϕ, g is said to be estimable.

b(θ) = Eθ(φ(X)) − g(θ) (35)

is called the bias. Estimators with smaller variances are desirable.
Theorem [Rao-Blackwell] Let T = t(X) be a sufficient statistic (→ ), and ϕ(X) be an arbi-
trary unbiased estimator for g. Let ψ(t) = E(ϕ(X)|T = t). Then ϕ∗(X) = ψ(t(X)) is also
an unbiased estimator for g, and Vθ(ϕ

∗) ≤ Vθ(ϕ). The equality holds if ϕ = varphi∗ (a.e.
wrt P).⊓⊔

The lower bound of the variation of unbiased estimator: the variation of the estimator at θ0287D
with the smallest variation (locally best unbiased estimator) exists:
Theorem [ Barankin] If E([pθ(x)/pθ0(x)]2) < +∞, then in M (= the set of unbiased estima-
tors of g(θ) for which the variation is finite at θ0) exist the local best unbiased estimator.

From this several theorems are derived. For example, Cramér-Rao’s inequality; if X is
the size n random sampling from the population with density f :

Vθ0(ϕ(X)) ≥ [g′(θ0)]
2/nI(θ0), (36)

where I is the Fisher information:

I(θ) = Eθ

(
∂log f(x, θ)

∂θ

)2
 (37)

6Akaike et al., Surikagaku 218 (1981) 7-66.
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If the number of samples is large, then the distribution may be approximated by the asymp-287K
totic distribution. Let ϕn be the estimator on X = {X1, · · · , Xn}. If ϕn → g (in probabilty)
ϕn is called the consistent estimator. If n1/2(ϕn − g) converges in law to a normal distribu-
tion, ϕn is called asymptotically normally distributed. If it is also consistent, it is called a
CAN estimator.

If Can estimator has the asymptotic variation I(θ)−1 is it called a BAN estimator
(best...) or asymptoptically effective estimator.

The maximum likelihood estimator is θ(X) that maximizes Ptheta(X).287M
Theorem [Wald] (Under some technical conditions) if Pθn({Xn})/Pθ0({Xn}) ≥ c > 0 then
θn → θ0 (a.e.).

A condition for the ML estimator to be BAN is also given by Cramér.

Statistical Decision Function
This theory was initiated by Wald to unify statistics as mathematics. A sample space (X ,B)285A
is a measurable space, on which a family of probability measures P is defined. x ∈ X is
called the sample point, and the true measure P ∈ P is assumed. If P is parameterized as
Pθ (θ ∈ Ω, which is called the parameter space), the θ satisfying P = Pθ is called the true
value of a parameter. When we observe x, we do something to determine θ. Let A be the
set of actions we take to this end. We make it a measurable space (A,U), and statistical
decision function δ (∈ D; D is called the space of decitsion function) is a map from X to a
probability measure on (A,U). δ(C|x) is understood as the probability of taking an action
in C when x is observed.

When P = Pθ, the loss due to the action a ∈ A is expressed by a loss function w(θ, a),
which is positive and measurable wrt to a. The risk function is defined as

r(θδ) =
∫
X

Pθ(dx)
∫
A

δ(da|x)w(θ, a). (38)

The statisitical decision problem is (X ,B,P , Ω,A,U , w,D).
Inference problems can be formulated as decision problems, but nothing seems funda-

mentally new.

Statistical decision problems may be understood as games between Nature and the statisti-285H
cian. The strategy of Nature is the true P or true θ, and tha of the statistician is d. The
price the statistician pays is r(θ, δ). A priori distribution is the mixed strategy of Nature.
The minimax solution is the minimax decition of δ.

Statistical Hypothesis Testing
A test function φ(x) is a probability assigned to a sample point x such that the null hypothesis
is rejected with this probability. Let Pθ be the true probability measure. Even if the
hypothesis θ is correct, the probability of its rejection is

Eθ(φ) =
∫

Pθ(dx)φ(x). (39)

If the rejection is decided with a predetermined level α it is called the level α test.
Error of the first kind: rejecting correct hypothesis
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Error of the second kind: accepting the wrong hypothesis
Eθ(φ) is the probability

Multivariate Aanalysis
258B
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