
Homework 4 Solution

4.1 Inverse horseshoe.

Sketch the inverse map of the following horseshoe map in Fig. H4.1.

A

A

DC

B

C

B

D

Figure H4.1: Horseshow preserving the ‘vertical order’

Soln.

Pull the pink band straight, recording the portions of the band overlapping the white square.

The square must be deformed continuously, so we can guess how the inverse map deforms

the white square as illustrated in the following figure.
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Figure H4.2: Horseshoe preserving the ‘vertical order’

Thus, we see the inverse map is also an ‘order-preserving’ horseshoe.

4.2 Skewed tent maps and their entropy.
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Consider the following generally skewed tent map (Fig. H4.3) (𝛼 ∈ (0, 1)) :

𝑥 → 𝑓𝛼(𝑥) =

{︂
𝑥/𝛼 for 𝑥 ∈ [0, 𝛼]

(1 − 𝑥)/(1 − 𝛼) for 𝑥 ∈ [𝛼, 1]
. (H4.1)
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Figure H4.3: Skewed tent map

This interval dynamical system (𝑓𝛼, [0, 1]) can have many distinct invariant measures, but

only one of them is observable (i.e., reachable from a positive measure set of initial condi-

tions). It is the flat measure 𝜇 = 1 on [0, 1] for all 𝛼.

(1) Show that indeed this is an invariant measure.

Soln.

The easiest way is to check the Perron-Frobenius equation (31.9):

𝑔(𝑥1)

|𝐹 ′(𝑥1)|
+

𝑔(𝑥2)

|𝐹 ′(𝑥2)|
= 𝑔(𝑥). (H4.2)

In our case, we have only to check that 𝑔 = 1 satisfies this: 𝛼 + 1 − 𝛼 = 1!. The end.

(2) For this invariant measure compute the Kolmogorov-Sinai entropy ℎ.

Soln.

The easiest way is to use Rokhlin’s formula (31.1). In our case

ℎ =

∫︁ 1

0

𝑑𝑥 log |𝐹 ′(𝑥)| =

∫︁ 𝛼

0

𝑑𝑥 log(1/𝛼)+

∫︁ 1

𝛼

𝑑𝑥 log(1/(1−𝛼)) = −𝛼 log𝛼−(1−𝛼) log(1−𝛼).

(H4.3)

In an alternative1 approach we can use the standard definition of the Kolmogorov-Sinai

entropy in terms of partitions (or generators). As you can easily show 𝒜 = {[0, 𝛼], (𝛼, 1]}
is a generator. This immediately gives the above formula. Besides, this approach tells you

that the topological entropy of these maps is always log 2, because it is given by counting

1Not in the Conway sense.
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the number of pieces (= elements) in the partition 𝒜 ∨ 𝑓−1𝒜 ∨ · · · ∨ 𝑓−(𝑛−1)𝒜.

(3) (2) implies that if 𝛼 ̸= 𝛽, then (𝑓𝛼, 1, [0, 1]) and (𝑓𝛽, 1, [0, 1]) are not isomorphic (𝛼, 𝛽 ∈
(0, 1)). However, there is always a homeomorphism 𝜑 : [0, 1] → [0, 1] that makes 𝑓𝛼 and 𝑓𝛽
conjugate for any 𝛼, 𝛽 ∈ (0, 1) pair. In particular, we can always find (𝛼-dependent) 𝜑 such

that (𝑓1/2 is the standard tent map)

𝜑 ∘ 𝑓𝛼 = 𝑓1/2 ∘ 𝜑. (H4.4)

However, 𝜑 is, as you expect, a horrible continuous function like the devil’s staircase.

Figure H4.4: 𝜑 for 𝛼 = 3/4. [Fig. 2 of M Plakhotnyk, Topological conjugation of one dimensional maps,
arXiv:1603.0690v1 (Mar, 2016)]

This means we can make an isomorphism 𝜑 (or its inverse) to map (𝑓1/2, 1, [0, 1]) to (𝑓𝛼, 𝜇𝛼, [0, 1])

with ℎ𝜇𝛼(𝑓𝛼) = log 2. Or we can find (𝑓1/2, 𝜈, [0, 1]) with the same KS entropy as (𝑓𝛼, 1, [0, 1])

as computed in (2): ℎ𝜈(𝑓1/2) = ℎ1(𝑓𝛼). Although a trivial question, explain that this means

for a given (topological) dynamical system (𝑓𝛼, [0, 1]) to have uncountably many distinct

measure-theoretical dynamical systems.

Soln.

We know if the KS entropies are distinct, the dynamical systems cannot be isomorphic.

Therefore, even if the dynamics (i.e., the map 𝑓) is the same, if two of its invariant measures

𝜇 and 𝜇′ have distinct KS entropies, then the measure-theoretical dynamical systems (𝑓, 𝜇, 𝐼)

and (𝑓, 𝜇′, 𝐼) are not isomorphic. We have just realized that for any 𝑓𝛼 there is an invariant

measure that gives the KS entropy that is equal to any number in (0, log 2]. Thus, there

must be uncountably many distinct invariant measures.

As is noted clearly in Story Line, which invariant measure we encounter depends on the

initial condition. Everybody knows that the choice of the initial condition has nothing to do

with the system dynamics (if inside the domain). You might say that we can observe only

attracting periodic orbits or an absolutely continuous measures, so actually the dynamics

enforces what we can encounter. This sounds a correct answer, but it totally ignores a deeper

question why we do not observe Lebesgue measure zero sets. Certainly, this question is be-

yond dynamics/mechanics and is usually ignored by physicists (certainly, totally ignored by

statistical physicists traditionally).
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(4) For any 𝛼 ∈ (0, 1) the topological entropy of 𝑓𝛼 is log 2 (again trivial but explain this).

Soln.

One answer was already given above. But sup ℎ = log 2 may be an easier answer.

4.3 Baker’s map-symbolic dynamics coerrespondence

We have introduce a 01 coding of the point in the unit square 𝑄 = [0, 1] × [0, 1] for baker’s

map (see Fig. 27.2). However, distinct code sequences may correspond to the same point

in 𝑄. To characterize the points having this nonuniqueness, let us make an explicit coding

formula for (𝑥, 𝑦) ∈ 𝑄.

Looking at Fig. 27.2, we see (𝑥, 𝑦) ∈ 𝑀𝑖0 ∩𝑇−1𝑀𝑖1 · · ·𝑇−𝑛𝑀𝑖𝑛 indicates that 𝑥-coordinate

can be coded by this ‘vertical striping’. If we code 𝑎−𝑘 = 1 (or 0) according to 𝑥 ∈ 𝑇−𝑘𝑀1

(or 𝑇−𝑘𝑀0), then the coding is 𝑥 → 𝑎0𝑎−1 · · · 𝑎−𝑛 · · ·. Analogously, for 𝑦 we can use the

‘horizontal layers’: If we code 𝑎𝑘 = 1 (or 0) according to 𝑦 ∈ 𝑇 𝑘𝑀1 (or 𝑇−𝑘𝑀0), then the

coding is 𝑦 → 𝑎1𝑎2 · · · 𝑎𝑛 · · ·.
(1) Compute 𝑥 and 𝑦 in terms of their (one-sided) sequences.

Soln.

The following formulas should be obvious:

𝑥 =
∞∑︁
𝑘=0

2−𝑘−1𝑎−𝑘, (H4.5)

and

𝑦 =
∞∑︁
𝑘=1

2−𝑘𝑎𝑘. (H4.6)

(2) Show that there are countably many points that correspond to more than one 01 se-

quences.

Soln.

This is just the question of identifying 0.01111111111 · · · with 0.1000000000 · · ·. The expres-

sions for 𝑥 and 𝑦 surely give the same numbers. THus, needless to say, there are infintely

may such points.
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