
34.9 Exact partition function of 2-Ising model

I outline arguably the simplest (smartest) way to compute the 2D Ising partition function.
The exposition is based on the first three sections of S Samuel, “The use of anticommuting
variable integrals in statistical mechanics. I. The computation of partition functions,” J.
Math. Phys. 21, 2806 (1980).1 I strongly urge you to read the first three sections.

To evaluate the partition function exactly is actually equivalent to mapping the system
(at least asymptotically in the thermodynamic limit) to a noninteracting system, a system
consisting of entities that do not interact with each other (that is, an ideal system like an
ideal gas). The situation is exactly parallel with mechanics. We say a mechanical system is
solvable when the system may be canonically transformed into a collection of free particles.
Here, the 2D Ising model is mapped to a non-interacting fermion system.

The starting point is that any spin configuration on a 2-torus (= a square with pe-
riodic boundary conditions) can be identified with a set of non-overlapping closed curves
(closed polygons) completely filling the space. It is intuitively obvious that Bloch walls (the
boundary between the up and down spin domains) can completely specify a particular spin
configuration. Bloch walls live on the dual lattice (Fig. 25.1).

Fig. 25.1 Dual lattice. The dual lattice (dot-

ted lattice) of a lattice (full line lattice) is the lattice

made of the center points of the cells (or made of

bonds evenly bisecting all the bonds) of the original

lattice. The dual lattice of a square lattice is again a

square lattice.

However, Bloch walls cannot completely fill up the space (cannot use up all the dual lattice
points). Therefore, we add ‘tiny bubbles’ or ‘dots’ at the unused dual lattice points to use
up all of them. This way, we can convert any spin configuration uniquely into a collection of
the space filling and non-overlapping closed curves. Here, ‘non-overlapping’ means that two
closed curves never share any edge (Bloch wall chunk). You can understand the conversion
rule from the examples in Fig 25.2.

We introduce the partition function for polygons:

ZIsing(J) = e2NJZpolygon(z). (0.0.1)

1This article was recommended by Yonathan Shapir in 1981.
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Fig 25.2 How to interpret spin configurations as space filling closed curves. Monomers (tiny closed curves)

are needed to indicate clearly that there is no Bloch wall passing through the (dual) lattice point. Bloch

walls can cross, but no two Bloch walls can share the same dual lattice bonds = no overlap of walls is allowed.

Here, z = e−2J , and

Zpolygon =
∗∑
zL, (0.0.2)

where L is the total length of the phase boundaries = Bloch walls (or the total number of
bonds connecting up and down spins), and

∑∗ means the summation over the ways to fill
the lattice with closed non-overlapping polygons (including monomers, see Fig 25.2). Notice
that −2NJ is the total energy of the all up configuration. Thus, Zpolygon is the partition
function of the Ising model whose energy is measured from the all up configuration.

The next task is to encode the polygonal configurations into algebra. The key words
are (i) space filling, and (ii) non-overlapping. (i) implies that all the dual lattice points must
be used, and (ii) implies a dual lattice bond attached to a particular dual lattice point must
not be used more than once. If we can use a variable η whose square is zero, η2 = 0, we may
describe ‘not more than once.’ Variables satisfying η2 = 0 are inevitably anticommuting.
Thus, we wish to encode the geometry in terms of an anticommuting algebra. If we can pick
up the terms where all the variables show up, we can satisfy the space filling condition.

The relation between combinatorics and algebra may be illustrated by the following
simple observation:

(1 + Ax)(1 +Bx) = 1 + (A+B)x+ ABx2. (0.0.3)

Here, A and B correspond to parts of figures (configurations), and + implies ‘or’ and product
implies ‘and.’ The power of x implies the number of parts appearing in the configuration.
Thus, the first term is without any parts (blank), the term with x implies the configurations
with a single part A or B, and the term proportional to x2 shows the configuration both A
and B appear.

From now on we simply call dual lattice points and bonds lattice points and bonds.
Let us introduce ‘hands’ associated with each lattice point p ηh+p , ηv+p , ηhp and ηvp (Fig 25.3)
(+ implies the hands on the + side of the coordinate; h+ = horizontal on the + side, v =
vertical on the negative side; etc).
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Fig. 25.3 ‘Hands’ associated with lattice point

p that correspond to anti-commuting variables

ηh+p , ηv+p , ηhp and ηvp . Also a horizontal Bloch wall

chunk ηh+(x,y)η
h
(x+1,y) and a vertical Bloch wall chunk

ηv+(x,y)η
v
(x,y+1) are shown. The arrows denote the

order of the variables.

In terms of these variables a lattice bond (or a Bloch wall chunk or segment) may be described
as ηv+(x,y)η

v
(x,y+1) or ηh+(x,y)η

h
(x+1,y) (Fig. 25.3).

For each configuration that fills the lattice with polygons (including monomers = points),
we wish to use all the hand variables once and only once. If a horizontal Bloch wall passes
through a lattice point p, then the horizontal hands are used up. The vertical hands are
not used, but if you wish to prevent any vertical Bloch wall to go through p, a ‘preventer’
= monomer ηv+p ηvp must be attached. If a Bloch wall has a corner at p, again to prevent it
from touching with another Bloch wall corner, a ‘corner filler’ must be attached. These are
illustrated in Fig 25.4. Thus, the Bloch wall crossing is possible only when four Bloch wall
chunks join at one lattice point (thus multiple counting of crossing configurations is cleverly
avoided).

p

p

monomer

corner filler

η v
p

η v+
p

η v
p

ηh
p

Fig. 25.4 Examples of ‘fillers’ or ‘preventors’ to iso-

late Bloch walls. The arrows denote the ordering of

the variables. All the needed varieties are in Fig. 25.5.

Thus, to fill the lattice with polygons using up all the hands once and only once we need the
following parts described in Fig. 25.5:
(i) bloch walls (already shown in Fig 25.3),
(ii) corner fillers,
(iii) monomers.

For example, consider the following product:[ ∏
p=1,···,4

(1 + a1η
h+
p ηvp)(1 + a3η

v+
p ηhp )(1 + a2η

v+
p ηh+p )(1 + a4η

v
pη

h
p )

]
×

× (1 + zηh+1 ηh2 )(1 + z′ηv+1 ηv4)(1 + zηh+4 ηh3 )(1 + z′ηv+2 ηv3)×
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Fig. 25.5 ‘Filler’ for polygons. The arrows denote the ordering of the variables.

×

[ ∏
p=1,···,4

(1 + bhη
h
pη

h+
p )(1 + bvη

v
pη

v+
p )

]
(0.0.4)

If the product is expanded (respecting the anticommuting nature of the variables), the result
consists of two kinds of terms; the terms containing all the hands associating with the 4 lattice
points 1, · · ·, 4 once, and the terms that do not (notice that the terms with duplicated hands
all vanish due to η2 = 0). If we ignore the latter, we have only the following two types of
terms (see Fig. 25.6):

a1a2a3a4z
2z′2[ηv1η

h
1η

h+
2 ηv2η

v+
3 ηh+3 ηv+4 ηh4 ] [ηv+1 ηv4η

h+
1 ηh2η

v+
2 ηv3η

h+
4 ηh3 ] (0.0.5)

that corresponds to the simple plaquette and the terms that never contains any Bloch wall
chunk. The latter may look like the right figure in Fig. 25.6. That is, at each (dual) lattice
point is a pair of corner fillers or a pair of monomers.

a1a3a
2
2a

2
4bhbv[η

h+
4 ηv4η

v+
4 ηh4 ] [ηv1η

h
1η

v+
1 ηh+1 ] [ηh+2 ηh2η

v+
2 ηv2 ] [ηv3η

h
3η

v+
3 ηh+3 ] (0.0.6)

that corresponds to no Bloch wall cases (see Fig. 25.6). There is only one term of the form
(0.0.5), but there are 81 terms analogous to (0.0.6), because at each lattice point (vertex)
the mirror image arrangement of corner fillers is possible, and because also the monomer
pairs can come in place of corner filler pairs.

1 2

34 Fig. 25.6 Illustration of the terms in (0.0.5)

(left) and (0.0.6) (right).

If we wish to describe the 2D Ising model, |ai| = 1, and |bh| = |bv| = 1 are required, and

z = z′ = e−2J (0.0.7)

for a symmetric model.

Let us briefly summarize the algebra and ‘calculus’ of anti-commuting variables ηα
(Grassmann variablesıGrassmann variables)

ηαηβ + ηβηα = 0 (0.0.8)
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for any choice of α and β in the set of variables. In particular, η2α = 0. Thus,

eηα = 1 + ηα. (0.0.9)

Therefore, if A is a monomial of Grassmann variables, then

eA = 1 + A. (0.0.10)

If A and B are sums of the even order monomials, then A and B commute, so

eA+B = 1 + A+B + AB = eAeB. (0.0.11)

Therefore, the product (0.0.4) can be rewritten (+ variables precede; within + variables (or
no + variables) v precedes h in the current convention) as

exp

[ ∑
p=1,···,4

(
a1η

h+
p ηvp + a3η

v+
p ηhp + a2η

v+
p ηh+p + a4η

v
pη

h
p + bvη

v+
p ηvp + bhη

h+
p ηhp

)
+ zηh+1 ηh2 + z′ηv+1 ηv4 + zηh+4 ηh3 + z′ηv+2 ηv3

]
. (0.0.12)

We are sure that all the cluster configurations on the lattice appear once and only once
in the expanded result. If we choose ai and z as above, and if we declare that the values
of the products containing all the Grassmann variables appearing in the system to be unity
and other product values to be zero, then we can map the algebraic formula directly to the
partition function. To invent such a map we have only to consider a linear map. A linear
map from a set of monomials to a set of numbers compatible with the algebra of the variables
may be interpreted as an integration.2

Let f be a function3 of n Grassmann variables η1 · · · ηn. It has the following general
form:

f = a0 +
∑
i

a1iηi +
∑
i<j

a2ijηiηj + · · ·+ a12···nη1η2 · · · ηn. (0.0.13)

We introduce an integral of a function f of anticommuting variables as follows∫
dη1 · · · dηn f = a12···n. (0.0.14)

Here, the integration sign is determined by the ‘measure’ dη1dη2 · · · dηn specifying the ‘nor-
mal ordering’ of the variables. Notice that if we integrate (0.0.12), we obtain (a1a2 − bhbv +
a3a4)

2 + a1a2a3a4e
4J .

The partition function for the polygons is given by

Zpolygon(z) = (−1)N
∫
dηdη+eA, (0.0.15)

2You could call it a trace,ıanticommuting integral and write Tr, but the integration symbol is more
convenient, because the normal order of the operators can be explicitly specified.

3We assume that f is analytic at the origin.
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where dηdη+ = dηh1dη
v
1dη

h+
1 dηv+1 · · ·,4 N is the number of the sites and

A = ABW + AC + AM , (0.0.16)

ABW = z
∑
(x,y)

(
ηh+(x,y)η

h
(x+1,y) + ηv+(x,y)η

v
(x,y+1)

)
, (0.0.17)

AC =
∑
(x,y)

(
a1η

h+
(x,y)η

v
(x,y) + a3η

v+
(x,y)η

h
(x,y) + a2η

v+
(x,y)η

h+
(x,y) + a4η

v
(x,y)η

h
(x,y)

)
,

(0.0.18)

AM =
∑
(x,y)

(
bhη

h+
(x,y)η

h
(x,y) + bvη

v+
(x,y)η

v
(x,y)

)
(0.0.19)

For the Ising model, from the above calculation for the single plaquette case, a1a2a3a4 and
a1a3 + a2a4 − bubh must be identical (and unity). Can we choose ai = bh = bv = +1? We
must check whether this choice (the sign choice) is OK.

The complication comes from the sign change when we ‘normal order’ the product.
Corner fillers and monomers do not make any problem, because when their product is formed,
the normal ordering does not change any sign. The problem may occur when two Bloch walls
cross at (x, y). We have the following product

ηh+(x−1,y)η
h
(x,y)η

h+
(x,y)η

h
(x+1,y)η

v+
(x,y−1)η

v
(x,y)η

v+
(x,y)η

v
(x,y+1), (0.0.20)

that is, at (x, y) we have
ηh(x,y)η

h+
(x,y)η

v
(x,y)η

v+
(x,y). (0.0.21)

Normal ordering flips the sign.

⇒ vertex contributes −1

Let us put −1 to al vertices ai = bh = bv = −1 and the overall (−1)N

This way we have mapped the 2D Ising model to a free fermion model (it is free be-
cause the Hamiltonian is quadratic = Gaussian). As you know, the standard way to solve
a free (Gaussian) model is Fourier transformation. Fourier transformation is a linear trans-
formation, so even if the variables are anti-commuting, it is simply an organized fashion to
construct convenient linear combinations of basic variables. Assuming that the lattice is
(2M + 1)× (2M + 1), we introduce the following discrete Fourier transformation

η∗(x,y) =
1

2M + 1

∑
s,t

a∗s,t exp

(
2πixs

2M + 1
+

2πiyt

2M + 1

)
, (0.0.22)

or, you may regard this as the definition of a∗s,t, where ∗ denotes h, v+, etc.

Introducing this into the definition of the Hamiltonian A, we obtain (the calculation is
as usual; you have only to respect the order of the variables a∗p which are anti-commuting)

A =
∑
s,t

As,t, (0.0.23)

4Notice that this ordering is exact opposite of the ordering in the product (0.0.12).
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where

As,t = zah+s,t a
h
s,t exp

(
2πis

2M + 1

)
+ zav+s,t a

v
s,t exp

(
2πit

2M + 1

)
+ a1a

h+
s,t a

v
s,t + a3a

v+
s,t a

h
s,t + a2a

v+
s,t a

h+
−s,−t + a4a

v
s,ta

h
−s,−t + bha

h+
s,t a

h
s,t + bva

v+
s,t a

v
s,t.

(0.0.24)

That is, (s, t) and (−s,−t) couple, but there is no other couplings of variables.

We must perform the integration over η in (0.0.15), which is the integration over a.
Since Fourier transformation is a unitary transformation, the Jacobian = 1. Thus, we can
formally compute the integral as

Zfree fermion =

∫
dada+

∏
s,t

As,t =

[∏
s,t

L(s, t)

]1/2
, (0.0.25)

where

L

(
2πis

2M + 1
,

2πit

2M + 1

)
=

∫
das,tda−s,−tAs,tA−s,−t, (0.0.26)

where das,tda−s,−t = dahs,tda
v
s,tda

h+
s,t da

v+
s,t da

h
−s,−tda

v
−s,−tda

h+
−s,−tda

v+
−s,−t. Here, we have used the

evenness of L and taken the square root to avoid the double counting of (s, t) and (−s,−t).
The computation of (0.0.26) is straightforward. You need not be clever; simply write down
all the terms and order the a variables in the normal order inherited from that of η. The
result is

L

(
2πis

2M + 1
,

2πit

2M + 1

)
= hsh−svtv−t − a1a3(hsvt + h−sv−t)− a2a4(hsv−t + h−svt) + (a1a3 + a2a4)

2,

(0.0.27)

where

hs = bh − z exp

(
2πis

2M + 1

)
, (0.0.28)

vt = bv − z exp

(
2πit

2M + 1

)
. (0.0.29)

We take the thermodynamic limit M → ∞, and the discrete Fourier transformation
becomes the ordinary Fourier transformation

−βffree fermion =
1

2

∫ π

−π

dpx
2π

∫ π

−π

dpy
2π

L(px, py). (0.0.30)

Thus, the Ising model free energy is also obtained as

−βfIsing = log 2 +
1

2

∫ π

−π

dpx
2π

∫ π

−π

dpy
2π

log[cosh2 2J + sinh 2J(cos px + cos py)]. (0.0.31)
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The exact free energy was obtained by Onsager in 1944.5 (The elegant form given here is
due to Schultz, Mattis and Lieb.) We can perform one integral with introducing px ± py as
new integration variables:

−βfIsing == − log(2 cosh 2J)− 1

2π

∫ π

0

dφ log
1

2

(
1 +

√
1− κ2 sin2 φ

)
, (0.0.32)

where

κ =
2

cosh 2Jcoth2J
. (0.0.33)

From this, internal energy and specific heat can be computed by differentiation.6

The above method is of interest in its own right, because it is a typical technique to
cast graphic problems into statistical mechanical problems. For example, with the same
technique we can show that the non-self-tracing walks (the walks that never go through the
same lattice bond twice) is in the same universality class of self-avoiding walk.

5L Onsager, Phys. Rev. 65, 117 (1944).
6If you can demonstrate that there is a critical point, then its value may be exactly estimated. See R.

P. Feynman, Statistical Mechanics a set of lectures (Benjamin, 1972) p139.
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