34.8 Perron-Frobenius theorem

Theorem [Perron and Frobenius]

Let A be a square matrix whose elements are all non-negative, and there is a positive integer n such that all the elements of A^{n} are positive. Then, there is a non-degenerate real positive eigenvalue λ such that
(i) $\left|\lambda_{i}\right|<\lambda$, where λ_{i} are eigenvalues of A other than $\lambda,{ }^{1}$
(ii) the elements of the eigenvector belonging to λ may be chosen all positive.

This special real eigenvalue giving the spectral radius is called the Perron-Frobenius eigenvalue.

Proof of the Perron-Frobenius theorem ${ }^{2}$

Let us introduce the vectorial inequality notation: $\boldsymbol{x}>0(\geq 0)$ implies that all the components of \boldsymbol{x} are positive (non-negative). Also let us write $\boldsymbol{x} \geq(>) \boldsymbol{y}$ if $\boldsymbol{x}-\boldsymbol{y} \geq(>) 0$.
Let \boldsymbol{x} be a vector such that $|\boldsymbol{x}|=1$ and $\boldsymbol{x} \geq 0$. The largest ρ satisfying

$$
\begin{equation*}
A \boldsymbol{x} \geq \rho \boldsymbol{x} \tag{0.0.1}
\end{equation*}
$$

is denoted by $\Lambda(\boldsymbol{x})$. The proof is divided into several steps.
(i) Since the set $U=\left\{\boldsymbol{x}|\boldsymbol{x} \geq 0,|\boldsymbol{x}|=1\}\right.$ is a compact set, ${ }^{3}$ there is a vector $\boldsymbol{z} \in U$ that maximizes $\Lambda(\boldsymbol{x})$. Let us write $\lambda=\Lambda(\boldsymbol{z})$.
(ii) λ is an eigenvalue of A, and \boldsymbol{z} belongs to its eigenspace: $\boldsymbol{A} \boldsymbol{z}=\lambda \boldsymbol{z}$.
[Demo] Even if not, we have $\boldsymbol{w}=A \boldsymbol{z}-\lambda \boldsymbol{z} \geq 0$ (not equal to zero). Notice that for any vector $x \geq 0$ but $\neq 0$ there is some positive integer m such that $A^{m} \boldsymbol{x}>0$, so

$$
\begin{equation*}
A^{m} \boldsymbol{w}=A A^{m} \boldsymbol{z}-\lambda A^{m} \boldsymbol{z}>0 . \tag{0.0.2}
\end{equation*}
$$

This implies $\Lambda\left(A^{m} \boldsymbol{z}\right)>\lambda$, but λ is the maximum of Λ, this is a contradiction. Therefore, $\boldsymbol{w}=0$. That is, \boldsymbol{z} is an eigenvector belonging to λ.
(iii) We may choose $\boldsymbol{z}>0$.
[Demo] $z \geq 0$ and nonzero, so there is a positive integer m such that $A^{m} \boldsymbol{z}>0$ but this is $\lambda^{m} \boldsymbol{z}>0$, so actually $\boldsymbol{z}>0$.
(iv) λ is the spectral radius of A.
[Demo] Suppose $A \boldsymbol{y}=\lambda^{\prime} \boldsymbol{y}$. Let \boldsymbol{q} be the vector whose components are absolute values of \boldsymbol{y} : $q_{i}=\left|y_{i}\right|$. Then, $A \boldsymbol{q} \geq\left|\lambda^{\prime}\right| \boldsymbol{q}$. Therefore, $\left|\lambda^{\prime}\right| \leq \lambda$.
(v) The absolute value of other eigenvalues are smaller than λ. That is, no eigenvalues other than λ is on the spectral circle.
[Demo] Suppose λ^{\prime} is an eigenvalue on the spectral circle but is not real positive. Let \boldsymbol{q} be the vector whose components are absolute values of an eigenvector belonging to λ^{\prime}. Since $A \boldsymbol{q} \geq\left|\lambda^{\prime}\right| \boldsymbol{q}=\lambda \boldsymbol{q}$, actually we must have $A \boldsymbol{q}=\lambda \boldsymbol{q}$. That is, the absolute value of each component of the vector $A^{m} \boldsymbol{y}=\lambda^{\prime m} \boldsymbol{y}$ coincides with the corresponding component of $A^{m} \boldsymbol{q}$. This implies

$$
\begin{equation*}
\left|\sum_{j}\left(A^{m}\right)_{i j} y_{j}\right|=\sum_{j}\left(A^{m}\right)_{i j}\left|y_{j}\right|=\sum_{j}\left|\left(A^{m}\right)_{i j} y_{j}\right| . \tag{0.0.3}
\end{equation*}
$$

All the components of A^{m} are real positive, so all the arguments of y_{j} are identical. ${ }^{4}$ Hence, $\lambda^{\prime}=\lambda$.

[^0](vi) λ is non-degenerate.
[Demo] Suppose otherwise. Then, there is a vector \boldsymbol{z}^{\prime} that is not proportional to \boldsymbol{z} but still $A \boldsymbol{z}^{\prime}=\lambda \boldsymbol{z}^{\prime}$. Here, A is a real matrix and λ is real, we may choose \boldsymbol{z}^{\prime} to be real. Since \boldsymbol{z} and \boldsymbol{z}^{\prime} are not parallel, we may choose α appropriately so that $\boldsymbol{v}=\boldsymbol{z}+\alpha \boldsymbol{z}^{\prime} \geq 0$ but has a zero component. This is contradictory to (iii).

[^0]: ${ }^{1}$ That is, λ gives the spectral radius of A.
 ${ }^{2}$ A standard reference may be E. Seneta, Non-negative matrices and Markov chains (Springer, 1980). The proof here is an eclectic version due to many sources, including N. Iwahori, Graphs and Stochastic Matrices (Sangyo-tosho, 1974).
 ${ }^{3}$ The domain of λ is a sphere of some dimension restricted to the nonnegative coordinate sector. The existence uses the fixed point theorem.
 ${ }^{4} a, b \neq 0$ and $|a+b|=|a|+|b|$ imply the real positivity of a / b.

