34.8 Perron-Frobenius theorem

Theorem [Perron and Frobenius]

Let A be a square matrix whose elements are all non-negative, and there is a positive integer n such that all the elements of A^n are positive. Then, there is a non-degenerate real positive eigenvalue λ such that

(i) $|\lambda_i| < \lambda$, where λ_i are eigenvalues of A other than λ^{1} .

(ii) the elements of the eigenvector belonging to λ may be chosen all positive. \Box

This special real eigenvalue giving the spectral radius is called the *Perron-Frobenius eigen*value.

Proof of the Perron-Frobenius theorem²

Let us introduce the vectorial inequality notation: $\boldsymbol{x} > 0 \ (\geq 0)$ implies that all the components of \boldsymbol{x} are positive (non-negative). Also let us write $\boldsymbol{x} \geq (>)\boldsymbol{y}$ if $\boldsymbol{x} - \boldsymbol{y} \geq (>)0$. Let \boldsymbol{x} be a vector such that $|\boldsymbol{x}| = 1$ and $\boldsymbol{x} \geq 0$. The largest ρ satisfying

$$A \boldsymbol{x} \ge \rho \boldsymbol{x}$$
 (0.0.1)

is denoted by $\Lambda(\boldsymbol{x})$. The proof is divided into several steps.

(i) Since the set $U = \{ \boldsymbol{x} | \boldsymbol{x} \ge 0, |\boldsymbol{x}| = 1 \}$ is a compact set,³ there is a vector $\boldsymbol{z} \in U$ that maximizes $\Lambda(\boldsymbol{x})$. Let us write $\lambda = \Lambda(\boldsymbol{z})$.

(ii) λ is an eigenvalue of A, and z belongs to its eigenspace: $Az = \lambda z$.

[Demo] Even if not, we have $\boldsymbol{w} = A\boldsymbol{z} - \lambda \boldsymbol{z} \ge 0$ (not equal to zero). Notice that for any vector $\boldsymbol{x} \ge 0$ but $\neq 0$ there is some positive integer m such that $A^m \boldsymbol{x} > 0$, so

$$A^m \boldsymbol{w} = A A^m \boldsymbol{z} - \lambda A^m \boldsymbol{z} > 0. \tag{0.0.2}$$

This implies $\Lambda(A^m z) > \lambda$, but λ is the maximum of Λ , this is a contradiction. Therefore, w = 0. That is, z is an eigenvector belonging to λ .

(iii) We may choose $\boldsymbol{z} > 0$.

[Demo] $z \ge 0$ and nonzero, so there is a positive integer m such that $A^m z > 0$ but this is $\lambda^m z > 0$, so actually z > 0.

(iv) λ is the spectral radius of A.

[Demo] Suppose $A\mathbf{y} = \lambda' \mathbf{y}$. Let \mathbf{q} be the vector whose components are absolute values of \mathbf{y} : $q_i = |y_i|$. Then, $A\mathbf{q} \ge |\lambda'|\mathbf{q}$. Therefore, $|\lambda'| \le \lambda$.

(v) The absolute value of other eigenvalues are smaller than λ . That is, no eigenvalues other than λ is on the spectral circle.

[Demo] Suppose λ' is an eigenvalue on the spectral circle but is not real positive. Let \boldsymbol{q} be the vector whose components are absolute values of an eigenvector belonging to λ' . Since $A\boldsymbol{q} \geq |\lambda'|\boldsymbol{q} = \lambda \boldsymbol{q}$, actually we must have $A\boldsymbol{q} = \lambda \boldsymbol{q}$. That is, the absolute value of each component of the vector $A^m \boldsymbol{y} = \lambda'^m \boldsymbol{y}$ coincides with the corresponding component of $A^m \boldsymbol{q}$. This implies

$$\left|\sum_{j} (A^m)_{ij} y_j\right| = \sum_{j} (A^m)_{ij} |y_j| = \sum_{j} |(A^m)_{ij} y_j|.$$
(0.0.3)

All the components of A^m are real positive, so all the arguments of y_j are identical.⁴ Hence, $\lambda' = \lambda$.

³The domain of λ is a sphere of some dimension restricted to the nonnegative coordinate sector. The existence uses the fixed point theorem.

 ${}^{4}a, b \neq 0$ and |a + b| = |a| + |b| imply the real positivity of a/b.

¹That is, λ gives the spectral radius of A.

²A standard reference may be E. Seneta, *Non-negative matrices and Markov chains* (Springer, 1980). The proof here is an eclectic version due to many sources, including N. Iwahori, *Graphs and Stochastic Matrices* (Sangyo-tosho, 1974).

(vi) λ is non-degenerate.

[Demo] Suppose otherwise. Then, there is a vector \mathbf{z}' that is not proportional to \mathbf{z} but still $A\mathbf{z}' = \lambda \mathbf{z}'$. Here, A is a real matrix and λ is real, we may choose \mathbf{z}' to be real. Since \mathbf{z} and \mathbf{z}' are not parallel, we may choose α appropriately so that $\mathbf{v} = \mathbf{z} + \alpha \mathbf{z}' \ge 0$ but has a zero component. This is contradictory to (iii).