
33.1 Simon’s theorem

At the second order phase transition point, the correlation length diverges. What happens
to the correlation function? (??) implies that the correlation must decay slower than any
exponential decay. For some c > 0 the decay like e−c

√
r can be imagined, but such a stretched

exponential decay is impossible for equilibrium spatial correlation functions. For example,
when ferromagnetic ordering occurs, it can be proved1 that

〈φ(0)φ(r)〉 ≤
∑
s∈B

〈φ(0)φ(s)〉〈φ(s)φ(r)〉. (0.0.1)

Here, B can be any set of lattice points such that removal of all the points in B destroys
all the paths along the lattice bonds connecting the origin 0 and r. For example, we may
choose it to be a spherical shell centered at the origin with an appropriate thickness.2 If the
system is translationally symmetric, then from (0.0.1) we get

〈φ(s)φ(r)〉 = 〈φ(0)φ(r − s)〉 ≤
∑
s1∈B

〈φ(0)φ(s1)〉〈φ(s1)φ(r − s)〉 (0.0.2)

All the moments of spins are positive.3 Therefore, introducing the relation (0.0.2) into
(0.0.1), we obtain

〈φ(0)φ(r)〉 ≤
∑
s∈B

〈φ(0)φ(s)〉

(∑
s1∈B

〈φ(0)φ(s1)〉〈φ(s1)φ(r − s)〉

)
. (0.0.3)

To be sure let us reiterate this procedure once more:

〈φ(0)φ(r)〉 ≤
∑
s∈B

〈φ(0)φ(s)〉

{∑
s1∈B

〈φ(0)φ(s1)〉

(∑
s2∈B

〈φ(0)φ(s2)〉〈φ(s2)φ(r − s− s1)〉

)}
.

(0.0.4)
If r is sufficiently far away from the origin and the above procedure may be repeated q

times, then replacing the term 〈φ(sq)φ(r − s− s1 − · · · − sq−1)〉 that is expected to appear
after these iterations with its maximum value C, we obtain

〈φ(0)φ(r)〉 ≤

[∑
s∈B

〈φ(0)φ(s)〉

]q
C. (0.0.5)

Here, q may be chosen to be a number proportional to |r|. If we can make
∑

s∈B〈φ(0)φ(s)〉 <
1, the correlation function decays exponentially. That is, the summability of the correlation
function on a large sphere is the key for exponential decay. If the correlation function behaves
as r−µ (d− 1 < µ), the decay must be exponential. On the other hand, as can be seen from
the decay of the fundamental solution to the Laplace equation, even without any fluctuation,

1For ferromagnetic Ising models, see B. Simon, “Correlation Inequalities and the decay of correlations
in ferromagnets,” Commun. Math. Phys., 77, 111 (1980).

2For d-(hyper)cubic lattice, its thickness can be slightly larger than
√
d× lattice spacing.

3This is one of Griffiths’ inequalities (the first inequality): for any finitely many positive integers ai
〈
∏

i s
ai
i 〉 ≥ 0. A simple proof may be found in J. Glimm and A. Jaffe, Quantum Physics, a functional

integral point of view, Second Edition (Springer, 1987) Sect. 4.1.
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correlation decays as 1/rd−2.
If there are fluctuations, intuitively speaking at least for the ferromagnetic case, the

correlation is expected to decay faster than without fluctuations. Therefore, when ξ diverges,
the correlation function must decay algebraically; if we write this algebraic decay as r−µ, µ
cannot be larger than d− 1, and cannot be smaller than d− 2. Therefore, we may conclude
thatr

〈φ(0)φ(r)〉 ∼ 1

rd−2+η
(0.0.6)

is the general expression for the order parameter correlation function at the critical point.
Here, η (∈ (0, 1]) is one of the critical indices we will encounter in the next section.

The above argument suggests that if there is a long range interaction, fluctuation
effects can be contained. We already know such an example: the 1D Kac model. Even in
1-space this long-range interaction model exhibits gas-liquid phase transition.4

What happens if we introduce a small number of (fraction of) long range interactions into
a short-ranged lattice system? This is a story of systems with the so-called ‘small world’
interaction network.5 Let us introduce such long range interaction with probability p (� 1).
The average distance from an arbitrary lattice point to one of such long-range interacting
points (= airports) is ` ∼ p−1/d. We compare this with the domain size = correlation length
ξ, which is the distance over which spins can ‘communicate.’ This length generally grows as
temperature decreases. The ordering would occur if ξ reaches `, because then the ordered
patch can have access to the ‘big world.’ As we will learn, in 1-space6

ξ ∼ e2J/kBT , (0.0.7)

so Tc ∼ 1/| log p|; now phase transition can occur at a positive temperature. Also as we will
learn later ξ ∼ (T − Tc)−ν in D(> 1)-space, so Tc(p)− Tc(0) ∼ p1/dν .

4However, no local order can be stabilized by a long range interaction, so no crystal formation is possible.
5see D. J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness (Princeton

Studies in Complexity, 2003).
6The probability of introducing one up-down boundary is e−2J/kBT , so the spacing of ‘defects’ should be

the reciprocal of this.
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