
32.1 Order parameters

We have mainly discussed the Ising ferromagnet and related systems (single component
fluids, binary liquid mixtures). At least we have reached a reasonable understanding of the
order-disorder phase transition in such systems.

The basic framework of our theory utilizes the order parameter and its fluctuation to
describe the phase transition. I wish to give a unified theoretical framework to understand
phase diagrams and phase transitions.

The first question we must consider is: what is an order parameterıorder parameter?
You might say it is a quantity that is nonzero for ordered phases and zero for high temper-
ature disordered phases. Fine, but then any odd function of magnetization would do. Are
you happy with this loose characterization?

Why do we need an order parameter at all? We need it to distinguish different bulk
phases, or more precisely, to characterize distinct features of equilibrium properties of differ-
ent bulk phases. Although scattering experiments tell us microscopic distinctions of various
phases, it is important to recognize that different phases are distinguishable macroscopically
through macroscopic quantities. That is, we have only to have a thermodynamic variable
that can distinguish phases. Roughly speaking, an order parameter describing a phase transi-
tion between two phases is a thermodynamic quantity that is zero in one phase and non-zero
in the other.

There are only two kinds of thermodynamic quantities (the so-called fourth law of
thermodynamics), intensive and extensive quantities or rather thermodynamic fields and
densities (extensive quantity/volume).

Since we wish to discuss phase coexistence between different phases, the order parame-
ter must be a density (extensive). Indeed, magnetization is an extensive variable.

Let us take a macroscopically small chunk (= volume element) of a bulk phase and
describe it mesoscopically. This means we observe a distribution function of mesoscopic
observables in an appropriate state space F (the space large enough to describe equilibrium
fluctuations). An equilibrium state of the chuck may be described by a distribution function
on this space F. We compare the distributions for two phases, and look for a qualitative
change of the distributions. Then, a thermodynamic density describing this qualitative
change may be chosen as an order parameter to describe the phase transition.

A more microscopic picture is that the order parameter is a thermodynamic density
that can represent the characteristic feature of the microscopic arrangement of elements. At
least there are two kinds of orders; one is about the spatial arrangement of the elements,
and the other is about the orientation of the elements. Let us postpone the combination of
these orders, and first discuss the orientational order.
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In 3-space the orientational distribution may be described by a density distribution on
the unit sphere.

For example, in the case of Ising ferromagnets, the fluctuation of the spin direction is
spatial-inversion symmetric at high temperatures, but at sufficiently low temperatures this
symmetry is broken.1 Therefore, magnetization per spin which is a respectable thermody-
namic density captures the salient features of the change in the distribution (Fig 20.1).

T > TT > T T < TT < Tc c

Fig. 20.1 Distribution of spin direction
for Ising ferromagnets. The spins need not
be confined to one dimension strictly.

For the Heisenberg ferromagnet, the spin can point any direction freely at high temper-
atures, but this isotropy is broken below Tc (Fig 20.2).

T > Tc T < Tc

Fig. 20.2 Distribution of spin direction
for Heisenberg ferromagnets. Below Tc the
spins may point any one direction preferen-
tially.

Any function on a sphere may be expanded in terms of spherical harmonics:

f(θ, ϕ) =
∞∑
n=0

n∑
`=−n

An`Yn`(θ, ϕ). (0.0.1)

Therefore, the coefficients {An`} can describe the change in the orientational order. That
is, these coefficients may be regarded as the order parameter of the system. We do not
need all of them; we choose the lowest nontrivial order coefficients reflecting the qualitative
change. For example for the Heisenberg ferromagnets, the coefficients of n = 1 terms (recall
the p wave functions of a hydrogen atom) change from zero to some nonzero values at Tc.
Note that if the function f describes the (appropriately smoothed) actual number of spins
in the volume element, then these coefficients are thermodynamic densities. Therefore, it is
sensible to adopt these coefficients collectively as the order parameter. Thus, we may use a
vector as the order parameter for the Heisenberg model.2

1The nonzero (spin) angular momentum implies broken time reversal symmetry, so we may understand
the transition as a loss of this symmetry, but here I do not stress this point of view.

2You may also think that the lowest dimensional irreducible representation of O3 capturing the symmetry
breaking determines the order parameter.
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The spins do not have the inversion symmetry, but if the arrow denotes the orientation
of a disk (its normal direction) or the longest axis of a symmetric long molecule, then its
directional vector n and −n describe the same state (Fig 20.3). Therefore, it is better
to express the arrangement with a headless arrow = bar or rod. This ‘rod’ is called the
directorıdirector instead of spin.
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Fig. 20.3 Directors for long or disklike
molecules.

In this case if we plot the direction of the arrow at each element, its distribution must always
be inversion symmetric on the sphere (Fig 20.4). Therefore, the lowest order terms relevant
in (0.0.1) is now n = 2 (that is, the configuration on the sphere may be best described by the
superposition of d wave functions). Therefore, we need 5 parameters to describe the order.
This is equivalent to computing 〈nαnβ〉 or better

Qαβ =
1

2
(3nαnβ − δαβ) (0.0.2)

which is a traceless symmetric tensor (thus it, = 3× 3 symmetric matrix, has 5 independent
elements) the maximum of whose elements is unity. There are two typical orders. One is
uniaxial (axially symmetric) (Fig 20.4), and the other not (a biaxial phaseıbiaxial phase).

uniaxial order biaxial order

Fig. 20.4 Biaxial and uniaxial order of
directors. For the biaxial order the gray
zones are not circular but oval.

Liquid crystals consist of long rod-like molecules, and their directors could order upon cool-
ing. The resultant nematic phaseınematic phase (see the table below) may be uniaxial or
biaxial.

The spatial order could be ordering in 1, 2 or 3 directions. If the system orders in
one dimension, the phase is a lamellar phaseılamellar phase; it is a stack of lamellae in
which there is no two dimensional order. If the system orders in 2 dimensions, it is called a
columnar phaseıcolumnar phase; it is a two dimensional crystal of columns in which there is
no periodicity. Ordering in all three directions is the crystalline phaseıcrystalline phase.

For a pure substance in 3-space is it possible to have all the combinations of spatial and
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orientational orders?

orientational\translational disorder 1D order 2D order 3D order
disorder fluid solid

uniaxial order nematic, discotic nematic smectic A solid
biaxial order biaxial nematic smectic C solid

multiple directional order columnar discotic solid

I illustrate typical examples in Fig. 20.5.3

discodic 
nematic

top view

side view

unixial
nematic

side view

top view

biaxial
nematic smectic A

side view

top view

smectic C

side view

top view

columnar
discodic 

Fig. 20.5

An important remark on ‘ordered phases’: We know empirically that with lowering of tem-
perature pure substances usually undergoes phase transitions and lowers its symmetry. Thus,
the ground state of a quantum many-body system is expected to be a perfectly ordered phase
such as crystals or superfluids. Can we demonstrate this from the first principle? Or, in
a more concrete fashion, can we demonstrate that crystalline order or ferromagnetic order
appears at sufficiently low temperatures? No one has been able to demonstrate ordering.
That is, no one has yet demonstrated that quantum mechanics is consistent with this general
observation.

3P M Chaikin and T C Lubensky, Principles of Condensed Matter Physics (Cambridge UP, 1995) is an
excellent reference.
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