
31.11 Thermodynamic limit

How can we study the thermodynamic limit of a system?r The Hamiltonian in this limit
is meaningless; it is generally a non-convergent infinite sum. For example, see the Ising
Hamiltonian; it is an infinite sum of ±1. Consequently, the Boltzmann factor is almost
always 0 or ∞.

Because the purpose of thermodynamic limit is to study the bulk properties of a system, we
should take the van Hove limit.1 Thus, in order to consider thermodynamic limit we prepare
nested sequences of volumes whose surfaces are not very complicated. A finite system must
have, usually, a boundary, so boundary conditions must be imposed. The reader might think
the boundary conditions lose significance in the thermodynamic limit, but this is not always
the case. We already know that for 2-Ising model, the up-spin boundary condition far away
indeed affects what we observe around us, if T < Tc. In most interesting cases boundary
effects are crucial.

In this section a procedure to take the thermodynamic limit is outlined with the aid of
a lattice model with finite-range interactions. Suppose we wish to study an infinite lattice
L. We prepare nested sequence {Vi} of (van Hove) volumes converging to L (i.e., V1 ⊂ V2 ⊂
· · · ⊂ L).
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Fig. 5.2.1 An increasing nested sequence of finite sys-

tems to define thermodynamic limit. L is the infinite

lattice and Vi are finite systems with van Hove vol-

umes with explicit boundary conditions Bi (= the

minimal sufficient condition to fix the system energy

uniquely when the state in Vi is given).

For each finite volume system a boundary condition B must be specified.2 Let us write the
volume-boundary condition pair as (V,B). Let us make the canonical distribution for (V,B):

µV,B =
1

ZV,B
e−βHV (B), (0.0.1)

where HV (B) is the Hamiltonian for the system with the volume V 3 and the boundary
condition B (thus HV (B) includes the surface interaction terms). Make the totality of µV,B
choosing all possible V ⊂ L and B. Then, we take a sequence {µVi,Bi

} that converges
to a probability measure µ (defined on the set of microstates on L). The limit points (=
probability measures) available through this construction (that is, accumulation points of M)
are called the Gibbs measures (however, read the fine-lettered explanation on the “totality

1Roughly speaking, this implies that we take the large system size limit so that the surface area ×L
scales as the system volume, where L is the representative length scale of the system.

2For the Ising model the interaction is nearest neighbor, so we have only to specify the spins just outside
the boundary. However, if the interaction is wider-ranged, we must specify a lot about the external ‘spin
configurations.’

3Here, V denotes a bounded (and singly connected) subset of the whole lattice, but occasionally also
denotes its volume.
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of Gibbs measure” below).

To speak about ‘convergence’ we must specify the topology of the space M . That is, we
must be able to tell which canonical distribution of the form (0.0.1) is close to which. Since
our aim is statistical mechanics, it is sensible to define the closeness of two distributions by
the closeness of thermodynamic observables computed by these distributions. Therefore, we
interpret the statement “The probability measure sequence {µi} converges to µ,” as “all the
thermodynamic observables computed by this sequence converge to those computed by µ.”

At least one Gibbs state exists
An argument goes like...4

Here, we mean by a lattice system a system consisting of discrete entities fixed at lattice points
that can take (at most) countably many states. The existence of a convergent sequence in
{µV,B} is shown by the diagonal argument. We take a countable list of bounded thermody-
namic observables {Qi} (i.e., we make a list of observables such as internal energy density,
magnetization density, etc.) Let us write the expectation value of observable Q with respect
to µ as µ(Q). Let us first make a sequence {µV,B(Q1)} of observation results of Q1. Since this
is a bounded sequence, we can choose a converging sequence {µ1i(Q1)}. Next, we make the
sequence {µ1i(Q2)} for observable Q2, and choose a convergent subsequence {µ2i(Q2)}. Repeat
this procedure to make {µki} for all k ∈ N . Now, choose the diagonal elements and make a
sequence {µkk}. By construction {µkk(Qi)} converges for any Qi. Thus we may conclude that
{µkk} converges to a µ, which is a Gibbs measure. Thus, there is at least one Gibbs measure
for any reasonable lattice model.

A possible definition of the phase transition for a system is the occurrence of quali-
tative change in the set of the totality of the Gibbs states of the system. For example, if the
temperature is lowered, the number of (pure) Gibbs states changes 1 to 2 for 2-Ising model
(see Sect. 5.4). This temperature is the critical point = the second order phase transition
point.

The totality of Gibbs states
In the text thermodynamic limit is understood as a limit reached by a sequence of increas-
ingly large systems, and the Gibbs measure is defined as a measure obtained in this sequence
limit. However, in mathematical physics, the Gibbs measure is directly defined without any
limiting procedure (classically by the DLR (Dobrushin-Lanford-Ruelle) equation, quantum-
mechanically by the KMS (Kubo-Martin-Schwinger) condition, for example).5 The totality K
of the Gibbs measures defined directly is the convex linear hull of the Gibbs measures defined
sequentially. K is a nonempty convex set and any state in it must be one of the following (a)
or (b):6

(a) µ ∈ K cannot be expressed as a linear combination of other members of K. Such states
are called pure states.r (rto symmetry breaking)
(b) µ ∈ K can be uniquely decomposed into a linear combination of pure states. Such states
are called mixed states.

Physically, pure states correspond to macroscopic states that can be observed locally for a
sufficiently large single system.7 Do not confuse pure Gibbs states and thermodynamic single

4That {µV,B} is a compact set with respect to the vague topology is perhaps the best argument for
mathematicians. The argument here with the aid of the diagonal argument is quite general, but sounds
rather artificial. For general systems, more physical arguments would not be available.

5 A good reference is R. B. Israel, Convexity in the Theory of Lattice Gases (Introduction by A. S.
Wightman) (Princeton Univ. Press 1979). The introduction by Wightman should be read by everyone.

6That is, K is a Choquet simplex.
7Here, ‘locally’ implies that we observe a large but finite volume at around, e.g., the origin (or in front

of us).
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phases (pure phases). A mixed state corresponds, as illustrated in Fig. 5.1.3, to an ensemble
containing different (pure) states and has nothing to do with individual samples to have more
than one phases.8

The macroscopic thermodynamic state we observe in a single system corresponds to a pure
Gibbs state. Precisely speaking, a pure Gibbs state corresponds to a unique thermodynamic
state of the system. However, a thermodynamic state is defined as the equivalence class with
respect to the thermodynamic coordinate values, so it corresponds to an equivalence class of
pure Gibbs states with respect to the thermodynamic coordinate values. For example, if two
phases coexist in a pure Gibbs state, the phase boundary plane is also specified in space;
however, thermodynamic states are indifferent to the actual (normal) direction of the phase
boundary.

mixture ensemble pure state ensemble

Fig. 5.1.3 Two kinds of ensemble; a pure Gibbs state
corresponds to an actual state of a single sample ob-
servable by a single observation. Notice that both
ensembles give the same expectation values for ther-
modynamic quantities. In this illustration the left
figure exhibits a mixture Gibbs state made of thermo-
dynamically pure phase samples, and the right figure
exhibits a pure Gibbs states whose samples contain
thermodynamically coexisting phases.

We have reached an idea that the phase transition is a point where the Gibbs state of the
system changes qualitatively. It is also natural to expect that at such a point thermodynamic
functions should have certain qualitative changes (have singularities). Let us consider the
singular points of thermodynamic functions.

8Sequentially defined limits need not be pure states.
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