
30.9 Spin-rotation coupling in homonuclear diatomic molecules

The total wave function of the diatomic molecule reads

ψ = ψeψrψvψn, (0.0.1)

where ψe is the electron wave function, ψr the rotational wave function, ψv the vibrational
wave function, and ψn the nuclear spin wave function. Two nuclei cannot be distinguished,
so under their permutation N the total wave function ψ must be symmetric (bosonic nuclei)
or anti-symmetric (fermionic nuclei) (see the beginning of this chapter). We know

Nψe = ψe, (0.0.2)

Nψv = ψv, (0.0.3)

Nψr = (−1)Jψr. (0.0.4)

The first two are simply because the electron or phonon clouds are not affected at all. The
last line follows from the property of the spherical harmonics YJm (or recall s, p, d, f, · · ·
electrons). Thus ψn must also be an eigenstate of N (i.e., it must have a definite parity).
The parity of ψn depends on the nuclear spins: Let ψA(s) be the spin state of nucleus A
with the z-component s. Then, eigenstates of N may be constructed as:
Symmetric case

ψ(+)
n ∝ ψA(s)ψB(s′) + ψA(s′)ψB(s). (0.0.5)

Antisymmetric case
ψ(−)
n ∝ ψA(s)ψB(s′)− ψA(s′)ψB(s). (0.0.6)

Suppose the nucleus has spin S. The total number of the distinguishable nuclear spin
states is (2S+1)2. If s = s′, only symmetric states are possible. There are 2S+1 such ‘diag-
onal’ states. The remaining 2S(2S + 1) states can have both symmetric and antisymmetric
states. Therefore, there are S(2S + 1) distinct antisymmetric states,1 and (S + 1)(2S + 1)
symmetric states.

Since the total symmetry of the wave function is constrained, we cannot consider rotational
and nuclear wave functions independently.q Suppose nucleons are fermions, then antisym-
metric (resp., symmetric) ψn is possible only with even (resp., odd) J states. Therefore, the
rotational and nuclear partition function for fermions reads

znr = (2S + 1)(S + 1)z(o)
r + S(2S + 1)z(e)

r , (0.0.7)

where

z(o)
r =

∑
J=odd

(2J + 1)e−J(J+1)Θr/T , (0.0.8)

z(e)
r =

∑
J=even

(2J + 1)e−J(J+1)Θr/T . (0.0.9)

It is clear that for bosonic homonuclear diatomic molecules

znr = (2S + 1)(S + 1)z(e)
r + S(2S + 1)z(o)

r . (0.0.10)

1This is also 2S+1C2.
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In summary, the total partition function due to the internal degrees of freedom reads

zi = zezvznr. (0.0.11)

At sufficiently high temperatures

z(e)
r ' z(o)

r '
1

2
zr. (0.0.12)

Therefore, at sufficiently high temperatures

zi =
1

2
zezvzrzn. (0.0.13)

The prefactor 1/2 is the symmetry factor to avoid double counting of geometrically indistin-
guishable states.

The above homonuclear diatomic molecules may be a good elementary quantum mechan-
ics topic, which is no more very interesting (except in exams). However, the topic played an
important role in determining whether protons are fermions or not.

Is a proton a fermion?
Although it was known that the proton spin was 1/2, before 1930 the spin-statistics relation
was not known. For H2 the rotational-nuclear partition function reads

znr = gez
(e)
r + goz

(o)
r . (0.0.14)

If protons are fermions, β = ge/go = [(2S+1)S]/[(2S+1)(S+1)] = 1/3, if bosons, its reciprocal,
3. In February 19272 Hund, analyzing the specific heat, found β = 2. Spectroscopically, Hori
obtained β = 1/3. Dennison realized that there is no equilibrium between the singlet and triplet
nuclear spin states in hydrogen gas (respectively called para hydrogen and ortho hydrogen) at
low temperatures. Therefore, the nuclear-rotation partition function cannot be written as

Znr = zNnr = (gez
(e)
r + goz

(o)
r )N (0.0.15)

but
Znr = (gez

(e)
r )ρN (goz

(o)
r )(1−ρ)N , (0.0.16)

where ρ is the fraction of the even rotational angular momentum states. Dennison found
ρ = 1/4 from the specific heat data. This implies that at sufficiently high temperatures where
two nuclear spin states can change into each other β = 1/3 (on June 3, 1927). Then, later he
realized that this implies that protons are fermions (on June 16, 1927).3

Annealed and quenched systems
The difference between (0.0.15) and (0.0.16) is very important in the study of a system under
the influence of external fields or randomness in the system. Suppose the system depends on a
parameter (or a field) f , and f is a stochastic variable. For a fixed f , the partition function is
given by Z(f).

If f varies sufficiently rapidly so that within the observation time f samples its distribution
almost evenly (‘ergodically’), then the free energy we observe should be given by

A = −kBT log〈Z(f)〉f , (0.0.17)

2[1927: This is the year Heisenberg proposed the uncertainty principle and matrix dynamics. Chiang
Kai-shek set up a government in Nanjing; Mao moved to the Jinggang Mountains, Jiangxi]

3S. Tomonaga, Spin the Spin (World Scientific, 2004).
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where 〈 〉f is the average over f . However, if f is frozen for each sample, but is different from
sample to sample, then the free energy we get should be

A = −kBT 〈logZ(f)〉f . (0.0.18)

The former is the annealed case and the latter quenched case. The low temperature hydrogen

gas was a quenched system.

Can we study the intermediate case with the aid of equilibrium statistical mechanics? No.

Recall that an equilibrium state is a state where all the fast events have occurred, but no slow

events have occurred yet.

Let us conclude this section with a summary of polyatomic gases. As in the case of
diatomic gases, we can write

zi = zrzv. (0.0.19)

The nuclear contribution can be treated as a mere multiplicative factor as is discussed. Let
the principal moments of inertia of the molecule be I1, I2 and I3. Then the rotational
Hamiltonian reads

Hrot =
∑
i

L2
i

2Ii
, (0.0.20)

where Li is the angular momentum around the i-th principal axis. We may treat the partition
function classically,q so that

zrot =
(2kBT )(πI1I2I3)3/2

~3
. (0.0.21)

Notice that I1I2I3 is the determinant of the inertial tensor around the center of mass.
For a linear molecule I3 = 0 and I1 = I2 = I, so that

zrot =
2IkBT

~2
. (0.0.22)

zv is the product of contributions from each normal mode. Often, vibrational degrees of
freedom are all frozen, so we may ignore them.
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