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Quantifying Information

Information theory is about communication = information transfer; How can we
send a very high-resolution photo of a planet surface despite extremely large noises,
or how can we compress musics (e.g., MP3)? Here, we discuss only the information
quantification part.

The following expressions are used interchangeably: amount of knowledge we gain,
amount of information we gain, amount of reduction of (degree of ) ignorance we have.

1 Quantification of information.
The information contained in the message that an event with probability p has oc-
curred is − log p.

If we use base 2 as − log2 p, we say the information is measured in bits. This
number may be interpreted as the number of YES-NO questions1 to pinpoint the
actual event.

2 Entropy.
Let the event set A = {a1, · · · , an} be characterized by the probabilities pi {1, 2, · · · , n}
such that Prob(ai) = pi. The uncertainty about this event set is defined as

H(A) = −
∑
i

pi log pi, (1)

and is called the entropy of event set A.

(i) H(A) ≥ 0. The equality occurs iff one of pi = 1.
(ii) H(A) ≤ log n.

H(A) in bits measures the diversity or complexity of the event set A in terms of
the number of YES-NO questions required to pinpoint its elementary event (on the
average, because not all the elementary events ai are equally likely). Thus H(A)
measures the extent of our ignorance about the system (= we need this much of
information = knowledge to pinpoint the actual event).

1When we say ‘YES-NO questions’ we assume that we cannot guess the answer better than the
random guess.
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3 Information of a message.
Suppose the uncertainty of the situation changes from H to H ′ upon receiving a
certain message. In other words, the initial extent of ignorance H is reduced to the
final H ′. The reduction of ignorance H−H ′ must be due to the information supplied
by the message. Thus, the information contained in the message is quantified as

I = H −H ′. (2)

4 Information of compound events
Let A = {ai} and B = {bi}, and let us write p(a, b) = Prob((a, b). Then, the entropy
of the compound events A ∨B = {(ai, bj)} is defined as

H(A ∨B) = −
∑

p(a, b) log p(a, b). (3)

5 Conditional entropy.
The uncertainty about A when we know about B is defined as

H(A|B) = −
∑

p(a, b) log p(a|b), (4)

and is called the conditional entropy.
Suppose we actually know that the state of B is b. Under this knowledge the

residual uncertainty should be

H(A|b) = −
∑
a

p(a|b) log p(a|b), (5)

where p(a|b) = p(a, b)/p(b) is the conditional probability of a when b occurs. We are,
however, interested in the average result for an event in B, so we would average the
result over b:∑

b

p(b)H(A|b) = −
∑
a,b

p(b)p(a|b) log p(a|b) = −
∑
a,b

p(a, b) log p(a|b) = H(A,B)

(6)
Thus our definition is very sensible.
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6 Intuitive inequalities for conditional entropy
(i) H(A|B) ≥ 0.
Even if we know about B, still some uncertainty should remain, or, in other words,
we still do not know about A perfectly, so the residual uncertainty mut be positive.
This is obvious from (4), because p(a|b) ≤ 1.

(ii) H(A|B) = H(A ∨B)−H(B).
H(A|B) is the residual uncertainty (still needed knowledge to pinpoint an event in
A) even after knowing B (i.e., knowing what ‘b’ in B actually happened), so it should
be equal to the intial total uncertainty H(A ∨ B) subtracted the uncertainty H(B)
about B (H(B) is the amount of knowledge we obtained for B).

H(A|B) = −
∑

p(a, b) log p(a|b) = −
∑

p(a, b) log
p(a, b)

p(b)
(7)

= −
∑

p(a, b) log p(a, b) +
∑
a,b

p(a, b) log p(b) (8)

= H(A ∨B) +
∑
b

p(b) log p(b) = H(A ∨B)−H(B). (9)

(iii) H(A ∨B) ≤ H(A) + H(B).
The knowledge ignoring any correlation between A and B is H(A) + H(B), so this
should be larger than the actual extent of ignorance about the total system not
disregarding the correlations. Since we can write H(A) =

∑
a,b p(a, b) log p(a) and

H(B) =
∑

a,b p(a, b) log p(b),

H(A ∨B)−H(A)−H(B) = −
∑
a,b

p(a, b) log
p(a, b)

p(a)p(b)
, (10)

which is negative thanks to the inequality due to Jensen’s inequality 7.

(iv) H(A) ≥ H(A|B).
If we know something about the world, then it should be better than knowing noth-
ing, so this inequality should be true. This immediately follows from (ii) and (iii):

H(A|B) + H(B) ≤ H(A) + H(B). (11)

Or more explicitly as (see (7)):

H(A|B) = −
∑

p(a, b) log
p(a, b)

p(b)
= −

∑
p(a, b) log

p(a, b)

p(b)p(a)
−
∑

p(a, b) log p(a)

(12)
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We know the second term on the RHS is negative, so

H(A|B) ≤ −
∑

p(a, b) log p(a) = H(A). (13)

7 Important inequality due to Jensen’s inequality (Positivity of KS en-
tropy)
Jensen’s inequality says, for any convex function

〈f(X)〉 = f(〈X〉). (14)

Here, 〈 〉 implies a certain sampling average from the domain of f .
Let pi and qi (i = 1, · · · , n) be probabilities (assume pi = 0 if qi = 0). Then,∑

i

pi log
pi
qi
≥ 0. (15)

Notice that − log x is convex, and also
∑

i piai = 〈a〉, so

∑
i

pi log
pi
qi

=
∑
i

pi

(
− log

qi
pi

)
≥ − log

(∑
i

pi

(
qi
pi

))
= − log

∑
i

qi = − log 1 = 0.

(16)

8 Log sum inequality
A more powerful inequality is the log sum inequality: for non-negative numbers ai
and positive numbers bi (i = 1, · · · , n) [0 log 0 is defined as 0].∑

i

ai log
ai
bi
≥

(∑
i

ai

)
log

∑
i ai∑
i bi

. (17)

Let f(x) = x log x, which is a convex function.∑
i

bi∑
i bi

f

(
ai
bi

)
≥ f

(∑
i

bi∑
i bi

ai
bi

)
= f

(∑
i ai∑
i bi

)
. (18)

If we write this more explicitly, we have∑
i

ai∑
i bi

log
ai
bi
≥
∑

i ai∑
i bi

log

∑
i ai∑
i bi

. (19)
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From the log sum inequality (15) immediately follows.

9 Mutual Information.
If we know about B, what is the amount of knowledge we can gain about A? H(A|B)
is the remaining uncertainty, so H(A)−H(A|B) should be the obtained information
about A through B:

I(A,B) = H(A)−H(A|B) (20)

is defined as the mutual information between A and B. If we use 6(ii), we can rewrite
this as the following symmetric form:

I(A,B) = H(A) + H(B)−H(A ∨B) = H(A)−H(A|B) = H(B)−H(B|A). (21)

Therefore,
(i) I(A,B) = I(B,A).

(ii) I(A,B) ≥ 0.
This is 6(iv). Or directly,

H(A)−H(A|B) = −
∑

p(a, b) log p(a)+
∑

p(a, b) log
p(a, b)

p(b)
=
∑

p(a, b) log
p(a, b)

p(a)p(b)
≥ 0

(22)
thanks to 7.

If we combine this with Sanov’s theorem, we see that −I(A,B) measures the
likelihood (i.e., I measures the unlikelihood) of the occurrence of the joint event
(a, b), when we assume A and B are statistically independent.

(iii) I(A,B) ≤ min(H(A), H(B))
This is because of 6(i) conditional entropies are positive. Intuitively, the required
knowledge to pinpoint an event in A cannot fully be obtained through event set B,
so the inequality is very natural.

Notice that I(A,B) is an expectation value. If one actually knows that b ∈ B
happens, then we should consider

I1 = H(A)−H(A|b), (23)

but this can be negative (e.g., for an n = 2 case with p(a1) = 0.9, p(a2) = 0.1,
but p(a1|b1) = p(a2|b1) = 1/2; as can be seen from this example, B sampling could
destroy the uneven structure in A).


