0.0.1 Classical-quantum correspondence via Wigner representation

We must compute the trace of an operator A that may be represented as a matrix in the position space:

$$\operatorname{Tr} A = \int dx \langle x|A|x \rangle = \int dx \int dx' \langle x|A|x' \rangle \delta(x-x'), \qquad (0.0.1)$$

$$= \frac{1}{h^{Nd}} \int dx \int dx' \int dp \, \langle x|A|x' \rangle e^{-ip \cdot (x-x')/\hbar}, \qquad (0.0.2)$$

$$= \frac{1}{h^{Nd}} \int dq \int dr \int dp \,\langle q+r/2|A|q-r/2\rangle e^{-ip \cdot r/\hbar}.$$
 (0.0.3)

Here, new variables q and r are introduced as q = (x + x')/2 and r = x - x'. We introduce

$$A_W(q,p) = \int dr \,\langle q + r/2 | A | q - r/2 \rangle e^{-ip \cdot r/\hbar}. \tag{0.0.4}$$

This is called the Wigner representation of A. (0.0.3) reads

$$\operatorname{Tr} A = \frac{1}{h^{Nd}} \int dq \int dp \, A_W(q, p). \tag{0.0.5}$$

Therefore, if we can demonstrate that the Wigner representation of $e^{-\beta H}$ is close to $e^{-\beta H(q,p)}$ in the classical limit (that is, if we may assume \hbar is small), we are done.

Discussion 1. 'Small' or 'large' is always a relative concept, so we must have something to compare. Here, we say \hbar is small. With what do you compare it and conclude so? \Box

0.0.2 Wigner representation in the classical limit

We must look at the structure of the Wigner representation. Let us assume that the operator A is 'normally ordered,' so to speak. That is, all p appears on the right side (after) q and its position representation read

$$\langle x|A|x'\rangle = A\left(x, -i\hbar\frac{\partial}{\partial x}\right)\delta(x-x').$$
 (0.0.6)

Since

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial r} + \frac{1}{2}\frac{\partial}{\partial q},\tag{0.0.7}$$

(0.0.4) reads¹

$$A_W(q,p) = \int dr \left[A\left(x, -i\hbar \frac{\partial}{\partial r}\right) \delta(r) \right] e^{-ip \cdot r/\hbar}, \qquad (0.0.8)$$

$$= \int dr \delta(r) A\left(x, +i\hbar \frac{\partial}{\partial r}\right) e^{-ip \cdot r/\hbar} + O[\hbar], \qquad (0.0.9)$$

$$= \int dr \delta(r) A(x, p) e^{-ip \cdot r/\hbar} + O[\hbar], \qquad (0.0.10)$$

$$= A(q, p) + O[\hbar].$$
 (0.0.11)

¹Thanks to the normal ordering, we may ignor $\partial/\partial q$ in A, and then integration by parts changes the sign of the differential operator in A when A is exchanged with the δ -function.

This combined with (0.0.5) gives what we wished to demonstrate.

Of course, the above 'demonstration' is only formal, since the relation cannot always be accurate enough; the coefficient of $O[\hbar]$ can be huge.

0.0.3 Comparison of classical and quantum free energies

We have discussed the relation between Z computed classically (with h^{3N} factor taken into account) and the true quantum Z. We know there must be corrections to the free energy for nonzero \hbar . Does it have a definite sign? If so, then $A \leq A_{classical}$ or not? **Discussion 1.** Landau and Feynman give opposite answers. Who is correct? \Box