
Equivalence of microcanonical and canonical ensemble

There are many partition functions, but how are their results related? If the usual for-
mal derivation, e.g., of the canonical formalism from the microcanonical formalism, works as
designed, all ensembles should give us the same thermodynamics; thermodynamic potentials
corresponding to various partition functions are related mutually by Legendre transforma-
tions. Therefore, for ordinary particle-particle interactions (e.g., not long-ranged and with a
sufficiently hard core),1 in the thermodynamic limit all the partition functions are expected
to be equivalent in the sense that all give identical thermodynamic densities and fields. Here,
let us demonstrate this ensemble equivalence of microcanonical and canonical ensembles.

Let us take a finite system with N particles. The canonical partition function is defined
as

Z(T ) =
∑
E

w(E)e−βE, (0.0.1)

where the sum
∑

E is the sum over all the shells of thickness δE. w(E) is the microcanonical
ensemble: the number of microstates whose energy is in (E − δE,E]. (0.0.1) is an infinite
sum, but we assume it converges (if not, there is no thermodynamics2). Therefore, there is
E+ (which is of order N as shown in the fine lettered explanation below) beyond which the
sum (0.0.1) is bounded by 1:∑

E

w(E)e−βE = Z(T ) ≤
∑
E≤E+

w(E)e−βE + 1. (0.0.2)

Let us write the largest value of the summand of (0.0.1) as w(E∗)e−βE
∗

= maxE
[
w(E)e−βE

]
(≥ w(0) ≥ 1). Obviously (see Fig. 1),

w(E∗)e−βE
∗ ≤ Z(T ) ≤ (E+/δE)w(E∗)e−βE

∗
+ 1 ≤ 2(E+/δE)w(E∗)e−βE

∗
, (0.0.3)

where E+/δE is the number of shells. Therefore,
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Fig. 1 The inequalities in (0.0.3) are illustrated. The gray areas respectively from left to right correspond to

the three formulas in (0.0.3). E∗ is the peak position, whose height is w∗e−βE
∗
, where w∗ = w(E∗).

sup
E
{S(E)− E/T} ≤ −A/T ≤ sup

E
{S(E)− E/T}+ kB log(2E+)− kB log δE. (0.0.4)

Recall that S is a monotonic function of E, we can rewrite the above result as

sup
S
{ST − E} ≤ −A ≤ sup

S
{ST − E}+ kBT log(2E+)− kBT log δE. (0.0.5)

1as long as entropy is a concave function (−S is a convex function) of all the extensive parameters.
2Its convergence is guaranteed if the interactions among particles are as mentioned above.
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supS{ST − E} is an ‘official’ Legendre transformation giving −A. Notice that this A is
the thermodynamically calculated from S obtained by Boltzmann’s principle statistically
mechanically.

Since E+ is of order N and since we know 〈E〉/N � δE � 〈E〉, the above formula im-
plies that the free energy per particle A/N obtained from the canonical partition function,
and that ‘indirectly’ obtained thermodynamically from S due to Boltzmann’s principle are
identical, if logN/N is small enough.

Outline of evaluating w(E) and a proof of E+ = O[N ]
Suppose the system with volume V has N particles and its Hamiltonian is

H = H0 + Φ, (0.0.6)

where Φ is the interaction terms (the potential part of the Hamiltonian). Thus,
H0 is the purely kinetic ‘ideal gas’ portion. We assume that the system is stable
(the total energy is bounded from below by an extensive lower bound:

Φ ≥ −BN (0.0.7)

for some constant B > 0.
The proof consists of two steps. First, w is estimated for non-interacting

systems (i.e., Φ turned off), and then we consider how the result is modified by
interactions.

For non-interacting systems (with suffix I) we can compute entropy explicitly
and know that the general form is:

wI(E) = exp[V s(e)], (0.0.8)

where e is the internal energy density. and s the entropy density.
Since Φ ≥ −BN (B > 0),

H ≥ H0 −BN. (0.0.9)

Here, the inequality implies that the expectation values with respect to any ket
satisfy the inequality. We can generally show for the i-th excited state |i〉,

〈i|H|i〉 = Ei ≥ EI
i −BN. (0.0.10)

where EI
i is the ith the energy level of the corresponding ideal system, because

〈i|H0|i〉 ≥ EI
i (0.0.11)

thanks to the minimax principle (proved below). Notice that if E ≥ E ′, obviously
wI(E) ≥ wI(E ′). Also w(Ei) = wI(EI

i ) (by definition). Since Ei +BN ≥ EI
i ,

w(E) = wI(EI) ≤ wI(E +BN). (0.0.12)

Combining this with (0.0.8), we get

w(E) ≤ exp[V s(e+Bn)], (0.0.13)
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where n is the number density. Therefore,

w(E)e−βE ≤ exp[V s(e+Bn)− βE]. (0.0.14)

We know s is concave, so

s(e+Bn) ≤ s(e0 +Bn) + β0(e− e0), (0.0.15)

where β0 is the slope at e0, but choosing e0 appropriately, we can choose β0 freely
as long as it is positive. Let us introduce

s̃ = s(e0 +Bn)− β0e0 (0.0.16)

and choose β0 = β/2 to obtain

w(E)e−βE ≤ exp[V s̃+ βV e/2− βE] = exp[V s̃− βE/2]. (0.0.17)

Thus, ∑
E≥E+

w(E)e−βE ≤
∑
E≥E+

exp[V s̃− βE/2] =
2

β
eV s̃e−βE+/2. (0.0.18)

We wish to bound this with 1, so we require

βE+

2
+ log

β

2
> V s. (0.0.19)

That is, E+ ≥ (2kBT )[V s̃ + log(2kBT )] is required. Therefore, when T is given,
if the volume is sufficiently large, we have only to choose E+/V slightly larger
than 2kBT s̃. Indeed, E+ = O[V ] = O[N ].

The minimax principle for eigenvalues3

Let A be a self-adjoint operator defined on a vector space V . Let us arrange the
eigenvalues of A in increasing order and number them (with their multiplicity
taken into account), writing the k-th eigenvalue as µ(k). There is a variational
principle for µ(k). In particular, there is a variational principle for the ground
state µ(1).

[Minimax principle]4 For an arbitrary finite dimensional subspaceM of V , let
us compute

λ(M) = max
|ϕ〉∈M,〈ϕ|ϕ〉=1

〈ϕ|A|ϕ〉. (0.0.20)

3D. Ruelle, Statistical Mechanics Section 2.5 (World Scientific, 1999; original 1969). This is a copy of
the same item found in Appendix: Introduction to Mechanics.

4In the following, precisely speaking, instead of min and max we should use inf and sup.
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The minimum value of λ(M) with M restricted to k-subspace is the k-th eigen-
value:

µ(k) = λ(k) ≡ min
dimM=k

λ(M). (0.0.21)

[Proof] Write the orthonormal basis corresponding to {µ(k)} as {|k〉}. First of
all, λ(k) ≤ µ(k) is obvious.5∗ Thus, we have only to show λ(k) ≥ µ(k).

SinceM is a finite dimensional vector space, it must be contained in a subspace
spanned by {|1〉, · · · , |N〉} for a sufficiently large N (recall our numbering of the
eigenvectors of A: A|k〉 = µ(k)|k〉). Take a subspace V spanned by {|k〉, · · · , |N〉}
(that is, the orthogonal complement of the (k−1)-dimensional subspace spanned
by {|1〉, · · · , |k − 1〉}). Since M is with dimension k, M and V must share a
vector which is not zero. Let us normalize it and call it |0〉. Since λ(M) is
defined through maximization,

λ(M) ≥ 〈0|A|0〉, (0.0.22)

but |0〉 =
∑N

i=k |i〉〈i|0〉, so

〈0|A|0〉 =
N∑
i=k

|〈i|0〉|2µi ≥ µ(k). (0.0.23)

That is, for any k dimensional M we have λ(M) ≥ µ(k). This implies λ(k) ≥
µ(k). Thus, we have shown that λ(k) = µ(k).

5∗If we adopt the k-dimensional subspace spanned by {|1〉, · · · , |k〉} asM, λ(M) = µ(k), so the smallest
value we look for by changing M cannot be larger than this value.
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