
0.0.1 Elementary derivation of Boltzmann’s equation: streaming term
The Maxwell distribution (→??) is the distribution of the velocity of a single particle.
Therefore, Boltzmann wished to study the single-body distribution function f(r,v, t), where
f(r,v, t)drdv is the probability of finding a particle whose state specified by its position r
and velocity v in a 6-dimensional volume element dvdr centered at (r,v). That is, f is the
probability density on the µ-space.1

If the particles do not interact with each other, then

∂

∂t
f + v · ∂

∂r
f = 0 (0.0.1)

in the homogeneous space. The second term on the LHS describes the motion of the particle
‘flowing with the stream with velocity v,’ so it is called the streaming term.ıstreaming term
Exercise 1. This describes a ballistic motion. Its solution with the initial condition
f(r,v, 0) = f0(r,v) reads f(r,v, t) = f0(r − vt,v). Check this statement. ut
Exercise 2. This is the Liouville equation (→??) for a single body. ut.

If the particle interact with other particles (if there are collisions), the above equation is
not true and we must write

∂

∂t
f + v · ∂

∂r
f =

(
∂f

∂t

)
col

, (0.0.2)

where the subscript col indicates the contribution of collisions. The reader should immedi-
ately realize that the streaming term does not contribute irreversibility at all.

0.0.2 Two-body collision term
To obtain the collision term, we assume the following:
(1) There are only two-body collisions.
(2) “Stosszahlansatz”:2 colliding particles are statistically uncorrelated.
(3) f does not change as a function of spatial position within the range of the particle-particle
interactions.
According to the assumption (2) the probability of collisions between the particles with
velocity v and velocity v′ around r may be written as nf(r,v)f(r,v′)dvdv′drdr, where n
is the number density of the particles.

Suppose the relative velocity of the two colliding particles (far before the collision) is g,
and the collision parameter is b. The collision parameter is the distance vector between the
two colliding particles projected to the subspace orthogonal to g. More precisely, let us write
the ith particle coordinates be (ri,vi). Then,

g = v2 − v1, (0.0.3)

b = (r2 − r1)(1− ggT/g2), (0.0.4)

where g = |g|. The number of particles coming with the collision parameter b per unit time
can be written as

2πbdb nf(r2,v2, t)g, (0.0.5)

1The ‘true’ µ-space is spanned by the position coordinates and the momentum coordinates instead of
velocities.

2hypothesis of collision numbers
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where b = |b|. Therefore, the expected number of collisions with the particle with velocity
v2 per unit time experienced by the particle with velocity v1 at r1 may be expected to be

2πbdb nf(r1,v1, t)f(r1,v2, t)g dv1dv2dr1. (0.0.6)

Here, we have used (3) to identify all the spatial coordinates in the density distribution
functions.

0.0.3 Contribution of collisions to time evolution
The above collision process describes the collision {v1,v2} → {v′

1,v
′
2}, where the primed

velocities after the collision are determined according to the energy and momentum con-
servation. Since mechanics is time reversal symmetric, there must be the collision process
{v′

1,v
′
2} → {v1,v2} as well.3 Therefore, the expectation value of the number of collisions

that give velocity v1 after collision must be given by

2πb′db′nf(r1,v
′
1, t)f(r1,v

′
2, t)g

′dv1dv2dr1. (0.0.7)

Combining the above results, we may write(
∂f

∂t

)
col

dr1dv1 = n

∫
2πb′db′f(r1,v

′
1, t)f(r1,v

′
2, t)g

′dv′
1dv

′
2dr1

− n
∫

2πbdbf(r1,v1, t)f(r1,v2, t)gdv1dv2dr1. (0.0.8)

Now, we use the equality

b′db′g′dv′
1dv

′
2dr

′
1 = bdb g dv1dv2dr1 (0.0.9)

that holds thanks to Liouville’s theorem (→??) applied to the two-body phase volume. Thus,
we finally obtain(

∂f

∂t

)
col

= n

∫
2πbdbdv2g [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] . (0.0.10)

After the collision the relative velocity changes its direction to the direction specified by
the azimuthal angle θ measured from the direction of g = v2 − v1.

2πbdb = σ(θ)dΩ, (0.0.11)

where Ω is the solid angle of the annule between θ and θ+dθ, and σ(θ) is called the differential
scattering cross section.ı differen tial scattering cross section4(

∂f

∂t

)
col

= n

∫
σdΩdv2 g [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] . (0.0.12)

3Here, more precisely, we use the detailed balance (→??).
4There are other definitions as well.
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0.0.4 Boltzmann equation
Thus, we have arrived at the Boltzmann equation

∂

∂t
f + v · ∂

∂r
f = n

∫
σdΩg [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] . (0.0.13)

Here, v1 + v2 = v′
1 + v′

2 (and the energy conservation law) must be satisfied when the inte-
gration is performed.
Exercise 1. If there is an external force field F , the streaming term (→0.0.1) must be
modified. Give a necessary modification and write down the most general Boltzmann equa-
tion allowing spatial nonuniform equilibrium distributions. Of course, the external field must
change spatially sufficiently gently to satisfy our assumption (3) in 0.0.2. ut.

A more careful (but still formal) derivation will be given later from the BBGKY hierarchy
(→??).

The Boltzmann equation is an equation for a one-body distribution function. The actual
system is an N (→∞) body system, so the justification of the Boltzmann equation is equiv-
alent to justification of the reduction of N body description to the single body description.
This has been accomplished by Lanford5 for the hard core gas case for a very short time
(∼ 1/4 of the mean free time) in the so-called Boltzmann-Grad limitıBoltzmann-Grad limit:
N →∞, Nd2 → 1, where d is the hard core diameter). That is, the reliability of the Boltz-
mann equation has been demonstrated only for this microscopic time scale.
Remark. If the limit N → ∞, Nd3 → 1 is considered, then the Enskog equation that
replaces the collision term of the Boltzmann equation with the one that takes into account
the spatial difference of the distribution at the scale of d is expected.6 ,7 ut

0.0.5 Collision invariants
Let ϕ be a function of single particle coordinates. Let us write ϕi be the quantity associated
with particle i before the collision and ϕ′

i after the collision. Suppose particles 1 and 2
undergo a collision. If

ϕ1 + ϕ2 = ϕ′
1 + ϕ′

2, (0.0.14)

we say ϕ is a collision invariant.ıcollision invariant
The collision invariant, if continuous, must have the following form

ϕ = A+ B · v + Cv2, (0.0.15)

where A,C are constants and B is a constant vector (actually, they can be functions of the
position r). This is not very trivial to show.8

5O E Lanford, III, “Time evolution of large classical systems,” Lecture Notes in Physics 38, 1-111 (1975).
6The Enskog equation is known to be a good model even for liquid. For example, see T. Scopigno, R.

Di Leonardo, L. Comez, A. Q. R. Baron, D. Fioretto, and G. Ruocco, “ Hard-Sphere-like Dynamics in a
Non-Hard-Sphere Liquid,” Phys. Rev. Lett., 94, 155301 (2005).

7See a related paper: F Rezakhanlou, “A stochastic model associated with Enskog equation and its
kinetic limit,” Commun. Math. Phys. 232, 327-375 (2003).

8A proof can be found in C Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag,
New York, 1988), p74-78. If the reader accepts that there are only four additive constants of motion, the
equation (0.0.15) looks trivial, but here, we are actually demonstrating that the additive invariants are only
linear momenta and kinetic energy (in our case, we do not take into account of the angular momenta of the
particles).
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If ϕ is a collision invariant, then

I =

∫
σdΩdv1dv2 g ϕ(v1) [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] = 0. (0.0.16)

This follows from the following identity that is valid for any function of the single particle
coordinates

I =
1

4

∫
σdΩdv1dv2 g (ϕ1 + ϕ2 − ϕ′

1 − ϕ′
2) [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] .

(0.0.17)
Here, an abbreviation ϕ′

2 = ϕ(r′
2,p

′
2), etc., is adopted.

A demonstration follows:

I =

∫
σdΩdv1dv2 g (f(1)f(2) − f(1′)f(2′))ϕ1, (0.0.18)

=

∫
σdΩdv1dv2 g (f(1)f(2) − f(1′)f(2′))ϕ2. (0.0.19)

Here, we have used the abbreviation f(1) = f(r1,v1, t), etc. Now, we change the variable as
(v1,v2)→ (v′

1,v
′
2) to obtain (with the aid of (0.0.9))

I =

∫
σdΩdv1dv2 g (f(1′)f(2′) − f(1)f(2))ϕ′

1, (0.0.20)

=

∫
σdΩdv1dv2 g (f(1′)f(2′) − f(1)f(2))ϕ′

2. (0.0.21)

Combining all of them, we reach the desired result.

0.0.6 Local equilibrium distributionılocal equilibrium distribution
A density distribution function satisfying(

∂f

∂t

)
col

= 0 (0.0.22)

is called a local equilibrium distribution. A local equilibrium distribution function must have
the following form

log f = A+ B · v + Cv2, (0.0.23)

where A,C are functions of spatial coordinates and B is a vector dependent only on the
spatial coordinates. Therefore, notice that a local equilibrium distribution is not generally a
stationary distribution function (cf., ??).

To demonstrate this, we demonstrate the following fundamental inequality

J =

∫
σdΩdv1dv2 g log f(r1,v1, t) [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] ≤ 0

(0.0.24)
for any density distribution f . Thanks to (0.0.17) we obtain (for the abbreviations see above
(0.0.20))

J =

∫
σdΩdv1dv2 g log

f(1)f(2)
f(1′)f(2′)

(f(1′)f(2′) − f(1)f(2)). (0.0.25)
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Let λ = f(1)f(2)/f(1′)f(2′). Then, this can further be rewritten as

J =

∫
σdΩdv1dv2 g (1− λ) log λ f(1′)f(2′). (0.0.26)

Since (1− λ) log λ ≤ 0,9 we are done.
Thus, we have demonstrated that (0.0.22) implies that λ = 1. That is, log f must be an

additive invariant of the collision. This concludes the demonstration of (0.0.23) (with the
aid of 0.0.5). That is, for a spatially uniform case, the Maxwell distribution (→??) is the
unique invariant solution of the (spatially uniform) Boltzmann equation.
Remark. Often the Boltzmann equation is approximated with finitely many choices of ve-
locity values instead of continuous velocities. If the Galileian invariance is violated as such
cases, the equation is not generally compatible with thermodynamics. See Cercignani.10

0.0.7 H-theorem
We know that if there is no external force, the Maxwell distribution is the unique stationary
solution of the Boltzmann equation as can be seen from 0.0.6). Boltzmann’s original aim was
to show not only that this is the unique stationary state but also that any initial condition
would reach this state eventually.

To this end Boltzmann devised a Lyapunov function called H-functionıH-function

H =

∫
f log fdrdv. (0.0.27)

Let us study its time evolution

dH

dt
=

∫
(1 + log f)

∂f

∂t
drdv =

∫
log f

∂f

∂t
drdv. (0.0.28)

The streaming term (→0.0.1) does not change H(
dH

dt

)
str

=

∫
log f

(
∂f

∂t

)
str

drdv, (0.0.29)

= −
∫

log f v
∂

∂r
fdrdv = 0. (0.0.30)

The collision term does change H as we have just seen in (0.0.24)(
dH

dt

)
col

=

∫
σdΩdv1dv2 g log f(1)

[
f(1′)f(2′) − f(1)f(2)

]
≤ 0. (0.0.31)

That is,
dH

dt
≤ 0. (0.0.32)

This vanishes if and only if log f is a sum of additive invariant as we have already seen in
0.0.6. That is, H is a Lyapunov function whose unique minimum is given by the Maxwell
distribution.

Thus, Boltzmann concluded that his equation describes the irreversible process whose
unique destination is the equilibrium state (for a mathematical statement see ??).

9f(λ) = (1− λ) log λ takes the unique maximum 0 at λ = 1; it is convex upward.
10C. Cercignani, “Temperature, entropy, and kinetic theory,” J. Stat. Phys. 87, 1097-1109 (1997).
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0.0.8 Boltzmann reaches S ∝ log(Komplexionszahl).
Thus, Boltzmann thought he demonstrated the second law purely mechanically. Almost im-
mediately, his colleague Loschmidt11 pointed out that without approximation time-reversal
symmetric mechanics could not conclude such an irreversible equation.

Boltzmann realized the probabilistic element had been smuggled into his argument12 and
wrote a fully statistical paper:13 basically, he asserts that the mechanical content of the sec-
ond law was that the macroscopic state evolves to the direction that increases the number
of Komplexions = microscopic states compatible with the macroscopic state.

The most important conclusion is that the equilibrium state is the most probable macro-
scopic state allowed to the system, so it can be studied without explicit dynamical considera-
tion. This way, the study of nonequilibrium states receded from the main stage of statistical
mechanics.
Exercise 1. I wish you to trace Boltzmann’s logic, answering the following questions.

Suppose there are N gas particles. Let wn be the number of particles with the energy
between (n− 1)ε and nε (ε > 0).
(1) Obtain the number of Komplexions (ignoring the energy constraint), and (with the aid
of Stirling’s formula) show that its maximization condition is equivalent to the minimization
condition of

M =
∑

wi logwi. (0.0.33)

(2) Write wi = w(x)ε and simultaneously take the n → ∞ and ε → 0 limits, maintaining
x = nε finite. Show that minimizing M is equivalent to minimizing

M ′ =

∫
w(x) logw(x)dx. (0.0.34)

(3) We should not ignore the constraints that the total number of particles is N and the total
energy is K. Under this condition, derive Maxwell’s distribution in 3-space by minimizing
M ′. [In the original paper Boltzmann first reduced the problem to a single particle problem,
and wrote w(x) as f(u, v, w), where u, v, w are three components of the velocity. Also
Boltzmann understands w to be the probability density distribution function.]
(4) Now, Boltzmann realized that M ′ gives the entropy of the ideal gas. Show this.
Based on this finding, he proposed

S ∝ log (Number of Komplexions). (0.0.35)

At the end of this same paper he says, although the relation could be demonstrated rigor-
ously (sic) with the aid of kinetic gas theory, he cannot do so for other phases. However, he
also claims that the relation is likely. ut

11About him and his relation to Boltzmann see the book by Lindley.
12This will be discussed when we rederive the Boltzmann equation from the BBGKY hierarchy (→??).
13“Über der Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der

Warscheinlichkeitsrechnung respective den Sätzen über des Wärmegleichgewicht,” Wiener Ber. 76, 373-
435 (1877) [On the relation between the second principle of mechanical heat theory and probability theory
with respect to theorems of thermal equilibrium].
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