11.8 Recurrence theorem

Let T be a measure preserving map on a probability space (Ω, P). That is, $P\left(T^{-1} A\right)=P(A)$ for 'any' (measurable) $A \subset \Omega$. If $P(A)>0$, then for almost all $\omega \in A$, the semitrajectory $\left\{T^{n} \omega\right\}_{n \in \mathbb{N}}$ returns infinitely many times to A. This is also true for the negative time direction as well.
[Proof] If there is a set $B \subset A$ such that $P(B)>0$ and any semitrajectory starting from B never returns to A, then for any $\omega \in B$ and for any $n>0 T^{-n} \omega \neq B$. Therefore, $\left\{T^{-n} B\right\}$ must be a sequence of disjoint sets. However, $P\left(T^{-n} B\right)=P(B)>0$, so it is impossible. Hence, P-almost surely for $\omega \in A$ there is $n>0$ such that $T^{n} \omega \in A$. We can repeat this discussion ad infinitum to show infinitely many returns.

