Part I. Rudiments

This part provides a rudimentary background of probability and statistical mechanics. It is
expected that the reader has already learned elementary probability theory and equilibrium
statistical mechanics. Therefore, it should be boring to repeat the usual elementary courses
for these topic.

Chapter 1 outlines the measure-theoretical probability theory as intuitively as possible:
the probability of an event is a ‘volume’ of our confidence in the occurrence of the event.
Then, the most important law: the law of large numbers and its refinements, large devia-
tion and central limit theorems are discussed. The law of large numbers makes statistical
thermodynamics possible, and large deviation theory gives the basis for most elementary
nonequilibrium statistical mechanical approaches. Appendix outlines measure theory.

Chapter 2 is a review of the framework of equilibrium statistical mechanics along its
history. It was born from kinetic theory. Elementary kinetic theory and the basic part of
Boltzmann’s kinetic theory are outlined. However, we are not interested in the theoretical
framework applicable only to special cases (dilute gases in this case). Therefore, kinetic
theories are not discussed at length. Based on the expression of work (or equivalently the
microscopic expression of heat) due to Einstein, A = —kgT log Z is derived. Then, Jarzyn-
ski’s equality is discussed. Eventually, we will learn that we have not yet understood the
nature of the kind of motion we call heat. This is perhaps a major reason why we cannot
understand nonequilibrium phenomena very well.



Chapter 1

Rudiments of Probability and
Statistics

Almost surely the reader has already learned elementary probability theory. The purpose of
this section is not to introduce elementary probability theory. We introduce the measure-
theoretical probability as intuitively as possible. The reader should at least briefly reflect
on what probability must be. Then, the three pillars of probability theory, crucial to statis-
tical physics, are outlined in simple terms. They are the law of large numbers and its two
refinements, large deviation theory and central limit theorems. (Stochastic processes will be
defined in 1.4.2 but will be discussed later).

Their relevance to statistical physics is roughly as follows: the law of large numbers
allows us to observe the reproducible macroscopic world (macroscopic phenomenology). The
large deviation theory tells us variational principles behind the macroscopic phenomenology
and fluctuations around the macroscopic results. Central limit theorems allow us to extract
the macroscopic picture of the world (= renormalization group theory).

Recommended reference of probability theory (for a second introduction):
R Durrett, Probability: Theory and Examples (Wadsworth & Brooks Cole, Pacific Grove,
Ca, 1991)!

1.1 Probability, an elementary review

Starting with a reflection on what ‘probability’ should be, we outline very intuitively the
basic idea of ‘measure theoretical probability.” Appendix to this chapter is an introduction
to measure theory.

The following book contains the most pedestrian introduction to measure-theoretical

!This is a role model of a textbook of any serious subject. However, it may not be the first book of
probability the reader should read; it is a book for those who have firm basic knowledge.
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probability theory I have ever encountered:
Z. Brzezniak and T. Zastawniak, Basic Stochastic Processes — a course through exercises
(Springer Verlag, 1999)

1.1.1 Probability as a confidence level.

Probability of an event is a measure of our confidence (or conviction) level in 0-1 scale for
the event to happen.
Discussion 1. Here, the word ‘confidence’ is used intuitively, but what is it? Your con-
fidence must be tested. Your confidence must be useful, if you follow it. This means that
your confidence must enhance your reproductive success. O

Suppose there is a box containing white balls and red balls. The balls are all identical
except for the colors, and we cannot see inside the box. What is our confidence level of
picking a red ball from the box? Our confidence level C' in 0-1 scale must be a monotone in-
creasing function of the percentage 100p% of red balls in the box. We expect on the average
we pick a red ball once in 1/p picks (assuming that we return the ball after every pick and
shake the box well; this is the conclusion of the law of large numbers —1.5.3). Therefore,
C = p is a choice. That is, if one can repeat trials, the relative frequency of a success is a
good measure of confidence in the success.

Let us consider another example. What do we mean, when we say that there will be
a 70% chance of rain tomorrow? In this case, in contrast to the preceding example, we
cannot repeat tomorrow again and again. However, the message at least means that the
weather person has this much of confidence in the rain tomorrow. We could imagine that
she looked up all the data of similar situations in the past, or that she did some extensive
hydrodynamic calculation and the error bar suggested this confidence level, etc. Thus, even
in this case, essentially, an ensemble of days with similar conditions is conceivable, and the
relative frequency gives us a measure of our confidence level.?

1.1.2 Probability is something like volume.

If two events never occur simultaneously, we say these two events are mutually exclusive.
For example, suppose a box contains white, red, and yellow balls. We assume that we cannot
see the inside of the box and the balls are identical except for their colors. Picking a red ball
and picking a yellow ball are two mutually exclusive events.

Suppose our confidence level of picking a red ball be C'z and that for a yellow ball be
Cy. Then, what is our confidence level of picking a red or a yellow ball? It is sensible to
require that this confidence level is C'r + Cy. This is just in accordance with the choice
‘C' = p’ (or the additivity justifies that this choice is the best).
Discussion 1. In the above it is said Cr + Cy is ‘sensible.’
sensible? O

This strongly suggests that our confidence level in 0-1 scale = probability is something
like a volume or weight of an object: if an object R has volume or weight Wx and another
object Y weight Wy, the weight of the nonoverlapping (= mutually exclusive) compound
object made by joining R and Y must be Wg + Wy-.

Our confidence level for an event that surely happens is one; for example, we can surely
pick a ball irrespective of its color in the above box example, so, if Cyy is our confidence level

3

Why or in what sense is it

2In any case, the confidence level, if meaningful at all to our lives, must be empirically reasonable. Is there
any objective way to check the reasonableness of a confidence level without any use of a kind of ensemble?

3Do not confuse this with the concept of (statistical) independence (—1.2.2). If two events are (statisti-
cally) independent, the occurrence of one does not tell us anything about the other event.
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of picking a white ball, Cr + Cy + Cy = 1. Thus, probability looks like volume or weight
whose total volume (weight or mass) is unity.

Suppose a shape is drawn in a square of area 1. If we pepper points on the square

uniformly, then the probability = our confidence level of a point to land on the shape should
be proportional to its area.* Thus, again it is intuitively plausible that probability and area
or volume are closely related.
Discussion 2. ‘Uniformly’ is a tricky word. The reader should have smelled a similar
difficulty as encountered in the principle of equal probability in equilibrium statistical me-
chanics (—2.6.2). Uniform with respect to what? Even if we could answer this question, is
the thing we base our uniformity really uniform (with respect to what?)? Critically think
whether we can really have objective ‘uniformity.” (For example, in Euclidean geometry the
uniformity of the space must be assumed axiomatically. How is it done? Even if the reader
scrutinizes Euclid, she will never find any relevant statement. That is, as is of course well
known, Euclid’s axiomatic system is (grossly) incomplete.) O

1.1.3 What is probability theory?
A particular measure of the extent of confidence may be realistic or unrealistic (rational or
irrational), but this is not the concern of probability theory. Probability theory studies the
general properties of the confidence level of an event.

The most crucial observation is that the confidence level behaves (mathematically or
logically) just as volume or weight as we have seen in 1.1.2. Let us write our confidence level
= probability of event A as P(A). If two events A and B are mutually exclusive, P(A or B
occurs) = P(A) + P(B) (—1.1.5(2)). Such basic properties were first clearly recognized as
axioms of probability by Kolmogorov in 1933.5:7

1.1.4 Elementary and compound events.

An event which cannot (or need not) be analyzed further into a combination of events is
called an elementary event. For example, to rain tomorrow can be regarded as an elementary
event, but to rain or to snow tomorrow is a combination of two elementary events, and is
called a compound event.

Let us denote by () the totality of elementary events allowed under a given situation or
to a system.® Any event under consideration can be identified with a subset of 2. Therefore,
a subset of () is called an event. When we say an event A occurs, we mean that one of the
elements in A occurs.

1.1.5 Definition of probability.
Let us denote a probability of A C Q2 by P(A). It is defined as a function whose domain is

4This has a practical consequence. See 1.5.6.

5If the reader happens to know the so-called algorithmic probability theory, she may claim that there is
an objective definition of uniform distribution, but there all the symbols are assumed to be equally probable.

6This year, Hitler was elected German Chancellor; Stalin began a massive purge; Roosvelt introduced
New Deal.

"Kolmogorov’s work is a direct response to Hilbert’s address to the second International Congress of
Mathematicians in Paris held in 1900 (see “Mathematical problems,” Bull. AMS 8 437 (1992)). He named
probability as one of the subdisciplines of physics whose axiomatic foundations needed investigation. Chapter
2 of G. Shafer and V. Vovk, Probability and Finance, it’s only a game! (Wiley-Interscience 2001) is a good
summary of the history of probability.

8That  is treated as a set is implicit here.
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the totality of the sets in 2,° and whose range is [0, 1], satisfying the following conditions:
(1) Since probability should measure the degree of our confidence on the 0-1 scale, we demand
that

P(Q) = 1; (1.1.1)

in other words, something must happen. Then, it is also sensible to assume
P(0)=0. (1.1.2)

(2) Now, consider two mutually exclusive events, A and B. This means that whenever an
elementary event in A occurs, no elementary event in B occurs and vice versa. That is,
AN B =1(. As we have already discussed, it is sensible to demand additivity

P(AUB)=P(A)+ P(B), it AnB = . (1.1.3)

It is convenient to require the additivity to infinitely many sets:
(2') [ o-additivity |: Suppose A; (i =1,2,---) are mutually exclusive events (A4; N A4; = 0 for
any ¢ and j (#14)). Then,

P(UA;) = ZP(AZ-). (1.1.4)

In mathematical terms, probability P is a o-additive measure with total weight unity. In
Appendix to this Chapter, measure is explained informally; any statistical physicist should
know its rudiments.

(Q, P) is called a probability space.'®

Note that for a given totality of elementary events €2, there are many different proba-
bilities just as there are many different unfair coins. For a coin 2 = {H, T} (head and tail),
and P(H) = py, and P(T) =1 — p, define a probability P.

Exercise 1. There are 50 people in a room. What is the probability of finding at least two
persons sharing the same birthday? O

Exercise 2. There is a unit circle on which we wish to draw a chord whose length is longer
than v/3. What is the probability of drawing such a chord by randomly drawing it?'! [Notice
that the word ‘randomly’ is as tricky as ‘uniformly’ (—1.1.2)]. O

1.1.6 On the interpretation of probability
Mathematicians and philosophers have been thinking about the interpretation of probability;
as a branch of mathematics the measure theoretical framework may be enough, but to apply
probability to the real world some interpretation is needed.

There are two major camps in this respect: the frequentists vs. the ‘subjectivists’. The
former asserts that probability is interpreted as relative frequency (out of an ensemble of
events). The latter points out the difficulty in the interpretation of a unique event (an event
that occurs only once, e.g., our lives), and asserts that some probabilities must be interpreted
deductively rather than inductively as the frequentists advocate.!?

9Such a function is called a set-theoretical function; volume (—1.A.2) is an example. Not all the sets
have volume; not all the events have probability. Therefore, precisely speaking, we must deal only the events
whose probability is meaningful. See 1.A.20.

10This is not enough to specify a probability (—1.A.20), but we proceed naively here.

HThere is a very good account of this problem on p21-2 of N G van Kampen, Stochastic Processes in
Physics and Chemistry (North Holland, 1981). This is a nice book, but should be scanned quickly after
learning the standard probability theory.

12Propensity interpretation by Popper, interpretation in terms of degree of confirmation by Carnap, etc.
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Our starting point in 1.1.1 was probability = measure of confidence, so the reader might
have thought that the lecturer was on the subjectivist side. However, this subjective measure
must agree at least to some extent with the actual experience in our lives. Thus, the rela-
tion with relative frequency was immediately discussed there. The lecturer’s point of view
is that probability is a measure of confidence inductively supported by relative frequency.
‘Non-frequentists’ forget that our mental faculty being used for deduction is a product of
evolution; our confidence may not be tied to our own experience, but is tied to the result of
our phylogenetic learning = the totality of experiences by our ancestors during the past 4
billion years.!?

Laplace is the founder of probability theory.!* His basic idea was: the relative number
of equally probable elementary events in a given event is the probability of the event. Here,
‘equally probable’ implies that there is no reason to have difference. This is exactly the
interpretation of probability used by Boltzmann when he discussed entropy (—2.4.2).

If we feel that there is no reason to have difference between event A and event B, then
we feel A and B are equally likely. This feeling is often in accordance with our experience
thanks to the evolution process that has molded us. That is, both our feeling and the ‘logic’
behind Laplace’s and Boltzmann’s fundamental ideas have the basis supported by phyloge-
netic learning.

Probability is always disguised relative frequency. Purely deductive probability concept
is meaningless.

Discussion 1. Read the article by N. Williams, “Mendel’s demon” in Current Biology 11,
R80-R81 (2001) and discuss the positive meaning of randomness.!?
O

1.2 Conditional Probability and Bayesian Statistics

1.2.1 Conditional probability: elementary definition
Suppose we know for sure that an elementary event in B has occurred. Under this condition

13Wittgenstein thought deeply on related problems. Let us read some passages of Philosophical Inves-
tigations [There is a 50th anniversary commemorative edition: the German text with a revised English
translation (by G. E. M. Anscombe), Third Edition; Blackwell, Oxford, 2001].

“472. The character of the belief in the uniformity of nature can perhaps be seen most clearly in the case in
which we fear what we expect. Nothing could induce me to put my hand into a flame — although after all
it is only in the past that I have burnt myself.” (p114)

“481. If anyone said that information about the past could not convince him that something would happen
in the future, I should not understand him. One might ask him: What do you expect to be told, then? What
sort of information do you call a ground for such a belief? What do you call “ conviction”? In what kind of
way do you expect to be convinced? —If these are not grounds, then what are grounds? — ---.” (p115)
“483. A good ground is one that looks like this.” (p115)

1 The Laplace demon that can predict everything deterministically was introduced to indicate its absurdity
and to promote probabilistic ideas in the introduction to his Essai philosophique sur les probabilités (1814,
this year Napoleon abdicated; Fraunhofer lines; Berzelius introduced the modern chemical symbols now in
use).

15This article is an introduction to the following book: M. Ridley, The Cooperative Gene— How Mendel’s
Demon explains the evolution of complex beings (The Free Press, 2001), “Mendel’s demon is the executive
of gene justice, and we all depend on it for our existence.” Mendel’s demon is five years elder to Maxwell’s
demon.
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what is the probability of the occurrence of another event A? This question leads us to
the concept of conditional probability. We write this conditional probability as P(A|B), and
define it through

P(ANB) = P(A|B)P(B). (1.2.1)

1.2.2 Independence
If two events A and B satisfy

P(ANB) = P(A)P(B), (1.2.2)

these two events are said to be (statistically) independent.

This definition is intuitively consistent with the definition of the conditional probability
in 1.2.1. If B has no information about A, then P(A|B) = P(A) is plausible. Thus, (1.2.1)
reduces to (1.2.2).

Logically, we must define the independence of countably many events such as P(AN BN
C) = P(A)P(B)P(C), because pairwise independence (1.2.2) does not imply such a relation
among many events as the reader sees in Exercise 1.
Exercise 1.1 Let X;, X, and X3 be independent random variables with P(X; = 0) =
P(X; =1) = 1/2. Consider the following three events: A; = {Xy = X3}, Ay = {X;5 = X}
and Ag = {Xl = Xz}
(1) Show that these events are pairwisely independent.
(2) P(A; N Ay N Az) # P(A))P(As)P(A3).0

Kolmogorov proved:
There are infinitely many independent random variables on an appropriate probability space.

1.2.3 Borel-Cantelli lemma
Let Ay, Ay, --- be an infinite sequence of events.

(1) If 322, P(A,) < oo, then with probability 1 only finitely many events among { A4;} occur.
(2) If all the events Ay are independent and if >>7°, P(A,) = oo, then with probability 1
infinitely many of the events in {A;} occur.

[Demo| Here, a detailed (pedestrian) demonstration is given, because its logic is quite typical.
(1) To demonstrate probabilistic statements, explicitly writing down the event or its comple-
ment (negation) is often the best starting point. The negation of ‘only finitely many’ means
‘infinitely many.” If there occur infinitely many of {Ax}, for any n some A4; (j > n) must
occur. That is, B,, = U;j>,A; must occur for any n. That is, all B,, must occur, or N,>1 5,
must occur. Therefore, to demonstrate (1) we must show

P (Np>1 (Uj>nA4;)) =0, (1.2.3)
This can be shown as follows:
P (Muz1 (UjznAy)) < lim P (UjznAj) < lim Y P (4;) =0, (1.2.4)
i>n

because the series Y2, P(A,) converges.
(2) Again, the negation is easier to prove: the probability of the occurrence of only finitely

16Taken from Durrett Example 4.1.
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many of { A} is zero. If only finitely many of them occur, then all of Q\ Aj, must occur for k >
n for some n. That is, Ng>, (2\ Ax) must occur for some n. That is, Up>1 (Mg, (2\ Ag)) must
occur. However, this is the negation of the statement we wish to demonstrate. Therefore,
we wish to show that U,>1 (Ng>n (2 \ Ax)) never occurs: we must show

P (Up>1 (Mi=n (2 Ag))) = 0. (1.2.5)

This can be demonstrated as follows:

P (Unz1 (Mizn(2\ Ap))) < lim P (M (\ Ax)) = lim [T P(Q\ Ap). (1.2.6)

k>n

The last equality is due to the independence of all 2\ A;. Since Y-, P(Ay) diverges for
any n, [Tg>n(1 — P(Ay)) = 0 for any n.'” This implies the product in (1.2.6) vanishes.

1.2.4 Conditional probability: mathematical comment
(1.2.1) has no difficulty at all so long as we study a discrete probability space. However,
there are many events that can change continuously. Suppose the event B is the event that
a molecule in a cube of edge 1m has the speed infinitessimally close to 1m/s (event B). The
reader might say such an event is meaningless because it is ‘measure zero’ or probability zero.
However, it is conceivable that the particle has such a speed and in a ball of radius 10cm in
the cube (event A). The conditional probability P(A|B) should be intuitively meaningful.
According to (1.2.1), it is 0/0, so its definition requires some care; since the ratio
P(ANB)/P(B) is 0/0, conceptually it is close to a derivative. Obviously, P(ANB) < P(B),
so this derivative is always well-defined. Such a derivative is called the Radon-Nikodym
derivative. We will discuss this when we really need such sophistication.!®

1.2.5 Bayes’ formula
Suppose we know the conditional probability { P(z|0)} of X with the condition that © takes
the value 6. Then,

P(z,0) = P(z|0)P(0) = P(0|z)P(x). (1.2.7)
Therefore, we have I8)PO)
P(z|0)P(0

This is called Bayes’ formula.

This formula is used, for example, as follows. © is a set of possible parameter values
that describe (or govern) the samples X we actually observe. Thus, P(z|€) is the probability
we observe x, if the parameter value is . However, we do not know the actual #. From
the actual empirical result we can estimate P(x|f), assuming a model of the observation.
Our aim is to estimate # that is actually behind what we observe; you could interpret this

I7A clever way to show this is to use
e >1—ax.

This implies

PDOLE > H(l — ).

181f you are impatient, A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis (Revised English
edition, Englewood Cliffs,1970) is recommended.
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as a problem selecting a model describing the observed phenomenon. A sensible idea is the
maximum a posteriori probability estimation (MAP estimation): Choose 6 that maximize
P(0|x).

However, to use (1.2.8) we need P(f): the a priori probability. The usual logic is that
if we do not know anything about ©, P(f) is uniform. Of course, this is a typical abuse of
Occam’s razor.’

1.2.6 Linear regression from Bayesian point of view
Let us assume that the independent variable values {¢;} ((k = 1,---, N) are obtained without
any error. For t; the observed dependent variable is y; but this is not without error:

Uk = aty + b+ €. (1.2.9)

The problem is to estimate a and b. In the resent problem ¢, are assumed to be iid?® Gaussian
variables with mean zero and variance V. Then, under the given parameters {a, b}

P({yr}|{a, b}) = %VN exp <—;/ > (yr — aty — b)2> : (1.2.10)

To use (1.2.8), we need P({a, b}) the prior probability. If we assume that the prior is uniform,
then the a posteriori probability is

1 1 )
P({a b} ) o ——— e <_2v S (i — aty, — b) ) . (1.2.11)

Therefore, the MAP estimate dictates the least square scheme of determining a and b.

1.2.7 Problem of a priori probability
Bayesian statistics requires a priori probability. Sometimes, as have seen in 1.2.6, we could
disregard it but the reason for ignoring the a priori probability is not very clear.

The reader must have thought about the principle of equal probability. This is the a
priori distribution. Notice that the principle is made of two parts:

(1) Designation of microstates (or elementary events).
(2) Probability assignment to each elementary event.

In a certain sense, (1) is not a serious problem thanks to quantum mechanics. Since
very high energy excitations cannot occur, we may totally ignore the structure of the world
at extremely small scales. Thus, Nature dictates what we may ignore.

However, (2) does not disappear even with quantum mechanics as already discussed.
Thus, the problem of a prior: distribution is a real issue.

If we wish to establish a general statistical framework for nonequilibrium states, (1)
may well be the same as in equilibrium statistics. Thus, (2) becomes the key question of
nonequilibrium statistical mechanics.

19“Qccam’s razor, in its legitimate application, operates as a logical principle about the complexity of
argument, not as an empirical claim that nature must be maximally simple. --- Whereas Occam’s razor
holds that we should not impose complexities upon nature from non-empirical sources of human argument,
the factual phenomena of nature need not be maximally simple — and the Razor does not address this
completely different issue at all.” (S. J. Gould, The Structure of Evolution Theory (Harvard UP, 2002)
pb52). That is, questions about actual phenomena (e.g., whether two events are equally probable or not)
should not invoke the razor. However, it seems empirically true that the abuse of the razor often works. The
most natural explanation is that our reasoning utilizes our brain, a product of natural selection.

20A standard abbreviation for “independently and identically distributed.”
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1.3 Information

This section is not included in the ‘minimum’ to understand rudiments of nonequilibrium
statistical mechanics. Therefore, the reader could skip this section. However, it is a good
occasion to have some familiarity to the topic. An excellent general introduction to the topic
1s:

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991)

1.3.1 Probability and information
Suppose there are two sets of symbols L,, and L,, that contain n and m symbols, respectively
(n > m). Let us assume that all the symbols appear equally probably. Now, we just received
two messages with 20 symbols. Which do we expect to have more information, the message
in symbols in L, or that in L,?

Here, the reader must ‘naively’ interpret the word ‘information.” For example, compare
the English alphabet and the Chinese characters. We would certainly say 20 Chinese char-
acters carry more information; with only 20 Chinese characters the world greatest poems
were written. Therefore, we expect the message written in the symbols in L, should have
more information than that in L,,. Let us introduce (the average) information per symbol
H, = H(L,)?" in the message written in the symbols in L,, as an increasing function of n.

What we are trying to do now is this: it is very hard to characterize ‘information,” so
let us at least try to quantify it, just as we do for energy. If the probability of encountering a
particular symbol (for L, this is p = 1/n for any symbol) is small, the information carried by
the symbol is large. This is the fundamental relation between information and probability.

Now, let us use two sets of symbols L, and L,, to send a message. We could make
compound symbols by juxtaposing them as ab for a € L,, and b € L,, (just as many Chinese
characters do). The information carried by each compound symbol should be I(mn), be-
cause there are mn symbols. To send the message written by these compound symbols, we
could send all the left half symbols first and then the right half symbols later. The amount
of information sent by these methods must be equal, so we must conclude that

Here, H, is defined on positive integers n, but we can extend its definition to all positive
real numbers as
H, = clogn, (1.3.2)

where ¢ > 0 is a constant. Its choice is equivalent to the choice of unit of information and
corresponds to the choice of the base of the logarithm in the formula.

If ¢ = 1 we say we measure information in nat; if we choose ¢ = 1/log2, in bit. One bit
is an amount of information obtained by the answer to a single yes-no question.
Remark. However, we do not discuss the ‘value’ of information. O

2Tn the notation H(Q), @ is a random variable, or a probability space.
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1.3.2 Shannon’s information formula

Although we have assumed above that all the symbols are used evenly, such uniformity does
not occur usually. What is the most sensible generalization of (1.3.2)7

A hint is already given in 1.3.1. If we write H,, = —log,(1/n) bits, —log,(1/n) is the
expectation value?? of information carried by a single symbol chosen from L,. 1/n is the
occurrence probability of a particular symbol. Then, for the case with nonuniform occurrence
{p1,- -+, pn}, the expectation value of the information carried by the i-th symbol should be
defined as — log, p; bits. Therefore, the average information in bits carried by a single symbol
taken from L, should be defined by?3

H(Ly,) = =) pilog, pi- (1.3.3)

i=1

This is called the Shannon information formula.**

—log, p; is sometimes called the surprisal of symbol ¢, because it measures how much
we are surprised by encountering this symbol. Expected surprisal is the information.
Exercise 1.

(1) Given a fair die, we are told that the face with 1 is up. What is the information in
bit carried by this message? [The information of a message is measured by the change of
information (decrease of entropy, because often gain of information is equated with decrease
of entropy) one has due to the knowledge in the message.] (2.58 bits)

(2) We are told that the sum of the faces of two fair dice is 7. What is the information
carried by this message? (2 x 2.58 — 2.58 = 2.58 bits). O

Exercise 2. Suppose we have a sentence consisting of 100 letters. We know that the infor-
mation per letter is 0.7 bit. How many ye-no question s do you need to completely determine
the sentence? O

Discussion 1. If the symbols of English alphabet (4 blank) appear equally probably, what
is the information carried by a single symbol? (4.58 bits) In actual English sentences, it is
about 1.5(7) bits. What happens? Also think about how to determine this actual value.?>»26
O

1.3.3 Information for continuous distribution
Let f be the density distribution function on an event space (probability space) that is
continuous. It is customary to define the Shannon entropy of this distribution as

H= —/dx f(z)log f(x). (1.3.4)

This formula was originally introduced by Gibbs as we see in 2.1.5.
Warning. Notice that the formula has a very serious defect. The formula is not invari-
ant under the coordinate transformation. Further worse, it is not invariant even under the

22Here, ‘expectation value’ may be understood intuitively and in an elementary way, but for a more
mathematical definition see 1.4.3.

ZNotice that the symbol set is actually a probability space (L, {p;}).

Z4for an uncorrelated (or Bernoulli) information source. About Shannon himself, see S. W. Golomb et al.,
“Claude Elwood Shannon (1916-2002),” Notices AMS 49, 8 (2002), and J. F. Crow, “Shannon’s brief foray
into genetics,” Genetics 159, 915 (2001).

25Cf. Cover and Thomas, Chapter 6 “Gambling and Data Compression.”

26There is a related ‘fun’ paper, Benedetto et al., “Language tree and zipping,” Phys. Rev. Lett. 88,
048702-1 (2002). This uses Lempel-Ziv algorithm LZ77 (used in gzip, for example) to measure information
(or rather mutual information).
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change of the unit to measure the coordinates, because the scaling transformation of the
independent variable x — «x alters the value of H. Generally speaking, no dimensionful
quantity should appear inside the logarithmic function. O

The reader must have realized that f inside the logarithm should be a ratio. See 1.6.9.
In short, (1.3.4) may be used only under the assumption that x is a priori equally weighted.

1.3.4 Information and entropy
H(A) is the expected information we obtain from one sample from A. The information she
can gain on the average from the answer that the symbol is a particular one is given by H(A).
Thus, as we have already seen in Exercise 2 in 1.3.2, if we obtain nH(A) information, we
can determine a sentence s, made of n symbols taken from A.%7

Suppose we already know the sentence s,. Then, there is no surprise at all, even if
we are shown s,: the information carried by s, is zero. This means that the information
nH(A) has reduced our ignorance from the initial high level to the final perfectly informed
level. A convenient measure of the extent of ignorance is entropy in equilibrium statistical
mechanics. Therefore, we could say that nH(A) of information has reduced the entropy to
zero. It is sensible to guess that the initial entropy is nH(A). This is the Gibbs-Shannon
entropy-information relation seen in (1.3.3) or (1.3.4).

Thus, information and entropy are often used interchangeably. If there is a macroscopic
state whose entropy is S, to specify a single microstate (= elementary event) we need (on
the average) information H = S.

Exercise 1. When reaction occurs, the entropy of the reacting chemicals change. This is
usually measured in en (entropy unit) = cal/mol-K. How many bits per molecule does 1 en
correspond? Is the reader’s answer reasonable?®® How about in pNnm/K?% O

Discussion 1. How much energy is required to transfer 1 bit between two communicators?3’
O

1.3.5 Information minimization principle
Let us consider the problem of estimating the ‘most likely” distribution (density distribution

270n the average. However, if n is very large, the accuracy (= density of correctly identified letters)
asymptotically reaches unity.

281f the entropy is measured in eu as S eu, then it is 0.72S bits/molecule.
29

kp = 1.381x 107 J/K,
= 1.381 x 1072 pN - nm/K,
= 8617 x107° eV/K
The gas constant R is given by
R = Nukp =8.314 J/mol - K = 1.986 cal/mol - K (1.3.5)

Here, 1 cal = 4.18605 J. It is convenient to remember that at room temperature (300K)

kT = 4.14 pN-nm
= 0.026 eV
RT = 0.6 kcal/mol.

30R Landauer, “Energy requirements in communication,” Appl. Phys. Lett. 51, 2056-2059 (1987).
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function) of a variable describing a system under some known conditions or knowledges, say,
the average and the variance.

To answer this question we must interpret the requirement ‘most probable’ appropri-
ately. One interpretation is that the most probable distribution is the one with the least
biased under the extra conditions or knowledges we are at hand. A quantitative version of
this interpretation uses the Shannon information as follows.

Compare the a prior: distribution and the distribution we can infer with the extra knowl-
edge. The most unbiased distribution we should infer must correspond to the distribution
of the symbols with the least decrease of information per symbol compatible with the extra
condition. Therefore, the distribution we wish to infer must be obtained by the maximization
of the Shannon formula (1.3.4) or (1.3.3) under the extra conditions imposed. The decrease
in H may be interpreted as the information gained from the extra conditions. Therefore, the
prescription is to minimize the information gain from the newly acquired conditions. This
is the so-called Jaynes’ principle. The principle is useful, if we do not stretch it, or if we use
it as a shortcut to known results.

The astute reader should have already realized that the principle works only when we
know that the a priori distribution is uniform (= the principle of equal probability). Fur-
thermore, from the warning in 1.3.3, if the event is described by continuous variables, a
further caution is required to use this principle. A typical abuse is the ‘derivation of statis-
tical mechanics’ 1.3.6.

Discussion 1. The distribution available by the information minimization principle and the
true distribution are very likely different under nonequilibrium conditions.?! O

1.3.6 Information-theoretical foundation of statistical mechanics is illusory.
The information H is maximized when all the symbols (or events) occur equally probably.
Some people wish to utilize this property to justify (or derive) the principle of equal proba-
bility (—2.6.2) (the so-called information theoretical foundation of statistical mechanics®?).

Let us maximize (1.3.3) under the condition that we know the expectation value of
energy > Fip;, = F.
Exercise 1. Using Lagrange’s multipliers, find p; in terms of F;. O
As the reader has seen, the canonical distribution

pi oc e P (1.3.6)

is obtained, where 3 is determined to give the correct expectation value of the energy.??
The logic is that H measures the amount of the lack of our knowledge, so this is the most
unbiased distribution (—1.3.5). O

But does Nature care for what we know? Even if She does, why do we have to choose
Shannon’s information formula to measure the amount of our knowledge?

The formula (1.3.3) is so chosen that if all the symbols appear equally probably, then
it depends only on the total number of elements (—1.3.1). Therefore, logically, there is a
vicious circle. The reader will encounter a similar quantity, the Kullback-Leibler entropy
later (—1.6.9), and will clearly recognize the fundamental logical defect in the so-called

31For example, see a recent paper: H.-D. Kim and H. Hayakawa, “Test of Information Theory on the
Boltzmann Equation,” J. Phys. Soc. Japan, 72 2473 (2003).

32E T Jaynes, Phys. Rev. 106, 620 (1959).

33Boltzmann’s argument summarized in Exercise of 2.4.11 just derives Shannon’s formula and uses it. A
major lesson is that before we use the Shannon formula important physics is over. The reader can use the
Shannon formula as a shortcut, but can never use it to justify what she does.
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information theoretical foundation of statistical mechanics.

Exercise 2. Is (1.3.6) really correct? [Suppose we do not know what the elementary event is
in statistical mechanics and (erroneously) assume that elementary states are defined by their
energy (that is, however many microstates we have for a given energy, they are assumed to
be a single state).] O

Exercise 3. The use of the least square fit assumes that the error obeys a Gaussian dis-
tribution. Suppose we wish to fit the data g(s) (s € [0,1]) with a function f(s,«) with a
parameter, choosing the parameter through minimizing the “Ls-error”:

/01 ds|g(s) — f(s,a)[2. (1.3.7)

We could also use an appropriate function M and minimize

[ astartgts) - w7t P (138)

Show that the answers cannot generally be identical. O
The reader must clearly recognize that information theory can never be used to justify
or derive any fundamental statistical hypothesis.

1.3.7 Joint entropy and conditional entropy
Let X = {z1,---,2,} and Y = {91, -+, ym} be the letter sets. If p(z,y) is the probability
for a pair of letters {z,y} (r € X,y € Y).

HX,)Y)=— > plz,y)logp(z,y) (1.3.9)

zeX,yeY

is the joint entropy of X and Y.

Consider H(X,Y) — H(X). This must be the information (per letter pair) we can gain
from {z,y}, when we already know x, Therefore, this is called the conditional entropy of Y.
Thus, the following is a reasonable definition of the conditional entropy:

H(Y|X) = H(X,Y) — H(X) (1.3.10)
Notice that
HY|X) = = plx,y)logp(z,y) + > p(z)logp(x), (1.3.11)
= - Zp(l‘a y) logp(x,y) + Zp(x, y) log p(z), (1.3.12)
= —Zp x,y)log p(ylz) = Zp =2 _p(ylz)logp(ylz)|. (1.3.13)

Here, p(y|z) is the conditional probability of y under condition z. If we introduce

H(Y|z) = Zp ylz)log p(ylz), (1.3.14)

we can write

H(Y|X) Zp H(Y|x). (1.3.15)
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We can write
HX,)Y)=H(X)+ H(Y|X).

This is sometimes called the chain rule. For example,

H(X,Y,Z)=H(Y,2)+ HX|Y,Z) = HZ)+ HY|Z) + H(X|Y, Z).

It should be intuitively obvious that
H(X|Y) < H(X).

This can be shown algebraically with the aid of the log sum inequality.

1.3.8 Log sum inequality
For non-negative numbers aq,---,a, and by,---, b,

Zal log— > (Z az> log ZZ‘ 1121

with equality iff a;/b; is constant.
[Demo] Let f(t) = tlogt. The Jensen® implies for a stochastic vector o

Zaif(ti) > f (Z Oéﬂ%) .

Now, set t; = a;/b; and a; = b;/ > b;. O

1.3.9 Mutual information
The mutual information I(X,Y) between X and Y is defined as

IX,)Y)=HX)+HY)-HX,)Y) = prylogp((:;f(/;).

(1.3.16)

(1.3.17)

(1.3.18)

(1.3.19)

(1.3.20)

(1.3.21)

Obviously, this is symmetric. Intuitively, this must be positive, because non-independence
of X and Y should reduce the information that could have been carried by independent X

and Y.
Exercise 1. Demonstrate that I(X,Y) > 0. O

1.3.10 Asymptotic equipartition property
Let {X;} be iid variables with probability p(z). Then, in probability

1
——log P(Xy, -+, X,) — H(X).
n

This is just the weak law of large numbers (—1.5.4).

341f f is a convex function, (f(z)) > f({(z)) (Jensen’s inequality).
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1.3.11 Typical set of sequences
The typical set A™ wrt p(z) is the set of {z;}7_, such that

2—nH—nE S p({xz}) S 2—nH+ne (1323)

for small positive e.

(1) If {z;} € A™W then H — e < —(1/n)logp({x;}) < H +e.

(2) For sufficiently large n P(A(™) > 1 — ¢. That is, the typical set is almost probability 1.
(3)

(1 —e)2mHc < |AM| < onfite, (1.3.24)

Here | | denotes the cardinality of the set. The number of typical elements is 2"# and they
are all equally probable.
[Demo] (1) is the definition itself. For any § > 0, there is an N such that Vn > N

P (|- tog (e - H(X)

This is asymptotic equipartition or weak law of large numbers. We may set 6 = e. This is

(2). Since
1=>"p{z}) < > plg) < Y 27nine =AM |gnHne (1.3.26)

geAl™ qeA™

< e) S1-4. (1.3.25)

we obtain the upper bound in (3). From (2)
1—e< P(A™) < Y gmnfiine = | g(n)|g=niltne (1.3.27)

qeAl™

we obtain the lower bound.O

1.3.12 Implication of typical set

1.3.11 implies (roughly):
If we produce uncorrelated sequences® of n (> 1 in practice) letters with entropy H, then
only 2" of them appear. This typical set is usually vastly smaller than the totality of the
possible sentences and can be written in nH 0 and 1’s.

This is the principle of data compression,*® and is fully used in, e.g., jpeg. Of course,
occasionally sentences not in the typical set show up. In such cases we simply accept the
situation as an unfortunate case and send or store such exceptional sequences as they are
without compression. In any case, they are asymptotically very rare.

1.3.13 Statistical mechanics and law of large numbers revisited

The fourth law of thermodynamics implies that a macroscopic system may be understood
as a collection of statistically independent macroscopic subsystems. The states of each sub-
system may be characterized by the set of states of subsystems {z;}. We know with almost
probability one what we observe is from the asymptotic equiprobability states. Therefore,
almost all the states of a macroscopic system have the same probability. This is an expla-
nation of the principle of equal probability.

Thus, essentially the law of large numbers and the fourth law of thermodynamics are
expected to be the two key elements of statistical mechanics.

Then, what is the role of mechanics?

351f there are correlations, we could exploit it to convert the original sentences shorter.

36 A good exposition (not introductory) can be found in D. L. Donoho, M. Vetterli, R. A. DeVore, and 1.
Daubechies, “Data Compression and Harmonic Analysis,” IEEE Transactions on Information Theory, 44,
2435 (1998).
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1.4 Random Variables

Basic tools such as characteristic functions, generating functions, etc., are introduced. The
reader must be familiar with an elementary technique to compute probability densities using
the d-function (—1.4.5).

1.4.1 Random variables
Let P be a probability (= probability measure —1.1.5) defined on a set ) = totality of
elementary events under consideration.’” A function defined on Q is called a random vari-
able.?® A point in © (i.e., an elementary event) is often specified by a parameter w called
the stochastic parameter. Thus, a random variable can be written as f(w).

Two random variables X and Y are said to be independent, if for any two real value
sets A and B3

P{X e AAn{Y € B}) = P({X € A)P{Y € B}). (1.4.1)

1.4.2 Stochastic parameter and stochastic process

Roughly speaking, a stochastic process is a function of time parameterized by a stochastic
parameter. That is, a stochastic process is a functional on a probability space: a map from
a probability space to a space of functions of time. Analogously, we can define a stochastic
field as a map from a probability space to a function defined on a space. w specifies each
sample = a particular realization.

1.4.3 Expectation value
Let X (w) be a random variable on 2 and u a probability on it “°. The expectation value
E[f] of the random variable f is defined as

MMZAX@@@y (1.4.2)

For a set (= event) A C €, the following function x4 is called its indicator (or indicator
function):

Xa(w) = { (1) Z ;if (1.4.3)

That is, the indicator for an event A is 1, if the event occurs, and 0, otherwise.
The probability of an event A C €2 is u(A), so

p(A) = [ xa@)dp(@) = B(xa). (1.4.4)

37 As seen in Appendix to this chapter, not all the events have their probabilities (measurable), so we must
also specify a family of measurable events = the events whose probability we can discuss, but we will not
explicitly write the so-called ‘triplet’ (—1.A.20).

38 Again, we must discuss functions whose expectation values are meaningful, so we must require that
random variables must be P-measurable (—2.8.6). However, we will not explicitly write such a condition.

39A, B C R, but again not all the sets are measurable (have lengths), so we need some disclaimer here;
we omit it as usual.

40We say X (w) is a random variable on the probability space (£, u1).
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That is, the expectation value of the indicator of an event is the probability of the event.
If Q is a discrete set, then the above integral reduces to an appropriate summation.
E((X — E(X))™), if exists, is called the n-th moment (around the mean). The second

moment around the mean is called the variance and is often denoted as

V(X)=E(X - E(X))*) = BE(X?) - E(X)% (1.4.5)

A necessary and sufficient condition for two square-integrable random variables (i.e.,
random variables having the second moments) X and Y to be independent is: for any
bounded functions* f and g

E(f(X)g(Y)) = E(f(X))E(g(Y))- (1.4.6)

That is, we can average independent variables separately. O
Exercise 1. If X and Y have second moments, and are independent,

VIX+Y)=V(X)+V(Y). (1.4.7)

1.4.4 Distribution functions
Let X (w) be a real valued random variable.*?

Flz) = PUX(w) < 2}) (1.4.8)
is called the probability distribution function for X. If we can write
f(x)dr = F(x + dz) — F(z), (1.4.9)

f is called the probability density distribution function.*®> Thus, f(z)de = P({X(w) €
(2, + dz]}).
If a function F' on R satisfies:
(i) F is non-decreasing,
(ii) limgy—, oo F'(x) = 0 and lim,_,o F(z) =1,
(iii) F is right continuous, i.e., lim, 440 F(z) = F(a),
F is a distribution function of a random variable.
Exercise 1. The Cauchy distribution whose density is proportional to 1/(2? + a?) does not
have the second moment.O]
Exercise 2. “If n-th moment does not exit, m(> n)-th moments do not exist, either.” Is
this statement correct? O

1.4.5 How to compute density
We have
P(A) = E(xa). (1.4.10)

41 Again, we omit the measurability condition.

420ften the probability space is implicit.

43The Radon-Nikodym derivative of F with respect to the Lebesgue measure is called, if exists, the
probability density function.
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where x4 is the indicator of A. If A € R", we can write
xale) = [ o —y)d'y. (14.11)

where 0 is the (n-dimensional) J-function.
For physicists the density distribution is often more familiar with than distributions:
the density distribution function f(z) of a random variable X is given by

f(z) = B(3(X(w) — ). (1.4.12)

There are two major methods to compute this expectation. One is to use Fourier trans-
formation which is equivalent to computing characteristic functions (—1.4.7). The other is
to compute the integral directly. A typical problem is: Obtain the density distribution (y)
of y = g(z), given the density distribution of p(z) of x. This is to compute

P\ZL4
$0) = EO(l) ~ ) = [ depla) o) - ) =X A2 (aay
where g(x;) = y (the sum is over all real zeros of g — y) (—1.4.6).
An example follows:
Suppose x is uniformly distributed on [—1/2,1/2]. Find the density distribution function
¥(y) of y = x?. We obtain for y € (0,1/4]

U(y) = /_11//22 drd(y — ) = \}g (1.4.14)

Exercise 1. Derive the energy density distribution function of a d-dimensional ideal gas in
equilibrium. O

Exercise 2. Suppose z is distributed uniformly on [0, 1]. Let F(z) be a monotone increas-
ing smooth function from R to [0,1]. Find the density distribution ¢ of F~!(x) (the inverse
function of F). O

The result of this exercise is a standard method to convert uniform random number on [0, 1]
into the random number whose distribution function is given by F.

1.4.6 Computation of d-function of complicated variable
To compute FE(d(g(z) —y)), the basic formula we use is

1
g'(w:)|

o(g(x) —y)=>_

T

Sz — x;), (1.4.15)

where g(x;) = y (the sum is over all real zeros of g — ).

Let us demonstrate (1.4.15). The delta function does not contribute anything to the
integral, if its variable is not zero, so we have only to pay attention to the values of x that
give zero of g(z) —y. Let z; satisfy g(z1) = y. Then,

9(x) —y =g'(x)(x —a1) + . (1.4.16)

We must recall that d(ax) = (1/]a])d(x). Therefore, the contribution from x near xz; must be
(1/|¢'(x1)])0(x — x1). There are other zeros as well. We should sum up all the contributions
from the zeros of g —y. This outcome is (1.4.15).
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1.4.7 Characteristic Function
The Fourier transform of a probability measure p is called its characteristic function:

eu(§) = / e p(d). (1.4.17)

For a random variable X, the characteristic function of its distribution = probability
measure px is denoted by ¢x. The most important and useful property of this function is:
If X and Y are independent random variables (cf. 1.4.1),

ex1y(§) = ox(§)ey(§)- (1.4.18)

Exercise 1.

(1) Find the characteristic function of the Gaussian distribution N (m, V') (with mean m and
variance V).

(2) Find the characteristic function of the n-dimensional Gaussian distribution with mean
m and covariance matrix V.

(32C Find tile characteristic function of the Poisson distribution with average A (i.e., u({k}) =
(A®/EDe ™).

(4) Find the characteristic function of the Cauchy distribution whose density is given by
1/7(1+2?). O

Exercise 2.

(1) Find the characteristic function of the binary distribution (for k € {0,1,---,n})

n({k}) = (Z)p’“(l —-p)" " (1.4.19)

(2) Let A = np, and take the limit n — oo, p — 0 with fixed A. The outcome is the charac-
teristic function of the Poisson distribution just discussed (cf. 7?). O

1.4.8 Properties of characteristic functions
The characteristic function of a distribution is positive definite, i.e., for any positive integer
n, any complex numbers {z;}7_, and real numbers {§;}7_,

> zZepul& — &) 2 0. (1.4.20)

jk=1

It is clear that
©,(0) = 1. (1.4.21)

Also ¢ is continuous at the origin.#* The converse is also true (—1.4.9), so these three
properties characterize the characteristic function.
If it is sufficiently smooth, we can compute moments (around the origin) by differenti-
ating it:
E(X") = (=)"——ex(&)| (1.4.22)
d¢ £=0

44due to an elementary theorem of Lebesgue integration.
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1.4.9 Bochner’s theorem.
A positive definite function (in the sense of 1.4.8) ¢ on R" that is continuous at the origin
and ¢(0) = 1 is a characteristic function of some probability measure on R".00

However, it is not always easy to check that a given function can be a characteristic
function of a certain distribution. If ¢ is an even function, convex on (0,00), and ¢(0) = 1,
then ¢ is a characteristic function (Polya’s criterion;®> note that this criterion cannot be
applied to the Gaussian case). For example, exp(—|£|%) for a € [0,1] is a characteristic
function.
Exercise 1. Let {z(t,w)} be a continuous stochastic process (x(f,w) is continuous for
almost all w as a function of ¢), and (z(0,w)?), = 1. Also, let us assume that it is stationary
(i.e., various expectation values do not depend on the absolute time). Demonstrate that its
correlation function

O(t) = (x(t,w)z(0,w)). (1.4.23)

is a characteristic function of a probability distribution. This is related to an important
topic of spectral analysis of stochastic processes (—7?7) O

1.4.10 Laplace transformation and generating function
The Laplace transform of the measure p, if exists,

Z(\) = /u(d:c)e” (1.4.24)

is called the generating function of u, and X is its parameter. It may be more appropriate
to call it the partition function.

Just as we have done for the characteristic function (—1.4.8), we can compute moments
with the aid of differentiation wrt \. Its logarithmic differentiation is useful as the reader
expects from Gibbs” work (—2.1.4). For example,

dlog Z
dlam

= (z). (1.4.25)

Here (and henceforth), ( ) implies the expectation value (averaging). In the case of canonical
distribution we do not set A = 0. We also have

d*log Z

7t = ((z — (z))?). (1.4.26)

A=0

1.4.11 Cumulant expansion
The derivatives of the generating function at the origin of the parameter (—1.4.10) suggest
that the Taylor expansion of log Z(

lam) around A = 0 would give useful quantities. This is the idea of cumulant expansion:

1 1
log Z(lam) = ACy + SNy + - —N'Co 4+, (1.4.27)

4SDurrett p87.
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where C), is called the n-th cumulant, and is very often written as
Cn=(X"). (1.4.28)
It is easy to see that C) = F(X), and Cy = V(X).
With the aid of this notation (1.4.27) is succinctly rewritten (symbolically) as

log Z(\) = (X — 1) (1.4.29)

C

With the aid of log(1 +x) = — > (—1)"z"/n and the multinomial expansion, cumulants
are related to the ordinary moments (X") (around the origin) as

K

N
(XMe=-nl Y (K-1- 1)!(—1)K'1I; (OJ(V' >> : (1.4.30)
K -N=n ) ’

Here, N is a nonnegative integer vector N = (N7, Ny, --+) such that Ny > Ny > --- > 0
(of various dimensions), and the summation is over all possible choices of K = (kq, ko, - +),
where k; specifies the number of N; (i.e., the summation is over all the possible partition of
n). 1 = (1,1,---). (Slightly extended) Hadamard’s notation is adopted: for a vector A =
(a1, as, ), Al =Tl a;!, A = [Tz} A = (x®,x%2 --); A/N! = (a1/Ny!,as/No!, - ).

For example, to compute Cy = (X*)¢o, we first make the partitions of 4 = 3+1 = 242 = 2+1+1 =
14+14141, or (4) 5 (3)+(1); 2(2); (2)4+2(1); 4(1). Therefore, if we write K = (ka, k3, k2, k1), where k; denotes
the number of j appearing in the partition IN, we have

partition K K! K-1

(4) (1,0,0,0) 1 1
(3)+(1) (0,1,0,1) 1 2
2(2) (0,0,2,0) 2 9 (1.4.31)
(2)+2(1) (0,0,1,2) 2 3
4(1) (0,0,0,4) 4! 4

so (1.4.30) tells us that

(XYe = —a lo;(—nlll! (Q?) + 1!(—1)2% (<§f>) <<f,>) + 11(—1)2% <<)2(!2>>2

= (XY —4(X3)(X) - 3(X?)? +12(X?)(X)? — 6(X)™. (1.4.33)

Notice that the sum of all the numerical factors is zero. This may be used to check our result.
As seen from the general formula,

(X™)e = (X™) + terms with extra cuts )(. (1.4.34)

Exercise 1. Obtain the formula for Cg, assuming that all the odd order moments vanish.
Then, compute the 6th moment of a Gaussian random variable centered at the origin in
terms of its second moment. O

Exercise 2. A necessary and sufficient condition for the distribution to be Gaussian is that
all the cumulants C'3 and beyond vanish. O

Exercise 3. Characterize the Poisson distribution in terms of the cumulants. O
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1.4.12 Gibbs-Helmholtz relation and generating function
The internal energy is identified with (or is interpreted as) the average (H) of the Hamiltonian
over the distribution P on the phase space (cf. 2.5.3). Then, the Gibbs-Helmholtz relation

AA/T)| O(—AJkgT)
b= o(/T)|,  9(1/ksT) |, (1.4.35)

where A is the Helmholtz free energy, may be interpreted as: —A/kgT is the logarithm of
the generating function of energy Z called the canonical partition function (—2.1.5),% and
B = 1/kgT is the parameter of the generating function:

Z=eP =3 ePwle), (1.4.36)

where w(e) is the statistical weight of the states with energy e and the sum is over possible
energies. What Gibbs demonstrated (—2.1.4) is that if w(E)dE is the phase volume of the
constant energy shell between the energy surfaces with energy £ and E + dFE, then indeed
A satisfies the ordinary thermodynamic relation thanks to Liouville’s theorem (—2.7.2).

However, as we have already seen, there is no way to impose this condition based on
mechanics. Thus, a needed extra assumption is the principle of equal probability (—2.6.2)
which is equivalent to the requirement that w(E)dE is the phase volume of the energy shell
between energy F and F + dFE.

1.5 Law of Large Numbers and Ergodic Theorem

THE Law of large numbers is the most important theorem of probability theory for statistical
mechanics. If we do not pay any attention to fluctuations, this (and Chebyshev’s inequality
1.5.5) is the only probability theory we need to understand macroscopic systems. Monte
Carlo methods (—1.5.6) are direct application of this theorem. Ergodic theorems (—1.5.8)
may be interpreted as its generalization to correlated variables.

1.5.1 Law of large numbers: an illustration
Let X; be 1 if the ¢-th coin tossing of a fair coin gives a head, and 0, otherwise. S,, =>I" ; X;
implies the number of heads we get with n tossing experiments. Then, everybody knows

that surely
Sp/n— 1/2 (1.5.1)

as n — oo. Here, S,/n is called the sample mean or empirical average. This ‘law of large
numbers’ was first recognized by Jacob Bernoulli (1645-1705).17

4SHowever, we do not set 3 = 0 after differentiation.

4"The statement given here is much stronger than Bernoulli’s version. His law is the weak law. That
is, if n is large enough, then the average deviation of S,,/n from m becomes less and less (— 0). This
statement does not guarantee that for almost all the sample sequence S,,/n converges to m (for a particular
sample sequence S, /n may occasionally become big). What we intuitively know is that for almost all sample
sequences Sy, /n — m. This is the strong law (—1.5.4 footnote).
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Discussion 1. Make an example of A stochastic sequence such that P(|A4,| > 0) — 0,
but A, — 0 never holds. The existence of such a sequence implies that the meaning of the
convergence (1.5.1) is delicate. O

Exercise 1. For a finite n S,/n is not exactly equal to 1/2 (that is, it is also a random
variable), but fluctuates around it. Sketch the probability density distribution function for
Syp/n for several n, say, 100, 10,000, and 1,000,000.0

From this exercise, the reader should have realized that the density distribution function
of S, /n seems to converge to 6(x — 1/2), that is, the distribution converges to an atomic
measure concentrated at x = 1/2.

1.5.2 Law of large numbers for iid random variables

Let {X;} be a sequence of random numbers identically and independently distributed (iid
is the standard abbreviation) on a probability space. Let us assume that E(X;) = m and
V(X1) = C(< 00). The law of large numbers tells us

Sp/n —m (1.5.2)

in a certain sense. As the reader expects, there are different ways to interpret this limit.
Accordingly, there are different versions of law of large numbers.

1.5.3 Intuitive approach to law of large numbers
The simplest version of the law of large numbers may be to claim that the fluctuation vanishes
in the n — oo limit:

E((Sn/n —m)?) — 0. (1.5.3)

This is called the L? weak law. This is obvious, because the LHS is equal to C/n.
What the reader has seen in Exercise 2 in 1.5.1 is a statement about the distribution
of S, /n:
P(S,/n € (x,x 4+ dx)) — 6(x — m)dz. (1.5.4)

Let us try to compute the (density) distribution f,, for S,/n (cf. 1.4.5):

fulz) =E (5 (ii:X —x)) (1.5.5)

Its characteristic function g, (£)*® may be given by (cf. 1.2.2)
gn(§) = /d:v T f(r) = E (H eigXi/"> = B(eX/myn, (1.5.6)
i=1

Now, let us write the characteristic function (—1.4.7) of X; as w(). Then, we have

gn(&) = w(&/n)". (1.5.7)

For very large n, the variable in w is very close to zero. Since the distribution has a finite
mean and variance, w must be twice differentiable, with the aid of Taylor’s formula, we may
write w(¢/n) = 1+ imé&/n + O(1/n?). Putting this into (1.5.7), we obtain

lim g, (&) = e™¢. (1.5.8)

n—oo

48We freely exchange the order of integrations. All of them can be justified a la Fubini (sometimes with
some additional technical conditions).
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This implies that the density distribution of S, /n (weakly?®) converges to d(x —m). This is
exactly what the reader has expected.
We may say that S,,/n converges to m in law (in distribution).

1.5.4 More standard formulation of law of large numbers
If for all e > 0, P(|Y,, — Y| > ¢€) — 0, we say Y, converges in probability to Y.

Thus, we expect that S, /n converges to m in probability. This is called the weak law
of large numbers:
[Weak law of large numbers]. Let {X;} be iid random variables with E(|X;|) < co and
E(X;7) =m. Then, S,,/n converges to m in probability.

Notice that the weak law does not hold, if {X;} obeys a Cauchy distribution (certainly,
E(|X1]) < oo is violated).?

1.5.5 Chebyshev’s inequality and demonstration of weak law
To demonstrate the weak law of large numbers the most elementary way may be to use
Chebyshev’s inequality:

a’P(|X —m|>a) < V(X). (1.5.9)
This can be shown as follows (let us write X —m as X):
V(X) = /xz,u(dx) > . v u(dr) > a2/| p(dx). (1.5.10)
T|>a z|>a

Exercise 1. A more general inequality (in these days this is called Chebyshev’s inequality)
is: Let f be a nonnegative monotone increasing function on [0, 00). Then,

P(X >a) < E[f(mj?(xcf)X’ 0)l (1.5.11)

O
Exercise 2. Apply (1.5.9) to S,/n and demonstrate the weak law. O

1.5.6 Monte Carlo integration
Suppose we wish to compute the following integral over a very high dimensional cube (N >

1):
[= /MNd z f(z). (1.5.12)

If we wish to sample two values for each coordinate, we need 2V sampling points. If N = 20
we need more than a million points, so we realize that numerical computation of a high

49Weak convergence f, — f means [ f,pdr — [ feodx for ‘any’ ¢ taken from an appropriate function
set. In the present case we may take the set of smooth functions with bounded support, that is, the functions
that vanish outside some interval.

50There is a stronger version due to Kolmogorov (the strong law of large numbers):

Let {X;} be iid random numbers with E(]X;1]) < oo and E(X;) = m. Then, S, /n almost surely converges
to m.

If the distribution of S, /n converges weakly, we say S, /n converges in law (or in distribution). Almost
convergence = convergence in probability = convergence in the mean (if the variance exists). Convergence
in the mean = convergence in probability = convergence in law. The converses of these = relations do not
hold.
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dimensional integral using numerical quadrature methods is prohibitively difficult.

(1.5.12) may be interpreted as the computation of E(f(X)), where X is a random
variable on {y, [0, 1]V} with u being the Lebesgue measure (the ordinary volume —1.A.13)
on RY. Then, the law of large numbers tells us

[n:i{f(X1)+...+f(Xn)}_>[, (1.5.13)

How large n is required? If f(z) € [0,1] (if the integrand is bounded, this can always be
satisfied by appropriate shifting and scaling), then V(f(X)) < I(1 — I), so Chebyshev’s
inequality tells us

I(1-1) o !

nez T 4ne?’

P(|I,— 1] >¢€) < (1.5.14)
Thus, if we wish to have an error less than ¢ = 1/20 with probability at least 0.99, then
100/n < 0.01. Therefore, n = 10,000 is needed. This is certainly much less than the number
of points needed in the regular sampling methods.?!

A remarkable feature of the Monte Carlo integration is that the cost does not depend
on the dimensionality of the integral.
Discussion 1. Do we really need not to pay any price for high dimensionality? O

1.5.7 Importance sampling
(1.5.12) may be rewritten as

I= /[071]N d¥zf(z) = /[0,1}N dNx w@)i)((i)) (1.5.15)

with a positive function w(z). We may freely choose this function with the normalization
condition [ d¥zw(x) = 1. If we use the random number whose density distribution is given
by w (—Exercise of 1.4.7 for how to make such random numbers), the law of large numbers

tells us that L (R0 (X0
Jn:n(w(Xl)jL.”—i_w(XZ))H[' (1.5.16)

Exercise 1.

(1) Compute the variation of .J,. (Ans., (1/n) {f(fQ/w)de - IQ})

(2) Find w that minimizes the variation just obtained. Notice that if f is of constant sign,
this choice makes the variation vanish. O

1.5.8 Ergodic theorem as a law of large numbers

So far we have discussed the law of large numbers for independent random variables. There
are many cases in which we wish to compute the sum of statistically not independent random
variables. There are various extensions of the law of large numbers to such cases, but an
ultimate version may be ergodic theorems. We will come to this topic much later (in Part
I11, not yet written), but it may be a good occasion to learn the meaning of ergodicity, which
was first conceived by Maxwell and Boltzmann to found equilibrium statistical mechanics

5'However, this estimate is not an almost sure estimate. The error for each sample sequence (i.e., the
realization of {I,,}) decays as y/32loglogn/n. Therefore, the worst case scenario is that the error decays

roughly as 1//n.
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(—>2.4.1).

Let x(t) be a sample time evolution of a dynamical system on a phase space I with
the time evolution operator T; (i.e., Tix(s) = x(t + s)) and pu be an invariant measure (=
time-independent distribution on the phase space I' —2.7.2).52 Then, the time average of

an observable f(T;xq) converges to a value dependent only on the initial condition:®

t

lim ! f(Tsxo)ds = f*(xo) (1.5.17)

t—oo § Jo

for almost all xy € I with respect to the measure p.>* Further more,

[ 1 @dut@) = [ f@)dut) (15.18)

This is the famous Birkhoff ergodic theorem.>® It should be obvious that the essence of the
ergodic theorem is quite analogous to the law of large numbers.

1.5.9 Ergodicity implies time average = phase average.

Intuitively speaking, a dynamical system is said to be ergodic, if “for any zg, x; can visit
everywhere in IV (We will see, however, this careless statement contains a fatal flaw.
—1.5.10)

Take a set A (C I'). x; starting from ‘any’ point z, in I' can visit it, if the dynamical
system is ergodic. Therefore, if A is an invariant set,® and has some positive weight (u(A) >
0), A and T, 'A (= the set of points that visit A in time ¢) must agree for any ¢. But since
the points can visit ‘everywhere’ in ', we must conclude that A with a positive weight (i.e.,
u(A) > 0) is actually T'. Therefore, if A is a nonempty invariant set, u(A) = p(T') (= 1).57

The function f* in (1.5.17) is time independent, so a set {z : f*(z) < ¢} for any number
¢ must be an invariant set. Therefore, if the system is ergodic, it must be a constant.
Therefore,

lim = tf(TSmO)ds:/f*(x)u(dx) = [ @)t (1.5.19)

t—oo t Jo

If the volume of an energy shell corresponding to the microcanonical ensemble is ergodic,
what Boltzmann wanted is true: time average = ensemble average.

1.5.10 Is ergodic theory really relevant to us?
The discussion in 1.5.9 must be made precise, and the reader will realize that the ergodic
problem is almost irrelevant to equilibrium statistical mechanics.
In 1.5.9 it is written that a dynamical system is said to be ergodic, if for ‘any’ zq, z;

52Let {T;} be a one parameter family of maps I' — I" such that Ty = 1, T}Ts = Ty;s. Then, {T,T'} is
called a dynamical system. If p is an invariant measure, {T;, T, u} is called a measure theoretical dynamical
system.

53for almost all initial conditions wrt .

54That is, (1.5.17) does not hold only on p-measure zero set. Notice, however, that for a dynamical system
{T},T'} the invariant measure is not unique. Often, there are uncountably many invariant measures. For any
of them, Birkhoff’s theorem holds!

5For a proof, see, for example, Section 1.6 of P. Walters, An Introduction to Ergodic Theory (Springer,
1982). This is an excellent (and probably a standard) introduction to the topic.

5That is, u(T, "AAA) = 0 for any t. Here, AAB = (A\ B)U (B A).

5TA precise definition of x4 being ergodic is that u(A) = 0 or 1 for p-invariant set A.

35



can visit ‘everywhere’ in I". Precisely speaking, there are exceptional points that cannot visit
many places. Therefore, we must specify how to measure the amount of these exceptional
points. That is, the concept of ergodicity is a measure-theoretical concept. Thus, precisely
speaking, we must say:

A measure theoretical dynamical system {T', u, I'}°® is ergodic, if p-almost all points can visit
p-everywhere on I".%9

The most important message here is that the concept of ergodicity is the concept of
measure theoretical dynamical systems = dynamical systems with given invariant measures.
The most fundamental question of equilibrium statistical mechanics is the justification of the
principle of equal probability. As the reader trivially realizes, ergodic theory presupposes an
invariant measure, and the selection of a particular invariant measure is not in the scope of
the theory.

However, the reader might say that she accepts that ergodic theory has nothing to say
about the fundamental principle of statistical mechanics, but that after an invariant mea-
sure (= stationary state distribution) is given, it is important for the measure to be ergodic.
However, we must not forget that macroscopic observables are extremely special observables
(= measurable functions in mathematical terms®). That is, the equality of the time average
and the phase average, even if required, need not be true for most measurable functions.
Therefore, mathematical ergodicity is not required.

Generally speaking, to understand that the macroscopic observable as the time average
is a wrong point of view, because, time average does not converge very quickly for general
measurable functions; it is highly questionable to believe that the time average converges
within the microscopic time scale. It is close to the truth that macroscopic observables are
instantaneous values. This point of view will be elaborated in 7?7. The crucial point is that
phase functions whose averages give macroscopic observables have special properties such
that they are often sums of functions depending on a few particle coordinates. Needless to
say, such functions do not change in time very much, so even their short time average agree
with their phase average. However, this agreement is not due to the ergodicity of the system.

Thus, there are crucial reasons for ergodicity to be irrelevant to equilibrium statistical
mechanics.%t:62

1.5.11 Two refinements of law of large numbers
There are at least two ways to refine the weak law of large numbers 1.5.4. One is to study
small fluctuations around the expectation value for finite n: Is there any power « that makes
the following limit

lim P(|S,/n —m| < en®) (1.5.20)

a nonsingular function of €? This is the question of the central limit theorems and has a
close relation to renormalization group theory (—2.6).

58 A measure theoretical dynamical system {7, 1, '} is a dynamical system on I" with an invariant measure
-
59 A non-measure theoretical counterpart is the topological transitivity: there is a trajectory which is dense
in I'. Generally speaking, the latter concept is much more strict than ergodicity, but may be closer to the
original idea of Maxwell and Boltzmann.

60Measurable’ means that any ‘level set’ {z : a < f(x) < b} for any real a, b is measurable, that is, it has
a probability with respect to u.

610r we might be able to say as follows: even if time averages and phase averages should agree, for the
agreement ergodicity is not the only reason.

62More radically speaking, invariance of measure is not required even for equilibrium statistical mechanics,
either, because we need stationarity for very special observables only.
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The other question is to ask the speed of convergence of S,, /n to m: How does P(|S,,/n—
m| > €) go to zero as a function of n? This is the question of large deviation (—2.5). For sta-
tistical mechanics, large deviation is more important than central limit theorems (—2.8.5;
1.6.4).

1.6 Large Deviation Theory

This is a study of macroscopic fluctuations. Its importance to us is obvious, because the study
of fluctuations is one of the keys of nonequilibrium statistical thermodynamics (—4.1.2,
5.2.5). We will later see its close relation to Langevin equations and principle of linear
nonequilibrium statistical mechanics (—X1.1.3). Notice also a close relation between vari-
ational principles and large deviations (—1.6.3, X1.1.10).

There is not a very accessible reference for this topic. For statistical physicists the expla-
nation given in this section is almost enough, but mathematically, a more careful statement
is needed. A standard textbook the lecturer likes is:%3

J D Deuschel and D W Strooke, Large Deviation (Academic Press, 1989).

1.6.1 Large deviation: a simple example
Let {X;} be iid random variables, and S,, = #1 + - - - +,, be the empirical (sample) sum of n
values. We know from the weak law of large numbers 1.5.4 that

P(|S,/n—m| >¢€) — 0 (1.6.1)

in the n — oo limit for any positive e. An interesting question is the speed of this convergence
to zero; if the fluctuation is large, the decay should be slow. Therefore, studying the decay
rate should give us information about fluctuations.

Cramér first considered this type of problem for the coin tossing, that is, we have a
sequence of iid (identically and independently distributed —1.5.2)) random numbers {X;}
such that P(X; = 1) = P(X; = —1) = 1/2. Let us estimate the LHS of (1.6.1). Using
Stirling’s formula m! ~ (m/e)™, we may approximate (taking the leading terms only)

n! n!
PllSafnl =) = 27+ 27", (1.62)
Z EENEE o () ()
|
~ 2—1’L+1 n: 7 (163>
=
[ 1 1 1-— 1—

~ exp |nlogn — n( 2+ ) log n( 2+ ) _ nl ; €) log n( - 6)] ’
(1.6.4
— oxp |~ 2[(1+ ) log(1+ ) + (1 - ) log(1 — €] | (1.6.5)

63For an outline, Appendix to Y Oono, “Large deviation and Statistical Mechanics,” Prog. Theor. Phys.
Supple 99, 165 (1989) may be short.
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Or, we have
P(|S,/n] > €) ~ exp (-Z&) | (1.6.6)

Thus, we have found that the decay is exponential. It is known that exponential decay is
the rule.

Exercise 1. If somehow the coin has a strange memory and has a tendency to give the same
surface consecutively, what happens to the above exponent ? Guess the answer and give a
reason for it (no calculation required).5* 0.

1.6.2 Level-1 large deviation principle
Consider the empirical expectation value S, /n. The theoretical framework to study the
convergence rate of this value to the mean is called the level-1 large deviation theory. We
say that the set of random variables {X;} satisfies the (level-1) large deviation principle, if
the following holds:

P(S,/n ~ z) ~ e @), (1.6.7)

where I(x) is called the rate function (large deviation function or Cramér’s function)® and
satisfies:

(i) I(x) is a convex nonnegative function,

(ii) I(m) = 0 is the unique minimum.

For an iid random variable sequence with a finite variance, the principle certainly holds.

1.6.3 Large deviation principle and variational principle.

Notice that if we know the rate function I, it gives a minimum principle for the mean. That
is, large deviation and variational principles are closely related; generally, we may claim
that there is a large deviation principle behind a variational principle (at least in statistical
physics).

The reader would then naturally ask whether the important principle of equilibrium
statistical mechanics, the Gibbs variational principle stating that the equilibrium state is
variationally defined by the minimization principle of the free energy (—2.1.5), has an un-
derlying large deviation theoretical framework. The answer is affirmative, and the framework
is thermodynamic fluctuation theory (1.6.4, —2.8.5).

Furthermore, since we have learned that the Birkhoff ergodic theorem is a kind of weak
law of large numbers (—1.5.8), the reader must have expected the corresponding large devi-
ation framework and its accompanying variational principle for dynamical systems (chaos).
This framework is the so-called thermodynamic formalism for Axiom A dynamical systems.%¢

1.6.4 Thermodynamic fluctuation theory as large deviation principle
Let us look at the fundamental principle of thermodynamic fluctuation (—2.8.5). We know
entropy is extensive, so introducing the entropy per particle s = S/N, we have

P({0x}) = NOs/ks, (1.6.8)

This implies two things:

(i) —d2s/kp is the rate function for equilibrium thermodynamic observables.

(ii) the large deviation theory for iid random variables works.

We will see that this picture is correct away from the critical point (—2.8.3; see also ?77).
64See Prog. Theor. Phys. Suppl. 99, 165 (1989) for graphs.
65 A ~ B implies log A/ log B — 1 asymptotically.
66 A standard textbook for this is D Ruelle, Thermodynamic Formalism (Addison-Wesley).
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1.6.5 How to compute rate function: Gartner-Ellis theorem
The relation of the rate function to the fluctuation theory tells us how to compute the rate
function. Let us compute the partition function = generating function.

In(AN) = /da:P (;{ iv:Xi o~ ;1:) eNAT (1.6.9)

— E (/ dz § (;X éX - :c) eNM“> , (1.6.10)

= B2 (1.6.11)
Here, we have used (1.4.11).
On the other hand,%”
Zn() = / dx e~ NI@+Naz, (1.6.12)
~  NsuwpaPeI@)] (1.6.13)

Therefore, we obtain the ‘thermodynamic potential” A(\) as

LI Zy(0) — AQ) = sup[Ax — 1(2)]. (1.6.14)

Or, inverse Legendre transformation (—2.6.5) gives

I(z) = sgp[)\x — AN (1.6.15)

Thus, we have formally shown the following:
if the thermodynamic potential exists, large deviation principle holds (Gdrtner-Ellis’s theo-
rem,).

1.6.6 Empirical distribution function
We can study not only empirical averages but also empirical (density) distribution functions:
Let {X;} be a sequence of iid random variables. Then, the empirical density fy(z) is given
by

fn(z) = ]17;6<Xi_$)- (1.6.16)

Notice that this is an empirical average of §(X; — x) (cf. 1.4.5), so there must be a corre-
sponding version of the weak law of large numbers (—1.5.4). Indeed, this converges (weakly)
to the (density) distribution function f of the random variables.%® Then, it is natural to con-
sider the large deviation theory for the empirical distribution.

67thanks to WKB approximation or Varadhan’s theorem
68 Around here, the word ‘function’ is loosely used; generalized functions such as the §-function are also
called functions.
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1.6.7 Level-2 large deviation principle and Sanov’s theorem
The large deviation theory for measures (distributions) is called the level-2 large deviation
theory. The level-2 large deviation principle reads

P(fy ~ g) ~ e NP, (1.6.17)

where the rate function(al) is a function on the space of distributions, and satisfies:
(i) I(g) is a convex nonnegative function,
(i) I(f) = 0 is the unique minimum.

For iid random variables {X;} with the density distribution f, Sanov’s theorem tells us
that®

1?(g) = /dx g(x) logM. (1.6.18)
()

‘Theoretical physics style’ demonstration of this is not hard, if we mimic the level-1

calculation in 1.6.5.

1.6.8 ‘Demonstration’ of Sanov’s theorem
To estimate P(fy ~ g) we use the characteristic function(al) technique (—1.6.5).
First, notice that

P(fn ~g) = E(A(f~y —9)), (1.6.19)
where A is the functional delta function.”® Therefore, we get the ‘partition function’
Zn(©) = [8la Py ~ )M B e (3 6(0) (1.6.20)
N N
= F (ef(xi)) = [/dxf(m)eg(‘”)} . (1.6.21)
On the other hand, by definition,
ZN(g) _ /6[9] eN [f f(w)g(w)dw—1(2)(9)] |~ €N sup, [f f(w)g(w)dw—f(z)(g)] ) (1622)

Therefore, introducing the ‘free energy’ (thermodynamic potential),”® we obtain

A(g) = Jim_1og Z(€) =log [ daf(a)e) = ap [ [ dzgt@igta) - I<2><g>] . (1.6.23)
This implies
(2) = su X X ) — . .0.
19(g) = s [ [ @t A(E)] (1.6.24)

69Tf we write the probability measure for the random variable as i and the empirical measure to be v,

then p
1P w) :/V(da:)log ﬁ

A function f(a) may be interpreted as ‘the a-component of the vector f.” Functional analysis may be
informally interpreted as the analysis of functions regarded as such vectors. The n-dimensional d-function is
defined as §(v) = d(vy) -+ d(vy,). Analogously, A(f) =---0(f(a)) -+, where the ‘product’ is the ‘continuous’
product.

TIIf the limit does not exist, replace it with lim sup.
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Let us calculate (1.6.24). To compute the supremum, we functional-differentiate [ ]:

L z&(x)g(x) — = g(x) — @ £ 2@ f (s
5E(@) Ud §(x)g(x) — A(§) | = g(x) £ )//d f(@) (1.6.25)

Equating this with zero, we obtain an equation for ¢ that gives the supremum of [ ]: g(z) = e§(®) f(z) /e,
Notice that this implies [ dz g(z) = 1. From this, we see £ = log(g/f) + A, so putting this £ into (1.6.24),
we obtain (1.6.18).

1.6.9 Kullback-Leibler entropy
The rate function appearing in Sanov’s theorem (—1.6.7)

K(g, f) = /d:c ) log 97 1.6.26
(9,.f) g(x)log (@) (1.6.26)
is called the Kullback(-Leibler) entropy. Notice that if f is constant, this is essentially
the Gibbs’ entropy (—2.1.5) or Shannon’s information formula (—1.3.2). This becomes
minimum if and only if g = f.7

The most important property of K (g, f) is its non-negativity. This is obvious from the
log sum inequality 1.3.8. Or, from the scratch with the aid of the convexity™ of xlog :

/dw g(x)log fcg; /diL’ f(x)?g; log ?Eg (1.6.27)
> (/dxf(x)?iii) log (/dxf(x)?ii%) =logl=0.

(1.6.28)
Therefore, I(g) vanishes if and only if g is equal to the true density distribution.

1.6.10 Information gain
The meaning of the Kullback entropy (—1.6.9) may be made intuitive by the following
consideration.™

Suppose a macroscopic state o consists of microstates {i}, and all the microstates be-
longing to it is equally likely: if the macrostate o contains n,, microstates, their probability
iS po/Ma, where p, is the probability for a microstate to be compatible with macrostate
«.™ Let us compare the entropy difference between a macrostate specified by {p,} and the
macrostate specified by {p2} whose microstates are all equally probable (i.e., p® /n, = const
independent of «, certainly this is a characteristics of an equilibrium distribution):

AS = =3 (Pa/na)10g(Pa/na) + D (P5/1a) log(ph /1), (1.6.29)
= =Y (Pa/na) 10g(Pa/P2) + S [(P2 /1) — (Pa/na)] log(1%/na)  (1.6.30)
= = palog(pa/pl). (1.6.31)

"2Precisely speaking, the equality is in the almost sure sense.

3If f is a convex function, (f(z)) > f((z)) (Jensen’s inequality).

"due to F Schlogl

"5that is, a macrostate is a bunch of equally likely microstates under the condition that macroscopic
description is meaningful.
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Here }°,, means the sum over all the microstates, and ), means the sum over all the
macrostates. We have used p® /n,, = constant (equidistributed), and 3=,,,[(p% /10)— (Pa/Ta)] =
1 — 1 = 0 due to normalization of probabilities.

Therefore, the Kullback entropy K (p,p") measures the gain of information due to the
non-even distribution at the coarse-grained level. Therefore, sometimes the Kullback entropy
is called the information gain.

1.6.11 From level 2 to level 1: contraction principle.
Let the level-2 large deviation function be I?(g) for the (density) distribution g for a random
variable X. We must be able to know more from the level-2 rate function (—1.6.7) than
we can know from the level-1 rate function /(x) for X. Then, we should be able to obtain [

from 1®. This is possible by the contraction principle:

I(z)= inf  I3(g). (1.6.32)
g9:[ dyyg(y)==

This implies that the value of the level-1 rate function at x is obtain by minimizing the
level-2 rate function over the distributions having the same expectation value x. In other

words, the conditional minimization of 1) (g) under [y g(y)dy = = gives I(z).
The reader may have already guessed this result. It is not hard to demonstrate it. Notice, first, that

1
N %= [dvyinto) (1.6.33)
7
where f,, is the empirical distribution given in (1.6.16). Therefore,

E0(Sx/N —1)) = E [5 (/dyny(y) —xﬂ (1.6.34)

E [/59A(g—fzv)5 (/dyyg(y) —x)] ,
= /59P(fzv ~ g)8 (/dyyg(y) fﬂ) :/596*1\”(2)(9)5 </dyy9(y)w>,

(1.6.36)

exp [—N < inf 1(2)(g)>] . (1.6.37)
g: [ dyyg(y)==

This implies the desired asymptotic relation (1.6.32).

A useful theorem is:
Let { X, } be iid sequence obeying a common law p. Suppose that for each n f,, is a symmetric
function of Xi,---, X,, and the strong law of large numbers f, — f(u) holds.” Then, the
large deviation principle for f, holds with the rate function I given by the contraction
principle:

(1.6.35)

i

Iy)= inf IP@W). (1.6.38)
vi [ dyyf(v)=y

"6N. O’Connell, “A large deviations heuristic made precise,” Math. Proc. Camb. Phil. Soc. 128, 561-569
(2000).
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1.6.12 Derivation of canonical distribution by contraction
Now, let us apply the result (1.6.32) to iid random variables X with distribution f. The level-
2 rate function is given by Sanov’s theorem (1.6.18), so to obtain the level-1 rate function
according to (1.6.32), we must minimize the Kullback entropy (—1.6.9) conditionally.
With the aid of a Lagrangian multiplier, we minimize

g(z)
f(x)

/dx g(x)log +04/dxg(:1:) —l—ﬁ/dxxg(a:). (1.6.39)

This is minimized, if

g(x) = f(x)e™P*/Z (1.6.40)
where the numerical constant [ is determined to give the average y, and Z is the normal-
ization constant (that corresponds to the canonical partition function). In other words, if
the average is known for an ensemble that is obtained by restricting the original ensemble
whose distribution is f, it is given by the ‘canonical distribution’ (1.6.40).

The usual derivation of the canonical ensemble from the microcanonical ensemble is
to select the local energy fluctuations compatible with the temperature (or, equivalently,
compatible with a give expectation value of energy). Therefore, we obtain the canonical
distribution with the aid of contraction principle (—1.6.11). That is, the above derivation
of the canonical distribution is equivalent to the standard derivation explained in textbooks
(—>2.5.2).

It is clear that we must specify f, and this specification is the principle of equal prob-
ability (—2.6.2). The method to derive the canonical distribution through maximizing
Shannon’s information formula conditionally is only a corollary to Sanov’s theorem with the
principle of equal probability (cf. 1.3.6).

1.6.13 Contraction may be the key to nonequilibrium statistical mechanics
The idea of sampling right fluctuations to prepare the right ensemble is a fundamental idea,
and is the essence of the regression hypothesis (—4.1.2): even nonequilibrium states are
realized by equilibrium fluctuations, so if we collect right fluctuations, we should be able
to prepare statistical ensembles that can describe nonequilibrium phenomena. The strategy
certainly works for linear nonequilibrium phenomena, and is expected to be applicable more
widely.

1.6.14 How do we justify ensemble theory?
When we observe a macroscopic system, usually we study a single sample. Therefore, there is
a criticism that ensemble theories are unphysical.”” Those who criticize the ensemble theory
use time average to justify statistical mechanics.

When we measure a thermodynamic observable, we measure it for much less than a
second or so. During such short observation times the system can cover only an insignificant
portion of the whole phase space (—1.5.10), so the idea is not at all convincing that ergod-
icity of the Liouville measure justifies the ensemble.

""Ma’s textbook, Statistical Mechanics (World Scientific) expels ensemble altogether from statistical me-
chanics, and interprets all the averages as time averages. This is due to a fundamental misunderstanding of
the nature of (equilibrium) statistical mechanics.
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One possibility to rescue this idea of time average might be to pay attention to the ob-
servation that thermodynamic observables are very special observables.” Macroobservables
are the sums of functions that depend only on the extremely small (say, 10°-dimensional)
subspaces of the whole phase space. For each function of the small subspace the conclusion
of the ergodic theory applies: time average during the macroobservation time = its phase
space average. However, notice that the Poincaré time of this small sub-phase space is still
astronomical. Therefore, time average theory is hardly relevant. To use time average to
justify the ensemble theory is hopeless.

A much better possibility is based on the idea that these functions on small subspaces
are virtually statistically independent, so their averages = macroobservables almost surely
assume their average values thanks to the (strong) law of large numbers. Statistical mechan-
ics works due to strong law of large numbers.

1.6.15 Large deviation point of view of nonequilibrium statistical mechanics
The reader may have wondered why we discuss the general framework of probability theory
in this nonequilibrium course. Here, a preview is given that illustrates why large deviation
theory is crucial. When we wish to discuss a statistical framework, there must be a clear
distinction between the microscopic (mechanical) level and phenomenological (macroobserv-
able) level.” For example, we need a clear separation of time scale between the microscopic
time scale t,, and the macroscopic time scale t);. That is, t,, < tj;. This implies that we
could introduce the mesoscopic time scale 7 such that ¢, < 7 < ty,.

Let us consider an observable x whose long-time average (z) is a macroscopic observable.
The time derivative dx/dt averaged over the mesoscopic level should read

Az(t) 1 pt+rdx  z(t+71)— 2(t)
= - — = . 1.6.41
At T /t dt T ( )
We assume that this obeys the large deviation principle (Onsager’s principle):
A .
P (Af ~ :v) ~ eI@), (1.6.42)

Notice, that the above average is under the condition that x(t) is given, so I(&) should be
written as &|z(t)) more precisely. The unique zero of I gives the hydrodynamic (macroscopic)
law; at this time scale we should interpret Az /At as the time derivative, so the unique zero
of I is a function f(z) of x:

dx
i . 1.6.43
= f) (1.6.43)
We may assume that [ is well-behaved near its zero, we may approximate as
1
I(&|x) = W(dy — f(2))% (1.6.44)
This implies that if we study the time derivative at the time scale of 7
d
d%” = f(z) + v, (1.6.45)

"8This idea was first emphasized by Khinchine: A. Ya. Khinchine, Mathematical Foundation of Statistical
Mechanics (1943, Moskow) (Dover, translated by G Gamov).
™1t is often called the hydrodynamic level.
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where the term v is a noise with (v(t)v(0)) = (V/7)d(t) (Gaussian white noise), and this
equation is called a Langevin equation.

Because z(t +7) = x(t) + TAz/At, P (% ~ x) may be interpreted as P(z(t 4 7)|z(t));
as is noted for I P in (1.6.42) is actually a conditional probability. That is, the transition
probability can be written in terms of the rate function:

P(z(t + 7)|x(t)) ~ e (EtD=2®)/7), (1.6.46)

If the reader is familiar with the Feynman path integral, then she would immediately see that
the rate function is just the Lagrangian for a path integral (called the Onsager-Machlup path
integral). Just the the Feynman path integral gives a Green’s function for the Schrodinger
equation, we can expect that our path integral solves a partial differential equation (called
the Fokker-Planck equation).

If f(x) is linear as f(z) = —(x, then there must be a definite relation between V' and
(. This is the fluctuation-dissipation relation and linear nonequilibrium thermodynamics
results.

1.7 Central Limit Theorems

The basic idea of central limit theorems is the coarse-graining + scaling of renormalization
group theory, which may be interpreted as an attempt to generalize the central limit theorem
to strongly correlated random variables.

The classic reference for this topic is

W Feller, An introduction to probability theory and its applications, vol. I (Wiley, 1971).
Durrett is also excellent.

1.7.1 Central limit theorem

Let {X;} beiid (= independently and identically distributed) random variables with E(X;) =
m and V(X;) = 0% (—1.4.3). Then, the distribution of Y,, = (S,, — nm)/o+/n converges
weakly to N(0,1) (= the Gaussian or normal distribution with mean 0 and variance unity).
A formal demonstration of this theorem is not hard, if we use the characteristic function (—1.4.7) w
of Xi. Since we can always make the expectation vanish by shifting the variables, we may assume m = 0.

First, note that for small &

0_262 5

w(€) =1 - T3 +o(&). (L.7.1)

This follows from the twice differentiability of the characteristic function (—1.4.8). Let us compute the
characteristic function w,, of Y,,:

j=1

wnl€) = B(e) = B (H eiﬁX-f/ﬁﬂ) = B (e€9/V77)" = (e vio)". (1.7.2)

Therefore,
52

no?

lim w,(§) = lim (1 ~ 3 + 0(52/71))" — o—&7/207 (173)

n—00 n—oo
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The most classic form of this theorem is the de Moivre-Laplace theorem:
Let {X;} be iid random variables with P(X; = 1) = P(X; = —1) = 1/2. Then,

P(a<S,/v/n <b) — /b(27r)_1/26_x2/2dx. (1.7.4)

In this case the reader should check (1.7.1) explicitly. The result may be interpreted as the
distribution of the position of a random walker along a line (—3.1.8).

1.7.2 Central limit theorem vs. large deviation

If you look at the large deviation theoretical result such as (1.6.7) and if you assume that the
rate function [ is differentiable, then I(z) = az?/2 is a good approximation.®® Therefore,
this is identical to the central limit theorem. However, this coincidence is not the rule.

In the framework of large deviation theory the deviation is fixed and then the large
sample number limit N — oo is taken. In contrast, in the central limit theorem the size of
the deviation is not fixed but scaled with an appropriate power of N. Roughly speaking,
the central limit theorem tells us the width of the ‘main part’ of the density distribution.
On the other hand, the rate function tells us how much is outside the boundary you specify.
Therefore, if the distribution is with a fat tail the both estimates need not compliment each
other.

1.7.3 Necessary and sufficient condition for Gaussianness
If the variance is not finite (i.e., the fluctuation is too large), generally speaking, the above
theorem does not hold (—1.7.4). However, even in that case a careful choice of the scaling
factor b, instead of y/no could in some cases still make the distribution of (S, — nm)/b,
converge to N(0,1). The last word for this is the following theorem by Lévy:
Let {X;} be iid random variables. For the distribution of (S, — a,)/b, with appropriate
choice of a, and b, to converge to N(0, 1), it is necessary and sufficient that

2
) a*P(|X1| > a)
lim = 0. 1.7.5
B BRG] < 0 7
That is, the tail of the distribution must not be too fat.

For critical fluctuations, and many other phenomena the tail is too fat, and Gaussian
statistics does not hold.

1.7.4 Central limit theorem for distributions with fat tails

If the distribution has a fat tail (i.e., large fluctuations from the mean can occur rather
frequently), then (1.7.5) would certainly be violated. Even in such cases the distribution of
the sample mean S, /b, with an appropriate choice of b, still converges to a certain limit
distribution (we have assumed that the distribution has the mean 0), called a stable distri-
bution. This is a generalization of the standard central limit theorem. See Feller.

80 Actually, as we will see, almost all elementary theories of nonequilibrium statistical mechanics are un-
derstood within this approximation.
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1.7.5 Central limit theorem and renormalization group theory
An important point is that if a sequence of iid random variables {X;} obey such a stable dis-
tribution (with mean 0), S, /b, is distributed according to the same stable distribution for any
n. In other words, the stable distribution is a fixed point of the procedure {X;}; — S, /b,.

If the reader is already familiar with the renormalization group theory, she should im-
mediately see that this procedure is a renormalization transformation: constructing .S, by
summing corresponds to coarse-graining (= making a block spin) and dividing with b,, cor-
responds to scaling.

This structure can easily be seen for the standard central limit theorem 1.7.1: if X;
obeys a distribution with a finite variance, then by this renormalization procedure the distri-
bution ‘flows into” N(0,1). That is, a distribution with a finite variance is in the attracting
domain of N (0, 1).

Such a renormalization group structure was clearly recognized by mathematicians well
before the advent of renormalization group theory. Renormalization group theory may be in-
terpreted as a(n attempt for) vast generalization of central limit theorems to non-independent
(often strongly correlated) random variables.5!

We will look at the Wiener process from this point of view (—X1.4.11). Donsker’s

invariance principle (—X1.4.12) is the outcome.
Remark. Coarse-graining discards information, but in a certain sense, if the distribution is a fixed point of
an RG, then the information lost by coarsening is exactly compensated by scaling. Therefore, if we appropri-
ately define the entropy production rate of the renormalization-group dynamical system, then it is positive
away from the fixed point but is zero at the fixed point. That is, information can be a Lyapunov function
of the RG dynamics. This idea has been used to understand the central limit theorem.®? I

81This view point was clearly recognized first by G Jona-Lasinio, “The renormalization group: a proba-
bilistic view,” Nuovo Cim. 268, 99-119 (1975).

82E A Carlen and A Soffer, “Entropy production by block variable summation and central limit theorems,”
Commun. Math. Phys. 40, 339-371 (1991).
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Appendix: What is Measure?

In this Appendix the general theory of the Lebesgue measure is outlined. Without measure
theory proper understanding of statistical mechanics and dynamical systems is impossible.

1.A.1 Reader’s guide to this appendix.

(1) + (3) is the minimum of this appendix:

(1) The ordinary Lebesgue measure = volume is explained up to 1.A.9. These entries should be very easy
to digest. Remember that Archimedes reached this level of sophistication more than 2000 years ago.

(2) General Lebesgue measure is outlined in 1.A.10-1.A.12. This is an abstract repetition of (1), so the
essence should be already obvious.

(3) Lebesgue integral is defined in terms of the Lebesgue measure in 1.A.16 with a preparation in 1.A.15.
This leads us naturally to the concept of functional and path integrals (1.A.17).

(4) Probability is a measure with total mass 1 (i.e., normalized) (1.A.20).

(5) If we read any probability book, we encounter the triplet (€2, B, P). The reason why we need such a
nonintuitive device is explained in 1.A.21-1.A.22.

1.A.2 What is volume? — An example of conceptual analysis

For simplicity, we confine our discussion to 2-space, but our discussion can easily be extended to higher
dimensional spaces. The question is: what is ‘area’ ? It is not easy to answer this question for an arbitrary
shape.®3 Therefore, we should start with a seemingly obvious example.

The area of a rectangle [0,a] x [0,b] (a > 0, b > 0) in R* is ab. Do we actually know this? Why can
we say the area of the rectangle is ab without knowing what area is? To be logically conscientious we must
accept:

Definition. The area of a rectangle which is congruent®* to (0,a) x (0,b) (Here (is [or ( and ) is] or )) is
defined to be ab. Notice that area is defined so that it is not affected by whether the boundary is included
or not.®®

1.A.3 Area of fundamental set.
A set which is a direct sum (disjoint union) of finite number of rectangles is called a fundamental set. The
area of a fundamental set is defined by the sum of the areas of constitutive rectangles.

It should be intuitively obvious that the join and the common set of fundamental sets are again
fundamental.

1.A.4 Heuristic consideration.
For an arbitrary shape, the strategy for defining its area should be to approximate the figure with a sequence
of fundamental sets. We should use the idea going back to Archimedes; we must approximate the figure
from its inside and from its outside. If both sequences converge to the same area, we should define the area
to be the area of the figure.

1.A.5 Outer measure, measure zero.

Let A be a set. We consider a cover of A with finite number of rectangles Py, (inclusion or exclusion of their
boundaries can be chosen conveniently —1.A.2), and call it a rectangular cover P = {Py} of A. Let us
denote the area of a rectangle P by m(Py). The outer measure m*(A) of A is defined by

m*(A) = inf Y " m(Py), (1.7.1)
k

where the infimum is taken over all the finite or countable rectangular covers of A.
If m*(A) = 0, the set A is called a measure zero set (or a null set).

83 As we will see soon in 1.A.22, if we stick to our usual axiomatic system of mathematics ZF+C, there
are figures without area.

84This word is defined by the superposability.

85Thus, topological concepts are much more detailed and difficult than measure-theoretical concepts in
the theory of dynamical systems.
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1.A.6 Inner measure.
For simplicity, let us assume that A C E = [0, 1] x [0, 1]. Then, the inner measure m,(A) of A is defined by

m.(A) =1 —m*(E\ A). (1.7.2)

Obviously,
m*(A) > my(A) (1.7.3)

for any figure A.

1.A.7 Measurable set, area = Lebesgue measure.
Let A be a subset of E.8¢ If m*(A) = m.(A), we say A is measurable (in the sense of Lebesgue), and m*(A)
written as p(A) is called its area (= Lebesque measure).

1.A.8 Additivity.
Assume that all the sets here are in a bounded rectangle, say, F above. The join and the common set of
finitely many measurable sets are again measurable. This is true even for countably many measurable sets.
The second statement follows from the preceding statement thanks to the finiteness of the outer measure of
the join or the common set.

1.A.9 o-additivity.
Let {A,} be a family of measurable sets satisfying A, N A, = 0 for n # m. Let A =U,A,. Then,

p(A) =" p(Ay). (1.7.4)

This is called the o-additivity of the Lebesgue measure. [
[Demo] A is measurable due to 1.A.8. Since {4, } covers A, u(A) < > u(A,). On the other hand A D
UN_| A, so that for any N u(A) > ij:l w(Ay).
1.A.10 Measure, general case.
A map from a family of sets to R is called a set function. A set function m satisfying the following three
conditions is called a measure.
(1) m is defined on a semiring®” S. [Note that the set of all the rectangles is a semiring.]
(2) m(4) > 0.
(3) m is an additive function: If A is direct-sum-decomposed in terms of the elements of S as A = U}_, Ay,
then m(A4) =Y 7_, m(Ax).
Therefore, the area p defined in 1.A.7 is a measure on the set of all the rectangles. In the case of area,
the definition of area is extended from rectangles to fundamental sets (—1.A.3). This is the next step:

1.A.11 Minimum algebra on S, extension of measure.
The totality of sets A which is a finite join of the elements in S is called the minimum algebra generated by
S. Notice that the totality of fundamental sets in 1.A.3 is the minimum algebra of sets generated by the
totality of rectangles. Just as the concept of area could be generalized to the area of a fundamental set, we
can uniquely extend m defined on S to the measure defined on the algebra generated by S.

1.A.12 Lebesgue extension.
We can repeat the procedure to define u from m* and m, in 1.A.7 for any measure m on S (in an abstract
fashion). We define m* and m, with the aid of the covers made of the elements in S. If m*(A) = m.(A),

861t should be obvious how to generalize our argument to a more general bounded set in R.
87If a family of sets S satisfies the following conditions, it is called a semiring of sets:
(i) S contains 0,
(ii)) If A,B € S, then AN B and AU B are in S,
(iii) if Ay and A are in § and A; C A, then A\ A; can be written as a direct sum (the join of disjoint sets)
of elements in S.
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we define the Lebesgue extension p of m with u(A) = m*(A), and we say A is p-measurable.

1.A.13 Remark.

When we simply say the Lebesgue measure, we usually mean the volume (or area) defined as in 1.A.7.
However, there is a different usage of the word. p constructed in 1.A.12 is also called a Lebesgue measure.
That is, a measure constructed by the Lebesgue extension is generally called a Lebesgue measure. This
concept includes the much narrower usage common to physicists.

1.A.14 o-additivity.
(3) in 1.A.10 is often replaced by the following o-additivity condition: Let A be a sum of countably many
disjoint p-measurable sets A = US2 | A,,. If

p(A) = u(An), (1.7.5)

n=1

we say p is a o-additive measure.
The Lebesgue measure defined in 1.A.7 is o-additive. Actually, if m is o-additive on a semiring of
sets, its Lebesgue extension is also o-additive.

1.A.15 Measurable function.
A real function defined on a set D is called a p-measurable function for a Lebesgue measure p on the set, if
any ‘level set’ {x | f(z) € [a,b]} N D is p-measurable. When we simply say a function is measurable, it means
that any level set has a well defined volume in the ordinary sense.

1.A.16 Lebesgue integral with measure pu.
Let p be the Lebesgue measure on R"™. Then the Lebesgue integral of a py-measurable function on U C R"
is defined as

/U F@)dp(e) = lim S ap({x| f(2) € o~ ¢/2.0 +¢/2) N V), (1.7.6)
where the sum is over all the disjoint level sets of ‘thickness’ € (> 0).%8

1.A.17 Functional integral.

As the reader has seen in 1.A.16, if we can define a measure on a set, we can define an integral over the
set. The set need not be an ordinary finite-dimensional set, but can be a function space. In this case the
integral is called a functional integral. If the set is the totality of paths from time ¢ = 0 to T, that is, if the
set is the totality of continuous functions: [0,7] — R?, we call the integral over the set a path integral. The
Feynman-Kac path integral is an example (—X1.10.2).%9

1.A.18 Uniform measure.

The Lebesgue measure defined in 1.A.17 is uniform in the sense that the volume of a set does not depend
on its absolute location in the space. That is, the measure is translationally invariant (see 1.A.21 below
for a further comment). However, there is no useful uniform measure in infinite dimensional spaces. Thus,
every measure on a function space or path space must be non-uniform (cf., X1.10.5).

1.A.19 Borel measure.
Usually, we mean by a Borel measure a measure which makes measurable all the elements of the smallest
algebra (—1.A.11) of sets containing all the rectangles.

88The measures m satisfying p(A) = 0 = m(A) = 0, where p is a Lebesgue measure, is said to be absolutely
continuous with respect to p. If a measure is absolutely continuous with respect to the Lebesgue measure
(volume), it has a density as an ordinary function.

89However, the definition of the Feynman path integral is too delicate to be discussed in the proper
integration theory.
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1.A.20 Probability space.
A (Lebesgue) measure P with the total mass 1 is called a probability measure. To compute the expectation
value with respect to P is to compute the Lebesgue integral w.r.t. the measure P.

When we read mathematical probability books, we always encounter the ‘triplet’ (Q, B, P) (= a prob-
ability space), where P is a probability measure, Q is the totality of elementary events (the event space;
P(Q2) =1) and B is the algebra of measurable events.

Discussion 1. If the base space is not bounded, sometimes the choice of B seems to matter. Read and
summarize T P Hill, The Significant-digit Phenomenon, Am. Math. Month. April 1995, p322. O

This specification is needed, because if we assume that every composite event has a probability, we have para-
doxes. This was realized through the characterization of ‘uniform measure’ in a finite dimensional Euclidean
space:

1.A.21 Lebesgue’s measure problem.
Consider d-Euclidean space R%. Is it possible to define a set function (—1.A.10) m defined on every bounded
set A € R? such that
(1) The d-unit cube has value 1.
(2) Congruent sets have the same value,
(3) m(AUB) =m(A) + m(B) if AN B =0, and
(4) o-additive
‘?

This is called Lebesgue’s measure problem.

1.A.22 Hausdorff and non-measurable set.

Hausdorff demonstrated in 1914% for any d there is no such m satisfying (1)-(4) of 1.A.21. Then, Hausdorff
asked what if we drop the condition (4). He showed that m does not exist for d > 3.0 He showed this by
constructing a partition of a 2-sphere into sets A, B, C, D such that A, B, C' and BUC are all congruent and
D is countable. Thus, if m existed, we had to conclude 1 = 2. Therefore, we must admit non-measurable
sets.??

9OWWTI began, Panama canal officially opened.

91Banach demonstrated in 1923 that there is a solution for d = 1 and for d = 2.

92under the current popular axiomatic system ZF + C. The reader might think such a set is far from any
field of physics, but a popular characterization of chaos (Li -Yorke’s theorem) in dynamical systems uses sets
that are not measurable, if it is not measure zero (Baba-Kubo-Takahashi).
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Chapter 2

Equilibrium Statistical Mechanics
Revisited

In this second introductory chapter, we wish to ‘dust’ our equilibrium statistical thermody-
namics. It is not interesting to do so by going through the standard textbooks, so let us try
to trace the birth of statistical mechanics. Thus, the main purpose of this chapter is to give a
(hopefully) readable story of statistical thermodynamics. The reader will clearly see that it
was born of kinetic theory of gases = study of nonequilibrium processes. Elementary kinetic
approaches are covered in this chapter. Also she will recognize that statistical mechanics
cannot be justified without thermodynamics.

For those who still feel that they need a standard statistical mechanics course, the lec-
turer recommends them to study

R Kubo, Statistical Mechanics, an advanced course with problems and solutions (North
Holland, 1965)
and its sister volume:

R Kubo, Thermodynamics, an advanced course with problems and solutions (North Hol-
land, 1968).!
Solve all the problems at least up to level B (these books are problem books with full de-
tailed solutions; even ‘passively’ reading the solutions is useful, but a more active learning is
recommended). No course of elementary equilibrium statistical mechanics is needed, if the
reader studies these books seriously.

The sister lecture notes, Introductory Equilibrium Statistical Mechanics, are available
from http://www.rinst.org. The level of these notes is around Kubo quoted above. A rather
extensive set of problems with complete solutions can be found.

! Actually, the first half of the original book in Japanese, Thermodynamics and Statistical Mechanics
(Shokabo, 1951), is “Thermodynamics” and the second half “Statistical Mechanics.” It is designed for
undergraduate students and not at all advanced.
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2.1 Gibbs’s Statistical Mechanics

We are all told that equilibrium statistical mechanics we know now was established by J. W.
Gibbs (1839-1903).? Using the framework, we can compute the Helmholtz free energy A as

A=—kgThhZ, (2.1.1)

where kp is the Boltzmann constant, 7" is the absolute temperature, and Z is the (canonical)
partition function defined by
Z= > M (2.1.2)

microstates

with 8 = 1/kgT, and H being the Hamiltonian (= energy function) of the system.
To understand the nature and the scope of statistical mechanics, let us browse through
Gibbs’s famous book.?

2.1.1 Gibbs, “Elementary Principles in Statistical Mechanics” (1902%)°
The problem Gibbs wished to solve was: “not to follow a particular system through its
succession of configurations, but to determine how the whole number of systems in a given
ensemble will be distributed among the various conceivable configurations and velocities at
any required time, when the distribution has been given for some one time.” (Gibbs pvii).

However, “in the present state of science, it seems hardly possible to frame a dynamic
theory of molecular action which shall embrace the phenomena of thermodynamics, of ra-
diation and of the electrical manifestations which accompany the union of atoms.” This
difficulty “deterred the author from attempting to explain of mystery of nature, and have
forced him to be contented with the more modest aims of deducing some of the more obvious
branch of mechanics.” (px).

The outline of his book® is as follows: To begin with Gibbs explains the concept of
ensemble: a collection of clones of a system satisfying some common conditions (say, identi-
cal energy).” He then considers “especially ensembles of systems in which the logarithm of

2M J Klein, “The physics of J. Willard Gibbs in his time,” Physics Today, September 1990, p40-48; This
is based on the first paper by the same author in Proceedings of the Gibbs Symposium, Yale University, May
15-17, 1989 (edited by D G Caldi and G D Mostow) (AMS & APS, 1990).

3 A much more careful summary may be found in the already cited Gibbs Symposium (1989) Proceedings:
A S Wightman, “On the Prescience of J. Willard Gibbs,” p23-38.

4What sort of year was it? In these notes, to have a glimpse of the cultural background or the Zeitgeist,
the contemporary historical events are mentioned in the footnote. In 1902, Britain and Japan concluded
a naval alliance (the Anglo-Japanese Alliance (mainly against Russia)); The Second Boer War ended; Ibn
Saud recovered Riyadh; V. Pareto’s The Socialist Systems, a refutation of the Marxist economics. As we
will see Einstein should have been completing his system of statistical mechanics.

5M J Klein loc cit writes, “It is not impossible that the pressure to contribute to the Yale Bicentenial
series propelled Gibbs into completing a book that he might otherwise have considered not quite ready to
publish.” According to Klein, Gibbs asked himself questions like, “What is the entropy of a system not in
equilibrium?” at several places in his notes.

6Its full title read, Elementary Principles in Statistical Mechanics developed with especial reference to the
Rational Foundation of Thermodynamics (Yale UP 1902, reprinted from Dover).

"In the standard formulation of statistical mechanics, ‘ensemble’ is only a device to visualize probabil-
ity distribution (—2.4.1). In this interpretation, do not imagine we actually have that many copies of
macroscopic systems. Those who feel this approach unphysical, go to 1.6.14.
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probability of phase is a linear function of energy. This distribution, on account of its unique
importance in the theory of statistical equilibrium, I have ventured to call canonical.” (pxi).
From this he finds “a differential equation relating to average values in the ensemble which
is identical in form with the fundamental differential equations of thermodynamics, the av-
erage logarithm of probability of phase, with change of sign, corresponding to entropy, and
the modulus to temperature” (—2.1.4). These are the contents of his book up to Chapter
XII1.8 He discusses microcanonical ensemble and its equivalence to the canonical ensemble
in the thermodynamic limit in Chapter XIV. The last chapter deals with multicomponent
systems.

Preface tells us that Gibbs regards statistical mechanics as exact, but thermodynam-
ics as the (approximate and empirical) laws of mechanics of systems of a great number of
particles. This point of view is diametrically different from that of the lecturer’s, but let us
follow his logic for the time being.

2.1.2 Gibbs introduces canonical ensemble
Let P be the probability density on the phase space defining a given ensemble.” Then, P
for an equilibrium ensemble must satisfy (—2.7.7)

[H, Plpp =0, (2.1.3)

where H is the system Hamiltonian, and [, |pp is the Poisson bracket (—2.7.1). If P is a
function of energy (i.e., H), this is automatically satisfied. Gibbs introduces the canonical
distribution:

P = W=H/® (2.1.4)

where 1 is determined by normalization (in the original book € is used for energy):
e~/ = / dle~H/® (2.1.5)

with dI" being the volume element of the phase space. © is a positive numerical constant.
According to Gibbs this is “the most simple case conceivable since it has the property
that when the system consists of parts with separate energies, the laws of the distribution
in phase of the separate parts are of the same nature.”(p33). He notes, “© has properties
analogous to those of temperature in thermodynamics.” (p35); his reasoning is based on the
compound system: combining two systems at the same temperature to make a single system;
if we can ignore the interaction energy between system 1 and 2 (because both are macro-
scopic and the surface contribution should be negligible), the canonical distribution of the
compound system reads e(V=H)/© = (1—H1)/Op(¥2=H2)/O with o) = 1)y +1)y and H = H, + Ho.

2.1.3 Computing differential of ¢
Let a; be “certain coordinates of bodies which we call external, meaning by this simply that

8Chapter XII is about the approach to equilibrium. There, he points out that spreading of the nearby
trajectories is needed for the approach to equilibrium (p150).

9We must clearly recognize that probability theory was not at all popular in those days. Hilbert’s problem
number 6 (1900) was meant to be an axiomatization of probability theory with special reference to kinetic
theory (Wightman, loc cit). In modern terms, we consider a probability space (T, P), where T is the phase
space of the system. See 1.1.5.

o4



they are not to be regarded as forming any part of the system, although their positions affect
the forces which act on the system.” Then, from (2.1.5) we get

—dip + ng _ éd@ / dCHe®=1/® 13" da, / AT Ae@=0/0. (2.1.6)
where S
A= —. 2.1.
’ 8ai ( 7)
That is,
—(H
dip = w@<>d® ~ 3 (A das, (2.1.8)
I
where ( ) implies the ensemble average.
If we introduce o
n=logP = d’é, (2.1.9)
(2.1.8) may be rewritten as
dip = (n)d® — > (A;)da;. (2.1.10)

2.1.4 Thermodynamics analogue
From (2.1.10), we have dip = d(H) + ©d(n) + (n)dO, so

d(H) = —0d(n) — > (A;)da;. (2.1.11)

i

“This equation, if we neglect the sign of averages, is identical in form with the thermodynamic
equation” (Gibbs p44)
dE =TdS + > X;dx;, (2.1.12)

where FE is the internal energy, T' the absolute temperature, S the entropy, etc. “We may
also compare (2.1.10) with the thermodynamic equation,”

dA = —5dT + ) X;dx;. (2.1.13)

“How far, or in what sense, the similarity of these equations constitutes any demonstra-
tion of the thermodynamic equations, or accounts for the behavior of material systems, as
described in the theorems of thermodynamics” (Gibbs p45) is the crucial question.

2.1.5 Gibbs’ entropy formula and thermodynamics-mechanics correspondence
The above analogy suggests the entropy formula (cf., 1.3.2):

S = () = —/dFPlogP. (2.1.14)

Gibbs demonstrates that under the constant © condition the canonical distribution minimizes
(ny + (H)/© (Gibbs pl61). “We have thus precisely defined quantities, and rigorously
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demonstrated propositions, which hold for any number of degrees of freedom, and which,
when the number of degrees of freedom is enormously great, would appear to human faculties
as the quantities and propositions of empirical thermodynamics.” (Gibbs p169).

This is Gibbs’ ‘justification’ of —1)/© = log Z, or in the modern notation

A= —kgTlogZ (2.1.15)

with
7 = /dre—ﬁH. (2.1.16)

Exercise 1. Demonstrate that (n) + (H)/© is minimum for the canonical distribution. O

2.1.6 Summary of Gibbs’ logic

As the reader has realized, Gibbs’ logic is based on

(1) correspondence ‘in form’ and

(2) the demonstration that general thermodynamic properties are satisfied by the analogue
quantities.

However, is this really satisfactory?!® Gibbs claims that he demonstrated the perfect
parallelism between his statistical mechanical system and thermodynamics. However, for
example, there is no counterpart of heat in his framework, so even the famous equilibrium
relation dS = dQ/T has no statistical mechanical interpretation (also see 2.7.14).1

Gibbs’ canonical ensemble may be a solution to his problem of finding microscopic ex-
pressions for thermodynamic quantities, but how unique is the solution? Even Gibbs knew
that microcanonical ensemble would do as well (—2.6.8).

There are a lot of conceptual holes in Gibbs’ statistical mechanics, and we inherit many
of them.

2.1.7 What made Gibbs conceive his equilibrium statistical mechanics?

To see this we must go back almost to the starting point of the modern natural science. We
will eventually realize how modern Einstein is. Learning statistical mechanics, the reader
will recognize that we have hardly progressed since Einstein with respect to fundamental
issues.

2.2 Prehistory of Statistical Mechanics

To understand the prehistory of equilibrium statistical mechanics, we must go almost all
the way back to the birth of the modern science. We will see how equilibrium statistical

10T, Navarro, “Gibbs, Einstein and the Foundations of Statistical Mechanics,” Arch. Hist. Exact Sci.
53, 147-180 (1998) [kindly informed by R Clegg]| criticizes Gibbs almost bitterly, saying “This foundation
is however confined to the establishment of analogies between two different frameworks (mechanical and
thermodynamics), and therefore its reductionist value is dubious.” The lecturer is fully sympathetic to this
criticism, but see the last footnote in 2.5.2; he is also very sympathetic to Gibbs.

1Tt is worth comparing this with what Einstein did. —2.5.3-.
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mechanics originated from the struggle to understand the second law. However, the success
of equilibrium statistical mechanics left many questions about nonequilibrium phenomena
unanswered.

Recommended reading:

S G Brush, Statistical Physics and the Atomic Theory of Matter, from Boyle and New-
ton to Landau and Onsager (Princeton UP, 1983) Chapter 1.2

D Lindley, Boltzmann’s Atom, The great debate that launched a revolution in physics
(The Free Press, New York, 2001).
The second book may be more readable and sometimes more detailed than Brush’s (perhaps
with too many gossips).!3

2.2.1 Everything started with Descartes and Newton

One of the main goals of Principia was to demonstrate the inadequacy of Descartes’ theory
of the universe. ‘Therefore’, Newton adopted Boyle’s conception of air pressure due to the
springiness of air particles instead of Descartes’ swirling atoms. This lead to a static model
of gases in which the pressure was attributed to interatomic repulsive forces and hampered
the development of the kinetic theory (Brush p22).

On the other hand Newton seems to have accepted the atomism in the Greek sense
also: “the Changes of corporeal Things are to be placed only in the various Separations and
new Associations, and Motions of these permanent Particles ---” (Optics quoted in Brush
p23). However, the static theory dominated the scene. Even Laplace was under the strong
influence of static repulsion theory of pressure.!4

2.2.2 ‘Modern kinetic theory’ of D. Bernoulli

Daniel Bernoulli’s gas model'® (1738'%) is the first fully kinetic model: there are indefinitely
large number of similar particles of diameter d and speed v moving in a closed container
of volume V' supporting a piston with pressure p by their impacts. The average distance
between particles is D, and the temperature 7" is a function of v.

His conclusions are (Brush p30; as the reader can see these are quite modern —2.3.5):
) Boyle’s law pV' = const. in the d/D — 0 limit.
) The deviation from Boyle’s law is given as a function of d/D.
) If v is varied at constant volume, p o v?.
) A ten;lperature scale may be defined by using pV = C'T', where C' is a positive constant,
T ox v.

It is noteworthy that Bernoulli did not give his particles any properties other than size;
in particular no mass is specified.

(1
(2
(3
(4

12Tn Japanese, T Yamamoto, Historical Development of Thoughts about Heat (Gendai Sugakusha, 1987)
is an excellent book (more detailed in certain respects than Brush).

13The reader will see why Maxwell was not so impressed by Boltzmann’s kinetic theory; why Thomson
and Planck disliked kinetic theory; what the real issue was of the difference between Mach and Boltzmann,
etc.

L aplace got interested in the properties of gases due to the necessity of accurate measurement of the
positions of stars through the atmosphere (Yamamoto p189). Gay-Lussac was his chief experimentalist
partner after Revolution. Note that Gay-Lussac was one of the first generation of scientists who were
educated by systematic science education and who earned their living doing science.

15This was in his book on hydrodynamics.

16This year J S Bach composed Mass in B minor (BWV 232).
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However, the kinetic theory of the 18th century was totally forgotten by the 19th cen-
tury (—2.2.4).

2.2.3 Modern atomism and molecular theory
Between Daniel Bernoulli and the modern kinetic theory was the general acceptance of chem-
ical atomic theory and the birth of physics in the modern sense. The most important result
is Dalton(1766-1844)’s law of partial pressure: the total pressure of a gas mixture is simply
the sum of the pressures each kind of gas would exert if it were occupying the space by itself.
This is naturally understood with the aid of kinetic theory.!”

Gay-Lussac (1778-1850) then established three important laws (ca 1810'8):
(i) the law of thermal expansion of gases (also called Charles’ law).
(ii) the law of constant temperature under adiabatic expansion: if a gas is suddenly allowed
to occupy a much larger space by displacing a piston, there is practically no temperature
change.
(iii) the law of combining volume: in gas phase reactions the volumes of reactants and prod-
ucts are related to each other by simple rational ratios.
(iii) implied that ‘particles’ cannot generally be atoms, but Dalton rejected this interpreta-
tion (suggesting, e.g., that Gay-Lussac results were not accurate, etc.)

At last in 1811 Avogadro proposed Avogadro’s hypothesis: every gas contains the same
number of molecules at the same pressure, volume, and temperature.

However, the molecular theory was not generally accepted until 1860, when Cannizzaro
presented it to the Karlsruhe Congress (However, Clausius (—2.2.5) accepted this by 1850
(Brush p51); actually, Cannizzaro mentioned Clausius.??).

2.2.4 What is heat?

To arrive at the modern kinetic theory, there was one more obstacle: the caloric theory of
heat. Even though the experiments of Rumford (1753-1814) and Davy were well known in
the 1820s, no one considered them to be crucial; the heat generated by friction could be
ascribed to caloric squeezed out of the bodies.

Rumford stressed that heat was not conserved: in his memoir of 1804%! he said that he
only found that heat source was inexhaustible. Thus, heat cannot be matter, because the
latter is conserved. In contrast, the emphasis of the caloric theory was on the conservation
law; this was reinforced by the theory of latent heat: whenever the conservation law looked
violated, they generalized the concept of latent heat, and the theory became more versatile.
Only after Joule(1818-1889)’s work in 18402 were Rumford’s experiments correctly inter-
preted (Yamamoto p241).

The caloric theory was replaced in the 1830s by the wave theory of heat. The identity
of heat and light favored the same theory for both. Its definite formulation was by Ampere

"Dalton arrived at his atomic theory not very inductively as is stressed by Brush on p32; Dalton’s writings
are sometimes hard to comprehend due to arbitrary thoughts and their outcomes being nebulously mixed
up with real experimental results (Yamamoto p194).

8Napoleon married Marie Louise of Austria.

19This year J Austine published Sense and Sensibility.

20C. Cercignani, “The rise of statistical mechanics,” in Chance in Physics, Lect. Notes Phys. 574 (edited
by J. Bricmont, D. Diirr, M. C. Galavotti, G. C. Ghirardi, F. Petruccione and N. Zanghi) p25 (2001). This
article gives a good summary of Boltzmann’s progress.

21This year Code Napoléon established the principle of equal citizenship; Haiti gained independence.

220Qpium Wars; Feuerbach’s The essence of Christianity would be published next year.
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(1832,%3 1835%1): heat flows between vibrating atoms by means of ether vibration. This
theory provided a fairly smooth transition from the caloric theory of the early 1800s to the
kinetic theory of the 1850s.2

In the 1840s the first law of thermodynamics was established by Mayer (1814-1878),%6
Joule, Helmholtz (1921-1894), and others. Clausius began developing its application to in-
terconversion of heat and mechanical work (1850?" and on).

2.2.5 Clausius, “The kind of motion we call heat” (1857%)
Since Clausius (1822-88) had been working on interconversion of mechanical work and heat,
it was very natural that he wished to know the ‘real picture’ : He stated in this paper that he
had been thinking about molecular motion even before his first article on thermodynamics
in 1850.22 He gave a clear molecular picture of the three phases of matter, and explained
latent heat, evaporation due to fluctuation, etc.
Exercise 1. The reader must have a clear molecular picture of the so-called three phases
of matter. (Sample questions: what is the major distinction between gas and liquid?; what
is the difference between the molecular pictures of volume expansion upon heating in solids
and liquids? [Hint. Pay attention to the coordination number.]) O

He assumed that particles may contain more than one atoms (before Cannizzaro —2.2.3)
and that molecules were extremely small: “the space actually filled by the molecules of the
gas must be infinitesimal in comparison to the whole space occupied by the gas itself.” He
assumed also that molecular forces could be ignored, and derived the equation of state of
the ideal gas (—2.3.5).

2.2.6 Mean free path
At the end of the 1857 paper Clausius calculated the speed of molecules at 0°C: oxygen
461m/s, nitrogen 492m/s, and hydrogen 1,844m/s.
Exercise 1. Are these numbers accurate? O

Dutch meteorologist C. H. D. Buys-Ballot noticed that if the molecules of gases really
moved that fast, the mixing of gases by diffusion should have been much faster than we
observed it to be.

Upon this criticism, Clausius (1858%°) had to assume that the gas molecules have large

23This year Faraday established the laws of electrolysis; Goethe died.

24The Boers began the Great Treck; the second Seminor War.

2 However, J. Herapath (1790-1868) was an exception in the heyday of caloric theory, proposing kinetic
theory of gases; he arrived at his theory through realizing the intrinsic difficulty of caloric theory. But for
him (since he did not know Bernoulli —2.2.2) Newton’s springy particle theory was an obstacle (Yamamoto
p245). His paper was rejected by the Royal Society in 1820 (Davy rejected it, saying that it was too
speculative), but appeared elsewhere in 1821. His theory almost completely covered the elementary kinetic
theory (—1.3), but it took 30 years for the paper to be recognized properly. However, he was much more
fortunate than Waterston (1811-83) whose 1845 paper was also rejected by the Royal Society and was not
published for half a century. The reader can find more about Waterston in Lindley’s book.

26However, it is noteworthy that Mayer explicitly rejected to regard heat as a kind of motion (Yamamoto
p240).

2TTelegraph cable connection across the English Channel.

28The Indian Mutiny by the Sepoy troops; Universities were established in Calcutta, Bombay and Madras;
C. Baudraire, Les Fleurs du Mal.)

29This is the paper establishing the second law with the concept of entropy.

30This year, the Lincoln-Douglas debate, the Government of India Act. However, the most important
event was that the idea of natural selection was officially published by Darwin and Wallace. Physicists
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enough diameters that a molecule cannot move very far without colliding with another one.
In this way Clausius defined a new parameter called the mean free path ¢ of gas. We can
obtain it by dimensional analysis as

{=cV/Nd, (2.2.1)

where V' is the volume, N is the number of molecules in the volume, and ¢ is a numerical
constant (whose precise value was a matter of dispute for some time —2.3.6).
Exercise 1. Obtain the above formula. O

Clausius did not have any independent method to estimate N and d. Then came
Maxwell, who showed that ¢ could be related to transport properties of gases, and so could
be determined experimentally (—2.3.6).

2.3 Maxwell and Introduction of Statistics

When Maxwell was 19 years old, he read an article introducing the continental statistical
theory into British science (e.g., Gauss’s theory, cf. 2.3.2, 1.7.1), and was really fascinated.
He wrote to his friend: “the true logic for this world is the Calculus of Probabilities ---”
(Brush p59)

For the elementary theory of gases

J Jeans, An Introduction to The Kinetic Theory of Gases (Cambridge UP 1952)
may be of some use.

2.3.1 J. C. Maxwell, “Illustrations of the dynamical theory of gases” (1860°!)
First, Maxwell (1831-79) demonstrates® that the velocity of the gas particle obeys the
Mazwell distribution (—2.3.2). Based on this distribution, he gave the formula for the

mean free path (—2.3.6):
1

- V2rnd?

Also he derived the equation of state of ideal gas (—2.3.5) and gave an explanation of Avo-
gadro’s law.

Next, he computed the shear viscosity of gases (—2.3.7). Comparing his result with
Stokes” experimental result, he concluded that the mean free path was 1/447000 inch and
a particle collides with other particles 8,077,200,000 times in a second. He demonstrated
that the viscosity was independent of density. He commented that this was remarkable, and
that the existing experiments did not confirm this. Actually, his letter to Stokes (May, 1859)
reads, “This is certainly very unexpected, that the friction should be as great in a rare as in a

¢ (2.3.1)

should recognize that Boltzmann called the 19th century the century of Darwin (not of Maxwell) (see E
Broda, Ludwig Boltzmann, Mensch- Physiker- Philosoph (F Deuticke, 1955) Part IIT). The actual chronology
is as follows: In June 1858 Darwin received a thin well-wrapped package from Ternate sent by Wallace. The
papers by Darwin and Wallace on natural selection were read at the Linnean Society on July 1, 1858. For
more about this meeting see the footnote for Brown in 3.1.1.

31This year, Lincoln was elected president; the British raided Beijing,.

32The incomplete nature of this derivation was later remedied by himself in 1866 (—2.3.3).
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dense gas. The reason is, that in the rare gas the mean path is greater, so that the frictional
action extends to greater distances. Has the reader the means of refuting this result of the
hypothesis?” Did Maxwell believe in the kinetic theory at that time?

It is a good occasion to learn (or review) elementary kinetic theory of gases. Let us see
more details in 2.3.7 and on, but in these lecture notes no stress will be put on the topic.

2.3.2 Maxwell’s velocity distribution
In his “Illustrations of the dynamical theory of gases” (1860) Maxwell introduced the density
distribution function f(v) of the velocity of gas particles.
Maxwell assumed that the orthogonal components of the velocity are statistically inde-
pendent (—1.2.2). This implies that we may write

f(v) = ¢u(ve)dy(vy) 92 (vs), (2.3.2)
where ¢,, etc., are density distribution functions for individual components. Maxwell also
assumed the isotropy, so f is a function of v?* = |v|?, f(v) = F(v?) and ¢,, etc., do not
depend on the suffices specifying the coordinates: 1(s?) = ¢,(s) = --- . Therefore,

Pz +y+2) = ¢(@)p(y)v(z). (2.3.3)
If we assume that F' and v are once differentiable, we obtain
Flz+y+z) = ¢(x)dy)'(2). (2.3.4)

Setting y = z = 0, we obtain
F(z) = ¢(2)9(0)1(0), F'(x) = ¢(x)v(0)4'(0). (2.3.5)

Therefore, F'(z)/F(x) must be a constant. This implies a Gaussian distribution3?

f(v):< ! )e_UQ/Q"Q. (2.3.6)

210

Discussion 1. The reader may have wondered whether there is no other solution, if we drop
the differentiability assumption. Try to demonstrate that the Gaussian form is the unique
outcome of (2.3.3), assuming only the continuity of F.300
Discussion 2. We know from the equilibrium statistical mechanics that the distribution
function can be obtained as e #F where E is the energy of the particle. This was ob-
tained from the consistency with thermodynamics (—2.1.5). In the above derivation of the
Maxwell distribution, we have used only independence and isotropy, and no mechanics at
all. Therefore, these two results seem to suggest that thermodynamics dictates the form of
kinetic energy. Is this really true?® 0O

Maxwell did not like the independence assumption, so he rederived his distribution a
few years later (in 1866%%). The argument relies on detailed balance (—2.7.6), reminiscent
of Boltzmann’s argument (—2.4.9).

2
33The easy way to compute the normalization is: [f dz e‘$2/2"2} =27 fooo e 2% iy = 2ma?,
34Certainly, if we do not assume that F is continuous, there are uncountably many solutions.
35Considering the relativistic case may clarify the situation. Although most modern textbooks do not cast
any doubt about independence, Maxwell’s doubt about it indicates his correct intuition.
36This year Boltzmann published his first attempt to demonstrate the second law from mechanics. This

is one year after Clausius introduced the concept of entropy,
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2.3.3 Maxwell’s rederivation of Maxwell’s distribution
Suppose a binary collision between particle 1 with velocity v; and particle 2 with vy pro-
duces particle 1 with velocity v} and particle 2 with velocity v5. Then, the detailed balance

(—2.3.4) requires®”
f(v1) f(v2) = f(v})f(v) (2.3.7)

for any choice of velocities compatible with the collision. Energy conservation implies
v+ vi=v"7 100 (2.3.8)

Therefore, if we assume the isotropy and the continuity of the density distributions, these

relations imply that log f is a linear function of v2.38

2.3.4 Cyclic balance vs. detailed balance
In equilibrium, we do not observe any macroscopic change (time dependence). For this to
be possible, for example, cyclic balance would do: suppose we have three microscopic states,
a, b, and c; if the positive cycle a—b—c—a—b—c—--- is equally likely as the negative
cycle c—=b—a—c—b—a—- -, we would not see any macroscopic change, even if a—b is not
as likely as b—a. However, in equilibrium, there is a detailed balance (—2.7.6): a—b and
b—a are equally likely. That is, a microscopic process and its (time) reversed process occur
equally likely.

We will learn that detailed balance is crucial in understanding near equilibrium irre-
versible processes (—4.1.1).

2.3.5 Pressure of ideal gas - Bernoulli’s formula

The (kinetic interpretation of) pressure on the wall is the average momentum given to the
wall per unit time and area. Consider the wall perpendicular to the x-axis. Then, the
number of particles with its xz-component of the velocity being v, that can collide the unit
area on the wall per unit time is given by nuv, f(v),**where n is the number density of the
gas molecules. Each particle gives the momentum 2muv, upon collision to the wall, so

1
p= dv 2mnv? f(v) = gmn(v2>. (2.3.9)
vz >0

Or,

2
pV = gN(IQ, (2.3.10)
where K is the kinetic energy of the single gas particle, and N is the number of particles in
the volume V. This equation is called Bernoulli’s equation (—2.2.2).
Comparing this with the equation of state of an ideal gas pV = NkgT, we obtain the
well-known relation:

(v*) = 3kT/m. (2.3.11)

37If the reader wishes to be more elementary, the phase volume element for the two particles must be
written. The reader can rely on Liouville’s theorem (for the two particle system under consideration)
(—2.7.7) to ignore these volume elements.

38Proving this is not so trivial as is quoted in 2.4.8.

39Precisely speaking, we must speak about the number of particles in the (velocity) volume element d3v,
that is, nv, f(v)d>wv, but throughout these notes, such obvious details may be omitted.
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If we use (2.3.6) to compute the average, we can fix the parameter o as 02 = kgT/m, and
we obtain the Mazwell distribution:*°

m \¥? _
f(v):<27rkBT> ¢~V 2knT (2.3.12)

Remark. Although the Boyle-Charles law is obtained, this does not tell us anything about
molecules, because we do not know N. We cannot tell the mass of the particle, either.
Remember that kg was not known when the kinetic theory of gases was being developed. A
notable point is that with empirical results that can be obtained from strictly equilibrium
studies, we cannot tell anything about molecules. O

Exercise 1. The virial theorem tells us

|
K =33k (2.3.13)

where ¢; is the position coordinates and F; is the force (i.e., p; = F;, where p; is the conjugate
momentum of ¢;), and the overline is time average.*!
(i) Demonstrate (2.3.13) (Hint: d(> pig;)/dt = 2K + >, ¢; F}).
(ii) F; consists of the force Fy; due to the particle-particle interactions and the force F,,; due
to the wall. If the interaction with the wall is short ranged, near the wall perpendicular to
the z-axis at the x-coordinate L, we obtain >, ¢;Fp; = L. Y.; Fiwi- Show that 3, Fi,; = —pA,
where A is the area of the wall.

Thus, we have arrived at the virial equation of state (V = L, A):

2— 1 ——

Notice that this is correct both classically and quantum mechanically, irrespective of the
phase (not necessarily for the gas phase), and both in and out of equilibrium (if time-
independent or change is sufficiently slow). O

2.3.6 Mean free path: more details

We already know that the mean free path £ oc 1/nd?, where n is the number density and
d the diameter of the molecule (—2.2.6). If the molecule we study were the only moving
particle in a gas,

(rd*n =1 (2.3.15)

should have been true. That is, £ = 1/7nd?. However, all the molecules are moving.

The velocities of different molecules are statistically independent, so on the average the
velocities are orthogonal, but the averages of the speed must be identical. When they collide,
the average relative speed must be v/2 times the mean velocity. Therefore,

P
 V2mnd?

40About experimental verification, see Jeans, p124 ~.
41With an appropriate reinterpretation of the overline, the theorem holds for quantum mechanical cases
as well.

(2.3.16)
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must be the true mean free path length.
Exercise 1. Let w be the average relative speed. Then, the number z of collisions per unit
time is given by

z = Td’nw. (2.3.17)

Show that the (density) distribution function for w is
Flw) oc MW/ AksT (2.3.18)

so W = /20, where v is the speed of a molecule. This is the relation we discussed above.
Now,

g _ _ [mean displacement per unit time @
z

= 2.3.19
mean number of collision per unit time ( )

This is (2.3.16). O

Exercise 2. An explicit calculation of z with the aid of the distribution function is a good
practice. O

Exercise 3. Compare the mean distance § between the molecules and the mean free path.4?
O

Exercise 4. If a particle moves very slowly, its free path length must be short. Therefore,
the mean free path is a function of the particle speed v: ¢ = ¢(v). What can the reader guess
about this function? Is it a bounded function from above? 43 0.

Exercise 5. The free path length = the distance traversed by a molecule between two
successive collisions is not constant. Its distribution function f(z) does not have a simple
analytic expression but is very accurately approximated by (Jeans p145)

f(x) oc e~ 10/, (2.3.22)
Show that the free path length distribution f, for a particle of speed v is given by**

folx) oc e~ /1), (2.3.23)

2.3.7 Shear viscosity and mean free path
We consider gases that are dilute enough to obey the ideal gas law, but with mutual collisions
occurring sufficiently frequently.

Suppose we have a shear flow with the velocity V' in the z-direction and the velocity
gradient in the z-direction; we assume 0V,(z)/0z is constant. We further assume that the
particle velocity obeys the “local equilibrium distribution”: this implies that v — V' (r) obeys

2Roughly, £/ = (¢/d)?/>.
43The mean free path of a gas molecule running at speed v is given by (Jeans p141)

Bmu? /2

L(v) = Vrnd (o I3 (2.3.20)
where
Y(x) = ze " + (222 + 1)/ eﬂfdy. (2.3.21)
0

441f this is averaged over v, we obtain (2.3.22).
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the Maxwell distribution at each point r,*> where v is the particle velocity.

On the average, the particle reaching the plane z = 0 comes from distance ¢ away from
the point where the particle crosses this plane. The mean momentum carried by this particle
is

mV (=l cosf) ~ mV (0) — ml cos 986‘2/, (2.3.24)

where 6 is the angle the particle makes with the z-direction. The number of particles with
this angle that goes through the plane z = 0 in unit time must be

1
nv cos (2 sin Qdé’) : (2.3.25)

The total momentum flux J = —ndV,/0z must be (2.3.24) times (2.3.25) averaged over
angle 6 from 0 to 7:

oV, [T 1 oV,
J = —%E@ Ee /0 cos” 0 sin 0df) = —gmnﬁé P (2.3.26)
Therefore, the shear viscosity 7 is given by
r
n= gmnvl. (2.3.27)

With the already obtained estimate of ¢ (2.3.16) and v = /8kpT/mm, we obtain®

. 2 kaT
32\ w3

Ui . (2.3.28)

This is independent of the density n as noted by Maxwell (—2.3.1). Furthermore, the vis-
cosity increases with temperature.

Other transport quantities such as heat conductivity may be obtained similarly, but we
will do this in a slightly streamlined fashion later (—2.3.9).
Discussion 1. One of the arguments for the caloric theory of heat was as follows: if heat
were a form of motion of molecules, then in solids its propagation should be wave like and
should be much faster than we actually observe. Diffusion like behavior of heat (or temper-
ature) is a good evidence of a fundamental conserved substance called caloric whose density
determines temperature. O

2.3.8 Estimating Avogadro’s constant from viscosity
We have noted in 2.3.5 that it is impossible to determine the properties of particles through
equilibrium studies alone.

45More accurately, in the volume element around each point r; we assume that we can choose a volume
macroscopically sufficiently small (so, for example, in our present case V' does not change inside), but contains
sufficiently many microscopic objects that we can consider statistics meaningfully. For local equilibrium to
hold, we need sufficiently many collisions among particles.

46Tf we assume that the particle mass, the cross section (d?) and the particle thermal velocity are only
relevant quantities, dimensional analysis gives essentially this result. Even if we try to take the density of
the gas into account, it automatically drops out of the formula.
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If we consider a cylinder of diameter d and height ¢, it should contain on the average a
single molecule. Therefore, Clausius guessed (as we have already seen in 2.2.6)

rd*( = 1/n, (2.3.29)

where n is the number density, but no quantity in this formula was known. mn is measurable,
and from the ideal gas law we can estimate (v?) (—(2.3.9)) or v. Now, the viscosity is
measurable, so we can determine ¢ (—(2.3.27)). Still, without any microscopic parameter
directly related to the molecule (say, its mass m or its size d), there is no way to obtain n
(or the Avogadro’s constant N4 /molar volume of a gas).

In 1873%7 van der Waals proposed his equation of state of imperfect gases:

p(V — Vo) = NkgT — %(1 —Vy/V). (2.3.30)
Here, a > 0 is a constant describing the effects of intermolecular attractive interactions, and
Vi corresponds to the actual volume occupied by the molecules: Vy ~ bN7d? /6, where b is a
geometrical constant of order unity. This equation allows us to determine d. Thus, we can
compute Ns. The method gives Ny >~ (4 ~ 6) x 10?348
Exercise 1. Compute ¢, 7 and the number of collisions per molecule in unit time (or the
reciprocal of the mean free time ¢/v) for appropriate gas samples.O

2.3.9 General formula of transport coefficients in terms of mean free path

Let X be a physical quantity carried by a volume element (for example, X = Y ; muv, is
the quantity considered in 2.3.7, where the sum ), is taken over all the particles in the
volume element dV around 7). We assume a local equilibrium, so the average density of X,
indicated by the overline as X, depends on the position 7:

(X)p/dV = X (), (2.3.31)

where dV is the volume of the volume element (we are computing the local density). The
z-component of the flux Jy of X at 7 may be computed as

Tx(r) = ([X(r — £) = X(r)]v.)s. (2.3.32)

where £ is the free path vector and ( )y implies the average over the direction of the particle
motion (that is parallel to £). Expanding the expression, we obtain

Jx(r) = —{(v.)g - gradX(r). (2.3.33)
Since, the gradient has only the z-component, we need*’
(0.0} ~ ;ve. (2.3.34)
Thus, _
Te(r) = —;vé%)j (2.3.35)

4"Maxwell, A Treatise on FElectricity and Magnetism was published this year.

48The most accurate method to estimate Avogadro’s constant is to use the X-ray analysis of crystals. See,
Mana, Rivista Nuovo Cim 18(3) (1995); P. Beker, “History and progress in the accurate determination of
the Avogadro constant,” Rep Prog Phys 64 1945 (2001).

49Note that v and £ are parallel.
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2.3.10 Viscosity, heat conductivity, and diffusion constant for dilute gas
For viscosity X = Y4y mv, in 2.3.9, so X(r) = nmV(r), and we recover 7 (2.3.27) from
(2.3.35).

To obtain the heat conductivity A, X must be the energy contained in the volume
element: X = Y,y mv?/2, so X(r) = 3nkgT(r)/2. Since J = —AVT, we obtain

1
A= Snkpto. (2.3.36)

For self-diffusion (i.e., isotope diffusion) X = 4,1, so X(r) = n(r). J = —DVn

implies
p=lty- L (2.3.37)
= -l =— 3.
3 37’

where 7 is the mean free time T = (/7.

Notice that n = nmD, n/X = 2m/3kg and A\/D = 3nkg/2. The last relation tells us
A = cy D, where ¢y is the specific heat per molecule of gas under constant volume. Again,
we should note that these relations do not tell us anything about the microscopic properties
of the gas particles.

2.3.11 What happens at wall?

In 1860 Helmholtz and Piotrowski showed that for a small tube the flow behavior of liquid
appreciably deviates from Poiseuille’s flow,”® and later (in 1875) Kundt and Warburg showed
the same for gases.®!.

If the collision with the wall is specular (that is, the momentum component parallel to
the wall is maintained and that perpendicular to the wall flips its sign), we expect a slip-
pery boundary condition for the velocity at the wall. However, if the wall is microscopically
rough, the reflected momentum is randomized and the average of its components parallel to
the wall may be close to zero. This case we expect a sticky boundary condition we usually
use for hydrodynamics. The above experiments clearly say that sometimes randomization is
not complete.

Maxwell used such experimental results to estimate the ratio of specular and random
reflections at the wall, and concluded that their contributions could become comparable for
some surfaces.?

2.3.12 Knudsen flow

If the gas density is low and the mean free path becomes comparable to the representative

size of the system (e.g., the diameter of a pipe), the flow in a pipe behaves like a plug flow.
Consider a thin pipe whose diameter is smaller than the mean free path length. The

local average velocity becomes independent of the distance from the wall and is constant u

in this case. The gas particles colliding with the tube wall would lose momentum mu on the

50For a modern demonstration using a thin gap, see Granick et al., Limits of the Hydrodynamic No-Slip
Boundary Condition, Phys. Rev. Lett. 88, 106102 (2002).

51Read Jeans pl68.

52The reader might think it is only a mere detail, but if we wish to study nonequilibrium states with the
aid of molecular dynamics, this is one of the sources of headache.
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average. The number of collisions is proportional to nv/4 per unit time.>® Therefore, along
the tube of radius R and length L, the lost momentum per unit time must be

1
27 RL X mu x 1 (2.3.38)

This must balance with the force due to the pressure difference: 7 R2Ap. Therefore, we can
compute the average flow velocity

2RAp
— . 2.3.39
“ Lnmu ( )
The total mass flux J is given by
2R3A
J = nmunR* = b (2.3.40)

Lo

Notice that this decreases with an increase of temperature. Its intuitive reason should be
obvious to the reader.

Exercise 1. The boundary layer is the layer where the effect of the wall is significantly felt
by the flow velocity field. Estimate its thickness and argue that it is of the order of the mean
free path for the gas where the kinetic theory works (use the results in 2.3.7). O

Exercise 2. Discuss the pressure balance between the two vessels at different temperatures
connected by a very thin tube. O

Exercise 3. If there is no gas, obviously there should not be any flow nor any viscous drag.
Discuss how the gas viscosity behaves as a function of density. O

2.4 Boltzmann and Modern Kinetic Theory

2.4.1 Maxwell-Boltzmann distribution
In 1868 Boltzmann (24 years old; 1844-1906) extended Maxwell’s distribution theory to the

cases with external forces, and introduced the so-called Boltzmann factor e=V/*8T. Notice
that the probability of a microscopic state is explicitly defined by Boltzmann as the ratio of
the sojourn time of the system in that state and the total time of observation.
Exercise 1. Can the reader explain to her lay friend that the Boltzmann factor is indeed
plausible? [Consider the balance between the pressure and the force acting on the gas par-
ticles for an ideal gas.] O

Later (1879), Maxwell rederived the result in a much more general fashion; his mo-
tivation was to show that Boltzmann’s result was more general than was suggested by the
theoretical method used by Boltzmann applicable only to dilute gases. Maxwell realized that
the only needed assumption is that sooner or later all the phase points in an energy shell
is visited by the trajectory of the system (‘ergodicity’ in Boltzmann’s terminology —1.5.9).
To this end Maxwell introduced the concept of ensemble = a set of numerous systems that
are different only for their initial conditions (but with the same total energy).>
Exercise 2. Consider a single component monatomic gas consisting of N atoms of mass

531/2 comes from the fact that the one half of molecules are going away from the wall at any moment; the
other 1/2 factor comes from the average of the cos factor.
54 Notice that Maxwell introduced the concept of ensemble only to visualize probability.
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m. Let {q,p} denote collectively the phase coordinates of all the atoms. We wish to trace
Maxwell’s logic.
(1) Obtain the phase volume I'({¢}) of the state with total energy E and the spatial posi-
tions of atoms being in the volume element dg around {q} (this is the collective expression
of all the spatial coordinates). Assume that V' ({¢}) be the potential energy of interatomic
interactions.
(2) Suppose V is smaller than £ = 3N K, where K is the average kinetic energy per particle,
demonstrate that I'({g}) oc e7V/2K.0

By around 1870 it was clearly recognized that:
Thermal equilibrium condition in mechanics terms is the equality of average kinetic energy
per atom.

2.4.2 Why and how did Boltzmann reach statistical mechanics?

Since Boltzmann started his physicist career trying to demonstrate the second law mechan-
ically, it was natural for him to ask how the equilibrium Maxwell distribution was reached:
Maxwell demonstrated that once the Maxwell distribution was established, it did not change
(—2.3.3), but he did not show that the distribution was unique nor was reached from any
initial distribution.

To complete Maxwell’s program, Boltzmann decided to study the time evolution of the
probability density function f(g,p) of the one particle state of a (monatomic) molecule in a
gas specified by its position ¢ and momentum p (the probability measure on the ju-space®),
and proposed his famous equation, the Boltzmann equation (in 1872,°¢ —2.4.7). The equa-
tion has the following structure

0 0
8{ -+ 7285 = effect of binary collisions. (2.4.1)

Boltzmann introduced a quantity corresponding to (negative) entropy (per particle)
called H-function defined by

H = / Flog f dpdq, (2.4.2)

and demonstrated that dH/dt < 0 (= only for the Maxwell distribution, if f obeys the
Boltzmann equation. This assertion is called the H-theorem —2.4.10). In other words,
from any initial condition, the ultimate equilibrium distribution is reached that is given by
Maxwell’s distribution. Thus, Boltzmann believed that he could demonstrate the second law
of thermodynamics starting from mechanics.

Then, his colleague Loschmidt commented that mechanics was time-reversal symmetric,
so the asymmetry of the Boltzmann equation, if claimed as a result of pure mechanics, was a
paradox (the Loschmidt paradoz). Boltzmann realized that an extra assumption was needed,
and clearly understood the meaning of the second law: the time evolution of the system to
the most probable state. Now, he also realized that then, the most probable distribution had
to be the equilibrium distribution. This is the birth of equilibrium statistical mechanics: we
can study the statistical behavior of a macroscopic system without explicit use of mechanics
(—>2.4.11).

551 for ‘molecule’; T is actually for ‘gas.’
56This year, Yellowstone was established as the first NP; the Challenger expedition began (one year before
Maxwell’s Treatise on electromagnetism); G Elliot, Middlemarch.
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If the reader is interested in more details about the story outlined here, read the follow-
ing entries (2.4.4 -2.4.11).%7

2.4.3 Maxwell’s reaction to attempts to derive the second law

Maxwell introduced his demon (Mazwell’s demon) that can segregate molecules with more
kinetic energies (faster molecules). A container is divided into two chambers H and C by
a wall with a hole. The hole is equipped with a frictionless sliding door. The Demon sits
besides the door, watching the gas molecules in both chambers. When a molecule in H (resp.,
in C) whose speed is slower (resp., faster) than the average in H (resp., in C) comes to the
hole, he opens it and let it go into the other room. This way the chamber H becomes hotter
and C colder, apparently violating the second law.

From his point of view the second law is equivalent to a denial of our power to perform
the operation that the Demon can. “Hence, if the heat consists in the motion of its parts,
the separate parts which move must be so small that we cannot in any way lay hold of them
to stop them.”®® Thus, the second law cannot be a mere theorem of mechanics. Naturally,
Maxwell was not thrilled by the German/Austrian development.

2.4.4 Elementary derivation of Boltzmann’s equation: streaming term
The Maxwell distribution (—2.3.2) is the distribution of the velocity of a single particle.
Therefore, Boltzmann wished to study the single-body distribution function f(r,v,t), where
f(r,v,t)drdv is the probability of finding a particle whose state specified by its position 7
and velocity v in a 6-dimensional volume element dvdr centered at (r,v). That is, f is the
probability density on the p-space.®

If the particles do not interact with each other, then

0 0
ol tv o f=0 (2.4.3)

in the homogeneous space. The second term on the LHS describes the motion of the particle
‘flowing with the stream with velocity v,” so it is called the streaming term.
Exercise 1. This describes a ballistic motion. Its solution with the initial condition
f(r,v,0) = fo(r,v) reads f(r,v,t) = fo(r — vt,v). Check this statement. O
Exercise 2. This is the Liouville equation (—2.7.7) for a single body. O.

If the particle interact with other particles (if there are collisions), the above equation
is not true and we must write

0 o . (of
&f +v- 87]6 = <8t>col’ (2.4.4)

where the subscript col indicates the contribution of collisions. The reader should immedi-
ately realize that the streaming term does not contribute irreversibility at all.

57In these notes the Boltzmann equation will not be discussed in detail; this may be historically important,
and may still be relevant to gases, but we are much more interested in condensed phases, for which the
equation is irrelevant. Also it should be irrelevant to the foundation of statistical mechanics, because the
equation applies only to rather dilute gases.

58]J. C. Maxwell, Theory of Heat (Longmans, London 1871).

%9The ‘true’ p-space is spanned by the position coordinates and the momentum coordinates instead of
velocities.
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2.4.5 Two-body collision term
To obtain the collision term, we assume the following:
(1) There are only two-body collisions.
(2) “Stosszahlansatz”:% colliding particles are statistically uncorrelated.
(3) f does not change as a function of spatial position within the range of the particle-particle
interactions.
According to the assumption (2) the probability of collisions between the particles with
velocity v and velocity v’ around r may be written as nf(r,v)f(r, v’)dvdv'drdr, where n
is the number density of the particles.

Suppose the relative velocity of the two colliding particles (far before the collision) is
g, and the collision parameter is b. The collision parameter is the distance vector between
the two colliding particles projected to the subspace orthogonal to g. More precisely, let us
write the ith particle coordinates be (7;,v;). Then,

g = vy, (2.4.5)
b = (r,—71)(1—g9" /9%, (2.4.6)

where g = |g|. The number of particles coming with the collision parameter b per unit time
can be written as

2wbdbnf(ry, v, t)g, (2.4.7)

where b = |b|. Therefore, the expected number of collisions with the particle with velocity
v, per unit time experienced by the particle with velocity v; at r; may be expected to be

2mwbdb nf('rl, V1, t)f(’l"l, Vo, t)g dvldvgdrl. (248)

Here, we have used (3) to identify all the spatial coordinates in the density distribution
functions.

2.4.6 Contribution of collisions to time evolution

The above collision process describes the collision {vy,vs} — {v),v5}, where the primed
velocities after the collision are determined according to the energy and momentum con-
servation. Since mechanics is time reversal symmetric, there must be the collision process
{v, v} — {v1,v5} as well.®t Therefore, the expectation value of the number of collisions
that give velocity vy after collision must be given by

2rb'db'nf(rq, v, t) f(r1, vy, t) g dvidvadr,. (2.4.9)
Combining the above results, we may write
g _ / / !/ !/ / / /
5 dridvy, = n [ 270'db f(ry, v}, t)f(r1,v5,t)g dvidvydr,
col
— n/27rbdbf(r1,vl,t)f(rl,vg,t)gdvldvzdrl. (2.4.10)

Now, we use the equality

b'db g dv’dvydr’| = bdb g dvidvydry (2.4.11)

50hypothesis of collision numbers
61Here, more precisely, we use the detailed balance (—2.7.6).
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that holds thanks to Liouville’s theorem (—2.7.2) applied to the two-body phase volume.
Thus, we finally obtain

0
(8{) = n/27rbdbd'v2g [f(ry, v, 8) f(r1, v5,t) — f(ry,v1,t) f(r1,v9,1)]. (2.4.12)
col
After the collision the relative velocity changes its direction to the direction specified
by the azimuthal angle § measured from the direction of g = vy — v;.

27bdb = o(0)dQ, (2.4.13)

where €2 is the solid angle of the annule between 6 and 0+d6, and o () is called the differential
scattering cross section.%?

(g) = n/ademg [f(ry, v, 8) f(r1, v5,t) — f(ry,v1,t) f(r1,v9,1)]. (2.4.14)
col

2.4.7 Boltzmann equation
Thus, we have arrived at the Boltzmann equation

) B
S v f = n/ang [, 0 6) f (1, 0, 8) — f(r, v, 8) f(r, v, 8)] . (2.4.15)

Here, v; 4+ vy = v + v} (and the energy conservation law) must be satisfied when the inte-
gration is performed.

Exercise 1. If there is an external force field F', the streaming term (—2.4.4) must be
modified. Give a necessary modification and write down the most general Boltzmann equa-
tion allowing spatial nonuniform equilibrium distributions. Of course, the external field must
change spatially sufficiently gently to satisfy our assumption (3) in 2.4.5. 0.

A more careful (but still formal) derivation will be given later from the BBGKY hier-
archy (—2.7.10).

The Boltzmann equation is an equation for a one-body distribution function. The actual
system is an N (— oo) body system, so the justification of the Boltzmann equation is equiv-
alent to justification of the reduction of N body description to the single body description.
This has been accomplished by Lanford® for the hard core gas case for a very short time
(~ 1/4 of the mean free time) in the so-called Boltzmann-Grad limit: N — oo, Nd* — 1,
where d is the hard core diameter). That is, the reliability of the Boltzmann equation has
been demonstrated only for this microscopic time scale.

Remark. If the limit N — oo, Nd®> — 1 is considered, then the Enskog equation that
replaces the collision term of the Boltzmann equation with the one that takes into account
the spatial difference of the distribution at the scale of d is expected.® -5 O

62There are other definitions as well.

630 E Lanford, III, “Time evolution of large classical systems,” Lecture Notes in Physics 38, 1-111 (1975).

64The Enskog equation is known to be a good model even for liquid. For example, see T. Scopigno, R.
Di Leonardo, L. Comez, A. Q. R. Baron, D. Fioretto, and G. Ruocco, “ Hard-Sphere-like Dynamics in a
Non-Hard-Sphere Liquid,” Phys. Rev. Lett., 94, 155301 (2005).

65See a related paper: F Rezakhanlou, “A stochastic model associated with Enskog equation and its kinetic
limit,” Commun. Math. Phys. 232, 327-375 (2003).
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2.4.8 Collision invariants

Let ¢ be a function of single particle coordinates. Let us write (; be the quantity associated
with particle ¢ before the collision and ¢} after the collision. Suppose particles 1 and 2
undergo a collision. If

01+ Y2 = @) + @b, (2.4.16)

we say @ is a collision invariant.
The collision invariant, if continuous, must have the following form

0 =A+B-v+Cv? (2.4.17)
where A, C' are constants and B is a constant vector (actually, they can be functions of the

position 7). This is not very trivial to show.5
If ¢ is a collision invariant, then

I= /adevldvgggo(vl) [f(r1, 0], ) f(r1,v5,t) — f(r1,v1,t) f(r,v9,8)] =0.  (2.4.18)

This follows from the following identity that is valid for any function of the single particle
coordinates

1
I= 1 /Ude’lJ1dU29 (01 + @2 — 1L — p3) [f(r1, 0, 8) f(r1, 05, t) — f(ri,v1,0) f(r1, 09, 1)) -

(2.4.19)
Here, an abbreviation ¢}, = ¢(r}, p,), etc., is adopted.
A demonstration follows:
I = / 0dQv,dvs g (fo foy — Fon ) e, (2.4.20)
= /Uﬂmmmmgﬁmﬂm—ﬂmﬁsz (2.4.21)

Here, we have used the abbreviation f1y = f(r1,v1,t), etc. Now, we change the variable as
(v1,v2) — (v}, v)) to obtain (with the aid of (2.4.11))

I = /“MMMWQWWMU—hﬁmML (2.4.22)
N /““Mmm@ﬂﬂmﬂw—imﬂM¢é (2.4.23)

Combining all of them, we reach the desired result.

2.4.9 Local equilibrium distribution
A density distribution function satisfying

ary
((%)ml ~0 (2.4.24)

56 A proof can be found in C Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag,
New York, 1988), p74-78. If the reader accepts that there are only four additive constants of motion, the
equation (2.4.17) looks trivial, but here, we are actually demonstrating that the additive invariants are only
linear momenta and kinetic energy (in our case, we do not take into account of the angular momenta of the
particles).
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is called a local equilibrium distribution. A local equilibrium distribution function must have

the following form
logf=A+ B v+ Cv’ (2.4.25)

where A, C' are functions of spatial coordinates and B is a vector dependent only on the
spatial coordinates. Therefore, notice that a local equilibrium distribution is not generally a
stationary distribution function (cf., 5.1.8).

To demonstrate this, we demonstrate the following fundamental inequality

J = /ade’vlvaglogf(m,'vl,t) [f(r, v}, ) f(r1,vh,t) — f(ry,v1,t) f(ry,ve,1)] <0

(2.4.26)
for any density distribution f. Thanks to (2.4.19) we obtain (for the abbreviations see above

(2.4.22))
fofe

J = [ oddvidvs glog S (e = ) (2.4.27)

Let A = fayfi2)/ far fiz)- Then, this can further be rewritten as
J = [ odudvidvag (1= \)1og A i fe. (2.4.28)

Since (1 — A)log A < 0,57 we are done.

Thus, we have demonstrated that (2.4.24) implies that A = 1. That is, log f must be
an additive invariant of the collision. This concludes the demonstration of (2.4.25) (with the
aid of 2.4.8). That is, for a spatially uniform case, the Maxwell distribution (—2.3.2) is
the unique invariant solution of the (spatially uniform) Boltzmann equation.

Remark. Often the Boltzmann equation is approximated with finitely many choices of ve-
locity values instead of continuous velocities. If the Galileian invariance is violated as such
cases, the equation is not generally compatible with thermodynamics. See Cercignani.%®

2.4.10 H-theorem
We know that if there is no external force, the Maxwell distribution is the unique stationary
solution of the Boltzmann equation as can be seen from 2.4.9). Boltzmann’s original aim was
to show not only that this is the unique stationary state but also that any initial condition
would reach this state eventually.
To this end Boltzmann devised a Lyapunov function called H-function

H= /flogfdrd'v. (2.4.29)
Let us study its time evolution
dH of B of
e /(1 + log f)ad'rdv = /logf T drdv. (2.4.30)
The streaming term (—2.4.4) does not change H
dH of
— = /1 — | drd 2.4.31
(), = Joss (5, oroe 2431
0
= —/logf'v—fdrdv =0. (2.4.32)
or

57f(X) = (1 — ) log \ takes the unique maximum 0 at A\ = 1; it is convex upward.
68C. Cercignani, “Temperature, entropy, and kinetic theory,” J. Stat. Phys. 87, 1097-1109 (1997).
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The collision term does change H as we have just seen in (2.4.26)

dH
(dt) = /O'de’Uld’UQQIOg f(l) |:f(1l)f(2/) — f(l)f(Q)] < 0. (2433)
col
That is,
dH
— =0 2.4.34
dt = ( )

This vanishes if and only if log f is a sum of additive invariant as we have already seen in
2.4.9. That is, H is a Lyapunov function whose unique minimum is given by the Maxwell
distribution.

Thus, Boltzmann concluded that his equation describes the irreversible process whose
unique destination is the equilibrium state (for a mathematical statement see 2.4.13).

2.4.11 Boltzmann reaches S « log(Komplexionszahl).

Thus, Boltzmann thought he demonstrated the second law purely mechanically. Almost im-
mediately, his colleague Loschmidt® pointed out that without approximation time-reversal
symmetric mechanics could not conclude such an irreversible equation.

Boltzmann realized the probabilistic element had been smuggled into his argumen
and wrote a fully statistical paper:™' basically, he asserts that the mechanical content of the
second law was that the macroscopic state evolves to the direction that increases the number
of Komplexions = microscopic states compatible with the macroscopic state.

The most important conclusion is that the equilibrium state is the most probable macro-
scopic state allowed to the system, so it can be studied without explicit dynamical considera-
tion. This way, the study of nonequilibrium states receded from the main stage of statistical
mechanics.

Exercise 1. I wish you to trace Boltzmann’s logic, answering the following questions.

Suppose there are N gas particles. Let w, be the number of particles with the energy
between (n — 1)e and ne (¢ > 0).

(1) Obtain the number of Komplexions (ignoring the energy constraint), and (with the aid
of Stirling’s formula) show that its maximization condition is equivalent to the minimization
condition of

t70

M =" w;logw;. (2.4.35)

(2) Write w; = w(x)e and simultaneously take the n — oo and € — 0 limits, maintaining
x = ne finite. Show that minimizing M is equivalent to minimizing

Afz/w@ﬂ%w@M$ (2.4.36)

(3) We should not ignore the constraints that the total number of particles is NV and the total
energy is K. Under this condition, derive Maxwell’s distribution in 3-space by minimizing
M'. [In the original paper Boltzmann first reduced the problem to a single particle problem,

69 About him and his relation to Boltzmann see the book by Lindley.

"0This will be discussed when we rederive the Boltzmann equation from the BBGKY hierarchy (—2.7.10).

" «Uber der Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wirmetheorie und der
Warscheinlichkeitsrechnung respective den Sétzen iiber des Wéarmegleichgewicht,” Wiener Ber. 76, 373-
435 (1877) [On the relation between the second principle of mechanical heat theory and probability theory
with respect to theorems of thermal equilibrium].
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and wrote w(x) as f(u,v,w), where u, v, w are three components of the velocity. Also
Boltzmann understands w to be the probability density distribution function.]

(4) Now, Boltzmann realized that M’ gives the entropy of the ideal gas. Show this.

Based on this finding, he proposed

S o log (Number of Komplexions). (2.4.37)

At the end of this same paper he says, although the relation could be demonstrated rigor-
ously (sic) with the aid of kinetic gas theory, he cannot do so for other phases. However, he
also claims that the relation is likely. O

2.4.12 What is statistical mechanics?: Fundamental problem
We have just witnessed the moment of the birth of statistical mechanics in 2.4.11.

Since the fundamental assumption is that any macroscopic system is governed by me-
chanics, in principle, we only need mechanics to understand its state. The essence of statis-
tical mechanics is to get rid of mechanic with the aid of a statistical principle. In modern
terms, what Boltzmann found is: the probability of a state with a given energy is propor-
tional to the number of microscopic states. That is, all the microscopic states with the same
energy have the same statistical weight.

In this sense nonequilibrium statistical mechanics general enough to be a counterpart of
equilibrium statistical mechanics does not yet exist. The fundamental problem of nonequi-
librium statistical mechanics is to find a statistical principle as general as possible to remove
explicit mechanical considerations.

Equilibrium thermodynamics is the key to establish a statistical principle as we see in
Gibbs’s work (—2.1.5) or in Einstein’s work (—2.5.3). This tells us that if one wishes
to establish nonequilibrium statistical mechanics, one must first establish a nonequilibrium
phenomenology. If there is no general phenomenological framework, there is no general
statistical framework. Therefore, the only thing those who are interested in extending the
realm of statistical mechanic must do at present is to try to find such a phenomenological
framework. ™

2.4.13 What did actually Boltzmann demonstrate?

In the course of replying to Loschmitd’s criticism Boltzmann realized that the choice of the
initial condition is very crucial. Irreversibility is not derived but produced or smuggled into
the result through the statistical assumption that the correlation produced by collision is
always ignored. This point will be much clearer to the reader later (—2.7.10).

Logically speaking, even without such extra assumption, since we can justify the Boltz-
mann equation only for a very short time (—2.4.7), we are not entitled to discuss any long
time asymptotic behavior with the aid of the Boltzmann equation. Therefore, demonstration
of irreversibility from mechanics is out of question. Only when we accept the Boltzmann
equation as a model of the gas dynamics can we discuss the irreversibility of gases in terms
of the Boltzmann equation.

"2Certainly, the lecturer has been trying this; Y Oono and M Paniconi, “Steady state thermodynamics,”
Prog. Theor. Phys. Suppl. 130, 29-44 (1998). See also T. Hatano and S. Sasa, “Steady-State Thermody-
namics of Langevin Systems,” Phys. Rev. Lett. 86, 346 (2001). At least the generalized second law seems
experimentally verified very recently, E. Trepagnier, C. Jarzynski, F. Ritort, G. E. Crooks, C. Bustamante,
and J. Liphardt, “Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality,” Proc. Nat.
Acad. Sci., 101, 15038 (2004).
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Even in this case the H-theorem can imply something meaningful only when the Boltz-
mann equation has a solution. The initial value problem of the Boltzmann equation is so far
proved to be solvable only when the initial distribution is close to the equilibrium distribu-
tion. Therefore, even under the assumption that Boltzmann equation can describe a system,
we can say that the irreversible behavior is demonstrated only for near equilibrium states.

2.5 Einstein’s Equilibrium Statistical Mechanics

It is well known that in 1902-4 Einstein wrote three papers to found thermodynamics on
mechanics.”® These are virtually his first papers. From the physicist’s point of view his
approach, albeit not polished, may be more appealing than Gibbs’s approach. As the reader
will realize, the current standard way of teaching statistical mechanics (as can be seen in
Kubo’s problem book) is closer to Einstein’s logic (although without one very crucial physics
as will be seen) than Gibbs’ supposedly orthodox framework.

Let us see an elementary introduction to equilibrium statistical mechanics roughly fol-
lowing Einstein.™

2.5.1 Einstein’s statistical mechanics: microcanonical ensemble as starting point
Einstein’s starting point is the principle of equal probability on the energy shell. In the first
paper Einstein ‘derives’ this with the aid of Liouville’s theorem (—2.7.2). In the second
paper Einstein ‘derives’ this from the generalized Liouville equation (—3.5.1) and the con-
dition that only energy is the constant of motion.” His interpretation of probability is the
relative sojourn time: the probability of a system being in a phase volume dI" & (time spent
in the phase volume). That is, he is requiring that the phase space average is identical to
the time average (this is the ergodic hypothesis due to Boltzmann).™

In short, Einstein assumes that the microscopic states (corresponding to each phase
point) of an isolated system in equilibrium are all equally probable. Such a set of states with
uniform probability is called a microcanonical ensemble.”

2.5.2 Introduction of canonical ensemble = canonical measure
To study a system at constant temperature, Einstein regards the total system = system +
thermostat as an isolated system in equilibrium.

Let H be the system Hamiltonian and Hp the Hamiltonian of the thermostat (= heat
bath). Since we consider a macroscopic system, we ignore the interaction energy.” Let

"3 Ann. Phys. 9 417 (1902); “Eine Theorie der Grundlagen der Thermodynamik,” 11, 170 (1903) and 14,
354 (1904); One of its culminations is his Brownian motion paper —3.1.3.

"This is the closest to the best introduction, although the ergodicity requirement must be weakened
considerably (—1.5.10).

"5 As to the impossibility of deriving the principle from mechanics, see 2.6.2.

"6Ergodicity is neither necessary nor sufficient condition for statistical mechanics to hold. See 1.5.9~.
Also we now know that to interpret macroscopic observables as time averaged quantities is not a good way
of understanding equilibrium statistical mechanics.

"It is much better to say that the set of microscopic states is equipped with a microcanonical measure
(or at least microcanonical distribution).

"8This is allowed if the molecular interaction potentials decays faster than 1/r?.
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Q(E)dE be the number of microstates for the system with energy in the energy shell E ~
E + dFE, and Qr(F) the analogous quantity for the thermostat. Then, the the probability
p(E) of the system energy E to be in the energy shell” is proportional to

W(EYWr(Ey— E) =W(E)explogWr(Ey — E), (2.5.1)

where Fj is the total energy of the system + heat bath. To evaluate the second factor we
Taylor-expand the exponent as

d
0

Thermodynamically, we know that F is proportional to the size of the thermostat, and that
log Wy is bounded by at most N log N,®° so the higher order derivatives are much smaller
than order unity. Therefore, we may write

p(E) oc W(E)e ™ PE, (2.5.3)

where 5 = dlog Wr(Ey)/dEy is a constant determined by the thermostat. We can identify
it with 1/© of Gibbs or 1/kgT, if we refer to the ideal gas. This is the canonical ensemble
defined by Gibbs (—2.1.2).8!

Exercise 1. Let us consider a system which is enclosed in a diathermal freely deformable
membrane and which is placed in a large reservoir system. The whole system is isolated in
a rigid container. Find the simultaneous distribution function of the energy and the volume
of the system, mimicking Einstein. O

2.5.3 Relation between thermodynamics and statistical mechanics

An interesting point is beyond 2.5.2. Gibbs ‘did not derived’ the relation between ther-
modynamics and statistical mechanics; he ‘demonstrated’ a parallelism (—2.1.5): ‘A’ =
—kgT log Z was shown to be consistent with the Helmholtz free energy A. In contrast, Ein-
stein ‘derived” A = —kgT'log Z.

To make a contact between statistical mechanics and thermodynamics we need two
ingredients. One is the identification of internal energy with the expectation value of the
system energy. This is straightforward and not at all controversial. Since thermodynamics
discusses heat, we must have a certain interpretation of heat or related quantities in terms
of mechanical quantities (in terms of microscopic quantities); the reader can equivalently say
that we need a microscopic interpretation of entropy.

In thermodynamics heat cannot be defined without the concept of adiabatic walls.
Therefore, Einstein proposes a mechanical interpretation of adiabaticity.

Suppose the system Hamiltonian contains parameters {\} that can be controlled exter-
nally (these correspond to a; of Gibbs in 2.1.3). The total change of energy may be written

as
0E oE

i

™More precisely, p(E)dE is the probability we discuss.

80Tf we properly take into account the indistinguishability of identical particles, this is bounded by N.

81However, Gibbs noted (on p183) that a small portion of a large microcanonical ensemble is canonical;
It is likely that Gibbs knew everything Einstein wrote but refrained from writing ‘theoretical physics-style
hand-waving arguments.’

78



where y; are the canonical coordinates. The first sum is the change of energy when the control
parameters are varied, so this can be done adiabatically. Therefore, Einstein concludes that

OFE
dQ = Z a—yidyi =0 (2.5.5)

is the adiabatic condition.®* Then, this d@) must be the heat, and the first term in (2.5.4)
must be the work.®3

2.5.4 Derivation of A = —kgTlog Z
Let P = e PE be the canonical distribution (—2.5.2), where ¢ is determined by the nor-
malization condition. Let us vary the temperature (i.e., 5) and {\}:

0=10 / Pdy = / dy [5c _ B3 — 5255&] P (2.5.6)

Using the microscopic expression of heat in (2.5.5), we may rewrite this as (we will write

(Q) again as Q)
BdQ = —de + d(B(E)). (2.5.7)

We identify (E) with the internal energy F, so (let us ignore the constant kg) according to
thermodynamics

E-T
dS = 4dQ = d ( - C) (2.5.8)
or dc = d(A/T). Integrating this and ignoring the arbitrary integration constant,*! we arrive
at
A= —kgTlogZ. (2.5.9)

2.5.5 How satisfactory is Einstein’s derivation of equilibrium statistical mechan-
ics?
The crucial point of Einstein’s approach 2.5.4 is his mechanical interpretation of adiabatic-
ity in 2.5.3. Certainly, the wall satisfying Einstein’s requirement is adiabatic. However,
as can be seen from its consequent definition of mechanical work, the characterization of
adiabaticity is still excessively microscopic. As we will see later (—2.7.19), the conclusion
derived from this interpretation is still contradictory to thermodynamics.

We will have to conclude (—2.7.18) that there is still a grave incompleteness in our
understanding of the “kind of motion we call heat.”

82We should regard this equivalence as the fundamental identification. Notice the vital importance of the
concept of adiabatic condition.

83The splitting (2.5.4) is actually not required in Einstein’s derivation of A = —kgT log Z. What we need
is that inside (2.5.6) dF is the work part of the total energy change. No explicit form of heat as (2.5.5) is
required.

84This can be set zero by appropriately choosing the origin of energy.
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2.5.6 What can we learn from history?

(1) Initially, they wished to understand thermodynamics in terms of mechanics. However,
Boltzmann clearly realized that no truly dynamical study was needed to understand thermo-
dynamic equilibrium (—2.4.2). This line was perfected by Einstein and Gibbs as we have
seen in 2.1.4 and up to 2.5.4 of this section.

(2) As is clear from the preface of Gibbs’ book, he thought mechanics was much better
established than thermodynamics that is “an approximate empirical result.” However, what
actually Gibbs did is to find a system compatible with mechanics and thermodynamics si-
multaneously. It is clear that even though Gibbs claimed mechanics was more fundamental
(—2.1.1), without thermodynamics he could not build his statistical theory.

This is clearer from Einstein’s derivation of equilibrium statistical mechanics with the

aid of thermodynamics (—2.5.3, 2.5.4). The subsequent history eloquently tells us that
mechanics was less reliable than thermodynamics (cf. 2.7.15). Thus, it is fair to say that
although the founding fathers of statistical thermodynamics wished to construct the whole
theory exclusively on mechanics, they failed (cf. 2.4.2). This failure was actually an impetus
for Boltzmann’s statistical mechanics.
(3) The success of equilibrium statistical mechanics that is virtually independent of mechan-
ics left many basic questions untouched or at best incompletely answered. For example,
no one has been successful in computing thermodynamic entropy change due to irreversible
processes using mechanics except for dilute gases with the aid of the Boltzmann equation
(—2.4.10) (if we could trust it —2.4.7). We do not have a good microscopic expression for
entropy; Einstein’s expression in 2.5.1 is hardly usable.

There are many physicists who confess that they have really understood entropy after
learning statistical mechanics. However, as we have seen, we still do not have a good under-
standing of entropy. Only those who do not carefully think about entropy may be able to
feel that statistical mechanics really makes us understand entropy.

2.6 Equilibrium Statistical Thermodynamics — Brief
Summary

This section summarizes important rudiments of equilibrium statistical thermodynamics as
we now know it. However, the reader should not regard this section as a substitute for an
introduction to the topic. The emphasis here is on the topics more or less directly related to
fluctuations and dynamics. As already seen, to understand statistical mechanics, the reader
needs good understanding of thermodynamics. Recommended references are repeated here.

Recommended thermodynamics references:®
H B Callen, Thermodynamics (Wiley, 1960)%°
R Kubo, Thermodynamics (North-Holland, original 1951).

85In Japanese, H. Tasaki, Thermodynamics (Baifu-kan, 2002) is recommended; better than the books
mentioned here.

86Do NOT confuse this with H B Callen, Thermodynamics and an introduction to thermostatistics (Wiley,
1985).
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Recommended statistical mechanics references:

R Kubo, Statistical Mechanics (North-Holland, original 1951),

Landau-Lifshitz, Statistical Mechanics (Pergamon),

M Toda, R Kubo, and N Saito, Statistical Physics I (Springer Series in Solid-State Sci-
ence 30, 1985)%7

2.6.1 Fundamental postulate of statistical description

The assumption that mechanical description is the most detailed description of any system
is the most fundamental assumption of statistical mechanics.

Discussion 1. If one can demonstrate that the assumption is true, then it is no more
an assumption. Try to demonstrate that the above assumption is actually true. (Can the
reader demonstrate that a piece of chalk is governed by mechanics, say, quantum mechan-
ics?) Clearly recognize its metaphysical nature (= beyond any empirical demonstration).0

2.6.2 Principle of equal probability
If we could derive the fundamental relation between statistical mechanics and thermody-
namics stated at the beginning of 2.1 purely in terms of mechanics, the microscopic world
view could be said to be complete. However, this dream has never come true; recall that
what Gibbs really showed was only that statistical mechanics is apparently consistent with
thermodynamics (—2.1.4, 2.1.5). Actually, this dream cannot in principle come true, be-
cause the equation of motion is not enough to describe the mechanical motion of any system;
we need an initial condition that is not governed by the equation of motion. Recall that
Boltzmann himself recognized the importance of initial conditions in ‘demonstrating’ the
second law (—2.4.2, 2.7.10).

Thus, we need an extra assumption that is independent of mechanics laws (cf., 2.4.12).
Usually, it is the principle of equal probability for an isolated mechanical system:

On a constant energy surface H = FE, the a priori probability distribution is
uniform with respect to the Liouville measure, restricted to H = F.

Here, H is the system Hamiltonian, and the Liouville measure means the phase volume
(—2.7.2). This principle means that the equilibrium probability of a classical state with
energy FE is proportional to

d(H — E)dqdp. (2.6.1)

Here, dqdp is, as usual in these notes, a short-hand notation of []; d¢;dp;, where ¢ runs over
all the degrees of freedom of the system (canonical coordinate pairs).
Exercise 1. Let do be the surface element of the constant energy surface. Then, demonstrate
that p
o
dqdp) X ————, 2.6.2

where pg is the uniform probability measure (i.e., the microcanonical measure; for a measure
in general see Appendix to Chapter 1) on the constant energy surface, and grad is taken
with respect to the phase coordinates. O

If a system is not isolated but in contact with a heat bath at constant temperature T,

87Not Statistical Physics II.
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the Gibbs postulate is that the equilibrium probability for the system to be in the phase
volume element dgdp is given by®®

I
7N PH dadp, (2.6.3)

where = 1/kgT and the canonical partition function Z is defined by

1
Z=+ / e=PHT, (2.6.4)
with dI' = dqdp being the volume element of the phase space.

The relation between the canonical and the microcanonical ensembles is discussed in
2.5.2, but rigorizing it, even if possible, is not trivial, so it is not a bad attitude to accept
this as another principle.®’

We must clearly recognize that these postulates transcend mechanics (any mechanics);
they dictate the way we observe Nature and even transcend physics.”®

However, some authors, especially authors of popular statistical mechanics textbooks
(e.g., Huang), tend to assert, explicitly or implicitly, that ‘from a purely logical point of view
there is no room for an independent postulate.” For the reader of this notes, it should be clear
that this is a statement due to a fundamental misunderstanding of nature of mechanics.
Remark. However, there is a serious attempt to derive the canonical distribution from
quantum mechanics by Tasaki.”'0

2.6.3 Postulate about expression of free energy.
Usually, we say the principle of equal probability (—2.6.2) is the fundamental postulate,
and tend to regard it is the only postulate. However, the purpose of statistical mechanics is
to study macroscopic properties of matter in terms of microscopic states, so we must spec-
ify how to interpret expectation values obtained by statistical mechanics. First of all, the
identification of the expectation value of energy with the internal energy in thermodynamics
must be required. This is, so to speak, the relation corresponding to the first law of thermo-
dynamics.”?

We need a relation between statistical mechanics and the aspect of thermodynamics
related to the second law as well. As we have learned in 2.5.3, Einstein obtained this

88 As was noted in 2.5.2 this can be derived from the microcanonical ensemble in an asymptotic sense.
Cf., the contraction principle 1.6.11.

89There is an approach from the so-called zeroth law of thermodynamics (i.e., the transitivity of equilibrium
relations): A Frigeiro, V Gorini and M Verri, “The zeroth law of thermodynamics,” Physica 137A 573-602
(1986). See 2.7.19.

9Tf we accept quantum mechanics, the uncertainty principle seems to suggest that épdg > R is not
compatible with the states confined on a Lebesgue measure zero set (i.e., not compatible with a measure
not absolutely continuous with respect to the Riemann volume of the phase space). Thus, the absolute
continuity of the invariant measure with respect to the Riemann volume seems to be a consequence of
quantum mechanics. This sounds like a very appealing proposal, but we must recall the meaning of the
uncertainty principle: if p and ¢ are measured for a given state of a particle, the product of the variance of
observed p and that of ¢ cannot be smaller than some positive number. This does not mean anything about
the nature of the support of the distribution of p; it could be an everywhere dense measure zero set.

91H Tasaki, “From quantum dynamics to the canonical distribution: general picture and a rigorous exam-
ple,” Phys. Rev. Lett. 80, 1373-1376 (1998).

92In the accompanying equilibrium lecture notes (section 1.2), it is clearly stated that we need two prin-
ciples: interpretation and statistical principles to establish statistical mechanics.
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relation through microscopic identification of heat. This is based on an interpretation of
adiabatic processes. This interpretation is not without problems (—2.7.18) and the sub-
sequent derivation is not easily regorizable, either. Therefore, mathematically, it is safe to
postulate the outcome: the Helmholtz free energy in thermodynamics is written in terms of
the canonical partition function as

A= —kgTlog Z. (2.6.5)

2.6.4 Quantum equilibrium statistical mechanics
If we interpret that the internal energy is the average of the eigenvalues of the system
Hamiltonian, we readily arrive at a quantum counterpart of (2.6.4):

7 =Tre PH, (2.6.6)

This is, strictly speaking, a postulate (with (2.6.5)).

To obtain the relation between this and (2.6.4), perhaps the most elegant method is to
use the path integral expression of (2.6.6) (see Feynman p77). A more elementary method
may be as in Landau-Lifshitz. The correction should start with A2, because i always appears
with ¢ in quantum mechanics.

Exercise 1. A > Aassic! (Feynman and Landau give opposite inequalities!) O

2.6.5 Laplace transformation vs. Legendre transformation
We know that the Gibbs free energy G is obtained from A as”

G = ir‘}f(A +pV)=— sgp((—p)V —A). (2.6.7)

This is called Legendre transformation.”* Recall that A is the mazimum work we can gain
from the system (or the minimum work we need to make a desired change in the system)
under constant temperature.”> Now, G is the maximum work we can gain from the system
under constant temperature and pressure.

The Gibbs free energy is given by the pressure ensemble:

G = —kgTlog~(p), (2.6.8)

where

W) = [ Z(V)e VT ay, (2.6.9)

Here, Z (V) is the canonical partition function with fixed volume V. Thus, we see that in
statistical thermodynamics Legendre transformation corresponds to Laplace transformation.
Let us see why there is such a relation: (2.6.9) can be written as

+(p) = / AV eV —A)/kET (2.6.10)

9sup implies supremum = the smallest value that is not smaller than any values allowed to the set; inf

implies infimum = the largest value that is not larger than any values allowed to the set. The open interval
(a,b) does not have any maximum or minimum, but its infimum is a¢ and supremum is b.

9Large deviation theorists call it the Legendre-Fenchel transformation.

9 Never forget this constant temperature condition. The same should be true for AG; never forget the
constancy of T' and p.
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The integrand is dominated by its maximum value, so we may approximate this as

,.)/(p) ~ esupv(fprA)/kBT _ efinfv(pVJrA)/kBT' (2611)

Taking the logarithm of this formula, we obtain (2.6.7).

2.6.6 Laplace-Legendre correspondence: summary and practice

The correspondence between Laplace transformation in statistical mechanics and Legendre
transformation in thermodynamics is quite a general relation that may be summarized in
the following commutative diagram:

J=—kpTlog Q(x)
>

J Q(x)

ng le

K=—kpTlog R(X)
>

K =inf,(J + zX) R(X) = [dx Q(z)e *X/ksT

Here, Lg implies the Legendre transformation, and Lp implies the Laplace transformation.
A practical way to find an appropriate partition function for a given thermodynamic
potential may be as follows: Let us take G as an example. We know A = G — pV and
Z = e P4 s0 Z(V) = e PG PY) where we clearly recognize that Z is under a fixed V.
Therefore, formally, Z(V)e PPV = =A% but this must be the result of the maximum term
approximation of the integral v(p) = [ dV Z(V)e PPV. We have obtained (2.6.9).
Exercise 1. If the system is connected not only to a heat bath but to a chemostat, the
appropriate thermodynamic potential is obtained by the following Legendre transformation

q= i]r\lff(G — puN) = —sup(uN — G). (2.6.12)
N

(1) What is the physical (thermodynamic) meaning of ¢7
(2) Construct an appropriate partition function (which is called the grand (canonical) parti-
tion function). O
Exercise 2. We wish to study a magnet under constant magnetic field. What is a conve-
nient partition function to study the system statistical mechanically? O
Exercise 3. The Helmholtz free energy A is obtained by a Legendre transformation from
the internal energy E. How can one understand the relation between A and the canonical
partition function with the aid of the above commutative diagram? O
Exercise 4. Let us consider an ideal rubber band? whose number of microscopic states is
given by N(L) when its length is L. The first law may be written as dE = TdS + FdL,
where F'is the tensile force. Under a constant force we wish to obtain the average length of
the rubber band. Construct the most convenient partition function. O

We will learn that large deviation theory in probability theory is a closely related topic
(—2.5). If the reader knows conver analysis, she would immediately realize that statistical
mechanics is an elementary application of large deviation theory.

9% Here, ‘ideal’ means that the total energy of the band does not depend on its length (just as the energy
of an ideal gas does not depend on its volume). We can imagine an ideal rubber band as a very flexible
polymer chain. Can the reader demonstrate that under an adiabatic condition relaxing the band decreases
its temperature?
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2.6.7 Ensemble equivalence is always correct in the thermodynamic limit
There are numerous ensembles, and it is practically important to choose the most conve-
nient one when we study a particular system. However, the choice is strictly a matter of
convenience and the obtained thermodynamics is independent of the choice of the ensemble.
This is called the equivalence of ensembles.

The precise meaning of the equivalence of ensembles is:
In the thermodynamic limit (or for sufficiently large N) any thermodynamic observable is
obtained correctly (up to log N correction to the extensive quantities; log N/N correction to
the intensive quantities) irrespective of the ensemble used to compute it.

For a demonstration and details read 1.8.16-1.8.18 in IESM.

2.6.8 Orthodicity

Gibbs realized (cf. 2.1.1) that the ensembles that are compatible with thermodynamics are
not unique. We learn in elementary statistical mechanics that in the thermodynamic limit
microcanonical, canonical, and grand canonical ensembles all give the same thermodynamics.
Thus, their weighted averages are also compatible with thermodynamics: there are infinitely
many ensembles that are compatible with thermodynamics.

Boltzmann posed the question: when can an ensemble = stationary probability distri-
bution on the phase space (= invariant measure, we will come back to this later —2.7.4)
be interpreted as a macroscopic state of a system governed by equilibrium thermodynamics?
This problem is called the orthodicity problem, because Boltzmann called such ensembles
orthodic ensembles.

We do not know what characterizes ‘orthodicity’; the problem is widely open.?”

97The problem is stressed by G Gallavotti, Statistical Mechanics, a short treatise (Springer, 1999). ‘Com-
plete’ understanding of this question could reveal itself equivalent to the dynamical foundation of thermody-
namics: the very problem that one is hoping to circumvent by deciding to only “build a mechanical model
of thermodynamics, i.e., an orthodic ensemble.”
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Appendix: Convex Analysis

The standard textbook is:
R. T. Rockafeller, Convexr Analysis (Princeton UP 1970)%

2.A.1 Convex set and convex hull
A subset C' of R is a convex set, if

reCyeC=(1-Nz+rxyeC (2.A.1)

for any A € [0, 1].

If A, B C R" are convex, then AN B is convex.

The convex hull of a set A C R" is the smallest convex set containing A, and is denoted
by convA.

Let xq, -+, 2, € R". The convex hull of the finite set {z1,---,x,} is called the convex
combination of the points in the set, and may be written as {\jx1+- - -+ A2y [ AN+ + A, =
1A >0}

Exercise 1. Let C' be a convex set. Then, the convex combination of any n points in C is
contained in C. The converse also holds.O0

Exercise 2. convA contains all the convex combination of the elements of A. O

Exercise 3. If A and B are convex, then {z +y|z € A,y € B} is convex. O

2.A.2 Supporting hyperplane and supporting half space

Let C be an open convex set in R".'% If there is an affine set M such that CN M = @, then
there is a hyperplane H containing M such that C is contained on one side of H. This is
the Hahn-Banach theorem.

Let C' be a closed convex set. Then, it is a common set of all the closed half spaces
containing C.1%' This should be intuitively obvious.

A hyperplane H is called a supporting hyperplane of a convex set C if the open kernel
of C' is contained in one side of this hyperplane and H N C # () (that is, if H is ‘touching
C"). The closed half space defined by a supporting hyperplane and containing C' is called a
supporting half space.

2.A.3 Epigraph and convex function
Let f:S(C R") — [—00,+00].19 The epigraph of f denoted by epif is defined as

epif = {(z,p) [z € S, p > f(2)}, (2.A.2)

A function on S is a convex function, if epif is a convex set. A convex function f on S is
regarded as a convex function on R" by setting f(z) = +oo for x ¢ S. Therefore, here,
following Rockafeller, we suppress the domain of a convex function.

9reprinted as a book in the series Princeton Landmarks in Mathematics in 1997.

99This can be any affine space. An affine space is a space containing the line passing through any pair of
the points in it.

10T assert this in the general affine space, the openness of the set must be more carefully defined. See
Rockafeller p44.

101R ockafeller, Theorem 11.5.

102Here, 400 are allowed as the values of f.
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Exercise 1. Let f; and f, be convex. Then f; + f5 is convex. O
Exercise 2. Let f : S — R be convex and ¢ : R — R be a non-decreasing function. Then,
po fis convex. O.

2.A.4 Bottom.'® Let F be a subset of R"™!, and S be its projection to R". The bottom
of F' over S denoted by botF is a function on S defined as

bot, F' = botF(z) = inf{u|(z,n) € F,x € S} (2.A.3)

If f is a convex function, then
f(z) = bot,(epif). (2.A.4)
The convex hull of a function g denoted by convg is a function defined by

convg(x) = bot,(conv(epig)). (2.A.5)

Exercise 1. Let {f;} be a family of convex functions. Then, f = sup, f; is a convex function.
O

2.A.5 Convex function is continuous
Let us consider a typical case (proper convex function): f is a proper convex function, if it
is ?0 4ﬁnite convex function on an open domain C' that is convex. Then, f is continuous on
C.

To demonstrate this, first we show that f is lower semicontinuous: f is lower semicon-
tinuous at x, if liminf, ., f(y) = f(z).

The closure of a function f, denoted as clf, is defined by

cLf(z) = bot, ([epif]), (2.A.6)

where [ | denotes the closure of the set. It is easy to see that clf is lower semicontinuous.

If f is as assumed above (proper convex function), then on C' clf = f, because epif is
a closed set. Therefore, f is lower semicontinuous.!%

The remaining thing is to demonstrate that for any o {z| f(z) < a} is an open set.
Then, f is upper semicontinuous, so f must be continuous. To show the closedness of
{z| f(z) > a} we note that the common set of epif and {(z,u)|u > a} is a closed set.
Therefore, its complement must be open.

Remark. Actually, a convex function is Lipschitz continuous on a closed bounded set: f
is Lipschitz continuous on any closed bounded subset in the domain of f.1% Notice that
Lipschitzian implies uniform continuity as well. O.

103This terminology is not generally used, but is convenient.

104For a precise statement see Rockafeller Theorem 10.1.

1051f you wish to have a formal proof, see Rockafeller Theorem 7.1.

106Rockafeller Theorem 10.4; The basic idea of the proof is as follows: Let S be a closed set in the open
kernel of the domain of f. Then, we can find € > 0 such that for any e ball B .S + B is again in the domain.
Let z,y € S and take z on the small extension of the segment connecting x to y: z =y + e(y — x)/|y — x|
which is in some S + B. Since f is convex on this S + B, we have

f(z) = f(=z)

This inequality is valid for any x and y in S. Since f is bounded on S + B, this implies the Lipschitz
continuity of f on S.
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2.A.6 Pointwise convergence preserves convexity
Let {f:} be a sequence of finite convex functions on a relative open convex set C, and is
pointwise convergent on a dense subset C’. Then, the sequence converges pointwisely on C
to a convex function.1%”

We first note that on any closed subset S of C, the set {f;} is equi-Lipschitzian:'%® that
is, we can find o > 0 such that

[fi(x) = fi(y)] < alz -y (2.A.7)

for any x,y € S. This follows from f = sup, f; majorizing all the functions is convex, and
g(x) = bot,{conv(Uepif;)} minorizing all the functions is also convex.

Now, we make an ¢/3a net N of S (that is, any point of S is within ¢/3« of N). Then,
thanks to the equi-Lipschitzian nature of {f;}, for any x € S and z € C’ within €/3« of

|fi(x) = f5(@)| < |fi(2) = [i(2) |+ fi(2) = f3(2) [+ f3(2) = fi (@) < 2€/3+[fi(2) = [3(2)]. (2.A.8)

By assumption we may find & € IN such that |fi(z) — f;(2)| < ¢/3 for i,j > k. Therefore,
for each x {f;} is a Cauchy sequence, so {f;} converges on C. Clearly, this convergence is
uniform on S. The convexity inequality is preserved, so the limit is convex.

Remark. It should be clear from this that if { f;} is a sequence of convex functions majorized
by a bounded function on a relatively open convex set C', then we may choose a uniformly
converging subsequence to a convex function on closed bounded subsets of C'.1%

2.A.7 One-sided differentiability
The one-sided directional derivative of f at x in the direction of y is defined as

flx+M\y) — f(x)

f(x3y) = lim 3 : (2.A.9)
if it exists. The two-sided directional derivative exists if and only if
fxy) = —f'(z;—y). (2.A.10)
Notice that if f is differentiable, then!'?
f(ziy) = Vi) -y. (2.A.11)
For a convex function, the one-sided derivative exists in its domain everywhere, and
—f'(@;—y) < [(x5y) (2.A.12)

for all 3.1t
To show the existence everywhere, we first note that the ratio defining the directional
derivative is a convex function of y. Let h(y) = f(x +y) — f(x). Then, we may write

flx+Xy) — f(z)
)

= A"'h(A\y) = bot, (A" epih). (2.A.13)

107Rockafeller Theorem 10.8.
108Rockafeller Theorem10.6.
109Rockafeller Theorem 10.9.
10We do not discuss subgradient, so V always implies the usual gradient.
H1Rockafeller Theorem 23.1.
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Since epih contains the origin, A\~!epih!!? is an increasing set as A — 0. This implies that
A~h()\y) is monotone decreasing for any y as A — 0. This is obviously bounded from
below,'*? so the directional derivative exists everywhere for any v.

Notice that f’(z;y) is a convex function of y, and by definition f’(z;0) = 0. Therefore,

1 1

3/ (@ =y) + 5 f (@) 2 0. (2.A.14)
This is (2.A.12).

Exercise 1. Let f be a bounded convex function on a closed interval. Let us write its right
derivative as f/ and the left derivative f’.'** Then, for any interior point of the interval

21 < T < 79, we have!l®

Fi(z) < fl@) < fila) < fL(z). (2.A.15)
Moreover,

ll\r"%f—/ﬁ-(z) :f_/,_(%), ll}{ltf—,f—(z) :f,_(l’), (2.A.16)

lim f(2) = fi (), lim f2(2) = f2(2). (2.A.17)
O

2.A.8 Differentiability except on null set

The fundamental theorem of the gradient of a convex function is as follows:!
Let f be a bounded convex function on a bounded closed set C' (i.e., a proper convex func-
tion). Then, f is differentiable on the set C" C C with C'\ C” being a null set. Furthermore,
V f is continuous on C’.

The basic assertion is that for any vector y the directional derivative exists on C” C C'
with C\C” being a null set.!” In essence all the assertions are reduced to the one-dimensional
case along the line in the y direction.

First, note that when f'(x;y) is continuous, f'(z;y) = f'(z; —y) or

lim inf f(zy) = —f'(z;—y). (2.A.18)

6

This follows from: the existence of the directional derivatives implies the continuity of the
one-sided directional derivatives. The computation of directional derivative for a fixed y is
just that for g(\) = f(x + Ay). Therefore, Exercise in 2.A.7 implies the assertion. C'\ C”
consists of points z such that ¢(z) = f'(x;y) + f'(2; —y) > 0. That is, this set is a union of

Se{z : q(x) > 1/k,x € C}. (2.A.19)

However, S, must be a finite set.

H2)\A for a set A = {x} means AA = {\z}. That is, uniform linear scaling of the space around the origin.
3hecause there is a hyperplane going through the origin, below which Aepih cannot invade

UAF () = e +1) and [ (2) = /(55 -1).

15Rockafeller Theorem 24.1.

16Rockafellar Theorem 25.5.

H7Rockafellar Theorem 25.4.
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2.A.9 Convergence of derivative

Let f be a convex function which is finite and differentiable on an open convex set C'. Let
{f:} be a sequence of convex functions which are finite and differentiable on C' such that
fi — f pointwisely on C'. Then,

lim V fi(z) = V f(x) (2.A.20)

on C'. That is, if the limit is differentiable, its derivative can be computed from the limit of
derivatives.!1®
We know the derivative is continuous.

2.A.10 Conjugate function and Legendre transformation''’

Let f: R" — R be a convex function. Then, epi f is a convex set, so there is a hyperplane
y =bxr— [, where b € R" and [ € R, such that epif is above it (—2.A.2) That is, obviously
for any x, we may choose b and (3 such that

f(z) > bx — . (2.A.21)

Since epi f is convex, it can be reconstructed from the totality of such hyperplanes (we know
that supporting hyperplanes will do). That is,

Fr={(z*, 1) | f(x) > 2"z — px for Vx € R"} (2.A.22)

contains the same information as f. The inequality in the definition of F* may be rearranged
as

u >zt — f(x), (2.A.23)
so we can define a function f* of x* as
ff(x") = sgp[mx* — f(z)]. (2.A.24)

Notice that epi f* = F*. Since F* is a convex set, f* is a convex function, and is called the
conjugate function of f. By construction f* and f have exactly the same information: one
can be reconstructed from the other. Indeed,

f(@) = suplaa” — f*(a")] (2.4.25)
obviously from the symmetry. f and f* are called the conjugate pair. Notice that
fi<h = fi>f (2.A.26)
and
=1 (2.A.27)

Exercise 1. Show:
(1) For f(z) =¢”

x*logax™ —z* if 2* >0,

[ (z*) = 0 if 2 =0, (2.A.28)
400 if * < 0.
(2) For f(z) =|z?/p (p > 1) f*(z*) = |2*|9/q (¢ >1and 1/p+1/q=1).
i ,for f(z) = 2'Qx/2 f*(z*) = z¥'Q 'x* /2.0
H8Rockafeller Theorem 25.7.

19T his transformation = the Legendre transformation is called the Legendre-Fenchel transformation in the
large deviation theory community, because Legendre never considered non-smooth cases.
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2.A.11 Fenchel’s inequality.
Let f and f* be a conjugate pair. Then,

flz)+ f (a%) > za™. (2.A.29)

This is immediate from (2.A.24). The equality holds if and only if f(x) = zz*/2. This can
be explicitly checked.

2.7 Mechanics vs. Thermodynamics

Let us summarize basic analytical mechanics and quantum mechanics relevant to statistical
mechanics. Needless to say, this section cannot substitute any introductory course of the
topic. It is a good lesson to learn that although the founding fathers of statistical mechanics
thought mechanics was fundamental and reliable, it was thermodynamics that was much
more reliable.

Recommended textbooks of mechanics are
Landau-Lifshitz, Mechanics,
J J Sakurai or G Baym, Quantum Mechanics.

2.7.1 Classical mechanics

Let g, p collectively denote the positions and momenta of (point) particles in a system, and
the system Hamiltonian H = K 4 U, where K is the kinetic energy and U the potential
energy. Then, the equation of motion of particles is written as

dg  OH dp  OH
% —_— 87p7 E - aiq- (2-7.1)

This is called the canonical equation of motion. These equations can be written in a sym-
metric form with the aid of the Poisson bracket:

0A0B 0BO0OA
A B = — 2.7.2
[ 7 ]PB zz: (5’%’ Ip; dq; a]%’) ( ! )
as J J
jz = [q’ H]PB7 £ = [ 7H]PB' (273)

In general, if F' is a phase function (a function of the canonical coordinates ¢, p, and

time t) and is differentiable,
dF _OF

dat ot

This is the Hamilton’s equation of motion for a phase function (dynamical observable) F.

+ [F, H]pp. (2.7.4)
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2.7.2 Liouville’s theorem
Let {q(t), p(t)} be a solution to the equation of motion (2.7.1) whose initial condition is given
by {q(0),p(0)}. Then, the following Jacobian is unity:

Aa(t),p(t)) _ |0q(t)/0q(0) 0q(t)/0p(0) | _ -
9(q(0),p(0)) — 19p(t)/0q(0) Ip(t)/Op(0)| .

This is called Liouville’s theorem (see Exercise 1 below).!?® Note that even if the Hamilto-
nian is time-dependent, the assertion is true.

This may also be interpreted that the Hamiltonian flow is incompressible.
Exercise 1. Demonstrate the incompressibility of the Hamiltonian flow. (This is a demon-
stration of Liouville’s theorem.)O
Exercise 2. Suppose the system is not Hamiltonian, but its equations for the momenta are
modified as

dp

== [p, H] — ap, (2.7.6)

where o > 0 is a constant. What happens to the phase volume? O

2.7.3 Time evolution of distribution on phase space
Suppose Ap is a set with a finite volume in the phase space of a Hamiltonian mechanics
system. Studying the solutions of the equation of motion with the initial conditions chosen
in Ay, we may study the fate of this volume flowing in the phase space riding on the dynamics.
Let o be a measure?! assigned to the phase space at time ¢ = 0. That is, the reader
may regard pio(A) be the number of systems whose states are in A for the initial ensemble.
Let us introduce the time evolution operator T; such that T;z(0) = z(t), where x(0) is
the initial coordinates of the system under consideration in its phase space, and z(t) those
at time ¢. For a set A, we can introduce T, 'A = {y : T,y € A}, that is, the set of all the
points that visit A in time ¢.
The number of systems in the ensemble does not change, so in order to determine the
time evolution of the measure we may require

0T, A) = pa(A) (2.7.7)

for any set A of finite measure in the phase space. This is the equation of motion for the
distribution (= ensemble).

Exercise 1. Why does the invariance condition (2.7.7) use T, ! instead of T} itself to write
to(A) = (T, A)? [Hint: Consider the case when the trajectories can merge. It is true that
this never happens within a finite time for a system described by a differential equation, but
if we consider reduced systems (e.g., dynamics projected on a subspace of its phase space),
we often encounter such cases.|O

120This implies that the Lebesgue measure of the phase space is an invariant measure of a Hamiltonian
system. —2.7.4

121Gee Appendix to Chapter 1, if the reader wishes to have some notion of this concept. However, here the
reader may simply understand it as a weighted volume, or weight; p(A) implies the (statistical) weight of
the set A.
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2.7.4 Invariant distribution = invariant measure
If a measure p (= weight of sets) satisfies

u(T; A) = p(A) (2.7.8)

for any set A, this weight does not change in time. If p satisfies (2.7.8), we say u is an
invariant measure (stationary distribution, stationary measure) for the time evolution 7;.
Liouville’s theorem 2.7.2 tells us that the ordinary phase volume (= Lebesgue measure
of the phase volume) is an invariant measure of any Hamiltonian system. If there were only
one such measure, then statistical mechanics could have been founded firmly on mechanics,
but generally speaking there are infinitely many (uncountably many) invariant measures, so
we must confront the selection problem. The selection is done by the way we set up the
set of initial conditions. This is the reason why we need an extra-mechanical assumption
(—>2.6.2).
Exercise 1. Suppose y = G such that its i-component G; does not depend on ;. Then,
the Lebesgue measure of the phase space dy; - - - dy,, is obviously invariant. 0.1

2.7.5 Time reversal symmetry of mechanics

In classical mechanics, we know that even if the time is reversed: (t,q,p) — (—t,q, —p), the
equation of motion is intact. Therefore, a movie of a mechanical motion played backward is
again a solution to the equation of motion; to obtain it we have only to flip the directions
of all the momenta in the final state of the original trajectory and solve the equation of
motion with this initial condition. That is, there is a one-to-one correspondence between
a trajectory and its time reversed counterpart. This is the implication of the time reversal
symmetry in classical mechanics.

Consider a bunch of trajectories (for a time span t) starting from a set V. Let the set
of the totality of the end points of this bunch of trajectories be W. We can also imagine the
time reversed bunch of trajectories.

Intuitively speaking, the number of trajectories in both bunches are identical due to the
one-to-one correspondence between a trajectory and its time reversed counterpart. There-
fore, if each trajectory is evenly weighted when being counted, then according to the natural
motion of the system

PV - W)=PW = V), (2.7.9)

where P is the measure of the initial conditions for the bunches and the tilde implies the time
reversal operation (i.e., p — —p; formally W = {(q¢,—p) : (¢,p) € W}). The principle of
equal probability (—2.6.2) just requires an even weighting of trajectories, so in equilibrium
states (2.7.9) holds.

In quantum mechanics, the transition probability from state |a) to |b) is written as
P, _» = [{b|T;|a)|?, where T} is the time evolution operator. T} is a unitary operator, so
P,_, = [{a|T_¢|b)|* which is indeed the transition probability from |b) to |a) with the time
reversed motion.

2.7.6 Detailed balance
Let A and B be two sets in the phase space of a Hamiltonian system. Also let us assume

122 An application may be found in F Legoll and R Monneau, “Designing reversible measure invariant
algorithm with applications to molecular dynamics,” J. Chem. Phys. 117, 10452-10464 (2002).

93



these sets are invariant under time reversal symmetry. That is, if (¢,p) is in A (in B),
(q,—p) is also in A (in B).}?3 Let Ap be the set of all the points in A that visit B in t,
and B, the set of all the points in B that visit A in ¢ (What are they in terms of T37).

Let the time reversed set of {13 be Ag.
In ¢ this set goes into B, so A is T;By,
where T} is the time evolution operator.

Let us reverse all the momenta in Ap and make Ag(—2.7.5). Since A is invariant
under time reversal, Ap is also in A. In ¢ this set goes into B, so Ag is T;B 4, where T} is
the time evolution operator. Let u be a stationary distribution (invariant measure) on the

phase space. Then, obviously, j(Ag) = u(Ap) = u(Ba).

If we use the conclusion of 2.7.5, u(Ap) = u(Ba).
If we make the ratio u(Apg)/u(A), this is the transition probability from A to B in t.
Let us write

T(A — B) = j(Ap) /1(A), T(B — A) = u(Ba)/u(B). (2.7.10)
Then, p1(Ap) = u(Ba) can be rewritten as
u(A)T(A — B) = u(B)T(B — A). (2.7.11)

If this holds for any ¢, it is called the detailed balance condition for pu. For microcanonical
and canonical distributions, this holds. Its essence is just u(Ag) = pu(Ba). However, do not
forget that A and B must be time reversal symmetric.?*

The detailed balance condition is extremely important in equilibrium.!?® For example,
if a chemical reaction system is in equilibrium, all the reactions are canceled in detail by
their reverse reactions. A quasiequilibrium process is retraceable thanks to this detailed
balance condition. The importance of detailed balance was first emphasized by Onsager.!2°
However, detailed balance alone does not imply that the distribution is in equilibrium.

2.7.7 Liouville’s equation
If the measure p; (= probability distribution) has a density f(q, p,t) such that

(g, p,t)dgdp = pu(dgdp), (2.7.12)
then, thanks to Liouville’s theorem (cf. 2.7.2), we have
flap.t) = fo(Ty a. T, 'p). (2.7.13)

123]f we are interested in a set corresponding to a macroscopic state, then this is not a very strong constraint,
especially in equilibrium.

124 A more general version is in X1.11.1.

125The mechanical detailed balance implies the detailed balance at the macroscopic level. However, even
if there is no mechanical (microscopic) detailed balance, there may still be a detailed balance condition for
macroscopic processes.

126, Onsager, “Reciprocal relations in irreversible processes I,” Phys. Rev. 37, 405-426 (1931).
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Now, let us assume the infinitesimal time evolution (—(2.7.3))

f(Q7p7t + dt) = f(TcﬁICLTg;lp’ t) = f(q - [q: H]PBdtap - [pa H]PBdtyt)v

(2.7.14)
~ slapt) = LD g 11ppar - LDy gy
(2.7.15)
= flg,p.t) —[f(g,p,t), H]ppdt. (2.7.16)
That is,
PO 1 1 @es, (27.17)

which is called Liouwville’s equation.*?”

If the ensemble is time-independent, the corresponding measure (= weight) g = p; must
be time-independent (i.e., an invariant measure —2.7.4)), and its density f must also be
time independent: [f, H|pp = 0.

2.7.8 Active and passive time evolutions
Compare the Liouvilles equation (—2.7.7) and the Hamilton’s equation of motion (—2.7.1).
If we use the time evolution 7} introduced in 2.7.3, then we realize (see (2.7.13))

flg,p,t) = flg(=1),p(=1),0) =T, f(q,p,0). (2.7.18)

Therefore, the ensemble average at time ¢ of an observable F' denoted by (F'); can be written
as

Wﬁ=/@@F@mﬂ%nﬂZ/MWF%Mﬂiﬁfwﬂ) (2.7.19)

Using Liouville’s theorem, we can rewrite this as
)

Wﬁz/@@meMMﬂmnmzwm, (2.7.20)

where F} is the observable F' at time ¢t and ( )q is the average over the initial ensemble.

In (2.7.19) the dynamical observable F' does not evolve in time. That is, the values of
F' are averaged over the time-evolving distribution. This is the passive description (passive
picture) of the system dynamics.

In contrast, in (2.7.20) the dynamical observable evolves in time, but the probability
measure to average it is as given at the initial time. Therefore, this description of dynamics
is called the active description (active picture).

As the reader realizes the passive picture corresponds to the Schrodinger picture and the
active to the Heisenberg picture in quantum mechanics (—2.7.12). As she will learn later, in
the theory of stochastic processes Kolmogorov’s forward equation (Fokker-Planck equation
—7?7?) corresponds to the passive picture and Kolmogorov’s backward equation (—X1.9.2)
to the active one.

127This can be written as df /dt = 0.
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2.7.9 BBGKY hierarchy

The Liouville equation (—2.7.7) is for all the particles in the system. Suppose the system
consists of N identical particles of mass m interacting with each other through binary in-
teractions whose potential may be written as ¢(|q|), where q is the vector connecting two
interacting particles. Its Hamiltonian is

H = sz + ;qu a,)) (2.7.21)
i#j

Therefore, the Liouville equation (—2.7.7) for the whole NV particle system reads

Ofn _

ot E'a fn+s ZV¢ (8—> In, (2.7.22)

275] apl 8p]

where fy is the probability density distribution on the phase space of the N particles.

On the other hand, we know that the Boltzmann equation (—2.4.7) is an equation for
a single body density distribution function (an equation on the p-space). The single body
distribution may be derived as the following marginal distribution, because the first particle
may be used as a representative:

‘filar,pr,t) = /dQ2dP2dQ3dP3 T fN({p7 Q}7t)- (2.7.23)

However, in the thermodynamic limit V' — oo (with N/V = n being kept constant), this
quantity vanishes.!?® Therefore, it is convenient to define the single body distribution with
a multiplication of V:

filqi,p,t) = V/dCI2dP2dQ3dP3 - fn({p, a}, ). (2.7.24)

Let us integrate out the variables for ¢ > 2 from the Liouville equation to derive the
equation for f.

0 0 1
< B Y v a2 ) 2 . da.dp-
f1 3 lfl +j(;)/ 16(lgn — q;1) <(9p1 (9pj> sz(ql,pl,qj,pj, )dq;dp;,
(2.7.25)
where
without dg;dp;
fo(ay,p1.q;,p5t) =V / dgadpadqsdps - - - dandpy fn({p, q}.1). (2.7.26)

Using the permutation symmetry wrt the particles, we arrive at

B B
f1 _E affﬁn/dqupz Vio(lg, —q,l)- (3171 - 0192> f2(q1, 1, G2, o, ), (2.7.27)

128Gee, for example, for an ideal gas [dpfi = 1/V.
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where n is the particle number density.

Since (2.7.27) is not a closed equation for f;, we need an equation for f,. As the
reader easily guesses, the equation for fo will not be closed, because it depends on the
three-body distribution function f; defined analogously as (2.7.26). This way we obtain
a hierarchy of equations for reduced distribution functions. The hierarchy is called the

BBGKY-hierarchy.'*

2.7.10 Derivation of Boltzmann equation from BBGKY hierarchy
To study f; to the lowest order in n, we need not worry about the higher order contribution

to fa, so we may regard the equation for fy be closed. Let Tt(2) be the time evolution operator
for the two body dynamics. Then,

f2({a,p}.t) = T f2({a, p},0), (2.7.28)

because in the Liouville equation the Poisson bracket with H appears as [H, f|pp in contrast
to [f, H]pp in Hamilton’s equation of motion (—2.7.8).
Assume that the initial two-body distribution is given by

f2({a,p},0) = fi(q1,p1,0) f1(qy, Py, 0). (2.7.29)

This is to assume that colliding particles are statistically independent (the so-called Stosszahlansatz
—2.4.5) at the initial time.'3" Now, (2.7.27) reads

p, 0 o 0

0
&fl = —m'aqlfl‘i‘n/dQQdPQ V1¢<|Q1_Q2|)‘ (apl - 5’p2> TE?fl(‘h;phO)f1<‘12ap270)7
(2.7.30)

This is equivalent to the Boltzmann equation. The rest is to rewrite this in a more appealing
form.

2.7.11 Derivation of Boltzmann equation: technical part
Thanks to the 2-body Liouville equation, notice that

P o @) ( 0 0 ) (2)
Violla —ah (22N _ [y 2, 2\ e 2.7.31
1¢(|q1 qQD (apl ap2> t 1aq1 2aq2 t ( )
0 @
— (o —wy) LT®) 2.7.32
( ! 2) 0qy, ' ( )

where g5, = q; — q5. Therefore, the collision terms reads

0
_n/dQQdPQQ' 9q Tg)fl((h’ph0>f1(CI27p270)‘ (2~7~33)
12

If we perform the integration over g,, we can rewrite this expression with the aid of Gauss’s
theorem as

n/dp2ds : ng)fl(%aphO)fl(QzaPQaO)- (2-7'34)

129Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy.
130This probabilistic assumption smuggles in irreversibility.
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Here, dS is the surface element of a sphere centered at particle 1 with a radius small compared
with the mean free path length but large enough to include the interaction range of .

Up to the surface from outside, the two-body dynamics is a simple ballistic motion, so
we may write the above formula as

n/dpzdS -911(q1,P1: 1) f1(q2, P2, ). (2.7.35)

There are two contributions from the surface integral g - dS < or > 0. They correspond, re-
spectively, to pre and post collision configurations. Thus, we have arrived at the Boltzmann
equation (—2.4.7).

2.7.12 Quantum mechanics
The equation of motion corresponding to Hamilton’s equation of motion (—2.7.1) in quan-
tum mechanics is Heisenberg’s equation of motion:

dF,
ih— = [F,, H], (2.7.36)
dt
where [, | is the commutator, and H is the energy operator (Hamiltonian). This may be

obtained by the canonical quantization from (2.7.4): the commutator is if times the result
of Poisson bracket (—2.7.1), if we interpret classical phase functions as observables.

The time evolution operator Uy is defined by the following operator equation (called the
Schrédinger equation)

dU,
h— = HU, 2.7.37
7 ' ( )
with the initial condition Uy = 1. Then, the solution to (2.7.36) with the initial condition
Fy at t = 0 can be written as'™!

Fy = U Ry, (2.7.38)
If we introduce the state ket at time ¢ as |t), we have U;|0) = |t). Therefore,
(tIF(0)]t) = (OU; " F(0)U[0), (2.7.39)
so13? (cf. (2.7.20) for the classical counterpart)

(tF(0)]t) = (O|F(£)[0). (2.7.40)

2.7.13 Density operator and von Neumann’s equation
Let p; be an operator, called a density operator, that gives the expectation value of an
observable F' at time ¢ through

(FYy =TrpF. (2.7.41)

I311f we introduce AXB = [A, B], then dF/dt = AXF can be formally solved as F(t) = exp(tA*)F(0).
Assuming that ¢ is not large, we can expand this as

F(t) =1+ tAXFO0) + - = (1 +tA+ - )F(0)(1 —tA+---).

This gives the desired result.
132This is the relation between the Schridinger picture and the Heisenberg picture.
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If we require (cf. 2.7.8)

(F)e =TrpoFy (2.7.42)
for po for any observable F,133
pi = UpoU; . (2.7.43)
Therefore, the time dependence of the density operator must be governed by
d
m% = [H, pl. (2.7.44)

This is the quantum counterpart of Liouville’s equation (—2.7.7) and is called von Neu-
mann’s equation.

2.7.14 Gibbs’ entropy is invariant
Gibbs proposed the following microscopic interpretation of entropy as we have seen in 2.1.5

S = —kB/plogde, (2.7.45)

where p is the density distribution function of microscopic states on the phase space. We
know in the thermodynamic limit that this is in agreement with the Boltzmann entropy
(—2.4.2; as we have seen, the formula was fist written down by Boltzmann).

An interesting feature of this formula is that this entropy is a constant of motion:
dS/dt = 0. Let us check this invariance.

ds ap
= - /dF(l +log p) 5 (2.7.46)

so with the aid of Liouville’s equation (—2.7.7) and an integration by parts we obtain

s 0
= - /dF(l +log p)lp, H]pp = /dF > =0. (2.7.47)

What does this mean?

Exercise 1. Demonstrate the quantum version. [

Exercise 2. The reader must immediately see that the Boltzmann entropy Sp = kglog()
is also invariant. (If the phase volume €2 is replaced by the number of states in quantum
mechanics, the assertion does not change.)'** O

Comment. In classical mechanics suppose the measure does not have a density.'> Then,
neither Gibbs nor Boltzmann entropy can be defined. For a closed (isolated) classical me-
chanical system, unless the initial measure is singular, this never happens.

1331f (2.7.43) is assumed, certainly (2.7.42) holds. Is the choice unique? We need more conditions such as
the KMS condition (—X2.4.11) that is assumed to be true in equilibrium (or is used to characterize the
equilibrium state).

134However, if  is replaced by Q(F;), that is, the phase volume of the set of phase points whose energy
does not exceed E; at time ¢, this entropy increases under nonequilibrium adiabatic condition. Then, is this
a better microscopic interpretation of entropy? Another possibility is to interpret Q(E) as the phase volume
of the energy shell of energy E.

135{ e., the measure is not absolutely continuous wrt the phase volume
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2.7.15 Thermodynamics as precursor of quantum mechanics

We know that Quantum Revolution left thermodynamics intact. It is fair to say that ther-
modynamics paved the road to Quantum Revolution as can be seen from Planck’s derivation
of black-body radiation law. Gibbs’ paradox'®® may be considered as an example of the in-
compatibility of classical picture of atoms and thermodynamics, if we stick to his statistical
framework.

Titeica (1955'37) demonstrated the following. Let p(E) be the statistical weight of states
up to the energy E with the lowest possible energy being taken as its origin. Then, unless

lim p(E) > 0, (2.7.48)

E—0

the entropy is not bounded from below in the 7" — 0 limit. That is, classical mechanics con-
tradicts thermodynamics, because classically the above limit must vanish. The zero-point
energy represents the discontinuous onset of the energy spectrum of the whole system.
Exercise 1. The energy spectrum of a single particle may not have this discontinuity at
E = 0. Still, the energy spectrum of the whole many-body system must have this discon-
tinuity. Check that this is indeed the case for fermions or bosons (for weakly interacting
quantum gases).O

2.7.16 Second law and equilibrium statistical mechanics
The driving motivation for Boltzmann when he was around 20 years old was to understand
the second law in terms of mechanics.!®® Boltzmann wished to have a clear picture of how
a system reaches its equilibrium state (—2.4.2).

However, to demonstrate the second law we need not worry about how a system relaxes
to its equilibrium state. We have only to show, e.g., Thomson’s principle:

AA<W, (2.7.49)

that is, the work needed to change a system from an equilibrium state a to another equilib-
rium state b cannot be smaller than the free energy difference AA = A, — A,, where A, is
the free energy of state x.
Exercise 1 [Adiabatic small systems are never reversible]. Read K Saito et al, “Ir-
reversibility resulting from contact with a heat bath caused by the finiteness of the system,”
Phys. Rev. E 66, 016119 (2002), and summarize their argument to demonstrate that for
almost all small systems adiabatic processes cannot be reversible.

However, thermodynamic adiabaticity and the adiabatic condition used in this paper
are different, so the conclusion of the paper should be taken with caution. O

2.7.17 Equilibrium statistical mechanics implies second law

Consider a quantum system with the Hamiltonian H(\) with a parameter. The initial state
is with A = 0 and the final one is with A = 1. {[iy)} is the totality of the eigenstates of
H(X). We assume H(\)|iy) = E;(N)]iy) and E;(A) < E;q(N) for all A € [0, 1].

136Distinguishability of particles violates extensivity of entropy.

137Einstein died (Mar 14, 1879 ~ Apr 18).

138His first long paper (his second paper) “Uber die mechanische Bedeutung des zweiten Hauptsatzes der
Wiérmetheorie” (Wiener Berichte 53, 195-220 (1886)) was written when he was 22. This year Liszt died;
Jeronimo surrendered; Statue of Liberty erected (what an irony!).
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If we change the parameter sufficiently slowly (adiabatic change), the adiabatic theorem
tells us that there would be no level crossing, so |ig) would end up with |é;) for all 7. Suppose
the initial distribution is given by the canonical distribution (i.e., the density matrix is
given by p(0) = e PO /7). Let U be the time evolution operator corresponding to the
parameter change from A = 0 to 1. The density matrix at the end of this process is given
by py = Up(0)U~!. Then,*

(H)y > (H) o, (2.7.50)

where ( )y is the average over the final density matrix py and ( )44 is the average after the
adiabatic evolution.
If the initial average of energy T'rp(0)H (0) is subtracted from this, we obtain

W > AA. (2.7.51)

Therefore, the second law is a consequence of equilibrium statistical mechanics.!4°

2.7.18 Physical vs. mechanical adiabatic condition

However, there is one thing we have not understood. For the quantum adiabatic theorem
to hold, the necessary time for the time evolution is of order i/JE, where 0F is the suit-
ably averaged spacing of the adjacent energy levels. This spacing is exponentially small for
many-body systems ~ 10™", where N is the number of degrees of freedom. That is, we can
never realize such a slow change for reasonably macroscopic systems.

Still, in reality, we know the inequality in (2.7.51) holds for practically slow processes,
so to really demonstrate the second law, we must be able to demonstrate that the equality
in (2.7.51) holds for much faster changes than required for the adiabatic theorem to hold.
We have no clear theory for this. In short, we have not yet understood the nature of the
motion we call heat.

2.7.19 Canonical ensemble is ‘implied’ by the second law'*!
Conversely, Lenard demonstrated that essentially the second law and the fourth law!? of
thermodynamics imply the canonical ensemble.
More precisely, the assumptions are:
(1) Passivity: This is essentially the second law. Let H(t) be a time-dependent Hamiltonian
and the density operator p(t) obeys von Neumann’s equation with this Hamiltonian with no
time dependence for t outside [0, 1] and H(0) = H(1). Then, the work needed for this cycle
is nonnegative:
1
WK, ) = [ drrepn 20

(2) Structural stability: any small perturbation of the Hamiltonian does not destroy the
system passivity.
(3) Let a compound system consist of two subsystems and in a passive structurally stable

>0 (2.7.52)

139GQee, e.g., H Tasaki, Statistical mechanical derivation of the second law of thermodynamics, cond-
mat,/0009206. The statement is more general.

M0 owever, obviously, we cannot take the thermodynamic limit before the proof. Therefore, we must take
the statement with caution that equilibrium statistical framework implies the second law.

141A Lenard, “Thermodynamical proof of the Gibbs formula for elementary quantum systems,” J. Statist.
Phys. 19, 575 (1978).

142«There are only extensive and intensive quantities in thermodynamics.”
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state. Its density operator is the product!#® of the density operators of the two subsystems.

(1) implies that H and p are commutative and the simultaneous eigenvalues have a con-
sistent order: the eigenvalue of p is larger for the smaller energy eigenvalue. This is actually
the converse of 2.7.16.

(2) then implies that p = f(H), i.e., the density operator is an operator function of H.
Finally, (3) implies that log p is proportional to H.

Combining 2.7.16 and the above result, the reader might conclude that the orthodicity
question (—2.6.8) is solved. This contradicts our knowledge that the canonical ensemble is
not the only orthodic ensemble. What is wrong? A hint has already been discussed at the
end of 2.7.16. The passivity is unrealistically strict. Perhaps this is in accordance with the
unrealistically strict adiabatic condition (—2.7.18). We need a much more realistic expres-
sion of the second law than (2.7.52).

Remark. The zeroth law can be used to obtain the canonical form as well.'** The key
idea is that the equilibrium condition is not destroyed by small perturbations of the system
Hamiltonian.

(1) If the state p is stable under small perturbations of the system Hamiltonian, then
p= f(H) (pis an operator function of H).

(2) If the equilibrium contact condition is stable under small perturbations, then the eigen-
values have the consistent order (see (1) above; 2.7.16 implies that the systems are passive).
(3) If tgfl equilibrium contact among three systems is stable under small perturbations, then
poxe P 0O

2.7.20 Jarzynski’s equality'*®

Another related theorem is due to Jarzynski. This is an equality that leads to the second
law (2.7.49).

Suppose a thermostated system has a parameter A(t) that can be changed experimentally
externally from A(0) to A\(1). Let W be the work needed to perform this change. Then, the
free energy change AA from the equilibrium state with A(0) and to that with A(1) may be
obtained by

(e7AW) = e=PRA (2.7.53)

where the average is over many experiments with the same protocol. This is called Jarzyn-
ski’s equality.146-147

More precisely, suppose a system is described classically with the Hamiltonian H(x, A\(¢)) with a time-
dependent parameter A\(¢), which may be externally controlled. The initial state a is distributed canonically
at the temperature T' = kp /0 and with the Hamiltonian H(z, o). Let state b be an equilibrium state with

143More precisely, tensor product

144 A Frigeiro, V Gorini and M Verri, “The zeroth law of thermodynamics,” Physica 137A 573-602 (1986)

1450, Jarzynski, “Nonequilibrium equality for free energy differences”, Phys. Rev. Lett. 78, 2690-2693
(1997). The latest note dispelling misunderstanding is: C. Jarzynski, J. Stat. Mech. 2004, P09005, “Nonequi-
librium work theorem for a system strongly coupled to a thermal environment.” Chris Jarzynsky calls his
equality, ‘nonequilibrium work theorem.’ In this latest paper, Jarzynski discusses how H may be interpreted
as the effective Hamiltonian of the system when the system interacts strongly with the heat bath; this is
directly relevant to ‘single molecule physiology.” How did he arrive at this remarkable formula? He realized
the relation when he was analyzing a numerical experimental result. That is, the relation was suggested first
empirically.

146The equality holds if the system obeys a Markov process as seen in 6.5.9.

47For a cycle (i.e., AA = 0), this was demonstrated by Bochkov and Kuzovlev in the 1980’s (according to
C. Jarzynski); G. N. Bochkov and Yu. E. Kuzovlev, Zh. Eksp. Teor. Fiz. 72, 238 (1977) [Sov. Phys.-JETP
45, 125 (1977)]; Physica 106 A, 443, 480 (1981).
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the Hamiltonian H (z, A1) at the same temperature. We fix the protocol to change the system by fixing the
function A(t) (A(0) = Ao and A(tf) = A1, where ty is the last time to modify the parameter). We embed this
system in a large thermostat that can be described by a Hamiltonian Hy. Let us write the Hamiltonian of
the whole system as Hy,(z, A(t)), where z denotes the phase variables of the whole system collectively. This
Hamiltonian includes the interaction Hamiltonian between the system and the thermostat. We assume this
effect may be ignored.

Now, W is the work done on the system during the change under the condition that the whole system
is isolated.'*® Then, the above equality holds.
Warning. The final state actually reached by the protocol at time ¢ is usually very different
from the final equilibrium state we are interested in. O
Exercise 1. There is a macromolecule whose end-to-end distance can be controlled. We
change its length from Lg to L; in one second (linearly in time). The free energy difference of
the equilibrium states with parameters Ly = Inm and L; = 3nm is given by AA = 40pNnm
(= pico newton X nanometer) (i.e., the stretching increases the free energy this much if one
does this in a quasiequilibrium fashion). The experiments told us that the work done to the
molecule W was distributed according to a Gaussian distribution, and the average work was
(W) = 60pNnm. Assuming that the temperature is 300K, find the variance of the work.
(Check that 300k = 4pNnm). O
Exercise 2. It is often hard to obtain equilibrium free energy change with actual experiments
performed at finite speeds. Thus, sometimes Jarzynski’s equality is practically meaningful.
Read the paper: “Equilibrium information from nonequilibrium measurements in an exper-
imental test of Jarzynski’s equality” by Liphardt et al.!*® in Science 296, 1832-1835 (2002),
and summarize the content.!'®® O
Discussion 1. There is a box separated into two compartments with a separating wall. One
compartment is empty but the other is filled with gas. Now, the separating wall is removed
by sliding quickly without any work. In this case, the free energy decreases because entropy
increases. However, there is definitely no external work. Therefore, Jarzynski’s equality
cannot hold. O

2.7.21 Demonstration of Jarzynski’s equality
The work done on the system is given by W = H,,(2(tf), \o) — Hy(2(0), Ag), because it is as
a whole isolated. Therefore,

1

(e W) — Y/dz(o)e—ﬁH<z(0),Aa)—BW (2.7.54)
1

- /dz(o)e—/BH(z(tf),Ab)' (2.7.55)

Here, Y, is the partition function for the system with the Hamiltonian H(x,)\,) + the
thermostat. According to Liouville’s theorem (—2.7.2), this reads

Y

2.7.56
}/;17 ( )

<675W> — i /dz<tf)e*ﬂH(z(tf)v/\b) —
Y,

148For the following equality to be correct, the temperature of the whole system must not change, but if
the bath is large enough, this is not a constraint.

149%y J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, Jr., and C. Bustamante.

150Gee also a recent paper by the same group: PNAS 99 13544-13548 (2002), and Jensen et al. on GIpF
PNAS 99 6731 (2002).
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where Y, is the partition function for the system with the Hamiltonian H(x, \,) + the
thermostat. Since the Hamiltonian of the thermostat is intact, and we ignore the interac-
tion Hamiltonian that may depend on the parameter X\, Y,/Y, = Z,/Z,, where Z, is the
canonical partition function for the system with the Hamiltonian H(x, A.). Thus, we have
demonstrated (2.7.53).1%!

Since e * is convex, (2.7.53) implies

(W) > AA. (2.7.57)

This is Thomson’s principle.

Warning. Notice that the whole system is isolated, so if the total work done to the system is
large, then the final temperature would be definitely higher than the initial one. Still (2.7.53)
holds. However, AA compared there is not the free energy change between the initial and
the actual final equilibrium states experiments realize.

2.7.22 Jarzynski’s equality and rare fluctuations
We know that the difference W — AA can be made large without bound. Still, Jarzynski’s
equality (2.7.53) holds. What does this mean?

Let us consider the simplest case; we make a cycle, and the initial and the final equilibria
are identical. AA =0, so

(e™PWy = 1. (2.7.58)
If we make a rapid change, very likely W > 0; maybe it is often very large. Still, the equality
must hold, so we need fairly large negative W occasionally. That is, we must wait for a fairly
large scale ‘violation’ of the second law (cf. 4.1.3). This implies that we must wait for a very
long time to use (2.7.53) for a macroscopic system or for a process with large dissipation,
even if a system under study is not macroscopic.
Exercise 1. Imagine a cylinder with a piston containing an ideal gas. The whole system is
in a thermostat. Let us pull out the piston extremely rapidly (ignore the mass of the piston),
and then very slowly and gently we return the piston to the original position. [Do not believe
that all the questions below can be answered with the conditions given here; Appropriate
information must be added.]
(1) What is the total work needed on the average?
2) What is the heat generated?
) What sort of fluctuations does one have to wait for (2.7.53) to hold?

) Estimate their probabilities.
) How long should we wait for such fluctuations? O

(

(3
(4
(5

2.8 Equilibrium Fluctuation and Response

Einstein thought fluctuations were the window to the more microscopic level of the world
below the thermodynamic level (—3.1.3). The study of fluctuations is a crucial key to statis-
tical mechanics. Furthermore, violent fluctuations could relatively easily happen at smaller

151 This is the derivation given in the original paper, but it is hardly justifiable, because ‘no change’ in the
heat bath does not imply the ratio of its partition functions before and after the change of the heat bath is
unity (it is co/00). If we can model the whole system as a Markov process, we can justify the formula as we
will see in 6.5.9.
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scales, so studying them may give considerable hints at nonequilibrium processes. This was
the leitmotif of Onsager’s study (—4.1.2).

For the study of fluctuations in equilibrium [ESM Section 1.9 is more detailed than this
section.

2.8.1 Response and second moment

Suppose we have an ensemble with constant intensive parameter x. Let X be its conjugate
variable (wrt energy, i.e., +xdX appears in the differential form dF). Then, the thermody-
namic potential suitable for this ensemble is

A= —kgTlog Z (2.8.1)
with
7 = /dX Z(X)erX/kaT, (2.8.2)

where Z(X) is the canonical partition function under the constant X (say, V') condition.
Therefore,

_ 90X
X= ox Ty

d%log Z 1
8x2 - kBT

b

B kgT

((X%) = (X)) (6X7). (2.8.3)

Here, 0X = X — (X). The left-hand side is the susceptibility of X. For example, if x = H
(magnetic field) and X = M (magnetization), then x is the magnetic susceptibility, describ-
ing the response of the magnetization to the change of magnetic field.

We have found that susceptibility is essentially a second moment.
Warning. (2.8.3) is derived using classical statistical mechanics, so the result is generally
not applicable to non-classical cases. The reason is seen from (2.8.6). There, the Taylor
expansion formula e**%® = % 4 fae® + - - - is used, but this equation is not correct when a
and da do not commute. See 4.3.5.0.

2.8.2 Fluctuation-response relation
More generally, the cross correlation should give the cross susceptibility (no summation
convention):

where ;152 is the conjugate variable of X; (with respect to energy, not entropy), and §
implies the difference from the average before the perturbation. This is called the fluctuation-
response relation. This can be obtained easily as follows (classically):

15

(X)) = / dl XePH-2,%) | / dl e PH=-2,%;) (2.8.5)
= (Xi)o + B(XiXj)ow; — B{Xi)o(Xj)ozj + -+ (2.8.6)

Here ( )o implies the average without perturbation. (In the RHS of (2.8.4), ( )o and () make

only a higher order difference, so you need not write (X;X;)o.)
(2.8.4) is equivalent to

0X;

aﬂfj '

(6X:0X,) = kT (2.8.7)

152— §2,; we assume the unperturbed state is with z; = 0 for simplicity.
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Notice that Maxwell relations follow from this.

Exercise 1. Obtain the magnetic susceptibility in terms of the fluctuation of the magneti-
zation. O

Exercise 2. Obtain the isothermal compressibility in terms of fluctuation. O

Exercise 3. What fluctuation gives the constant volume specific heat? What does the
reader think happens if the compressibility diverges? O

Exercise 4. Let us take the ideal rubber band discussed in 2.6.5. Obtain the Hooke’s
constant in terms of the length fluctuation. O

Exercise 5. The above exercise is a prototype of an experimental technique to determine
‘spring constants’ of molecular machines. Suppose there is a torsional spring with the tor-
sional stiffness K (i.e, 7 = K6, where 7 is the torsion, and 6 is the angle displacement). The
mean square average of the angle is 44°. What is the torsional stiffness??3

2.8.3 Magnitude of fluctuation
Notice that x in (2.8.3) is an extensive quantity, so we know that the fluctuation around an
equilibrium state is of order /N, where N is the total number of particles in the system.
The reader may wonder what happens near the critical point, where fluctuations become
large. As we can see from the central limit theorem (—1.7.1), the most natural interpre-

tation of order v/N is that there are O[N] independent stochastic variables in the region of
space we study the fluctuation. This means that the correlation length of the fluctuation is
much smaller than the region we observe fluctuations. Thus, it is clear that even if the sys-
tem is close to a critical point, if the diameter of the region on which we observe fluctuations
is much larger than (say, 5 times as large as) the correlation length, the O[v/N] behavior of
fluctuations holds.

However, exactly at the critical point the correlation does not decay exponentially, so
the correlation length is infinitely long. Still, the correlation decays algebraically, and the
fluctuation should decay as the system size. It is no more as fast as v/N. For example, for
the magnetization at the critical point (M?) = O[N'*2="/4] where n > 0 but small, so the
fluctuation is significantly larger than the noncritical cases (critical fluctuations).

2.8.4 Importance of studying fluctuations
To study nonequilibrium processes the time correlation function of x, assuming that z is a
function of time x(t), defined as

C(t) = ((z(t) = (2))(x(0) = (2))) (2.8.8)

is a very important quantity; its Fourier transform is called the power spectrum (— around
3.7.4) and is often experimentally directly measurable. Note that the ‘equal time correla-
tion’ (i.e., C'(0)) gives equilibrium (or thermodynamic) response. Then, it is a natural guess
that response to time-dependent perturbation must be closely related to time correlation
functions. This is indeed the case as we will learn later (—3.2.8).

153 This is the stiffness of the kinesin dimer neck taken from W Hua, J Chung and J Gelles, Science 295,
844 (2002). Their estimate seems wrong. The assertion of the paper on kinesin has been totally disproved
by many people in 2003; see, for example, A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin
walks hand-over-hand,” Science 303, 676 (2004).
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2.8.5 Thermodynamic fluctuation theory
Einstein (in 1910'%* —2.8.8) inverted the Boltzmann formula (2.4.37) as

W({X}) = 5D kn, (2.8.9)

where {z} collectively denotes extensive variables. Since we know the statistical weights, we
can compute the probability of observing { X} as

_ W({a})
P({z}) = SA(E] (2.8.10)

The denominator may be replaced with the largest term in the summands, so we may rewrite
the formula as

P({z}) ~ V[V/V(f{{;’q};) _ S -S({rea ke (2.8.11)

where ~ implies the equality up to a certain unimportant numerical coefficient, and {x.,} is
the value of {z} that gives the largest W (maximizes the entropy), that is, the equilibrium
value.

The reader must have wondered why (2.8.9) may be used, even though the system (or
a small portion of a system) is not isolated; we should look at the general partition function
dictated by the general relation 2.6.5. Thus, the probability of deviations {x} must read

P({a}) = elSUN—5(weah) =S @s—wsca) Fl ks (2.8.12)
Here, we have assumed that the intensive variables F); are maintained by appropriate reser-
voirs. Notice that F; = 0S5/0z; (the conjugate intensive variable of x with respect to
entropy).
To the second order in dx = x — x,, (2.8.11) and (2.8.12) give identical results, because
1 DS
S({z}) = S({meg}) + D> _ 0z Fj+ = > ——bwdwj+ - -. (2.8.13)
2 (‘3xixj
That is, both approaches give the following famous result
P({dz}) = &5/%s. (2.8.14)

However, the agreement is up to this order, and (2.8.12) is more general (—2.8.6).

The second law implies that the quadratic form log P in this approximation is negative
semidefinite. Notice that this is the stability condition of the equilibrium state; this stability
implies that the fluctuations are bounded on the average.

Strictly speaking, since we are discussing deviations from equilibrium states, we cannot
use equilibrium thermodynamics to derive (2.8.9). Therefore, if we wish to be logically

fastidious, we must regard
P({ox}) =Y ({2})/Y ({eq}) (2.8.15)

to be the fundamental principle of thermodynamic fluctuation theory, where Y is the par-
tition function for an appropriate ensemble corresponding to the intensive variables kept
constant in the observation region in space of the fluctuation (cf. 2.6.5).

154This year Cannizzaro died.
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Exercise 1. Show that (2.8.15) may be interpreted as

P o exp(— minimum work needed to create the fluctuation/kgT).
This relation was also recognized by Einstein. O
Exercise 2. Compute the second moment of entropy fluctuation under constant volume
and constant pressure. [A more systematic and practical formula is in 2.8.7.] O
Exercise 3. Generally speaking, (2.8.3) is consistent with thermodynamic fluctuation the-
ory. Discuss the relation between the fluctuation theory and (2.8.7). O

2.8.6 Massieu functions

The functions obtained from entropy S through Legendre transformations are generally
known as Massieu functions. The thermodynamic fluctuation principle (2.8.15) is most
conveniently written in terms of these functions. The principle says that for an isolated
system (as Einstein said)

P({6z} ~ e5/k5, (2.8.16)

Here ~ implies ‘modulo unimportant numerical factors.” If an intensive quantity X is fixed,
and this quantity appears in dE as Xdz (z is its conjugate extensive quantity), (2.8.15)
reads

P({6x}) ~ ¥k, (2.8.17)
where
U =S+ Xa/T. (2.8.18)
This is called the (generalized) Massieu function.'>® Note that
1 X
U =—dF — . 2.8.1
av = —d +xd<T> (2.8.19)

Exercise 1. Obtain the Massieu function for the pressure ensemble (the ensemble with
constant 7" and p). O

2.8.7 Practical formula for thermodynamic fluctuations!®

Let dEE =TdS — pdV + pdN + Xdz. From this
1
08 = f(éE + pdV — uéN — Xox). (2.8.20)

To study the fluctuation we need 62S. This can be computed from the above formula as
(this is the second order term of the Taylor expansion, so do not forget 1/2)

1 1 1
2S = [(5 (T) (6F +poV — poN — Xbz) + - (9pdV — 68N — 6X )|

(2.8.21)
= —5—TT55+L(5 OV —dpudN — 6 Xox) (2.8.22)

e o PO o o ~

Therefore, we arrive at the following useful expression worth remembering
—0Td 0poV — 0N — 0. X9
528 = S0P a = (2.8.23)
2T
155The original Massieu function is for the temperature ensemble, so ¥ = —A/T.

156See IESM 1.9.13 may slightly be kinder.
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As an example, let us study the fluctuations of V' and 7', assuming that N and x are
fixed. To this end we express 0.5 and dp in terms of 6V and 7.

98 oS Cy op
68 = —=| 0T+ —| 6V = —=6T + —=| 6V, 2.8.24
or|, % Tav],” T T ar|, " (2.8.24)
op = 2| o1y 2 sy (2.8.25)
P=or,” Toav|."" ~
Therefore,
Cy 2 dp 2
8T6S — opdV = —=(6T)* — ==| (8V)>. 2.8.2
S —péV T( ) avT(V) (2.8.26)
Hence, we find
T2 ov
0T?) = —, (6V?) = =T —| , (§T6V) = 0. 2.8.27
(6T7) o (6V=) o, ( ) ( )

Note that (§V%) = O[V] as expected in 2.8.3.

Exercise 1. Again, let us assume N and z are kept constant. Study the fluctuation of S
and p. O

Exercise 2. Study the energy fluctuation (§E?). [Hint. We have already computed the
fluctuations of V' and T, so let us write §E = T'§S — pdV in terms of §V and §7T.] O
Exercise 3. If an extensive variable x and an intensive variable Y are not conjugate, then
(6xdY) =0. O.

Exercise 4. What can we say generally about the sign of (§X;dz;)? [The reader must
explain why.] O

2.8.8 Einstein’s motivation to study fluctuations
The purpose of Einstein to construct the theory of fluctuation was to understand critical
fluctuations (critical opalescence) quantitatively. As a byproduct he explained why the sky
was blue.

Let us humbly take note that it is still only less than 100 years since we first understood
why the sky was blue.
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Part II. Outline of Nonequilibrium Statistical
Mechanics

Part II consists of two parts, the Outline part (Chapters 3-5) and more detailed auxil-
iary chapters (X1-X3). The Outline part may be used as an introductory (or undergraduate
level) course of nonequilibrium statistical mechanics; the reader is expected to become ac-
quainted with several narratives of nonequilibrium processes, and to pick up typical modes of
thinking and rudimentary techniques of nonequilibrium statistical mechanics as well as some
important keywords such as the fluctuation-dissipation relation. Chapters X1-X3 explain
more advanced topics and technically complicated matter. These chapters tend to contain
more typos, etc., than not-X-rated chapters. Please be careful.

Elementary kinetic theory will not be discussed (—2.3.9). The Boltzmann equation
(—2.4.7, 2.7.10) will not be discussed, either; in short, we do not emphasize topics that
are not useful to understand nonequilibrium statistical physics in general. We wish to focus
on the general theoretical framework applicable to condensed phases or systems immersed
in condensed phases.

If the reader wishes to review equilibrium statistical mechanics briefly, go to Section
2.6. If she wishes to do so at a leisurely pace, read the historical account in Chapter 2. If
she wishes to review rudiments of probability theory, read Chapter 1. All the contents of
these previous chapters will be extensively and in detail referred to at the places where we
need them, so the reader need not review these materials before they become needed.

Chapter 3 outlines the Brownian motion. After describing the historical background,
Einstein’s work is explained, and its fundamental importance to nonequilibrium statistical
thermodynamics is stressed. Then, the basic tools to study the Brownian motion (Langevin
and Fokker-Planck equations) are explained. Several important consequences such as the
fluctuation dissipation relations and the Green-Kubo relations are illustrated with simple
examples. The relation between mechanics and stochastic models with the aid of projections
is discussed. Also stochastic differential equations (Ito calculus) are intuitively introduced.
The chapter concludes with the noise analysis (the Wiener-Khinchine theorem) and dynam-
ical form factors (the van Hove theory).

Chapter 4 is an outline of Onsager’s work, the regression principle and nonequilibrium
thermodynamics. The Green-Kubo relations are derived from the study of fluctuations (both
classical and quantum cases) and Onsager’s reciprocity is explained. A general kinematic
framework of linear response theory and an outline of the usual formal derivation of linear-
response theory conclude the Chapter. Detailed examples, NMR (the Kubo-Tomita theory),
electric conductivity (the Nakano theory) are relegated to Chapter X3.

Chapter 5 discusses the hydrodynamic limit and hydrodynamic equations. First, the
problem is discussed from the conventional conservation law side. Then, the same problem
is studied from Onsager’s regression point of view.
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Chapter 3

Brownian Motion

The standard rudiments such as Langevin equations and Fokker-Planck or Smoluchowski
equations and their elementary applications (e.g., barrier crossing) are covered. (The entries
for Brownian ratchets will be further augmented.) Advanced topics such as spectral analysis
and stochastic calculus are also discussed at an elementary level.

3.1 Brownian Motion

First, the history of the topic is followed, and then the fundamental mode of thinking of
nonequilibrium statistical mechanics due to Einstein is outlined (—3.1.7). The relation be-
tween diffusion and random walk is also discussed.!

3.1.1 What did Mr. Brown really do?
Robert Brown (1773-1858)%(1773-1858) discovered in the summer of 1827° the Brownian

'F. Yonezawa, Brownian Motion (Kyoritsu, 1986) is an excellent and admirable book (in Japanese) on
the Brownian motion in general.

2He was perhaps the greatest botanist (and a great microscopist; Alexander von Humboldt called him
‘the glory of Great Britain’) in the first half of the 19th century. He wrote (1810) a classic of systematic
botany describing the Australian flora, following his expedition (1801-5). He recognized the nucleus of the
cell® and so named it (1831; This name was later imported by Bohr to atomic physics). Before departing for
his Beagle expedition (Dec., 1831 - Oct., 1836),* Darwin asked for Brown’s advice in 1831, buying a portable
dissecting microscope recommended by Brown; after returning to England, Brown encouraged Darwin to
visit him every Sunday morning. Later, Brown was regularly invited to parties at Darwin’s home. The
participants of the now historical Linnean Society meeting, where the theory of natural selection was first
read (July 1, 1858), were there mainly to listen to Lyell reading the eulogy for Brown and to praise his
career. Cf. J. Browne, Charles Darwin, voyaging (Knopf, 1995), Charles Darwin, the power of place (Knopf,
2002).

5Beethoven died in March; Democratic party was founded.
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motion of particles, coming from ruptured pollens, suspended in water.® We are usually
given an impression that he simply observed the “Brownian motion.” However, he did a
very careful and thorough research to establish the universal nature of the motion.

Since the particles came from living cells, initially he thought that it was a vital phe-
nomenon. Removing the effect of advection, evaporation, etc., carefully, he tested many
flowers. Then, he tested old pollens in the British Museum (he was the director of the
Botanical Division), and still found active particles. He conjectured that this was an organic
effect, testing even coal with no exception found. This suggested him that not only vital
but organic nature of the specimens were irrelevant. He then tested numerous inorganic
specimens (including a piece of Sphinx; he also roasted his specimens).

He really deserves the name of the motion.

See Philip Pearle, Brian Collett, Kenneth Bart, David Bilderback, Dara Newman, and Scott
Samuels, “What Brown saw and you can too,” AJP 78, 1278 (2010).

3.1.2 Before Einstein

There was no work published on the Brownian motion between 1831 and 1857, but the phe-
nomenon was well known. From 1850s new experimental studies began by Gouy and others.
The established facts included:”

(1) Tts trajectory is quite erratic without any tangent lines anywhere (—3.4.1).

(2) Two Brownian particles are statistically independent even when they come within their
diameters.

(3) Smaller particles move more vigorously.

(4) The higher the temperature, the more vigorous the Brownian motion.

(5) The smaller the viscosity of the fluid medium, the more vigorous the motion (—3.1.3).
(6) The motion never dies out.
etc.

In the 1860s there were experimentalists who clearly recognized that the motion was due to
the impact of water molecules. Even Poincaré mentioned this motion in 1900,® but somehow
no founding fathers of kinetic theory and statistical mechanics paid any attention to Brow-
nian motion.”

3.1.3 Einstein’s paper!’ of 1905; Einstein’s formula

Einstein’s key idea was that a Brownian particle may be treated both as a large molecule
and as a tiny macroscopic particle at the same time:

(a) its diffusion obeying Fick’s law must be driven by the osmotic pressure gradient.

(b) its mean velocity under an external force is obtained with the aid of fluid dynamics

6The work was published the next year, but was communicated to Stokes very soon in August, 1827.

"Yonezawa p45-.

8His student Bachelier published in 1900 a paper on the dynamics of stock market in terms of numerous
but small random variations. L Bachelier, “Théorie de la spéculation.” Ann. Sci. de L'Ecole Normal Supérier
17, 21 (1900). This is the first paper of mathematical finance.

9The fact that the equipartition of energy did not seem to hold for Brownian particles seems to have
been a big obstacle (See Editorial note p206 of Collected Papers of Albert Einstein vol.2); it was not hard to
measure the mass of the particle (about 1pg), but to measure the velocity was the problem (—3.1.5). Only
the average velocity was measured, so it was slow and the kinetic energy (that must be equal to 3kpT/2
(—2.3.5)) was grossly underestimated. Einstein was successful, because he avoided any direct discussion of
the true velocity.

10«ber die von der molekularkinetischen Theorie der Wirme geforderten Bewegung von in ruhenden
Flussigkeiten suspendierten Teilchen,” Ann. Phys. 17, 549 (1905) [On the motion of suspended particles in
stationary fluid required by the molecular kinetic theory of heat.]
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(Stokes’ law).
First of all, according to van’t Hoff, the osmotic pressure II of a solute is given by

Il = nkgT, (3.1.1)

where n is the number density of the suspended particles.!* If there is a concentration

gradient, there is an osmotic pressure gradient. If a stationary gradient is caused by an
external force (e.g., gravity) f (per molecule), there must be a force balance:

—VII=nf. (3.1.2)
Therefore, the force per molecule due to the osmotic pressure gradient must be given by
f=—ksTVlogn. (3.1.3)

This is the consequence of (a).

On the other hand, the average molecular velocity v is given by (v = f, where ( is the
friction constant that may be measured or computed for a given particle. If we use Stokes’
law, ¢ = 6man, where a is the radius of the particle, and 7 is the viscosity of the fluid in
which the particle is suspended.'? Therefore, the consequence of (b) is

6ranv = f. (3.1.4)
nv must be the diffusion flux. This must be equal to the result given by Fick’s law, so
—DVn = nw. (3.1.5)

Therefore, we conclude
D = kgT /6man. (3.1.6)

This equality is called the FEinstein relation. This equation allows us to obtain kg or, since
the gas constant R is known, to calculate Avogadro’s constant.

3.1.4 Mean square displacement of Browning particle
Due to the bombardment of water molecules, the Brownian particle executes a zigzag motion,
and on the average it is displaced.

Einstein derived the diffusion equation for the particle and computed the mean square
displacement.

The diffusion flux 3 must be given by

J = —Dgradn. (3.1.7)
Therefore, the conservation of the number of particles implies the diffusion equation:

on

i —divy = DAn. (3.1.8)
Its Green’s function'® describes the displacement distribution in d-dimensional space
G( _ 1 42 —12/4Dt
r,t) = <47rDt> e . (3.1.9)

U Einstein actually derived this from statistical mechanics in this 1905 paper
12For a proof see Landau-Lifshitz, Fluid Dynamics.
130on the whole 3-space with the boundedness condition everywhere.
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Therefore, after ¢, the mean square displacement must be
(r(t)?) = 2dDt. (3.1.10)

That is, if we observe the mean square displacement of a particle, then D of the ensemble
of such particles may be measured.

The left are four sample paths and their average is on the right. [Courtesy of Prof. Nishizaka
of Gakushuin Univ.]

3.1.5 Experimental verification of Einstein’s theory

Now in the 21st century, we feel Einstein’s argument is impeccable, but his theory was not
immediately accepted, because of several logical or physical gaps in his argument outlined
in 3.1.3.

The ingredient (a) is not immediately clear, because it is not obvious whether such a
large particle as a Brownian particle obeys exactly the same law as ordinary molecules (the
formula for the osmotic pressure). The ingredient (b) is also not very obvious due to an
opposite reason; we are not very sure whether the macroscopic fluid dynamics (i.e., Stokes’
law) is applicable to the average velocity of such a small particle as a Brownian particle.!
Perrin experimentally checked that these premises were right.

Then, Perrin used (3.1.10) and measured D. With the aid of (3.1.6) it is possible to

determine kp. That is, we may obtain Avogadro’s constant N,. Perrin performed such
studies and consistently obtained N, (various methods all gave ~ 6.5 x 10?*). Thus, Perrin
declared that it had become difficult to deny the existence of atoms.
Remark 1. However, do not naively conclude that the observation of erratic motion ‘proves’
the existence of atoms and molecules. It only tells us that around a Brownian particle is a
pressure fluctuation. The consistency of several different measurements of Avogadro’s con-
stant is the key. O

14The reader may suggest a molecular dynamic simulation to check this and might add that there is already
such a paper (e.g., M Vergeles, P Keblinski, K Koplik, and J R Banavar, “Stokes drag at the molecular level,”
Phys. Rev. Lett. 75, 232 (1995); this paper suppresses the fluctuation of the Brownian particle by choosing
the particle mass very large). However, since the hydrodynamic effect is long-ranged (—5.2.6), realistic
simulation requires a huge system and is not easy.
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Exercise 1. The diffusion constant of insulin is about 8.2 x 107*'m?/s. What is the typical
time scale for the insulin molecule to diffuse across a typical cell? O

Exercise 2. How about ribosomes in a cell? How long will it take for a complete ribosome
to diffuse across a eukaryotic cell or a prokaryotic cell?!® O

3.1.6 Einstein’s remark on instantaneous velocity of Brownian particle

In 1907 Einstein remarked: for a Brownian particle its average velocity may be obtained
from its short-time displacement, but a very short time average does not make sense. An
argument very similar to the one we have seen in (3.1.10) shows that the mean displacement
during time ¢ is proportional to v/t. This implies that the instantaneous velocity must be
undefinable; the motion is very erratic. Perrin commented that the Brownian path is every-
where nondifferentiable. See 3.4.1 (cf. X1.4.6).

Exercise 1. A Brownian particle of radius 0.1 pm is suspended in water. Estimate the
time needed for the initial speed to decay to its 1/10. What does this tell you about the
observability of the speed of the particle? O

3.1.7 Fundamental idea of Einstein
Einstein’s fundamental ideas dominate nonequilibrium statistical mechanics:

Microscopic fluctuations can build up (semi)macroscopic fluctuations whose dy-
namics is on the average governed by the laws of macroscopic time evolution.

Brownian motion is a semimacroscopic (mesoscopic) motion that is a result of building up
of microscopic fluctuations. Its decay is described by Stokes’ law, a macroscopic dissipative
dynamics.

This was later more clearly stated by Onsager as the regression hypothesis (—4.1.2).

3.1.8 Random walk and diffusion

Due to the pressure fluctuation caused by microscopic motion of fluid molecules, a Brow-
nian particle executes an erratic motion. We know that its velocity is hardly well-defined
(—3.1.6). However, we can observe its displacement vectors for a fixed time interval, say 7
(stroboscopic observation). Let 7; be the i-th total displacement between time (i — 1)7 and
17. Thus, we may model the movement of a gas molecule by a random walk: for every 7 the
point makes a displacement r

After N steps (after N7), the total displacement R is given by
R=7r+---+41ry. (3.1.11)

For a Brownian particle we know that (r;) = 0 (there is no systematic movement) and the
steps may be regarded mutually statistically independent (—1.2.2). Therefore, the mean-
square displacement is (notice that (3.1.11) is a sum of iid random variables, cf., 1.7.1)

(R*) = (r}) + -+ + (r}) = N(r}) = N, (3.1.12)

where (r?) = (2 which may be observable. Comparing this with (3.1.10) with ¢ = N7, we

obtain
D = (*/2dr. (3.1.13)

Here, d is, as before, the spatial dimensionality.
15This tells us why we eukaryotes need molecular transport devices.
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Actual observation results of a latex particle trajectory for 3.3 sec. The left every 1/8000
sec, and the right every 1/30 sec. [Courtesy of Prof Nishizaka of Gakushuin U]

3.1.9 Diffusion equation and central limit theorem
We can also apply the central limit theorem 1.7.1 to the stroboscopic observation in 3.1.8:

each component of R/\/N(?/d = R/\/2Dt obeys asymptotically N(0,1) (here, D is given
by (3.1.13))

1L\ —R?/4Dt

This of course agrees with the Green’s function of the diffusion equation (—(3.1.9)).

Let us more directly arrive at the diffusion equation in a theoretical physicists’ fash-
ion. Let us consider the characteristic function (—1.4.7) ¥(k, N) of R. Let w(k) be the
characteristic function of each step r. Then,

U(k,N) = w(k). (3.1.15)
Assuming that N is very large, we can differentiate this as

2 0(k, N) = llogw (k)] (k. N). (3.1.16)

We are interested in small k, so w(k) = 1 — *k?/2d + - - -, and (3.1.16) reads

iwc N) = —ﬁk;%(k N) (3.1.17)
ON "\ 2d s “

This is just parallel to the demonstration of the central limit theorem in 1.7.1. Replacing
N with t/7, this is the spatial Fourier transform of the diffusion equation (3.1.8):

2 (k. N) = ~DI(k,N). (3..15)

There is a way to make the above argument rigorous due to Lindeberg.
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3.1.10 Chapman-Kolmogorov equation, Markov property

Suppose the probability to find the random walker in a volume element centered at position
r’ at time ¢ is known as P(r',t)d®r’. If we know the distribution p of the next one step £,
we should be able to obtain the probability to find the walker around a specified location r
at time t + 7. We can write

P(r,t+7) = /dep(e)P(r — 8. (3.1.19)

This type of equation is called the Chapman-Kolmogorov equation. It is nothing but a con-
sistency condition among various probabilities and transition probabilities.!®

The reason why we can write down the Chapman-Kolmogorov equation (3.1.19) is that
what happens next depends only on the knowledge about the present (more precisely, what
happens after time ¢, is dependent only on the state of the system at t; and not on the states
at t < ty).!” Such a process is called a Markov process (—6.1.3).

3.1.11 From Chapman-Kolmogorov equation to diffusion equation

Since we assume [£| is small (or P does not change appreciably for this length scale), we
should be able to reduce the Chapman-Kolmogorov equation to a differential equation. To
this end it is convenient to rewrite (3.1.19) as

P(rt+7)= /dep(e)e—f~%13(r,t). (3.1.20)

Here, we have used the formal expression that can easily be guessed from the Taylor series'®

2 mn
el d/d2) f(z) = [1 + ach + 21!a2ddx2 +o :L!a";;n + | flo), (3.1.21)
= f(z)+af(z)+ 21!a2f”(x) +- 4+ ;f(")(x) +---, (3.1.22)
= f(z+a) (3.1.23)

Or, this is equivalent to the statement that the momentum is the generator of translation in
quantum mechanics.

Let us compute the average over . We assume that p is Gaussian.!®
0.2, ity 0 0 (%)
a0 p(0)etr —exp |62 0 0| _ 184 1.24
| deweet eXp[ 2 on; arj] exp [ 2d (3:1.24)

161 governs the transition from the position at present to the position at the next time step, so it is called
the transition probability.

170f course, the past influences the future in this case, but only through the state at time .

18This is only formal; or more precisely, this is used only inside the integration symbol, we may use the
theory of generalized function. For an operator A e is defined by the operator series

=1+ A+ A2+ 4 A" nl 4.

This is meaningful only when A is a bounded operator. Differential operators are unbounded, so our calcu-
lation is only formal.

190ne plausibility argument for this is that this displacement is a result of numerous collisions, so the
central limit theorem (—1.7.1) suggests the Gaussianness of p.
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Therefore,

P(r,t) + TaatP(r,t) + - =exp VS?A] P(r,t) = (1 + SZA + - ) P(r,t).  (3.1.25)

That is, if we set D = ¢%/2dr as before (—(3.1.10)), we arrive at the diffusion equation again

oP
— = DAP. 1.2
T (3.1.26)

3.2 Introduction to Langevin Equation

Langevin’s original:
Langevinfs paper in translation: Am. J. Phys. 65 (11), November 1997, 1079.

3.2.1 Path space description of random phenomenon
Einstein’s original treatment of Brownian particles is to study them through averages.?? De-
scription of Brownian particles in terms of distribution functions is the next step (the next
theoretical refinement). We have already glimpsed this approach through the study of diffu-
sion equation (—3.1.8): it is an equation governing the time evolution of the spatial density
distribution of Brownian particles.?! We will further discuss this approach later (—3.3).
The reader must have thought that the ultimate description of the Brownian motion
is to study the ‘trajectory’ of each sample particle; that is, we should describe the time-
dependent phenomenon in its path space = history space.?? To this end we need a detailed
modeling of the motion of each Brownian particle.

3.2.2 Langevin introduced path space description of Brownian motion
Such a description was proposed by Langevin (1872-1946): he tried to model the equation
of motion of a Brownian particle:

mccl;: =—Cv+ F(t) +w(t), (3.2.1)

where v is the velocity of the particle, m is its mass, ( is the friction constant, F' is a

systematic mechanical force that may be time-dependent, and w is the noise corresponding

to the impacts of water molecules on the particle. This is Newton’s equation of motion,

but the nature of the noise force w is very different from the ordinary forces in mechanics
(—3.2.3; 3.7.6).

In modern terms Langevin introduced a stochastic differential equation (—3.4.4. 6.5)

dv(t,w)
LT

20This is the ‘level 17 in the terminology we have used in large deviation theory (—1.6.2).
21This is the ‘level 2’ in the terminology we have used in large deviation theory (—1.6.7).
22This is the ‘level 3’ in the terminology of large deviation theory.

= —Cu(t,w) + F(t) + w(t,w), (3.2.2)
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where w is the stochastic parameter (see 1.4.1, 1.4.2) . For each sample (for each observa-
tion) a different w is chosen from a probability space.

To model a Brownian particle, we need a stochastic process (—1.4.2) w(t,w), a map
from a probability space to a function of time that should not be differentiable.

3.2.3 How to specify noise driving force
We may assume that the random force is, on the average, zero: the average (w) = 0, where
() implies the ensemble average = average wrt the stochastic parameter w. Therefore, at
least we must specify its fluctuation (second moments).

Let us specify its time correlation function (in this case it is a matrix)

C(t,s) = (w(t,w)w? (s,w)), (3.2.3)

where t > s, T denotes the transposition of the vector, and the average is over w.?* Langevin’s
idea is as follows:?* Even at the same time different components are statistically indepen-
dent; the same component (say, z-component) at different times may be correlated, but its
‘memory’ is very short. Also he assumes that the noise is stationary. That is, statistical
properties do not depend on the absolute time. Thus, C(¢,s) = C(t — s,0); We may simply
write C(t,0) as C(t). The ultimate short memory model is defined by the following ‘white
noise,’*

C(t) = (w(t)w’ (0)) = 2al6(t). (3.2.4)

Here, o is a positive constant, and I is the 3 x 3 unit matrix.?

Although we have not completed the specification of the noise,
more detail, if we wish to compute only two-time correlation functions.

2" we do not need any

3.2.4 Langevin model of free Brownian particle: introduction
Let us assume that there is no external force in (3.2.1):

d
mZ = —Cv + w(t). (3.2.5)
dt
With the initial condition v(0) we can solve it as
1 gt
v(t) = —/ w(s)e /M=) gs 4 (0)e~ /M, (3.2.6)
m Jo

If a particle is with radius a and the viscosity of the fluid medium is n, { = 6mwan with a
sticky particle-surface-fluid boundary condition (Stokes’ law).?
Using this result, let us compute the mean square velocity:

(v(t)-v(t)) = jjé + <<v(0)2> — :§> e~ 20¢/mit, (3.2.7)

231f the existence of the stochastic parameter w is obvious from the context, it will be suppressed.

246f course, in the modern notation

251t is said to be ‘white’, because the noise changes so rapidly in time that all the frequencies appear. We
will outline harmonic analysis of Langevin equations soon (—3.7.4).

26The prefactor 2 is very convenient (cf. X1.2.10). 3 is the spatial dimensionality, so in d-space I should
be the d x d unit matrix.

2TOften we say we assume the Gaussian white noise. Then, the statistical specification of the noise is
complete in terms of correlation functions, because any higher order moments are completely determined by
the second moment for a Gaussian distribution.

28If we use a slippery boundary condition, it is 4wan. See Landau-Lifshitz, Fluid Mechanics.
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Here, we have assumed that the noise and the initial velocity are statistically independent.

3.2.5 Fluctuation-dissipation relation of the second kind

We are studying a Brownian particle suspended in an equilibrium fluid. Therefore, after
a sufficiently long time (v?) must be time independent and the equipartition of energy
(v?) = 3kgT/m must hold. Therefore, (3.2.7) implies & = kgT(. That is,

(w(t,w)w’ (s,w)) = 2CkpTIH(t) (3.2.8)

is required. This is called a fluctuation dissipation relation of the second kind (for a general
form see X1.2.6, X2.3.15): it relates the noise amplitude and the magnitude of the damp-
ing factor through the requirement that they are compatible with equilibrium statistics: if
the damping factor is large, the random driving force must be large to maintain sufficiently
vigorous thermal motion. Notice that this relation automatically makes (v(t) - v(t)) time-
independent as it should be.

3.2.6 Langevin model of Brownian particle: summary

Let us summarize the Langevin model of a particle subject to the equilibrium noise. The
equation may be used to describe a suspended particle of radius a in a fluid of viscosity 1 and
temperature T subject to an external force F.?° The equation is called a Langevin equation:

d
mdit’ — v+ F(t) +wlt,w), (3.2.9)
where ( = 67na and the noise is a stationary Gaussian white noise:
(w(t,w)) = 0, (3.2.10)
(w(t,w)w(0,w)’) = 2CkpTIs(t). (3.2.11)

The last equation is the fluctuation dissipation relation of the second kind, and is required to
maintain the Maxwell distribution of the particle velocity. In classical statistical mechanics,
the velocity distribution is always the same independent of the external force. Therefore,
our consideration for a free particle in 3.2.3 should work.

3.2.7 Equilibrium time correlation function of Brownian velocity
Even in equilibrium there are fluctuations that are explicitly time dependent. The study of
time evolution of various quantities in equilibrium is an important topic of ‘nonequilibrium’
statistical mechanics (—Onsager’s principle 3.2.10).

Since we know v(t,w) for any initial condition (and for any noise sample specified by
the stochastic parameter w),>® we can compute the equilibrium time correlation function of
the velocity of a free (i.e., F' = 0) Brownian particle: for ¢ > 0

kgT

(v(t, )T (0,w)) = (fu(o,w)vT(o’w»e*(C/m)t =

Te~(¢/mt, (3.2.12)

29Here, v also depends on w, but this dependence is not explicitly written.

30Here, the stochastic parameter w only specifies a noise sample, but does not specify the initial condition
for the velocity randomly sampled from the equilibrium ensemble. Mathematically, v is a sample path,
so it may be better to let w specify both the stochastic objects, the noise and the initial velocity. Here,
mathematically-oriented readers may interpret the notation as follows. We could introduce two stochastic
parameters for these two stochastic = random objects to make the situation explicit, but the stochastic
parameter for the initial condition is suppressed, since v(0) appears explicitly.
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Here, as above, I is the 3 x 3 unit matrix, and ” denotes the transposition of vectors. In
obtaining this we have used the statistical independence of noise and the initial velocity, and
have assumed that the initial velocity distribution is Maxwellian (—2.3.2).

Equilibrium dynamics should be time reversal symmetric (cf. 3.7.4, X2.3.2), so for all
t, the Langevin model of the Brownian dynamics tells us that

kpT
e Rl (3.2.13)

m

(o(t,w)v" (0,w)) =

Notice that this is not differentiable at ¢ = 0. We will discuss its implication later (—3.3.3),
but the reader should start thinking about it (cf., 3.1.6). Here, it is simply pointed out
that the inertia should make the time correlation differentiable at ¢t = 0. Thus, the Langevin
equation should not be reliable for a very short time scale.

Discussion 1. Experimentally, we can obtain some information about dynamics from the
time correlation. Read the following paper and summarize the content:

M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton,
“Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the
Hidden Time Structure,” Biophys. J, 88, L33-L36 (2005). O

3.2.8 Fluctuation-dissipation relation of the first kind: a prototype
Now, let us apply an external force F' as described by (3.2.1). We use the noise satisfying
the fluctuation-dissipation relation of the second kind (3.2.8).

It is easy to solve the equation as

1 t
o(tw) = /0 (F(s) + w(s,w)) e /M=) gs 1 p(0)e=C/m), (3.2.14)

Its noise ensemble average (this is the average over the stochastic parameter w) reads

1 rt
(v(t,w)) = —/ F(s)e”&/mt=2)qs 4 (0)e /™), (3.2.15)
m Jo
Furthermore, if we average over the initial condition that is sampled from an equilibrium
ensemble; we obtain the response of the velocity of the Brownian particle in equilibrium:

it w)) = — / " F(s)eCmt- g, (3.2.16)

m

This implies that the response has the following form:

(w(t,w)) = /ths(t G F(s)ds, (3.2.17)

where ¢ is called the response function (in our case it is a 3 x 3 diagonal matrix) and is given
by (cf. (3.2.12), X2.2.1)

o(t) = (v(t,w)v’ (0))/kpT. (3.2.18)

Here, the average is over w (thermal noise) and the initial velocity v(0). Such a relation
expressing the response function in terms of the correlation function of the quantity under
consideration is called the fluctuation-dissipation relation of the first kind (—X2.3.11).

The reader must have thought that she had already encountered an analogous relation
in equilibrium (fluctuation-response relation —2.8.2).
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3.2.9 Prototype of Green-Kubo relation
Let us study the diffusion constant D of the Brownian particle. It is defined by (see 3.1.4,
3.1.8)%

D = lim (r(t)?)/6t, (3.2.19)

where r(t) is the position of the particle at time t that started from the origin at ¢t = 0.
Since 7(t) = [ v(s)ds,
1 t t
D = lim —/ ds/ ds'(v(s) - v(s)). (3.2.20)
6t Jo 0

t—o0

With the aid of I'Hospital’s rule,3?

1 0
D= g/0 (v(s) - v(0))ds. (3.2.21)

That is, transport coefficients can be computed by the time integral of correlation functions.
Such a relation is called the Green-Kubo relation (—4.1.12, 4.1.14, X2.3.12). Note an
intimate relation between the response function and the transport coefficient (3.2.18).
Exercise 1. Compute D for the Brownian particle of radius a in a viscous fluid of viscosity
1 with the aid of the Green-Kubo relation. O

Discussion 1. The self-diffusion constant of a liquid is not easy to measure, but viscosity
is much easier to measure. If Einstein’s relation (3.1.6) holds for a single atom or molecule,
we could easily obtain the diffusion constant. How reliable is the result? Study noble gas
liquids and simple organic liquids (e.g., benzene, methane, etc.). O

Discussion 2. In Discussion 1 try the slippery fluid velocity boundary condition. For argon
it is known that the relation with the slippery boundary condition is quantitative. In any
case, as the reader has seen there, the order of the diffusion constant is roughly correct. A
possible argument explaining this success is dimensional analysis: the relevant length scale
is only a, so if we perform dimensional analysis taking into account kg7, n, and the general
belief that the numerical constant appearing in the dimensional analytic result is of order
unity, we must conclude that the Einstein relation is correct even for atoms. Is this a sound
argument? O

3.2.10 Large deviation, Onsager’s principle, and Langevin equation
This entry is largely a repetition of 1.6.15. In 3.2.7, it is pointed out that the Langevin
equation is not reliable for short times. This implies that the microscopic mechanics time
scale and the time scale t); we observe the Brownian motion must be well separated, and
that the time scale of the Langevin equation must be the intermediate time scale. Let us
write this time scale as 7.

Suppose dz/dt is the true derivative (in the sense used in mechanics). Then, it fluctuates
violently. However, if we average it for 7,

At T

= 3.2.22
dt T ( )

Ar 1 /OT s de(t+s) x(t+7)—x(t)

fluctuates much less violently. Its expectation value is, however, not constant at the scale
of tyr, and obeys a certain macroscopic law of evolution (regression principle —3.1.7 and

31Here, 6 is 2 x d.
32We must assume that the system is infinitely large. This is an example of noncommutativity of space
and time infinity limits. That is, macroscopic limit is a singular limit. Cf. X2.3.7.
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4.1.2) on the average:

<A:1:> = f(z) in the mean. (3.2.23)
At
Here, () is the equilibrium ensemble average.®> Notice that for us macroscopic observers the
mesoscopic time scale 7 may be interpreted as infinitesimal dt, so we may write Ax/At =
dx/dt in Langevin equations.®!
For a Brownian particle, the expectation value (the equilibrium ensemble average) of
dv/dt averaged over 7, that is, the ensemble average of (1/7)(v(t + 1) — v(t)), is —Cv(t).
We assume that the large deviation principle (—1.6.2) holds for the short time average
introduced just above (denoted by an overline):

P(dx/dt ~ i|x(t)) ~ e "I@Eet) (3.2.24)

where x(t) is written after | to denote explicitly that the noise is studied for a given ‘macro-
scopic state,” and I is the rate function, whose form we will discuss later. Here, the x(t)
dependence of the rate function [ is explicitly denoted with the added z(t) after the vertical
line; the rate function is under the condition that the initial condition is z(t). Let us call
this Onsager’s principle.?® Roughly, we may say (for a more detail —X1.1.3):

Onsager’s Principle: Large deviation principle holds for the time average over
the mesoscopic time scale.

We know the value #(¢) that minimizes I (that is, / = 0) must be the most probable
value we observe. This should be identical with the macroscopically observable result. This
is Onsager’s regression hypothesis. Thus, it may be better to call the following slightly
restricted version as Onsager’s principle:

Onsager’s Principle (more conventional): Large deviation principle holds for the
time average over the mesoscopic time scale. The rate function vanishes for the
macroscopically expected result.

The rate function [ is convex and vanishes for the most probable value (expectation value)
(—1.6.2). Therefore, I must vanish if and only if the phenomenological law holds. This
is the above restricted version. [ is usually differentiable, so we may assume that near the
origin I has a quadratic form. Therefore, for the velocity of a Brownian particle in a viscous

medium, we can write .
I(®(t)|v(t)) = 4(1<;BT("" + (v)?. (3.2.25)

This rate function is compatible with the Langevin equation. That is, the Langevin equation
is an expression of Onsager’s principle in the Gaussian approximation. Here, the overall
coefficient of the quadratic term is chosen to be compatible with what we already know (the
fluctuation dissipation relation of the second kind), we will discuss how to determine this

33under the condition that x(t) is specified; precisely speaking, short time average of x(t) is specified.

34Do not confuse this notation and the ‘true’ time derivative in the integrand of (3.2.22).

35Needless to say, the naming is anachronistic, because large deviation theory being used in these lecture
notes is much newer than Onsager. Hashitsume named the Onsager’s original proposal the Onsager’s prin-
ciple after correcting it (—4.1.19); the large deviation theoretical form given here is due to the lecturer,
because he believes that if Onsager knew large deviation theory, he should have written down this form as
his fundamental proposal.
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within Onsager’s principle later (—4.1.18).
Since #(t)T = z(t + 7) — x(t), P(2(t)|z(t)) = P(x(t + 7)|x(t)). Therefore, (3.2.24) may
be interpreted as the transition probability of a Markov process:3°

P(x(t 4+ 7)|z(t)) ~ e ™I EORO), (3.2.26)

From this we can define a path integral (—4.1.16) that describes the solution to the Fokker-
Planck equation.?”

3.3 Langevin Equation: relation to mechanics

3.3.1 How realistic is Langevin model?

What is —Cv in the Langevin equation (—3.2.2)? Is the v really instantaneous velocity in
the genuine sense of the word in mechanics? Its square average satisfies the equipartition of
energy,®® so it looks as a microscopic true velocity. However, the friction constant ¢ which is
usually obtained as ¢ = 6wan is not applicable to such an instantaneous velocity (cf. 3.1.5).
This implies that there is a certain inconsistency (or at least a mismatch) in the Langevin
equation. This is saved by the ‘artificial choice’ of the noise amplitude according to the
fluctuation dissipation relation (—3.2.5). Therefore, the equation should not be trusted for
very short time scales.

We have noticed that the time correlation function of the velocity at the origin is not
differentiable (—3.2.7); there is a cusp as |t| there. Since velocity is differentiable due to
inertia, this is inconsistent with (classical) mechanics.

Therefore, again we reach the same conclusion: the Langevin model of the Brownian
motion must not be trusted for very short times (a time scale much shorter than the macro-
scopic scale).

This feature is very clear from the large deviation interpretation of the Langevin equa-
tion (—3.2.10); the Langevin equation is a result of short-time average of the microscopic
dynamics.

3.3.2 Realistic energy consideration is possible with Langevin equation

It is stressed that the Langevin equation is reliable only in the time scale longer than the
noise memory time scale in 3.3.1. However, beyond the memory time scale of the noise the
Langevin equation or, more generally, the models with stochastic noises could be sufficiently
reliable.

(3.2.1) is a Newton’s equation of motion, so the RHS must be the force acting on the
Brownian particle. F' is a systematic force exerted by an external agent. Then, the remaining
force

Fp=—(v+w (3.3.1)

must be the force due to the interaction of the particle and its surrounding environment
(fluid).

36See 6.2.1; we will discuss this in a much more detailed fashion in Chapter 6.

37The reader should have recalled the relation between the Schréodinger equation and the Feynman path
integral. Formally, they are equivalent.

38This is NOT a consequence of the equation, but is imposed. However, we must recognize that the
Langevin equation can accommodate this requirement.
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What is the work done by the force F'5 on the Brownian particle? The resultant energy
flow must be heat: the work done by F'g may be consistently interpreted as heat imported
to the particle from the surrounding fluid.3® This is the theory of stochastic energetics due
to Sekimoto (—X1.6).%C With this framework we can discuss the second law of thermody-
namics and efficiency of thermal ratchets, etc.

3.3.3 Mechanics and stochastic processes

The reader may have complaints about the nature of the Langevin equation, because it is
written down apparently independent of mechanics, although it is said that it is a Newton’s
equation of motion. As she has worried, it is even inconsistent with mechanics (—3.3.1).
We certainly have the definite microscopic mechanical picture of a Brownian particle and its
surrounding liquid medium. What is the relation between this true (many-body) mechanics
and the Langevin equation that contradicts mechanics?

In this section one strategy (the ‘projection strategy’) is outlined. The form of the
Langevin equation can be derived (or the equation of motion can be recast in this form;
Mori theory —3.3.6). The basic idea is to single out the slow (or systematic) coordinates
describing the center of mass of the Brownian particle and derive a closed equation for them
with the aid of the formal solution to the equation of motion for the remaining variables
(Nakagima-Zwanzig projection method —3.3.4). After this formal reduction we introduce an
approximation that the time correlation function of the noise decays to zero instantaneously
(white noise approximation or Markovian approximation) to reach the Langevin equation
introduced in 3.2.2. Thus, we see that the result may be reliable for longer time scales, but
not so for microscopic time scales as expected.

Whenever we wish to derive a stochastic process from mechanics, we need some extra
probabilistic assumptions (—X1.2.10; recall that even the Boltzmann equation needed such
an assumption —2.4.11, 2.7.10). However, we cannot freely assume an arbitrary stochastic
process. In equilibrium the most important requirement is the consistency with the equi-
librium distribution: the solution to the Langevin equation must be compatible with the
equilibrium distribution after a sufficiently long time. We have just seen such a typical ar-
gument (fluctuation-dissipation relation —3.2.5).

The lesson we must learn is that a reasonable stochastic model can be constructed only
when we know the equilibrium (or more generally, steady state) distribution, because we
have no argument based solely on mechanics to model the noise.

This implies that if we are away from equilibrium, we have no firm basis for any stochas-
tic model that is guaranteed by mechanics. No stochastic model can be used to answer
fundamental questions of nonequilibrium statistical mechanics.

3.3.4 Idea of projection operator
We have learned that the essence of the Brownian motion is the possibility of separating
two time scales, microscopic and macroscopic, clearly. Therefore, if we can remove rapid
fluctuating motions from the true microscopic mechanical equation of motion of the system
consisting of the Brownian particle and the surrounding water molecules, then the remaining
dynamics would describe the systematic part (long time and large length scale motion) of
the Brownian particle.

A natural idea is to project out the noise part of dynamics to obtain the systematic
long time global dynamic.*! This can be formally accomplished by applying a projection P

39 As usual, the sign convention is: importing is positive.

40K. Sekimoto, Stochastic Energetics (Iwanami, Tokyo, 2004) [in Japanese].

41The idea of projection was introduced by Nakajima and (later) by Zwanzig and was utilized by Zwanzig
and Mori (—X1.2.6) to derive mesoscopic dynamic equations.
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to the equation of motion. P is a linear operator acting on a linear space of functions or

vectors such that
PP =P (3.3.2)

If P is a projection, then () = 1 — P is also a projection. Of course, PQ) = 0.
Notice that local time averaging is a projection.

3.3.5 Kawasaki identity
We can write the equation of motion as

d
—A=1LA 3.3.3

for both classical and quantum mechanics. L is often called the Liouwvillian (Liouville opera-
tor). Here, A may be a phase function (classically) or an operator (quantum-mechanically).
Exercise 1. What is ¢L? (cf., 2.7.1,2.7.12) O

Let P be a time-independent projection operator. Then, the following identity called the
Kawasaki identity*? holds:

d .. P | |
et = HPiL + / ds ¢ M09 PiLeQ s Qi L, + QT Qi L, (3.3.4)
0

where ) =1 — P.
[Demo] The equation of motion for the evolution operator (propagator) is

d

%e“:t = M PiL + QL. (3.3.5)

We wish to separate the ‘noise’ part e?“*QiL:

d

%ei“ = e PiL + (e — 9N QiL + 9 QiL (3.3.6)

Now, we use the identity:
) ) t . )
et — @it — / ds e't=9) pi L@l (3.3.7)
0

and we get (3.3.4).

The easiest way to demonstrate (3.3.7) is to use Laplace transformation: Le''t = (s —
iL)~!. Then, (3.3.7) is nothing but the so-called resolvent identity:
(s—A)'—(-B)'=(s—A)(A-B)(s—B)™". (3.3.8)

Exercise 2. Demonstrate the above identity (note that A and B may not commute). O
By choosing an appropriate projection P, the Kawasaki identity becomes various known
useful equations.?

42K. Kawasaki, J. Phys. A 6, 1289 (1973).
43Here, the identity is introduced abruptly, but a more natural derivation may be found in Chapter X1.
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3.3.6 Mori’s generalized Langevin equation
Mori* cast Heisenberg’s equation of motion (3.3.3) to quantum Langevin equation.
First, the projection operator P must be chosen physically correctly. Because (—4.3.5)

B
e P2 Xj) — o=BH [1 +/ dset e X; + - ] ) (3.3.9)
0
the effect of perturbation can be written as
A sH —sH
(0x;) = /0 dse* oxje " x; ) X;. (3.3.10)

Thus, it is natural to introduce the following ‘scalar product’ symbol (called the canonical
correlation)®®

B
(A;B) = B_I/O ds Tr(p.e*? Ae™*H B). (3.3.11)

Here, p. is the equilibrium distribution (density operator).
Let us define P as
PB = A(A; B)/(A; A). (3.3.12)

This may be expressed more conveniently as
P|B) = |A)(A|B)/(A]A) (3.3.13)

with the interpretation of the bracket product as the canonical correlation.
Using this projection the Kawasaki identity reads Mori’s generalized Langevin equation

SIAW) =i00A4@) + [ ds Kan(t — )IA®) + 1), (33.14)
where
1f(t)) = "PLRQiL|A), (3.3.15)
which is supposedly the noise term, and
Kaa(t) = (fO)f(£))/(AlA), 12 = (AliL|A)/(A]A). (3.3.16)

The i€) term represents the reversible term. The first relation is the fluctuation-dissipation
relation of the second kind (—3.2.5) generalized to the case with memory.

3.3.7 Markov approximation of Mori’s Langevin equation
(3.3.14) or
d t
ZA() = iQA() + / ds Kaa(t — $)A(t) + f(1), (3.3.17)
0
has a memory, so dA/dt is not determined by A(t) (and f(t)) alone. That is, the equation
does not describe a Markovian stochastic process. Actually, the equation is obtained by a

44H. Mori, Prog. Theor. Phys. 33, 423 (1965).
45That this correlation defines a scalar product may be seen from the general properties summarized in
X2.5.7.
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formal transformation of the equation of motion, so it is still a mechanical equation and has
no direction of time. By discarding the memory, (3.3.17) becomes a (Markovian) stochastic
equation. This procedure is called the Markov approximation. The result reads

A1) = QA1) — CAAW) + (1), (33.15)
where
Ci= [ Kaa(t)dr (3.3.19)
and
(f(t)f(0)) = 2kgTCad(2). (3.3.20)

Notice that discarding short=time detailed information is crucial to derive stochastic
equations.

3.3.8 Limitations of Mori’s Langevin equation and projection onto space spanned
by gross variables

Mori’s Langevin equation projects the motion onto the space spanned by |A) (i.e., by an
observable A). Therefore, e.g., A%, which is not expressible as a constant multiple of A, is
treated as nonsystematic noise. However, A? surely contains a systematic part that does not
average out even if A averages out. Therefore, Mori’s Langevin equation (3.3.14) is reliable
only when |A| > A%

If we really wish to study a nonlinear system with noise, we must project the dynamics
onto the space spanned by all the functions of macrovariables = gross variables A. Let us
discuss the classical cases only.

For the linear case the projection operator we use should reduce to Mori’s choice (its
classical version). Therefore, as its natural extension we introduce the set of (real) orthonor-
mal polynomials ¢, (A) of gross variables A (¢,(A) are multivariate polynomials of A) such
that

[ AT 0e(T)6n (AT (AT)) = G (3:3.21)

where p, is the equilibrium distribution function on the phase space. The gross variables are
considered as functions of microscopic variables I' in the calculation of projection; A without
explicit specification of I'-dependence means gross variables as macroscopic variables. The
projection operator P is defined as

PX =3 ¢u(A) / AT p(T) o (AT X (D) = Y hn(A) (dn (A1) X(T)), (3.3.22)

where ( ) is the equilibrium average. On the right-hand side X is expressed in terms of
mechanical (microscopic) variables, but after pr