
Part I. Rudiments

This part provides a rudimentary background of probability and statistical mechanics. It is
expected that the reader has already learned elementary probability theory and equilibrium
statistical mechanics. Therefore, it should be boring to repeat the usual elementary courses
for these topic.

Chapter 1 outlines the measure-theoretical probability theory as intuitively as possible:
the probability of an event is a ‘volume’ of our confidence in the occurrence of the event.
Then, the most important law: the law of large numbers and its refinements, large devia-
tion and central limit theorems are discussed. The law of large numbers makes statistical
thermodynamics possible, and large deviation theory gives the basis for most elementary
nonequilibrium statistical mechanical approaches. Appendix outlines measure theory.

Chapter 2 is a review of the framework of equilibrium statistical mechanics along its
history. It was born from kinetic theory. Elementary kinetic theory and the basic part of
Boltzmann’s kinetic theory are outlined. However, we are not interested in the theoretical
framework applicable only to special cases (dilute gases in this case). Therefore, kinetic
theories are not discussed at length. Based on the expression of work (or equivalently the
microscopic expression of heat) due to Einstein, A = −kBT logZ is derived. Then, Jarzyn-
ski’s equality is discussed. Eventually, we will learn that we have not yet understood the
nature of the kind of motion we call heat. This is perhaps a major reason why we cannot
understand nonequilibrium phenomena very well.
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Chapter 1

Rudiments of Probability and
Statistics

Almost surely the reader has already learned elementary probability theory. The purpose of
this section is not to introduce elementary probability theory. We introduce the measure-
theoretical probability as intuitively as possible. The reader should at least briefly reflect
on what probability must be. Then, the three pillars of probability theory, crucial to statis-
tical physics, are outlined in simple terms. They are the law of large numbers and its two
refinements, large deviation theory and central limit theorems. (Stochastic processes will be
defined in 1.4.2 but will be discussed later).

Their relevance to statistical physics is roughly as follows: the law of large numbers
allows us to observe the reproducible macroscopic world (macroscopic phenomenology). The
large deviation theory tells us variational principles behind the macroscopic phenomenology
and fluctuations around the macroscopic results. Central limit theorems allow us to extract
the macroscopic picture of the world (= renormalization group theory).

Recommended reference of probability theory (for a second introduction):
R Durrett, Probability: Theory and Examples (Wadsworth & Brooks Cole, Pacific Grove,
Ca, 1991)1

1.1 Probability, an elementary review

Starting with a reflection on what ‘probability’ should be, we outline very intuitively the
basic idea of ‘measure theoretical probability.’ Appendix to this chapter is an introduction
to measure theory.

The following book contains the most pedestrian introduction to measure-theoretical

1This is a role model of a textbook of any serious subject. However, it may not be the first book of
probability the reader should read; it is a book for those who have firm basic knowledge.
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probability theory I have ever encountered:
Z. Brzeźniak and T. Zastawniak, Basic Stochastic Processes — a course through exercises
(Springer Verlag, 1999)

1.1.1 Probability as a confidence level.
Probability of an event is a measure of our confidence (or conviction) level in 0-1 scale for
the event to happen.
Discussion 1. Here, the word ‘confidence’ is used intuitively, but what is it? Your con-
fidence must be tested. Your confidence must be useful, if you follow it. This means that
your confidence must enhance your reproductive success. ut

Suppose there is a box containing white balls and red balls. The balls are all identical
except for the colors, and we cannot see inside the box. What is our confidence level of
picking a red ball from the box? Our confidence level C in 0-1 scale must be a monotone in-
creasing function of the percentage 100p% of red balls in the box. We expect on the average
we pick a red ball once in 1/p picks (assuming that we return the ball after every pick and
shake the box well; this is the conclusion of the law of large numbers →1.5.3). Therefore,
C = p is a choice. That is, if one can repeat trials, the relative frequency of a success is a
good measure of confidence in the success.

Let us consider another example. What do we mean, when we say that there will be
a 70% chance of rain tomorrow? In this case, in contrast to the preceding example, we
cannot repeat tomorrow again and again. However, the message at least means that the
weather person has this much of confidence in the rain tomorrow. We could imagine that
she looked up all the data of similar situations in the past, or that she did some extensive
hydrodynamic calculation and the error bar suggested this confidence level, etc. Thus, even
in this case, essentially, an ensemble of days with similar conditions is conceivable, and the
relative frequency gives us a measure of our confidence level.2

1.1.2 Probability is something like volume.
If two events never occur simultaneously, we say these two events are mutually exclusive.3

For example, suppose a box contains white, red, and yellow balls. We assume that we cannot
see the inside of the box and the balls are identical except for their colors. Picking a red ball
and picking a yellow ball are two mutually exclusive events.

Suppose our confidence level of picking a red ball be CR and that for a yellow ball be
CY . Then, what is our confidence level of picking a red or a yellow ball? It is sensible to
require that this confidence level is CR + CY . This is just in accordance with the choice
‘C = p’ (or the additivity justifies that this choice is the best).
Discussion 1. In the above it is said CR + CY is ‘sensible.’ Why or in what sense is it
sensible? ut

This strongly suggests that our confidence level in 0-1 scale = probability is something
like a volume or weight of an object: if an object R has volume or weight WR and another
object Y weight WY , the weight of the nonoverlapping (= mutually exclusive) compound
object made by joining R and Y must be WR +WY .

Our confidence level for an event that surely happens is one; for example, we can surely
pick a ball irrespective of its color in the above box example, so, if CW is our confidence level

2In any case, the confidence level, if meaningful at all to our lives, must be empirically reasonable. Is there
any objective way to check the reasonableness of a confidence level without any use of a kind of ensemble?

3Do not confuse this with the concept of (statistical) independence (→1.2.2). If two events are (statisti-
cally) independent, the occurrence of one does not tell us anything about the other event.
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of picking a white ball, CR + CY + CW = 1. Thus, probability looks like volume or weight
whose total volume (weight or mass) is unity.

Suppose a shape is drawn in a square of area 1. If we pepper points on the square
uniformly, then the probability = our confidence level of a point to land on the shape should
be proportional to its area.4 Thus, again it is intuitively plausible that probability and area
or volume are closely related.
Discussion 2. ‘Uniformly’ is a tricky word. The reader should have smelled a similar
difficulty as encountered in the principle of equal probability in equilibrium statistical me-
chanics (→2.6.2). Uniform with respect to what? Even if we could answer this question, is
the thing we base our uniformity really uniform (with respect to what?)? Critically think
whether we can really have objective ‘uniformity.’5 (For example, in Euclidean geometry the
uniformity of the space must be assumed axiomatically. How is it done? Even if the reader
scrutinizes Euclid, she will never find any relevant statement. That is, as is of course well
known, Euclid’s axiomatic system is (grossly) incomplete.) ut

1.1.3 What is probability theory?
A particular measure of the extent of confidence may be realistic or unrealistic (rational or
irrational), but this is not the concern of probability theory. Probability theory studies the
general properties of the confidence level of an event.

The most crucial observation is that the confidence level behaves (mathematically or
logically) just as volume or weight as we have seen in 1.1.2. Let us write our confidence level
= probability of event A as P (A). If two events A and B are mutually exclusive, P (A or B
occurs) = P (A) + P (B) (→1.1.5(2)). Such basic properties were first clearly recognized as
axioms of probability by Kolmogorov in 1933.6,7

1.1.4 Elementary and compound events.
An event which cannot (or need not) be analyzed further into a combination of events is
called an elementary event. For example, to rain tomorrow can be regarded as an elementary
event, but to rain or to snow tomorrow is a combination of two elementary events, and is
called a compound event.

Let us denote by Ω the totality of elementary events allowed under a given situation or
to a system.8 Any event under consideration can be identified with a subset of Ω. Therefore,
a subset of Ω is called an event. When we say an event A occurs, we mean that one of the
elements in A occurs.

1.1.5 Definition of probability.
Let us denote a probability of A ⊂ Ω by P (A). It is defined as a function whose domain is

4This has a practical consequence. See 1.5.6.
5If the reader happens to know the so-called algorithmic probability theory, she may claim that there is

an objective definition of uniform distribution, but there all the symbols are assumed to be equally probable.
6This year, Hitler was elected German Chancellor; Stalin began a massive purge; Roosvelt introduced

New Deal.
7Kolmogorov’s work is a direct response to Hilbert’s address to the second International Congress of

Mathematicians in Paris held in 1900 (see “Mathematical problems,” Bull. AMS 8 437 (1992)). He named
probability as one of the subdisciplines of physics whose axiomatic foundations needed investigation. Chapter
2 of G. Shafer and V. Vovk, Probability and Finance, it’s only a game! (Wiley-Interscience 2001) is a good
summary of the history of probability.

8That Ω is treated as a set is implicit here.
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the totality of the sets in Ω,9 and whose range is [0, 1], satisfying the following conditions:
(1) Since probability should measure the degree of our confidence on the 0-1 scale, we demand
that

P (Ω) = 1; (1.1.1)

in other words, something must happen. Then, it is also sensible to assume

P (∅) = 0. (1.1.2)

(2) Now, consider two mutually exclusive events, A and B. This means that whenever an
elementary event in A occurs, no elementary event in B occurs and vice versa. That is,
A ∩B = ∅. As we have already discussed, it is sensible to demand additivity

P (A ∪B) = P (A) + P (B), if A ∩B = ∅. (1.1.3)

It is convenient to require the additivity to infinitely many sets:
(2’) [ σ-additivity ]: Suppose Ai (i = 1, 2, · · ·) are mutually exclusive events (Ai ∩Aj = ∅ for
any i and j (6= i)). Then,

P (∪iAi) =
∑
i

P (Ai). (1.1.4)

In mathematical terms, probability P is a σ-additive measure with total weight unity. In
Appendix to this Chapter, measure is explained informally; any statistical physicist should
know its rudiments.

(Ω, P ) is called a probability space.10

Note that for a given totality of elementary events Ω, there are many different proba-
bilities just as there are many different unfair coins. For a coin Ω = {H,T} (head and tail),
and P (H) = ph and P (T ) = 1− ph define a probability P .
Exercise 1. There are 50 people in a room. What is the probability of finding at least two
persons sharing the same birthday? ut
Exercise 2. There is a unit circle on which we wish to draw a chord whose length is longer
than

√
3. What is the probability of drawing such a chord by randomly drawing it?11 [Notice

that the word ‘randomly’ is as tricky as ‘uniformly’ (→1.1.2)]. ut

1.1.6 On the interpretation of probability
Mathematicians and philosophers have been thinking about the interpretation of probability;
as a branch of mathematics the measure theoretical framework may be enough, but to apply
probability to the real world some interpretation is needed.

There are two major camps in this respect: the frequentists vs. the ‘subjectivists’. The
former asserts that probability is interpreted as relative frequency (out of an ensemble of
events). The latter points out the difficulty in the interpretation of a unique event (an event
that occurs only once, e.g., our lives), and asserts that some probabilities must be interpreted
deductively rather than inductively as the frequentists advocate.12

9Such a function is called a set-theoretical function; volume (→1.A.2) is an example. Not all the sets
have volume; not all the events have probability. Therefore, precisely speaking, we must deal only the events
whose probability is meaningful. See 1.A.20.

10This is not enough to specify a probability (→1.A.20), but we proceed naively here.
11There is a very good account of this problem on p21-2 of N G van Kampen, Stochastic Processes in

Physics and Chemistry (North Holland, 1981). This is a nice book, but should be scanned quickly after
learning the standard probability theory.

12Propensity interpretation by Popper, interpretation in terms of degree of confirmation by Carnap, etc.
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Our starting point in 1.1.1 was probability = measure of confidence, so the reader might
have thought that the lecturer was on the subjectivist side. However, this subjective measure
must agree at least to some extent with the actual experience in our lives. Thus, the rela-
tion with relative frequency was immediately discussed there. The lecturer’s point of view
is that probability is a measure of confidence inductively supported by relative frequency.
‘Non-frequentists’ forget that our mental faculty being used for deduction is a product of
evolution; our confidence may not be tied to our own experience, but is tied to the result of
our phylogenetic learning = the totality of experiences by our ancestors during the past 4
billion years.13

Laplace is the founder of probability theory.14 His basic idea was: the relative number
of equally probable elementary events in a given event is the probability of the event. Here,
‘equally probable’ implies that there is no reason to have difference. This is exactly the
interpretation of probability used by Boltzmann when he discussed entropy (→2.4.2).

If we feel that there is no reason to have difference between event A and event B, then
we feel A and B are equally likely. This feeling is often in accordance with our experience
thanks to the evolution process that has molded us. That is, both our feeling and the ‘logic’
behind Laplace’s and Boltzmann’s fundamental ideas have the basis supported by phyloge-
netic learning.

Probability is always disguised relative frequency. Purely deductive probability concept
is meaningless.
Discussion 1. Read the article by N. Williams, “Mendel’s demon” in Current Biology 11,
R80-R81 (2001) and discuss the positive meaning of randomness.15

ut

1.2 Conditional Probability and Bayesian Statistics

1.2.1 Conditional probability: elementary definition
Suppose we know for sure that an elementary event in B has occurred. Under this condition

13Wittgenstein thought deeply on related problems. Let us read some passages of Philosophical Inves-
tigations [There is a 50th anniversary commemorative edition: the German text with a revised English
translation (by G. E. M. Anscombe), Third Edition; Blackwell, Oxford, 2001].
“472. The character of the belief in the uniformity of nature can perhaps be seen most clearly in the case in
which we fear what we expect. Nothing could induce me to put my hand into a flame — although after all
it is only in the past that I have burnt myself.” (p114)
“481. If anyone said that information about the past could not convince him that something would happen
in the future, I should not understand him. One might ask him: What do you expect to be told, then? What
sort of information do you call a ground for such a belief? What do you call “ conviction”? In what kind of
way do you expect to be convinced? —If these are not grounds, then what are grounds? — · · ·.” (p115)
“483. A good ground is one that looks like this.” (p115)

14The Laplace demon that can predict everything deterministically was introduced to indicate its absurdity
and to promote probabilistic ideas in the introduction to his Essai philosophique sur les probabilitès (1814,
this year Napoleon abdicated; Fraunhofer lines; Berzelius introduced the modern chemical symbols now in
use).

15This article is an introduction to the following book: M. Ridley, The Cooperative Gene— How Mendel’s
Demon explains the evolution of complex beings (The Free Press, 2001), “Mendel’s demon is the executive
of gene justice, and we all depend on it for our existence.” Mendel’s demon is five years elder to Maxwell’s
demon.
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what is the probability of the occurrence of another event A? This question leads us to
the concept of conditional probability. We write this conditional probability as P (A|B), and
define it through

P (A ∩B) = P (A|B)P (B). (1.2.1)

1.2.2 Independence
If two events A and B satisfy

P (A ∩B) = P (A)P (B), (1.2.2)

these two events are said to be (statistically) independent.
This definition is intuitively consistent with the definition of the conditional probability

in 1.2.1. If B has no information about A, then P (A|B) = P (A) is plausible. Thus, (1.2.1)
reduces to (1.2.2).

Logically, we must define the independence of countably many events such as P (A∩B∩
C) = P (A)P (B)P (C), because pairwise independence (1.2.2) does not imply such a relation
among many events as the reader sees in Exercise 1.
Exercise 1.16 Let X1, X2 and X3 be independent random variables with P (Xi = 0) =
P (Xi = 1) = 1/2. Consider the following three events: A1 = {X2 = X3}, A2 = {X3 = X1}
and A3 = {X1 = X2}.
(1) Show that these events are pairwisely independent.
(2) P (A1 ∩ A2 ∩ A3) 6= P (A1)P (A2)P (A3).ut

Kolmogorov proved:
There are infinitely many independent random variables on an appropriate probability space.

1.2.3 Borel-Cantelli lemma
Let A1, A2, · · · be an infinite sequence of events.
(1) If

∑∞
i=1 P (An) <∞, then with probability 1 only finitely many events among {Ai} occur.

(2) If all the events Ak are independent and if
∑∞
i=1 P (An) = ∞, then with probability 1

infinitely many of the events in {Ai} occur.
[Demo] Here, a detailed (pedestrian) demonstration is given, because its logic is quite typical.
(1) To demonstrate probabilistic statements, explicitly writing down the event or its comple-
ment (negation) is often the best starting point. The negation of ‘only finitely many’ means
‘infinitely many.’ If there occur infinitely many of {Ak}, for any n some Aj (j ≥ n) must
occur. That is, Bn ≡ ∪j≥nAj must occur for any n. That is, all Bn must occur, or ∩n≥1Bn

must occur. Therefore, to demonstrate (1) we must show

P (∩n≥1 (∪j≥nAj)) = 0. (1.2.3)

This can be shown as follows:

P (∩n≥1 (∪j≥nAj)) ≤ lim
n→∞

P (∪j≥nAj) ≤ lim
n→∞

∑
j≥n

P (Aj) = 0, (1.2.4)

because the series
∑∞
i=1 P (An) converges.

(2) Again, the negation is easier to prove: the probability of the occurrence of only finitely

16Taken from Durrett Example 4.1.
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many of {Ak} is zero. If only finitely many of them occur, then all of Ω\Ak must occur for k ≥
n for some n. That is, ∩k≥n(Ω\Ak) must occur for some n. That is, ∪n≥1 (∩k≥n(Ω \ Ak)) must
occur. However, this is the negation of the statement we wish to demonstrate. Therefore,
we wish to show that ∪n≥1 (∩k≥n(Ω \ Ak)) never occurs: we must show

P (∪n≥1 (∩k≥n(Ω \ Ak))) = 0. (1.2.5)

This can be demonstrated as follows:

P (∪n≥1 (∩k≥n(Ω \ Ak))) ≤ lim
n→∞

P (∩k≥n(Ω \ Ak)) = lim
n→∞

∏
k≥n

P (Ω \ Ak). (1.2.6)

The last equality is due to the independence of all Ω \ Ak. Since
∑
k≥n P (Ak) diverges for

any n,
∏
k≥n(1− P (Ak)) = 0 for any n.17 This implies the product in (1.2.6) vanishes.

1.2.4 Conditional probability: mathematical comment
(1.2.1) has no difficulty at all so long as we study a discrete probability space. However,
there are many events that can change continuously. Suppose the event B is the event that
a molecule in a cube of edge 1m has the speed infinitessimally close to 1m/s (event B). The
reader might say such an event is meaningless because it is ‘measure zero’ or probability zero.
However, it is conceivable that the particle has such a speed and in a ball of radius 10cm in
the cube (event A). The conditional probability P (A|B) should be intuitively meaningful.

According to (1.2.1), it is 0/0, so its definition requires some care; since the ratio
P (A∩B)/P (B) is 0/0, conceptually it is close to a derivative. Obviously, P (A∩B) < P (B),
so this derivative is always well-defined. Such a derivative is called the Radon-Nikodym
derivative. We will discuss this when we really need such sophistication.18

1.2.5 Bayes’ formula
Suppose we know the conditional probability {P (x|θ)} of X with the condition that Θ takes
the value θ. Then,

P (x, θ) = P (x|θ)P (θ) = P (θ|x)P (x). (1.2.7)

Therefore, we have

P (θ|x) =
P (x|θ)P (θ)∑
θ P (x|θ)P (θ)

. (1.2.8)

This is called Bayes’ formula.
This formula is used, for example, as follows. Θ is a set of possible parameter values

that describe (or govern) the samples X we actually observe. Thus, P (x|θ) is the probability
we observe x, if the parameter value is θ. However, we do not know the actual θ. From
the actual empirical result we can estimate P (x|θ), assuming a model of the observation.
Our aim is to estimate θ that is actually behind what we observe; you could interpret this

17A clever way to show this is to use
e−x ≥ 1− x.

This implies
e−
∑

xk ≥
∏

(1− xk).

18If you are impatient, A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis (Revised English
edition, Englewood Cliffs,1970) is recommended.
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as a problem selecting a model describing the observed phenomenon. A sensible idea is the
maximum a posteriori probability estimation (MAP estimation): Choose θ that maximize
P (θ|x).

However, to use (1.2.8) we need P (θ): the a priori probability. The usual logic is that
if we do not know anything about Θ, P (θ) is uniform. Of course, this is a typical abuse of
Occam’s razor.19

1.2.6 Linear regression from Bayesian point of view
Let us assume that the independent variable values {tk} ((k = 1, · · · , N) are obtained without
any error. For tk the observed dependent variable is yk but this is not without error:

yk = atk + b+ εk. (1.2.9)

The problem is to estimate a and b. In the resent problem εk are assumed to be iid20 Gaussian
variables with mean zero and variance V . Then, under the given parameters {a, b}

P ({yk}|{a, b}) =
1

√
2πV

N exp
(
− 1

2V

∑
(yk − atk − b)2

)
. (1.2.10)

To use (1.2.8), we need P ({a, b}) the prior probability. If we assume that the prior is uniform,
then the a posteriori probability is

P ({a, b}|{yk}) ∝
1

√
2πV

N exp
(
− 1

2V

∑
(yk − atk − b)2

)
. (1.2.11)

Therefore, the MAP estimate dictates the least square scheme of determining a and b.

1.2.7 Problem of a priori probability
Bayesian statistics requires a priori probability. Sometimes, as have seen in 1.2.6, we could
disregard it but the reason for ignoring the a priori probability is not very clear.

The reader must have thought about the principle of equal probability. This is the a
priori distribution. Notice that the principle is made of two parts:
(1) Designation of microstates (or elementary events).
(2) Probability assignment to each elementary event.

In a certain sense, (1) is not a serious problem thanks to quantum mechanics. Since
very high energy excitations cannot occur, we may totally ignore the structure of the world
at extremely small scales. Thus, Nature dictates what we may ignore.

However, (2) does not disappear even with quantum mechanics as already discussed.
Thus, the problem of a priori distribution is a real issue.

If we wish to establish a general statistical framework for nonequilibrium states, (1)
may well be the same as in equilibrium statistics. Thus, (2) becomes the key question of
nonequilibrium statistical mechanics.

19“Occam’s razor, in its legitimate application, operates as a logical principle about the complexity of
argument, not as an empirical claim that nature must be maximally simple. · · · Whereas Occam’s razor
holds that we should not impose complexities upon nature from non-empirical sources of human argument,
the factual phenomena of nature need not be maximally simple — and the Razor does not address this
completely different issue at all.” (S. J. Gould, The Structure of Evolution Theory (Harvard UP, 2002)
p552). That is, questions about actual phenomena (e.g., whether two events are equally probable or not)
should not invoke the razor. However, it seems empirically true that the abuse of the razor often works. The
most natural explanation is that our reasoning utilizes our brain, a product of natural selection.

20A standard abbreviation for “independently and identically distributed.”
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1.3 Information

This section is not included in the ‘minimum’ to understand rudiments of nonequilibrium
statistical mechanics. Therefore, the reader could skip this section. However, it is a good
occasion to have some familiarity to the topic. An excellent general introduction to the topic
is:
T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991)

1.3.1 Probability and information
Suppose there are two sets of symbols Ln and Lm that contain n and m symbols, respectively
(n > m). Let us assume that all the symbols appear equally probably. Now, we just received
two messages with 20 symbols. Which do we expect to have more information, the message
in symbols in Lm or that in Ln?

Here, the reader must ‘naively’ interpret the word ‘information.’ For example, compare
the English alphabet and the Chinese characters. We would certainly say 20 Chinese char-
acters carry more information; with only 20 Chinese characters the world greatest poems
were written. Therefore, we expect the message written in the symbols in Ln should have
more information than that in Lm. Let us introduce (the average) information per symbol
Hn = H(Ln)

21 in the message written in the symbols in Ln as an increasing function of n.
What we are trying to do now is this: it is very hard to characterize ‘information,’ so

let us at least try to quantify it, just as we do for energy. If the probability of encountering a
particular symbol (for Ln this is p = 1/n for any symbol) is small, the information carried by
the symbol is large. This is the fundamental relation between information and probability.

Now, let us use two sets of symbols Ln and Lm to send a message. We could make
compound symbols by juxtaposing them as ab for a ∈ Ln and b ∈ Lm (just as many Chinese
characters do). The information carried by each compound symbol should be I(mn), be-
cause there are mn symbols. To send the message written by these compound symbols, we
could send all the left half symbols first and then the right half symbols later. The amount
of information sent by these methods must be equal, so we must conclude that

Hmn = Hm +Hn. (1.3.1)

Here, Hn is defined on positive integers n, but we can extend its definition to all positive
real numbers as

Hn = c log n, (1.3.2)

where c > 0 is a constant. Its choice is equivalent to the choice of unit of information and
corresponds to the choice of the base of the logarithm in the formula.

If c = 1 we say we measure information in nat; if we choose c = 1/ log 2, in bit. One bit
is an amount of information obtained by the answer to a single yes-no question.
Remark. However, we do not discuss the ‘value’ of information. ut

21In the notation H(Q), Q is a random variable, or a probability space.
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1.3.2 Shannon’s information formula
Although we have assumed above that all the symbols are used evenly, such uniformity does
not occur usually. What is the most sensible generalization of (1.3.2)?

A hint is already given in 1.3.1. If we write Hn = − log2(1/n) bits, − log2(1/n) is the
expectation value22 of information carried by a single symbol chosen from Ln. 1/n is the
occurrence probability of a particular symbol. Then, for the case with nonuniform occurrence
{p1, · · · , pn}, the expectation value of the information carried by the i-th symbol should be
defined as − log2 pi bits. Therefore, the average information in bits carried by a single symbol
taken from Ln should be defined by23

H(Ln) = −
n∑
i=1

pi log2 pi. (1.3.3)

This is called the Shannon information formula.24

− log2 pi is sometimes called the surprisal of symbol i, because it measures how much
we are surprised by encountering this symbol. Expected surprisal is the information.
Exercise 1.
(1) Given a fair die, we are told that the face with 1 is up. What is the information in
bit carried by this message? [The information of a message is measured by the change of
information (decrease of entropy, because often gain of information is equated with decrease
of entropy) one has due to the knowledge in the message.] (2.58 bits)
(2) We are told that the sum of the faces of two fair dice is 7. What is the information
carried by this message? (2 × 2.58 − 2.58 = 2.58 bits). ut
Exercise 2. Suppose we have a sentence consisting of 100 letters. We know that the infor-
mation per letter is 0.7 bit. How many ye-no question s do you need to completely determine
the sentence? ut
Discussion 1. If the symbols of English alphabet (+ blank) appear equally probably, what
is the information carried by a single symbol? (4.58 bits) In actual English sentences, it is
about 1.5(?) bits. What happens? Also think about how to determine this actual value.25,26

ut

1.3.3 Information for continuous distribution
Let f be the density distribution function on an event space (probability space) that is
continuous. It is customary to define the Shannon entropy of this distribution as

H = −
∫
dx f(x) log f(x). (1.3.4)

This formula was originally introduced by Gibbs as we see in 2.1.5.
Warning. Notice that the formula has a very serious defect. The formula is not invari-
ant under the coordinate transformation. Further worse, it is not invariant even under the

22Here, ‘expectation value’ may be understood intuitively and in an elementary way, but for a more
mathematical definition see 1.4.3.

23Notice that the symbol set is actually a probability space (Ln, {pj}).
24for an uncorrelated (or Bernoulli) information source. About Shannon himself, see S. W. Golomb et al.,

“Claude Elwood Shannon (1916-2002),” Notices AMS 49, 8 (2002), and J. F. Crow, “Shannon’s brief foray
into genetics,” Genetics 159, 915 (2001).

25Cf. Cover and Thomas, Chapter 6 “Gambling and Data Compression.”
26There is a related ‘fun’ paper, Benedetto et al., “Language tree and zipping,” Phys. Rev. Lett. 88,

048702-1 (2002). This uses Lempel-Ziv algorithm LZ77 (used in gzip, for example) to measure information
(or rather mutual information).
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change of the unit to measure the coordinates, because the scaling transformation of the
independent variable x → αx alters the value of H. Generally speaking, no dimensionful
quantity should appear inside the logarithmic function. ut

The reader must have realized that f inside the logarithm should be a ratio. See 1.6.9.
In short, (1.3.4) may be used only under the assumption that x is a priori equally weighted.

1.3.4 Information and entropy
H(A) is the expected information we obtain from one sample from A. The information she
can gain on the average from the answer that the symbol is a particular one is given by H(A).
Thus, as we have already seen in Exercise 2 in 1.3.2, if we obtain nH(A) information, we
can determine a sentence sn made of n symbols taken from A.27

Suppose we already know the sentence sn. Then, there is no surprise at all, even if
we are shown sn: the information carried by sn is zero. This means that the information
nH(A) has reduced our ignorance from the initial high level to the final perfectly informed
level. A convenient measure of the extent of ignorance is entropy in equilibrium statistical
mechanics. Therefore, we could say that nH(A) of information has reduced the entropy to
zero. It is sensible to guess that the initial entropy is nH(A). This is the Gibbs-Shannon
entropy-information relation seen in (1.3.3) or (1.3.4).

Thus, information and entropy are often used interchangeably. If there is a macroscopic
state whose entropy is S, to specify a single microstate (= elementary event) we need (on
the average) information H = S.
Exercise 1. When reaction occurs, the entropy of the reacting chemicals change. This is
usually measured in en (entropy unit) = cal/mol·K. How many bits per molecule does 1 en
correspond? Is the reader’s answer reasonable?28 How about in pNnm/K?29 ut
Discussion 1. How much energy is required to transfer 1 bit between two communicators?30

ut

1.3.5 Information minimization principle
Let us consider the problem of estimating the ‘most likely’ distribution (density distribution

27On the average. However, if n is very large, the accuracy (= density of correctly identified letters)
asymptotically reaches unity.

28If the entropy is measured in eu as S eu, then it is 0.72S bits/molecule.
29

kB = 1.381× 10−23 J/K,
= 1.381× 10−2 pN · nm/K,
= 8.617× 10−5 eV/K

The gas constant R is given by

R ≡ NAkB = 8.314 J/mol ·K = 1.986 cal/mol ·K (1.3.5)

Here, 1 cal = 4.18605 J. It is convenient to remember that at room temperature (300K)

kBT = 4.14 pN · nm
= 0.026 eV

RT = 0.6 kcal/mol.

30R Landauer, “Energy requirements in communication,” Appl. Phys. Lett. 51, 2056-2059 (1987).
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function) of a variable describing a system under some known conditions or knowledges, say,
the average and the variance.

To answer this question we must interpret the requirement ‘most probable’ appropri-
ately. One interpretation is that the most probable distribution is the one with the least
biased under the extra conditions or knowledges we are at hand. A quantitative version of
this interpretation uses the Shannon information as follows.

Compare the a priori distribution and the distribution we can infer with the extra knowl-
edge. The most unbiased distribution we should infer must correspond to the distribution
of the symbols with the least decrease of information per symbol compatible with the extra
condition. Therefore, the distribution we wish to infer must be obtained by the maximization
of the Shannon formula (1.3.4) or (1.3.3) under the extra conditions imposed. The decrease
in H may be interpreted as the information gained from the extra conditions. Therefore, the
prescription is to minimize the information gain from the newly acquired conditions. This
is the so-called Jaynes’ principle. The principle is useful, if we do not stretch it, or if we use
it as a shortcut to known results.

The astute reader should have already realized that the principle works only when we
know that the a priori distribution is uniform (= the principle of equal probability). Fur-
thermore, from the warning in 1.3.3, if the event is described by continuous variables, a
further caution is required to use this principle. A typical abuse is the ‘derivation of statis-
tical mechanics’ 1.3.6.
Discussion 1. The distribution available by the information minimization principle and the
true distribution are very likely different under nonequilibrium conditions.31 ut

1.3.6 Information-theoretical foundation of statistical mechanics is illusory.
The information H is maximized when all the symbols (or events) occur equally probably.
Some people wish to utilize this property to justify (or derive) the principle of equal proba-
bility (→2.6.2) (the so-called information theoretical foundation of statistical mechanics32).

Let us maximize (1.3.3) under the condition that we know the expectation value of
energy

∑
Eipi = E.

Exercise 1. Using Lagrange’s multipliers, find pi in terms of Ei. ut
As the reader has seen, the canonical distribution

pi ∝ e−βEi (1.3.6)

is obtained, where β is determined to give the correct expectation value of the energy.33

The logic is that H measures the amount of the lack of our knowledge, so this is the most
unbiased distribution (→1.3.5). ut

But does Nature care for what we know? Even if She does, why do we have to choose
Shannon’s information formula to measure the amount of our knowledge?

The formula (1.3.3) is so chosen that if all the symbols appear equally probably, then
it depends only on the total number of elements (→1.3.1). Therefore, logically, there is a
vicious circle. The reader will encounter a similar quantity, the Kullback-Leibler entropy
later (→1.6.9), and will clearly recognize the fundamental logical defect in the so-called

31For example, see a recent paper: H.-D. Kim and H. Hayakawa, “Test of Information Theory on the
Boltzmann Equation,” J. Phys. Soc. Japan, 72 2473 (2003).

32E T Jaynes, Phys. Rev. 106, 620 (1959).
33Boltzmann’s argument summarized in Exercise of 2.4.11 just derives Shannon’s formula and uses it. A

major lesson is that before we use the Shannon formula important physics is over. The reader can use the
Shannon formula as a shortcut, but can never use it to justify what she does.
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information theoretical foundation of statistical mechanics.
Exercise 2. Is (1.3.6) really correct? [Suppose we do not know what the elementary event is
in statistical mechanics and (erroneously) assume that elementary states are defined by their
energy (that is, however many microstates we have for a given energy, they are assumed to
be a single state).] ut
Exercise 3. The use of the least square fit assumes that the error obeys a Gaussian dis-
tribution. Suppose we wish to fit the data g(s) (s ∈ [0, 1]) with a function f(s, α) with a
parameter, choosing the parameter through minimizing the “L2-error”:∫ 1

0
ds|g(s)− f(s, α)|2. (1.3.7)

We could also use an appropriate function M and minimize∫ 1

0
ds|M(g(s))−M(f(s, α))|2. (1.3.8)

Show that the answers cannot generally be identical. ut
The reader must clearly recognize that information theory can never be used to justify

or derive any fundamental statistical hypothesis.

1.3.7 Joint entropy and conditional entropy
Let X = {x1, · · · , xn} and Y = {y1, · · · , ym} be the letter sets. If p(x, y) is the probability
for a pair of letters {x, y} (x ∈ X, y ∈ Y ).

H(X, Y ) = −
∑

x∈X,y∈Y
p(x, y) log p(x, y) (1.3.9)

is the joint entropy of X and Y .
Consider H(X, Y )−H(X). This must be the information (per letter pair) we can gain

from {x, y}, when we already know x, Therefore, this is called the conditional entropy of Y .
Thus, the following is a reasonable definition of the conditional entropy:

H(Y |X) = H(X, Y )−H(X) (1.3.10)

Notice that

H(Y |X) = −
∑
x,y

p(x, y) log p(x, y) +
∑
x

p(x) log p(x), (1.3.11)

= −
∑
x,y

p(x, y) log p(x, y) +
∑
x,y

p(x, y) log p(x), (1.3.12)

= −
∑
x,y

p(x, y) log p(y|x) =
∑
x

p(x)

[
−
∑
x,y

p(y|x) log p(y|x)
]
. (1.3.13)

Here, p(y|x) is the conditional probability of y under condition x. If we introduce

H(Y |x) = −
∑
y

p(y|x) log p(y|x), (1.3.14)

we can write
H(Y |X) =

∑
x

p(x)H(Y |x). (1.3.15)
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We can write
H(X, Y ) = H(X) +H(Y |X). (1.3.16)

This is sometimes called the chain rule. For example,

H(X, Y, Z) = H(Y, Z) +H(X|Y, Z) = H(Z) +H(Y |Z) +H(X|Y, Z). (1.3.17)

It should be intuitively obvious that

H(X|Y ) ≤ H(X). (1.3.18)

This can be shown algebraically with the aid of the log sum inequality.

1.3.8 Log sum inequality
For non-negative numbers a1, · · · , an and b1, · · · , bn

n∑
i=1

ai log
ai
bi
≥
(

n∑
i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

(1.3.19)

with equality iff ai/bi is constant.
[Demo] Let f(t) = t log t. The Jensen34 implies for a stochastic vector α∑

αif(ti) ≥ f
(∑

αiti
)
. (1.3.20)

Now, set ti = ai/bi and αi = bi/
∑
bi. ut

1.3.9 Mutual information
The mutual information I(X, Y ) between X and Y is defined as

I(X, Y ) = H(X) +H(Y )−H(X, Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (1.3.21)

Obviously, this is symmetric. Intuitively, this must be positive, because non-independence
of X and Y should reduce the information that could have been carried by independent X
and Y .
Exercise 1. Demonstrate that I(X, Y ) ≥ 0. ut

1.3.10 Asymptotic equipartition property
Let {Xi} be iid variables with probability p(x). Then, in probability

− 1

n
logP (X1, · · · , Xn)→ H(X). (1.3.22)

This is just the weak law of large numbers (→1.5.4).

34If f is a convex function, 〈f(x)〉 ≥ f(〈x〉) (Jensen’s inequality).
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1.3.11 Typical set of sequences
The typical set A(n)

ε wrt p(x) is the set of {xi}ni=1 such that

2−nH−nε ≤ p({xi}) ≤ 2−nH+nε (1.3.23)

for small positive ε.
(1) If {xi} ∈ A(n)

ε , then H − ε ≤ −(1/n) log p({xi}) ≤ H + ε.
(2) For sufficiently large n P (A(n)

e ) ≥ 1− ε. That is, the typical set is almost probability 1.
(3)

(1− ε)2nH−ε ≤ |A(n)
ε | ≤ 2nH+ε. (1.3.24)

Here | | denotes the cardinality of the set. The number of typical elements is 2nH and they
are all equally probable.
[Demo] (1) is the definition itself. For any δ > 0, there is an N such that ∀n > N

P
(∣∣∣∣− 1

n
log p(xi)−H(X)

∣∣∣∣ < ε
)
> 1− δ. (1.3.25)

This is asymptotic equipartition or weak law of large numbers. We may set δ = ε. This is
(2). Since

1 =
∑

p({xi}) ≤
∑

q∈A(n)
ε

p(q) ≤
∑

q∈A(n)
ε

2−nH−nε = |A(n)
ε |2−nH−nε, (1.3.26)

we obtain the upper bound in (3). From (2)

1− ε < P (A(n)
ε ) ≤

∑
q∈A(n)

ε

2−nH+nε = |A(n)
ε |2−nH+nε (1.3.27)

we obtain the lower bound.ut

1.3.12 Implication of typical set
1.3.11 implies (roughly):
If we produce uncorrelated sequences35 of n (� 1 in practice) letters with entropy H, then
only 2nH of them appear. This typical set is usually vastly smaller than the totality of the
possible sentences and can be written in nH 0 and 1’s.

This is the principle of data compression,36 and is fully used in, e.g., jpeg. Of course,
occasionally sentences not in the typical set show up. In such cases we simply accept the
situation as an unfortunate case and send or store such exceptional sequences as they are
without compression. In any case, they are asymptotically very rare.

1.3.13 Statistical mechanics and law of large numbers revisited
The fourth law of thermodynamics implies that a macroscopic system may be understood
as a collection of statistically independent macroscopic subsystems. The states of each sub-
system may be characterized by the set of states of subsystems {xi}. We know with almost
probability one what we observe is from the asymptotic equiprobability states. Therefore,
almost all the states of a macroscopic system have the same probability. This is an expla-
nation of the principle of equal probability.

Thus, essentially the law of large numbers and the fourth law of thermodynamics are
expected to be the two key elements of statistical mechanics.

Then, what is the role of mechanics?

35If there are correlations, we could exploit it to convert the original sentences shorter.
36A good exposition (not introductory) can be found in D. L. Donoho, M. Vetterli, R. A. DeVore, and I.

Daubechies, “Data Compression and Harmonic Analysis,” IEEE Transactions on Information Theory, 44,
2435 (1998).
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1.4 Random Variables

Basic tools such as characteristic functions, generating functions, etc., are introduced. The
reader must be familiar with an elementary technique to compute probability densities using
the δ-function (→1.4.5).

1.4.1 Random variables
Let P be a probability (= probability measure →1.1.5) defined on a set Ω = totality of
elementary events under consideration.37 A function defined on Ω is called a random vari-
able.38 A point in Ω (i.e., an elementary event) is often specified by a parameter ω called
the stochastic parameter. Thus, a random variable can be written as f(ω).

Two random variables X and Y are said to be independent, if for any two real value
sets A and B39

P ({X ∈ A} ∩ {Y ∈ B}) = P ({X ∈ A})P ({Y ∈ B}). (1.4.1)

1.4.2 Stochastic parameter and stochastic process
Roughly speaking, a stochastic process is a function of time parameterized by a stochastic
parameter. That is, a stochastic process is a functional on a probability space: a map from
a probability space to a space of functions of time. Analogously, we can define a stochastic
field as a map from a probability space to a function defined on a space. ω specifies each
sample = a particular realization.

1.4.3 Expectation value
Let X(w) be a random variable on Ω and µ a probability on it 40. The expectation value
E[f ] of the random variable f is defined as

E(X) =
∫
Ω
X(ω)dµ(ω). (1.4.2)

For a set (= event) A ⊂ Ω, the following function χA is called its indicator (or indicator
function):

χA(ω) =

{
1 ω ∈ A,
0 ω 6∈ A. (1.4.3)

That is, the indicator for an event A is 1, if the event occurs, and 0, otherwise.
The probability of an event A ⊂ Ω is µ(A), so

µ(A) =
∫
Ω
χA(ω)dµ(ω) = E(χA). (1.4.4)

37As seen in Appendix to this chapter, not all the events have their probabilities (measurable), so we must
also specify a family of measurable events = the events whose probability we can discuss, but we will not
explicitly write the so-called ‘triplet’ (→1.A.20).

38Again, we must discuss functions whose expectation values are meaningful, so we must require that
random variables must be P -measurable (→2.8.6). However, we will not explicitly write such a condition.

39A,B ⊂ R, but again not all the sets are measurable (have lengths), so we need some disclaimer here;
we omit it as usual.

40We say X(ω) is a random variable on the probability space (Ω, µ).
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That is, the expectation value of the indicator of an event is the probability of the event.
If Ω is a discrete set, then the above integral reduces to an appropriate summation.
E((X − E(X))n), if exists, is called the n-th moment (around the mean). The second

moment around the mean is called the variance and is often denoted as

V (X) ≡ E((X − E(X))2) = E(X2)− E(X)2. (1.4.5)

A necessary and sufficient condition for two square-integrable random variables (i.e.,
random variables having the second moments) X and Y to be independent is: for any
bounded functions41 f and g

E(f(X)g(Y )) = E(f(X))E(g(Y )). (1.4.6)

That is, we can average independent variables separately. ut
Exercise 1. If X and Y have second moments, and are independent,

V (X + Y ) = V (X) + V (Y ). (1.4.7)

ut

1.4.4 Distribution functions
Let X(ω) be a real valued random variable.42

F (x) = P ({X(ω) ≤ x}) (1.4.8)

is called the probability distribution function for X. If we can write

f(x)dx = F (x+ dx)− F (x), (1.4.9)

f is called the probability density distribution function.43 Thus, f(x)dx = P ({X(ω) ∈
(x, x+ dx]}).

If a function F on R satisfies:
(i) F is non-decreasing,
(ii) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1,
(iii) F is right continuous, i.e., limx→a+0 F (x) = F (a),
F is a distribution function of a random variable.
Exercise 1. The Cauchy distribution whose density is proportional to 1/(x2 + a2) does not
have the second moment.ut
Exercise 2. “If n-th moment does not exit, m(> n)-th moments do not exist, either.” Is
this statement correct? ut

1.4.5 How to compute density
We have

P (A) = E(χA), (1.4.10)

41Again, we omit the measurability condition.
42Often the probability space is implicit.
43The Radon-Nikodym derivative of F with respect to the Lebesgue measure is called, if exists, the

probability density function.
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where χA is the indicator of A. If A ∈ Rn, we can write

χA(x) =
∫
A
δ(x− y) dny, (1.4.11)

where δ is the (n-dimensional) δ-function.
For physicists the density distribution is often more familiar with than distributions:

the density distribution function f(x) of a random variable X is given by

f(x) = E(δ(X(ω)− x)). (1.4.12)

There are two major methods to compute this expectation. One is to use Fourier trans-
formation which is equivalent to computing characteristic functions (→1.4.7). The other is
to compute the integral directly. A typical problem is: Obtain the density distribution ψ(y)
of y = g(x), given the density distribution of ρ(x) of x. This is to compute

ψ(y) = E(δ(g(x)− y)) =
∫
dx ρ(x) δ(g(x)− y) =

∑
xi

ρ(xi)

|g′(xi)|
, (1.4.13)

where g(xi) = y (the sum is over all real zeros of g − y) (→1.4.6).
An example follows:

Suppose x is uniformly distributed on [−1/2, 1/2]. Find the density distribution function
ψ(y) of y = x2. We obtain for y ∈ (0, 1/4]

ψ(y) =
∫ 1/2

−1/2
dx δ(y − x2) =

1
√
y
. (1.4.14)

Exercise 1. Derive the energy density distribution function of a d-dimensional ideal gas in
equilibrium. ut
Exercise 2. Suppose x is distributed uniformly on [0, 1]. Let F (x) be a monotone increas-
ing smooth function from R to [0, 1]. Find the density distribution φ of F−1(x) (the inverse
function of F ). ut
The result of this exercise is a standard method to convert uniform random number on [0, 1]
into the random number whose distribution function is given by F .

1.4.6 Computation of δ-function of complicated variable
To compute E(δ(g(x)− y)), the basic formula we use is

δ(g(x)− y) =
∑
xi

1

|g′(xi)|
δ(x− xi), (1.4.15)

where g(xi) = y (the sum is over all real zeros of g − y).
Let us demonstrate (1.4.15). The delta function does not contribute anything to the

integral, if its variable is not zero, so we have only to pay attention to the values of x that
give zero of g(x)− y. Let x1 satisfy g(x1) = y. Then,

g(x)− y = g′(x1)(x− x1) + · · · . (1.4.16)

We must recall that δ(ax) = (1/|a|)δ(x). Therefore, the contribution from x near x1 must be
(1/|g′(x1)|)δ(x− x1). There are other zeros as well. We should sum up all the contributions
from the zeros of g − y. This outcome is (1.4.15).
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1.4.7 Characteristic Function
The Fourier transform of a probability measure µ is called its characteristic function:

ϕµ(ξ) ≡
∫
eiξxµ(dx). (1.4.17)

For a random variable X, the characteristic function of its distribution = probability
measure µX is denoted by ϕX . The most important and useful property of this function is:
If X and Y are independent random variables (cf. 1.4.1),

ϕX+Y (ξ) = ϕX(ξ)ϕY (ξ). (1.4.18)

Exercise 1.
(1) Find the characteristic function of the Gaussian distribution N(m,V ) (with mean m and
variance V ).
(2) Find the characteristic function of the n-dimensional Gaussian distribution with mean
m and covariance matrix V .
(3) Find the characteristic function of the Poisson distribution with average λ (i.e., µ({k}) =
(λk/k!)e−λ).
(4) Find the characteristic function of the Cauchy distribution whose density is given by
1/π(1 + x2). ut
Exercise 2.
(1) Find the characteristic function of the binary distribution (for k ∈ {0, 1, · · · , n})

µ({k}) =

(
n

k

)
pk(1− p)n−k. (1.4.19)

(2) Let λ = np, and take the limit n→∞, p→ 0 with fixed λ. The outcome is the charac-
teristic function of the Poisson distribution just discussed (cf. ??). ut

1.4.8 Properties of characteristic functions
The characteristic function of a distribution is positive definite, i.e., for any positive integer
n, any complex numbers {zj}nj=1 and real numbers {ξj}nj=1

n∑
j,k=1

zjzkϕµ(ξj − ξk) ≥ 0. (1.4.20)

It is clear that
ϕµ(0) = 1. (1.4.21)

Also ϕ is continuous at the origin.44 The converse is also true (→1.4.9), so these three
properties characterize the characteristic function.

If it is sufficiently smooth, we can compute moments (around the origin) by differenti-
ating it:

E(Xn) = (−i)n d
n

dξn
ϕX(ξ)

∣∣∣∣∣
ξ=0

. (1.4.22)

44due to an elementary theorem of Lebesgue integration.
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1.4.9 Bochner’s theorem.
A positive definite function (in the sense of 1.4.8) ϕ on Rn that is continuous at the origin
and ϕ(0) = 1 is a characteristic function of some probability measure on Rn.ut

However, it is not always easy to check that a given function can be a characteristic
function of a certain distribution. If φ is an even function, convex on (0,∞), and φ(0) = 1,
then φ is a characteristic function (Polya’s criterion;45 note that this criterion cannot be
applied to the Gaussian case). For example, exp(−|ξ|α) for α ∈ [0, 1] is a characteristic
function.
Exercise 1. Let {x(t, ω)} be a continuous stochastic process (x(t, ω) is continuous for
almost all ω as a function of t), and 〈x(0, ω)2〉ω = 1. Also, let us assume that it is stationary
(i.e., various expectation values do not depend on the absolute time). Demonstrate that its
correlation function

C(t) = 〈x(t, ω)x(0, ω)〉ω (1.4.23)

is a characteristic function of a probability distribution. This is related to an important
topic of spectral analysis of stochastic processes (→??) ut

1.4.10 Laplace transformation and generating function
The Laplace transform of the measure µ, if exists,

Z(λ) =
∫
µ(dx)eλx (1.4.24)

is called the generating function of µ, and λ is its parameter. It may be more appropriate
to call it the partition function.

Just as we have done for the characteristic function (→1.4.8), we can compute moments
with the aid of differentiation wrt λ. Its logarithmic differentiation is useful as the reader
expects from Gibbs’ work (→2.1.4). For example,

dlogZ

dlam

∣∣∣∣∣
λ=0

= 〈x〉. (1.4.25)

Here (and henceforth), 〈 〉 implies the expectation value (averaging). In the case of canonical
distribution we do not set λ = 0. We also have

d2 logZ

dλ2

∣∣∣∣∣
λ=0

= 〈(x− 〈x〉)2〉. (1.4.26)

1.4.11 Cumulant expansion
The derivatives of the generating function at the origin of the parameter (→1.4.10) suggest
that the Taylor expansion of logZ(
lam) around λ = 0 would give useful quantities. This is the idea of cumulant expansion:

logZ(lam) = λC1 +
1

2
λ2C2 + · · ·+ 1

n!
λnCn + · · · , (1.4.27)

45Durrett p87.
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where Cn is called the n-th cumulant, and is very often written as

Cn = 〈Xn〉C . (1.4.28)

It is easy to see that C1 = E(X), and C2 = V (X).
With the aid of this notation (1.4.27) is succinctly rewritten (symbolically) as

logZ(λ) =
〈
eλX − 1

〉
C

(1.4.29)

With the aid of log(1 +x) = −∑(−1)nxn/n and the multinomial expansion, cumulants
are related to the ordinary moments 〈Xn〉 (around the origin) as

〈Xn〉C = −n!
∑

K·N=n

(K · 1− 1)!(−1)K·1 1

K!

(
〈XN 〉
N !

)K

. (1.4.30)

Here, N is a nonnegative integer vector N = (N1, N2, · · ·) such that N1 ≥ N2 ≥ · · · ≥ 0
(of various dimensions), and the summation is over all possible choices of K = (k1, k2, · · ·),
where ki specifies the number of Ni (i.e., the summation is over all the possible partition of
n). 1 = (1, 1, · · ·). (Slightly extended) Hadamard’s notation is adopted: for a vector A =

(a1, a2, · · ·), A! =
∏
ai!, xA =

∏
xai
i ; xA = (xa1 , xa2 , · · ·); A/N ! = (a1/N1!, a2/N2!, · · ·).

For example, to compute C4 = 〈X4〉C , we first make the partitions of 4 = 3+1 = 2+2 = 2+1+1 =
1+1+1+1, or (4) ; (3)+(1); 2(2); (2)+2(1); 4(1). Therefore, if we write K = (k4, k3, k2, k1), where kj denotes
the number of j appearing in the partition N , we have

partition K K! K · 1
(4) (1, 0, 0, 0) 1 1
(3)+(1) (0, 1, 0, 1) 1 2
2(2) (0, 0, 2, 0) 2 2
(2)+2(1) (0, 0, 1, 2) 2 3
4(1) (0, 0, 0, 4) 4! 4

, (1.4.31)

so (1.4.30) tells us that

〈X4〉C = −4!

[
0!(−1)1

1
1!

(
〈X4〉

4!

)
+ 1!(−1)2

1
1!1!

(
〈X3〉

3!

)(
〈X〉
1!

)
+ 1!(−1)2

1
2!

(
〈X2〉

2!

)2

+2!(−1)3
1

1!2!

(
〈X2〉

2!

)(
〈X〉
1!

)2

+ 3!(−1)4
1
4!

(
〈X〉
1!

)4
]

(1.4.32)

= 〈X4〉 − 4〈X3〉〈X〉 − 3〈X2〉2 + 12〈X2〉〈X〉2 − 6〈X〉4. (1.4.33)

Notice that the sum of all the numerical factors is zero. This may be used to check our result.
As seen from the general formula,

〈Xn〉c = 〈Xn〉+ terms with extra cuts 〉〈. (1.4.34)

Exercise 1. Obtain the formula for C6, assuming that all the odd order moments vanish.
Then, compute the 6th moment of a Gaussian random variable centered at the origin in
terms of its second moment. ut
Exercise 2. A necessary and sufficient condition for the distribution to be Gaussian is that
all the cumulants C3 and beyond vanish. ut
Exercise 3. Characterize the Poisson distribution in terms of the cumulants. ut
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1.4.12 Gibbs-Helmholtz relation and generating function
The internal energy is identified with (or is interpreted as) the average 〈H〉 of the Hamiltonian
over the distribution P on the phase space (cf. 2.5.3). Then, the Gibbs-Helmholtz relation

E =
∂(A/T )

∂(1/T )

∣∣∣∣∣
V

= − ∂(−A/kBT )

∂(1/kBT )

∣∣∣∣∣
V

, (1.4.35)

where A is the Helmholtz free energy, may be interpreted as: −A/kBT is the logarithm of
the generating function of energy Z called the canonical partition function (→2.1.5),46 and
β = 1/kBT is the parameter of the generating function:

Z = e−βA =
∑

e−βεw(ε), (1.4.36)

where w(ε) is the statistical weight of the states with energy ε and the sum is over possible
energies. What Gibbs demonstrated (→2.1.4) is that if w(E)dE is the phase volume of the
constant energy shell between the energy surfaces with energy E and E + dE, then indeed
A satisfies the ordinary thermodynamic relation thanks to Liouville’s theorem (→2.7.2).

However, as we have already seen, there is no way to impose this condition based on
mechanics. Thus, a needed extra assumption is the principle of equal probability (→2.6.2)
which is equivalent to the requirement that w(E)dE is the phase volume of the energy shell
between energy E and E + dE.

1.5 Law of Large Numbers and Ergodic Theorem

THE Law of large numbers is the most important theorem of probability theory for statistical
mechanics. If we do not pay any attention to fluctuations, this (and Chebyshev’s inequality
1.5.5) is the only probability theory we need to understand macroscopic systems. Monte
Carlo methods (→1.5.6) are direct application of this theorem. Ergodic theorems (→1.5.8)
may be interpreted as its generalization to correlated variables.

1.5.1 Law of large numbers: an illustration
Let Xi be 1 if the i-th coin tossing of a fair coin gives a head, and 0, otherwise. Sn =

∑n
i=1Xi

implies the number of heads we get with n tossing experiments. Then, everybody knows
that surely

Sn/n→ 1/2 (1.5.1)

as n → ∞. Here, Sn/n is called the sample mean or empirical average. This ‘law of large
numbers’ was first recognized by Jacob Bernoulli (1645-1705).47

46However, we do not set β = 0 after differentiation.
47The statement given here is much stronger than Bernoulli’s version. His law is the weak law. That

is, if n is large enough, then the average deviation of Sn/n from m becomes less and less (→ 0). This
statement does not guarantee that for almost all the sample sequence Sn/n converges to m (for a particular
sample sequence Sn/n may occasionally become big). What we intuitively know is that for almost all sample
sequences Sn/n→ m. This is the strong law (→1.5.4 footnote).
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Discussion 1. Make an example of A stochastic sequence such that P (|An| > 0) → 0,
but An → 0 never holds. The existence of such a sequence implies that the meaning of the
convergence (1.5.1) is delicate. ut
Exercise 1. For a finite n Sn/n is not exactly equal to 1/2 (that is, it is also a random
variable), but fluctuates around it. Sketch the probability density distribution function for
Sn/n for several n, say, 100, 10,000, and 1,000,000.ut
From this exercise, the reader should have realized that the density distribution function
of Sn/n seems to converge to δ(x − 1/2), that is, the distribution converges to an atomic
measure concentrated at x = 1/2.

1.5.2 Law of large numbers for iid random variables
Let {Xi} be a sequence of random numbers identically and independently distributed (iid
is the standard abbreviation) on a probability space. Let us assume that E(X1) = m and
V (X1) = C(<∞). The law of large numbers tells us

Sn/n→ m (1.5.2)

in a certain sense. As the reader expects, there are different ways to interpret this limit.
Accordingly, there are different versions of law of large numbers.

1.5.3 Intuitive approach to law of large numbers
The simplest version of the law of large numbers may be to claim that the fluctuation vanishes
in the n→∞ limit:

E((Sn/n−m)2)→ 0. (1.5.3)

This is called the L2 weak law. This is obvious, because the LHS is equal to C/n.
What the reader has seen in Exercise 2 in 1.5.1 is a statement about the distribution

of Sn/n:
P (Sn/n ∈ (x, x+ dx))→ δ(x−m)dx. (1.5.4)

Let us try to compute the (density) distribution fn for Sn/n (cf. 1.4.5):

fn(x) = E

(
δ

(
1

n

n∑
i=1

Xi − x
))

. (1.5.5)

Its characteristic function gn(ξ)
48 may be given by (cf. 1.2.2)

gn(ξ) ≡
∫
dx eiξxfn(x) = E

(
n∏
i=1

eiξXi/n

)
= E(eiξX1/n)n. (1.5.6)

Now, let us write the characteristic function (→1.4.7) of X1 as ω(ξ). Then, we have

gn(ξ) = ω(ξ/n)n. (1.5.7)

For very large n, the variable in ω is very close to zero. Since the distribution has a finite
mean and variance, ω must be twice differentiable, with the aid of Taylor’s formula, we may
write ω(ξ/n) = 1 + imξ/n+O(1/n2). Putting this into (1.5.7), we obtain

lim
n→∞

gn(ξ) = eimξ. (1.5.8)

48We freely exchange the order of integrations. All of them can be justified a la Fubini (sometimes with
some additional technical conditions).
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This implies that the density distribution of Sn/n (weakly49) converges to δ(x−m). This is
exactly what the reader has expected.

We may say that Sn/n converges to m in law (in distribution).

1.5.4 More standard formulation of law of large numbers
If for all ε > 0, P (|Yn − Y | > ε)→ 0, we say Yn converges in probability to Y .

Thus, we expect that Sn/n converges to m in probability. This is called the weak law
of large numbers:
[Weak law of large numbers]. Let {Xi} be iid random variables with E(|X1|) <∞ and
E(X1) = m. Then, Sn/n converges to m in probability.

Notice that the weak law does not hold, if {Xi} obeys a Cauchy distribution (certainly,
E(|X1|) <∞ is violated).50

1.5.5 Chebyshev’s inequality and demonstration of weak law
To demonstrate the weak law of large numbers the most elementary way may be to use
Chebyshev’s inequality:

a2P (|X −m| ≥ a) ≤ V (X). (1.5.9)

This can be shown as follows (let us write X −m as X):

V (X) =
∫
x2µ(dx) ≥

∫
|x|>a

x2µ(dx) ≥ a2
∫
|x|>a

µ(dx). (1.5.10)

Exercise 1. A more general inequality (in these days this is called Chebyshev’s inequality)
is: Let f be a nonnegative monotone increasing function on [0,∞). Then,

P (X ≥ a) ≤ E[f(max(X, 0))]

f(a)
. (1.5.11)

ut
Exercise 2. Apply (1.5.9) to Sn/n and demonstrate the weak law. ut

1.5.6 Monte Carlo integration
Suppose we wish to compute the following integral over a very high dimensional cube (N �
1):

I =
∫
[0,1]N

dNx f(x). (1.5.12)

If we wish to sample two values for each coordinate, we need 2N sampling points. If N = 20
we need more than a million points, so we realize that numerical computation of a high

49Weak convergence fn → f means
∫
fnϕdx →

∫
fϕ dx for ‘any’ ϕ taken from an appropriate function

set. In the present case we may take the set of smooth functions with bounded support, that is, the functions
that vanish outside some interval.

50There is a stronger version due to Kolmogorov (the strong law of large numbers):
Let {Xi} be iid random numbers with E(|X1|) < ∞ and E(X1) = m. Then, Sn/n almost surely converges
to m.

If the distribution of Sn/n converges weakly, we say Sn/n converges in law (or in distribution). Almost
convergence ⇒ convergence in probability ⇒ convergence in the mean (if the variance exists). Convergence
in the mean ⇒ convergence in probability ⇒ convergence in law. The converses of these ⇒ relations do not
hold.
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dimensional integral using numerical quadrature methods is prohibitively difficult.
(1.5.12) may be interpreted as the computation of E(f(X)), where X is a random

variable on {µ, [0, 1]N} with µ being the Lebesgue measure (the ordinary volume→1.A.13)
on RN . Then, the law of large numbers tells us

In =
1

n
{f(X1) + · · ·+ f(Xn)} → I. (1.5.13)

How large n is required? If f(x) ∈ [0, 1] (if the integrand is bounded, this can always be
satisfied by appropriate shifting and scaling), then V (f(X)) ≤ I(1 − I), so Chebyshev’s
inequality tells us

P (|In − I| > ε) ≤ I(1− I)
nε2

≤ 1

4nε2
. (1.5.14)

Thus, if we wish to have an error less than ε = 1/20 with probability at least 0.99, then
100/n < 0.01. Therefore, n = 10, 000 is needed. This is certainly much less than the number
of points needed in the regular sampling methods.51

A remarkable feature of the Monte Carlo integration is that the cost does not depend
on the dimensionality of the integral.
Discussion 1. Do we really need not to pay any price for high dimensionality? ut

1.5.7 Importance sampling
(1.5.12) may be rewritten as

I =
∫
[0,1]N

dNxf(x) =
∫
[0,1]N

dNxw(x)
f(x)

w(x)
(1.5.15)

with a positive function w(x). We may freely choose this function with the normalization
condition

∫
dNxw(x) = 1. If we use the random number whose density distribution is given

by w (→Exercise of 1.4.7 for how to make such random numbers), the law of large numbers
tells us that

Jn =
1

n

(
f(X1)

w(X1)
+ · · ·+ f(Xn)

w(Xn)

)
→ I. (1.5.16)

Exercise 1.
(1) Compute the variation of Jn. (Ans., (1/n)

{∫
(f 2/w)dNx− I2

}
)

(2) Find w that minimizes the variation just obtained. Notice that if f is of constant sign,
this choice makes the variation vanish. ut

1.5.8 Ergodic theorem as a law of large numbers
So far we have discussed the law of large numbers for independent random variables. There
are many cases in which we wish to compute the sum of statistically not independent random
variables. There are various extensions of the law of large numbers to such cases, but an
ultimate version may be ergodic theorems. We will come to this topic much later (in Part
III, not yet written), but it may be a good occasion to learn the meaning of ergodicity, which
was first conceived by Maxwell and Boltzmann to found equilibrium statistical mechanics

51However, this estimate is not an almost sure estimate. The error for each sample sequence (i.e., the
realization of {In}) decays as

√
32 log log n/n. Therefore, the worst case scenario is that the error decays

roughly as 1/
√
n.
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(→2.4.1).
Let x(t) be a sample time evolution of a dynamical system on a phase space Γ with

the time evolution operator Tt (i.e., Ttx(s) = x(t + s)) and µ be an invariant measure (=
time-independent distribution on the phase space Γ →2.7.2).52 Then, the time average of
an observable f(Ttx0) converges to a value dependent only on the initial condition:53

lim
t→∞

1

t

∫ t

0
f(Tsx0) ds = f ∗(x0) (1.5.17)

for almost all x0 ∈ Γ with respect to the measure µ.54 Further more,∫
f ∗(x)dµ(x) =

∫
f(x)dµ(x). (1.5.18)

This is the famous Birkhoff ergodic theorem.55 It should be obvious that the essence of the
ergodic theorem is quite analogous to the law of large numbers.

1.5.9 Ergodicity implies time average = phase average.
Intuitively speaking, a dynamical system is said to be ergodic, if “for any x0, xt can visit
everywhere in Γ.” (We will see, however, this careless statement contains a fatal flaw.
→1.5.10)

Take a set A (⊂ Γ). xt starting from ‘any’ point x0 in Γ can visit it, if the dynamical
system is ergodic. Therefore, if A is an invariant set,56 and has some positive weight (µ(A) >
0), A and T−1

t A (= the set of points that visit A in time t) must agree for any t. But since
the points can visit ‘everywhere’ in Γ, we must conclude that A with a positive weight (i.e.,
µ(A) > 0) is actually Γ. Therefore, if A is a nonempty invariant set, µ(A) = µ(Γ) (= 1).57

The function f ∗ in (1.5.17) is time independent, so a set {x : f ∗(x) < c} for any number
c must be an invariant set. Therefore, if the system is ergodic, it must be a constant.
Therefore,

lim
t→∞

1

t

∫ t

0
f(Tsx0) ds =

∫
f ∗(x)µ(dx) =

∫
f(x)µ(dx). (1.5.19)

If the volume of an energy shell corresponding to the microcanonical ensemble is ergodic,
what Boltzmann wanted is true: time average = ensemble average.

1.5.10 Is ergodic theory really relevant to us?
The discussion in 1.5.9 must be made precise, and the reader will realize that the ergodic
problem is almost irrelevant to equilibrium statistical mechanics.

In 1.5.9 it is written that a dynamical system is said to be ergodic, if for ‘any’ x0, xt

52Let {Tt} be a one parameter family of maps Γ → Γ such that T0 = 1, TtTs = Tt+s. Then, {T,Γ} is
called a dynamical system. If µ is an invariant measure, {Tt,Γ, µ} is called a measure theoretical dynamical
system.

53for almost all initial conditions wrt µ.
54That is, (1.5.17) does not hold only on µ-measure zero set. Notice, however, that for a dynamical system
{Tt,Γ} the invariant measure is not unique. Often, there are uncountably many invariant measures. For any
of them, Birkhoff’s theorem holds!

55For a proof, see, for example, Section 1.6 of P. Walters, An Introduction to Ergodic Theory (Springer,
1982). This is an excellent (and probably a standard) introduction to the topic.

56That is, µ(T−1
t A4A) = 0 for any t. Here, A4B = (A \B) ∪ (B \A).

57A precise definition of µ being ergodic is that µ(A) = 0 or 1 for µ-invariant set A.
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can visit ‘everywhere’ in Γ. Precisely speaking, there are exceptional points that cannot visit
many places. Therefore, we must specify how to measure the amount of these exceptional
points. That is, the concept of ergodicity is a measure-theoretical concept. Thus, precisely
speaking, we must say:
A measure theoretical dynamical system {T, µ,Γ}58 is ergodic, if µ-almost all points can visit
µ-everywhere on Γ.59

The most important message here is that the concept of ergodicity is the concept of
measure theoretical dynamical systems = dynamical systems with given invariant measures.
The most fundamental question of equilibrium statistical mechanics is the justification of the
principle of equal probability. As the reader trivially realizes, ergodic theory presupposes an
invariant measure, and the selection of a particular invariant measure is not in the scope of
the theory.

However, the reader might say that she accepts that ergodic theory has nothing to say
about the fundamental principle of statistical mechanics, but that after an invariant mea-
sure (= stationary state distribution) is given, it is important for the measure to be ergodic.
However, we must not forget that macroscopic observables are extremely special observables
(= measurable functions in mathematical terms60). That is, the equality of the time average
and the phase average, even if required, need not be true for most measurable functions.
Therefore, mathematical ergodicity is not required.

Generally speaking, to understand that the macroscopic observable as the time average
is a wrong point of view, because, time average does not converge very quickly for general
measurable functions; it is highly questionable to believe that the time average converges
within the microscopic time scale. It is close to the truth that macroscopic observables are
instantaneous values. This point of view will be elaborated in ??. The crucial point is that
phase functions whose averages give macroscopic observables have special properties such
that they are often sums of functions depending on a few particle coordinates. Needless to
say, such functions do not change in time very much, so even their short time average agree
with their phase average. However, this agreement is not due to the ergodicity of the system.

Thus, there are crucial reasons for ergodicity to be irrelevant to equilibrium statistical
mechanics.61,62

1.5.11 Two refinements of law of large numbers
There are at least two ways to refine the weak law of large numbers 1.5.4. One is to study
small fluctuations around the expectation value for finite n: Is there any power α that makes
the following limit

lim
n→∞

P (|Sn/n−m| < εnα) (1.5.20)

a nonsingular function of ε? This is the question of the central limit theorems and has a
close relation to renormalization group theory (→2.6).

58A measure theoretical dynamical system {T, µ,Γ} is a dynamical system on Γ with an invariant measure
µ.

59A non-measure theoretical counterpart is the topological transitivity: there is a trajectory which is dense
in Γ. Generally speaking, the latter concept is much more strict than ergodicity, but may be closer to the
original idea of Maxwell and Boltzmann.

60‘Measurable’ means that any ‘level set’ {x : a ≤ f(x) ≤ b} for any real a, b is measurable, that is, it has
a probability with respect to µ.

61Or we might be able to say as follows: even if time averages and phase averages should agree, for the
agreement ergodicity is not the only reason.

62More radically speaking, invariance of measure is not required even for equilibrium statistical mechanics,
either, because we need stationarity for very special observables only.
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The other question is to ask the speed of convergence of Sn/n to m: How does P (|Sn/n−
m| > ε) go to zero as a function of n? This is the question of large deviation (→2.5). For sta-
tistical mechanics, large deviation is more important than central limit theorems (→2.8.5;
1.6.4).

1.6 Large Deviation Theory

This is a study of macroscopic fluctuations. Its importance to us is obvious, because the study
of fluctuations is one of the keys of nonequilibrium statistical thermodynamics (→4.1.2,
5.2.5). We will later see its close relation to Langevin equations and principle of linear
nonequilibrium statistical mechanics (→X1.1.3). Notice also a close relation between vari-
ational principles and large deviations (→1.6.3, X1.1.10).

There is not a very accessible reference for this topic. For statistical physicists the expla-
nation given in this section is almost enough, but mathematically, a more careful statement
is needed. A standard textbook the lecturer likes is:63

J D Deuschel and D W Strooke, Large Deviation (Academic Press, 1989).

1.6.1 Large deviation: a simple example
Let {Xi} be iid random variables, and Sn = x1 + · · ·+n be the empirical (sample) sum of n
values. We know from the weak law of large numbers 1.5.4 that

P (|Sn/n−m| > ε)→ 0 (1.6.1)

in the n→∞ limit for any positive ε. An interesting question is the speed of this convergence
to zero; if the fluctuation is large, the decay should be slow. Therefore, studying the decay
rate should give us information about fluctuations.

Cramér first considered this type of problem for the coin tossing, that is, we have a
sequence of iid (identically and independently distributed →1.5.2)) random numbers {Xi}
such that P (X1 = 1) = P (X1 = −1) = 1/2. Let us estimate the LHS of (1.6.1). Using
Stirling’s formula m! ∼ (m/e)m, we may approximate (taking the leading terms only)

P (|Sn/n| > ε) =
∑
Sn≥nε

n!(
n+Sn

2

)
!
(
n−Sn

2

)
!
2−n +

∑
Sn≤−nε

n!(
n+Sn

2

)
!
(
n−Sn

2

)
!
2−n, (1.6.2)

∼ 2−n+1 n!(
n+nε

2

)
!
(
n−nε

2

)
!
, (1.6.3)

∼ exp

[
n log n− n(1 + ε)

2
log

n(1 + ε)

2
− n(1− ε)

2
log

n(1− ε)
2

]
,

(1.6.4)

= exp
[
−n

2
[(1 + ε) log(1 + ε) + (1− ε) log(1− ε)]

]
. (1.6.5)

63For an outline, Appendix to Y Oono, “Large deviation and Statistical Mechanics,” Prog. Theor. Phys.
Supple 99, 165 (1989) may be short.
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Or, we have

P (|Sn/n| > ε) ∼ exp
(
−n

2
ε2
)
. (1.6.6)

Thus, we have found that the decay is exponential. It is known that exponential decay is
the rule.
Exercise 1. If somehow the coin has a strange memory and has a tendency to give the same
surface consecutively, what happens to the above exponent ? Guess the answer and give a
reason for it (no calculation required).64 ut.

1.6.2 Level-1 large deviation principle
Consider the empirical expectation value Sn/n. The theoretical framework to study the
convergence rate of this value to the mean is called the level-1 large deviation theory. We
say that the set of random variables {Xi} satisfies the (level-1) large deviation principle, if
the following holds:

P (Sn/n ∼ x) ∼ e−nI(x), (1.6.7)

where I(x) is called the rate function (large deviation function or Cramér’s function)65 and
satisfies:
(i) I(x) is a convex nonnegative function,
(ii) I(m) = 0 is the unique minimum.

For an iid random variable sequence with a finite variance, the principle certainly holds.

1.6.3 Large deviation principle and variational principle.
Notice that if we know the rate function I, it gives a minimum principle for the mean. That
is, large deviation and variational principles are closely related; generally, we may claim
that there is a large deviation principle behind a variational principle (at least in statistical
physics).

The reader would then naturally ask whether the important principle of equilibrium
statistical mechanics, the Gibbs variational principle stating that the equilibrium state is
variationally defined by the minimization principle of the free energy (→2.1.5), has an un-
derlying large deviation theoretical framework. The answer is affirmative, and the framework
is thermodynamic fluctuation theory (1.6.4, →2.8.5).

Furthermore, since we have learned that the Birkhoff ergodic theorem is a kind of weak
law of large numbers (→1.5.8), the reader must have expected the corresponding large devi-
ation framework and its accompanying variational principle for dynamical systems (chaos).
This framework is the so-called thermodynamic formalism for Axiom A dynamical systems.66

1.6.4 Thermodynamic fluctuation theory as large deviation principle
Let us look at the fundamental principle of thermodynamic fluctuation (→2.8.5). We know
entropy is extensive, so introducing the entropy per particle s = S/N , we have

P ({δx}) = eNδ
2s/kB . (1.6.8)

This implies two things:
(i) −δ2s/kB is the rate function for equilibrium thermodynamic observables.
(ii) the large deviation theory for iid random variables works.
We will see that this picture is correct away from the critical point (→2.8.3; see also ??).

64See Prog. Theor. Phys. Suppl. 99, 165 (1989) for graphs.
65A ∼ B implies logA/ logB → 1 asymptotically.
66A standard textbook for this is D Ruelle, Thermodynamic Formalism (Addison-Wesley).
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1.6.5 How to compute rate function: Gärtner-Ellis theorem
The relation of the rate function to the fluctuation theory tells us how to compute the rate
function. Let us compute the partition function = generating function.

ZN(λ) =
∫
dxP

(
1

N

N∑
i=1

Xi ' x

)
eNλx, (1.6.9)

= E

(∫
dx δ

(
1

N

N∑
i=1

Xi − x
)
eNλx

)
, (1.6.10)

= E
(
eλ
∑

Xi

)
. (1.6.11)

Here, we have used (1.4.11).
On the other hand,67

ZN(λ) =
∫
dx e−NI(x)+Nλx, (1.6.12)

∼ eN supx[λx−I(x)]. (1.6.13)

Therefore, we obtain the ‘thermodynamic potential’ A(λ) as

1

N
lnZN(λ)→ A(λ) = sup

x
[λx− I(x)]. (1.6.14)

Or, inverse Legendre transformation (→2.6.5) gives

I(x) = sup
λ

[λx− A(λ)]. (1.6.15)

Thus, we have formally shown the following:
if the thermodynamic potential exists, large deviation principle holds (Gärtner-Ellis’s theo-
rem).

1.6.6 Empirical distribution function
We can study not only empirical averages but also empirical (density) distribution functions:
Let {Xi} be a sequence of iid random variables. Then, the empirical density fN(x) is given
by

fN(x) =
1

N

N∑
i=1

δ(Xi − x). (1.6.16)

Notice that this is an empirical average of δ(Xi − x) (cf. 1.4.5), so there must be a corre-
sponding version of the weak law of large numbers (→1.5.4). Indeed, this converges (weakly)
to the (density) distribution function f of the random variables.68 Then, it is natural to con-
sider the large deviation theory for the empirical distribution.

67thanks to WKB approximation or Varadhan’s theorem
68Around here, the word ‘function’ is loosely used; generalized functions such as the δ-function are also

called functions.
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1.6.7 Level-2 large deviation principle and Sanov’s theorem
The large deviation theory for measures (distributions) is called the level-2 large deviation
theory. The level-2 large deviation principle reads

P (fN ∼ g) ∼ e−NI
(2)(g), (1.6.17)

where the rate function(al) is a function on the space of distributions, and satisfies:
(i) I(g) is a convex nonnegative function,
(ii) I(f) = 0 is the unique minimum.

For iid random variables {Xi} with the density distribution f , Sanov’s theorem tells us
that69

I(2)(g) =
∫
dx g(x) log

g(x)

f(x)
. (1.6.18)

‘Theoretical physics style’ demonstration of this is not hard, if we mimic the level-1
calculation in 1.6.5.

1.6.8 ‘Demonstration’ of Sanov’s theorem
To estimate P (fN ∼ g) we use the characteristic function(al) technique (→1.6.5).
First, notice that

P (fN ∼ g) = E(∆(fN − g)), (1.6.19)

where ∆ is the functional delta function.70 Therefore, we get the ‘partition function’

ZN (ξ) =
∫
δ[g]P (fN ∼ g)eN

∫
ξ(x)g(x)dx = E

[
exp

(∑
ξ(Xi)

)]
(1.6.20)

= E
(
eξ(Xi)

)N

=
[∫

dxf(x)eξ(x)

]N

. (1.6.21)

On the other hand, by definition,

ZN (ξ) =
∫
δ[g] eN

[∫
ξ(x)g(x)dx−I(2)(g)

]
, ∼ eN supg

[∫
ξ(x)g(x)dx−I(2)(g)

]
. (1.6.22)

Therefore, introducing the ‘free energy’ (thermodynamic potential),71 we obtain

A(ξ) = lim
N→∞

1
N

logZN (ξ) = log
∫
dxf(x)eξ(x) = sup

g

[∫
dx ξ(x)g(x)− I(2)(g)

]
. (1.6.23)

This implies

I(2)(g) = sup
ξ

[∫
dx ξ(x)g(x)−A(ξ)

]
. (1.6.24)

69If we write the probability measure for the random variable as µ and the empirical measure to be ν,
then

I(2)(ν) =
∫
ν(dx) log

dν

dµ
.

70A function f(α) may be interpreted as ‘the α-component of the vector f .’ Functional analysis may be
informally interpreted as the analysis of functions regarded as such vectors. The n-dimensional δ-function is
defined as δ(v) = δ(v1) · · · δ(vn). Analogously, ∆(f) = · · · δ(f(α)) · · ·, where the ‘product’ is the ‘continuous’
product.

71If the limit does not exist, replace it with lim sup.
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Let us calculate (1.6.24). To compute the supremum, we functional-differentiate [ ]:

δ

δξ(x)

[∫
dx ξ(x)g(x)−A(ξ)

]
= g(x)− eξ(x)f(x)

/∫
dx eξ(x)f(x) (1.6.25)

Equating this with zero, we obtain an equation for ξ that gives the supremum of [ ]: g(x) = eξ(x)f(x)/eA(ξ).
Notice that this implies

∫
dx g(x) = 1. From this, we see ξ = log(g/f) + A, so putting this ξ into (1.6.24),

we obtain (1.6.18).

1.6.9 Kullback-Leibler entropy
The rate function appearing in Sanov’s theorem (→1.6.7)

K(g, f) =
∫
dx g(x) log

g(x)

f(x)
(1.6.26)

is called the Kullback(-Leibler) entropy. Notice that if f is constant, this is essentially
the Gibbs’ entropy (→2.1.5) or Shannon’s information formula (→1.3.2). This becomes
minimum if and only if g = f .72

The most important property of K(g, f) is its non-negativity. This is obvious from the
log sum inequality 1.3.8. Or, from the scratch with the aid of the convexity73 of x log x:∫

dx g(x) log
g(x)

f(x)
=

∫
dx f(x)

g(x)

f(x)
log

g(x)

f(x)
(1.6.27)

≥
(∫

dx f(x)
g(x)

f(x)

)
log

(∫
dx f(x)

g(x)

f(x)

)
= log 1 = 0.

(1.6.28)

Therefore, I(g) vanishes if and only if g is equal to the true density distribution.

1.6.10 Information gain
The meaning of the Kullback entropy (→1.6.9) may be made intuitive by the following
consideration.74

Suppose a macroscopic state α consists of microstates {i}, and all the microstates be-
longing to it is equally likely: if the macrostate α contains nα microstates, their probability
is pα/nα, where pα is the probability for a microstate to be compatible with macrostate
α.75 Let us compare the entropy difference between a macrostate specified by {pα} and the
macrostate specified by {p0

α} whose microstates are all equally probable (i.e., p0
α/nα = const

independent of α, certainly this is a characteristics of an equilibrium distribution):

∆S = −
∑
m

(pα/nα) log(pα/nα) +
∑
m

(p0
α/nα) log(p0

α/nα), (1.6.29)

= −
∑
m

(pα/nα) log(pα/p
0
α) +

∑
m

[(p0
α/nα)− (pα/nα)] log(p0

α/nα) (1.6.30)

= −
∑
α

pα log(pα/p
0
α). (1.6.31)

72Precisely speaking, the equality is in the almost sure sense.
73If f is a convex function, 〈f(x)〉 ≥ f(〈x〉) (Jensen’s inequality).
74due to F Schlögl
75that is, a macrostate is a bunch of equally likely microstates under the condition that macroscopic

description is meaningful.
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Here
∑
m means the sum over all the microstates, and

∑
α means the sum over all the

macrostates. We have used p0
α/nα = constant (equidistributed), and

∑
m[(p0

α/na)−(pα/nα)] =
1− 1 = 0 due to normalization of probabilities.

Therefore, the Kullback entropy K(p, p0) measures the gain of information due to the
non-even distribution at the coarse-grained level. Therefore, sometimes the Kullback entropy
is called the information gain.

1.6.11 From level 2 to level 1: contraction principle.
Let the level-2 large deviation function be I(2)(g) for the (density) distribution g for a random
variable X. We must be able to know more from the level-2 rate function (→1.6.7) than
we can know from the level-1 rate function I(x) for X. Then, we should be able to obtain I
from I(2). This is possible by the contraction principle:

I(x) = inf
g:
∫
dy yg(y)=x

I(2)(g). (1.6.32)

This implies that the value of the level-1 rate function at x is obtain by minimizing the
level-2 rate function over the distributions having the same expectation value x. In other
words, the conditional minimization of I(2)(g) under

∫
y g(y) dy = x gives I(x).

The reader may have already guessed this result. It is not hard to demonstrate it. Notice, first, that

1
N

∑
i

Xi =
∫
dy y fN (y), (1.6.33)

where fn is the empirical distribution given in (1.6.16). Therefore,

P (SN/N ∼ x) = E (δ(SN/N − x)) = E

[
δ

(∫
dy yfN (y)− x

)]
, (1.6.34)

= E

[∫
δg∆(g − fN )δ

(∫
dy yg(y)− x

)]
, (1.6.35)

=
∫
δg P (fN ∼ g)δ

(∫
dy yg(y)− x

)
=
∫
δg e−NI(2)(g)δ

(∫
dy yg(y)− x

)
,

(1.6.36)

∼ exp

[
−N

(
inf

g:
∫

dy yg(y)=x

I(2)(g)

)]
. (1.6.37)

This implies the desired asymptotic relation (1.6.32).
A useful theorem is:

Let {Xn} be iid sequence obeying a common law µ. Suppose that for each n fn is a symmetric
function of X1, · · · , Xn and the strong law of large numbers fn → f(µ) holds.76 Then, the
large deviation principle for fn holds with the rate function I given by the contraction
principle:

I(y) = inf
ν:
∫
dy yf(ν)=y

I(2)(ν). (1.6.38)

76N. O’Connell, “A large deviations heuristic made precise,” Math. Proc. Camb. Phil. Soc. 128, 561-569
(2000).
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1.6.12 Derivation of canonical distribution by contraction
Now, let us apply the result (1.6.32) to iid random variables X with distribution f . The level-
2 rate function is given by Sanov’s theorem (1.6.18), so to obtain the level-1 rate function
according to (1.6.32), we must minimize the Kullback entropy (→1.6.9) conditionally.

With the aid of a Lagrangian multiplier, we minimize∫
dx g(x) log

g(x)

f(x)
+ α

∫
dx g(x) + β

∫
dx xg(x). (1.6.39)

This is minimized, if
g(x) = f(x)e−βx/Z (1.6.40)

where the numerical constant β is determined to give the average y, and Z is the normal-
ization constant (that corresponds to the canonical partition function). In other words, if
the average is known for an ensemble that is obtained by restricting the original ensemble
whose distribution is f , it is given by the ‘canonical distribution’ (1.6.40).

The usual derivation of the canonical ensemble from the microcanonical ensemble is
to select the local energy fluctuations compatible with the temperature (or, equivalently,
compatible with a give expectation value of energy). Therefore, we obtain the canonical
distribution with the aid of contraction principle (→1.6.11). That is, the above derivation
of the canonical distribution is equivalent to the standard derivation explained in textbooks
(→2.5.2).

It is clear that we must specify f , and this specification is the principle of equal prob-
ability (→2.6.2). The method to derive the canonical distribution through maximizing
Shannon’s information formula conditionally is only a corollary to Sanov’s theorem with the
principle of equal probability (cf. 1.3.6).

1.6.13 Contraction may be the key to nonequilibrium statistical mechanics
The idea of sampling right fluctuations to prepare the right ensemble is a fundamental idea,
and is the essence of the regression hypothesis (→4.1.2): even nonequilibrium states are
realized by equilibrium fluctuations, so if we collect right fluctuations, we should be able
to prepare statistical ensembles that can describe nonequilibrium phenomena. The strategy
certainly works for linear nonequilibrium phenomena, and is expected to be applicable more
widely.

1.6.14 How do we justify ensemble theory?
When we observe a macroscopic system, usually we study a single sample. Therefore, there is
a criticism that ensemble theories are unphysical.77 Those who criticize the ensemble theory
use time average to justify statistical mechanics.

When we measure a thermodynamic observable, we measure it for much less than a
second or so. During such short observation times the system can cover only an insignificant
portion of the whole phase space (→1.5.10), so the idea is not at all convincing that ergod-
icity of the Liouville measure justifies the ensemble.

77Ma’s textbook, Statistical Mechanics (World Scientific) expels ensemble altogether from statistical me-
chanics, and interprets all the averages as time averages. This is due to a fundamental misunderstanding of
the nature of (equilibrium) statistical mechanics.
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One possibility to rescue this idea of time average might be to pay attention to the ob-
servation that thermodynamic observables are very special observables.78 Macroobservables
are the sums of functions that depend only on the extremely small (say, 106-dimensional)
subspaces of the whole phase space. For each function of the small subspace the conclusion
of the ergodic theory applies: time average during the macroobservation time = its phase
space average. However, notice that the Poincaré time of this small sub-phase space is still
astronomical. Therefore, time average theory is hardly relevant. To use time average to
justify the ensemble theory is hopeless.

A much better possibility is based on the idea that these functions on small subspaces
are virtually statistically independent, so their averages = macroobservables almost surely
assume their average values thanks to the (strong) law of large numbers. Statistical mechan-
ics works due to strong law of large numbers.

1.6.15 Large deviation point of view of nonequilibrium statistical mechanics
The reader may have wondered why we discuss the general framework of probability theory
in this nonequilibrium course. Here, a preview is given that illustrates why large deviation
theory is crucial. When we wish to discuss a statistical framework, there must be a clear
distinction between the microscopic (mechanical) level and phenomenological (macroobserv-
able) level.79 For example, we need a clear separation of time scale between the microscopic
time scale tm and the macroscopic time scale tM . That is, tm � tM . This implies that we
could introduce the mesoscopic time scale τ such that tm � τ � tM .

Let us consider an observable x whose long-time average 〈x〉 is a macroscopic observable.
The time derivative dx/dt averaged over the mesoscopic level should read

∆x(t)

∆t
=

1

τ

∫ t+τ

t

dx

dt
=
x(t+ τ)− x(t)

τ
. (1.6.41)

We assume that this obeys the large deviation principle (Onsager’s principle):

P
(

∆x

∆t
∼ ẋ

)
∼ e−τI(ẋ). (1.6.42)

Notice, that the above average is under the condition that x(t) is given, so I(ẋ) should be
written as ẋ|x(t)) more precisely. The unique zero of I gives the hydrodynamic (macroscopic)
law; at this time scale we should interpret ∆x/∆t as the time derivative, so the unique zero
of I is a function f(x) of x:

dx

dt
= f(x). (1.6.43)

We may assume that I is well-behaved near its zero, we may approximate as

I(ẋ|x) =
1

2V
(ẋ− f(x))2. (1.6.44)

This implies that if we study the time derivative at the time scale of τ

dx

dt
= f(x) + ν, (1.6.45)

78This idea was first emphasized by Khinchine: A. Ya. Khinchine, Mathematical Foundation of Statistical
Mechanics (1943, Moskow) (Dover, translated by G Gamov).

79It is often called the hydrodynamic level.
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where the term ν is a noise with 〈ν(t)ν(0)〉 = (V/τ)δ(t) (Gaussian white noise), and this
equation is called a Langevin equation.

Because x(t+ τ) = x(t) + τ∆x/∆t, P
(

∆x
∆t
∼ ẋ

)
may be interpreted as P (x(t+ τ)|x(t));

as is noted for I P in (1.6.42) is actually a conditional probability. That is, the transition
probability can be written in terms of the rate function:

P (x(t+ τ)|x(t)) ∼ e−τI((x(t+τ)−x(t))/τ). (1.6.46)

If the reader is familiar with the Feynman path integral, then she would immediately see that
the rate function is just the Lagrangian for a path integral (called the Onsager-Machlup path
integral). Just the the Feynman path integral gives a Green’s function for the Schrödinger
equation, we can expect that our path integral solves a partial differential equation (called
the Fokker-Planck equation).

If f(x) is linear as f(x) = −ζx, then there must be a definite relation between V and
ζ. This is the fluctuation-dissipation relation and linear nonequilibrium thermodynamics
results.

1.7 Central Limit Theorems

The basic idea of central limit theorems is the coarse-graining + scaling of renormalization
group theory, which may be interpreted as an attempt to generalize the central limit theorem
to strongly correlated random variables.

The classic reference for this topic is
W Feller, An introduction to probability theory and its applications, vol. II (Wiley, 1971).

Durrett is also excellent.

1.7.1 Central limit theorem
Let {Xi} be iid (= independently and identically distributed) random variables with E(X1) =
m and V (X1) = σ2 (→1.4.3). Then, the distribution of Yn ≡ (Sn − nm)/σ

√
n converges

weakly to N(0, 1) (= the Gaussian or normal distribution with mean 0 and variance unity).
A formal demonstration of this theorem is not hard, if we use the characteristic function (→1.4.7) ω

of X1. Since we can always make the expectation vanish by shifting the variables, we may assume m = 0.
First, note that for small ξ

ω(ξ) = 1− σ2ξ2

2
+ o(ξ2). (1.7.1)

This follows from the twice differentiability of the characteristic function (→1.4.8). Let us compute the
characteristic function ωn of Yn:

ωn(ξ) = E(eiξYn) = E

 n∏
j=1

eiξXj/
√

nσ

 = E
(
eiξX1/

√
nσ
)n

= ω(ξ/
√
nσ)n. (1.7.2)

Therefore,

lim
n→∞

ωn(ξ) = lim
n→∞

(
1− ξ2

2nσ2
+ o(ξ2/n)

)n

= e−ξ2/2σ2
. (1.7.3)

45



The most classic form of this theorem is the de Moivre-Laplace theorem:
Let {Xi} be iid random variables with P (X1 = 1) = P (X1 = −1) = 1/2. Then,

P (a ≤ Sn/
√
n ≤ b)→

∫ b

a
(2π)−1/2e−x

2/2dx. (1.7.4)

In this case the reader should check (1.7.1) explicitly. The result may be interpreted as the
distribution of the position of a random walker along a line (→3.1.8).

1.7.2 Central limit theorem vs. large deviation
If you look at the large deviation theoretical result such as (1.6.7) and if you assume that the
rate function I is differentiable, then I(x) = ax2/2 is a good approximation.80 Therefore,
this is identical to the central limit theorem. However, this coincidence is not the rule.

In the framework of large deviation theory the deviation is fixed and then the large
sample number limit N → ∞ is taken. In contrast, in the central limit theorem the size of
the deviation is not fixed but scaled with an appropriate power of N . Roughly speaking,
the central limit theorem tells us the width of the ‘main part’ of the density distribution.
On the other hand, the rate function tells us how much is outside the boundary you specify.
Therefore, if the distribution is with a fat tail the both estimates need not compliment each
other.

1.7.3 Necessary and sufficient condition for Gaussianness
If the variance is not finite (i.e., the fluctuation is too large), generally speaking, the above
theorem does not hold (→1.7.4). However, even in that case a careful choice of the scaling
factor bn instead of

√
nσ could in some cases still make the distribution of (Sn − nm)/bn

converge to N(0, 1). The last word for this is the following theorem by Lévy:
Let {Xi} be iid random variables. For the distribution of (Sn − an)/bn with appropriate
choice of an and bn to converge to N(0, 1), it is necessary and sufficient that

lim
a→∞

a2P (|X1| > a)

E(|X1|; |X1| ≤ a)
= 0. (1.7.5)

That is, the tail of the distribution must not be too fat.
For critical fluctuations, and many other phenomena the tail is too fat, and Gaussian

statistics does not hold.

1.7.4 Central limit theorem for distributions with fat tails
If the distribution has a fat tail (i.e., large fluctuations from the mean can occur rather
frequently), then (1.7.5) would certainly be violated. Even in such cases the distribution of
the sample mean Sn/bn with an appropriate choice of bn still converges to a certain limit
distribution (we have assumed that the distribution has the mean 0), called a stable distri-
bution. This is a generalization of the standard central limit theorem. See Feller.

80Actually, as we will see, almost all elementary theories of nonequilibrium statistical mechanics are un-
derstood within this approximation.
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1.7.5 Central limit theorem and renormalization group theory
An important point is that if a sequence of iid random variables {Xi} obey such a stable dis-
tribution (with mean 0), Sn/bn is distributed according to the same stable distribution for any
n. In other words, the stable distribution is a fixed point of the procedure {Xi}ni=1 → Sn/bn.

If the reader is already familiar with the renormalization group theory, she should im-
mediately see that this procedure is a renormalization transformation: constructing Sn by
summing corresponds to coarse-graining (= making a block spin) and dividing with bn cor-
responds to scaling.

This structure can easily be seen for the standard central limit theorem 1.7.1: if Xi

obeys a distribution with a finite variance, then by this renormalization procedure the distri-
bution ‘flows into’ N(0, 1). That is, a distribution with a finite variance is in the attracting
domain of N(0, 1).

Such a renormalization group structure was clearly recognized by mathematicians well
before the advent of renormalization group theory. Renormalization group theory may be in-
terpreted as a(n attempt for) vast generalization of central limit theorems to non-independent
(often strongly correlated) random variables.81

We will look at the Wiener process from this point of view (→X1.4.11). Donsker’s
invariance principle (→X1.4.12) is the outcome.
Remark. Coarse-graining discards information, but in a certain sense, if the distribution is a fixed point of
an RG, then the information lost by coarsening is exactly compensated by scaling. Therefore, if we appropri-
ately define the entropy production rate of the renormalization-group dynamical system, then it is positive
away from the fixed point but is zero at the fixed point. That is, information can be a Lyapunov function
of the RG dynamics. This idea has been used to understand the central limit theorem.82 ut

81This view point was clearly recognized first by G Jona-Lasinio, “The renormalization group: a proba-
bilistic view,” Nuovo Cim. 268, 99-119 (1975).

82E A Carlen and A Soffer, “Entropy production by block variable summation and central limit theorems,”
Commun. Math. Phys. 40, 339-371 (1991).
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Appendix: What is Measure?

In this Appendix the general theory of the Lebesgue measure is outlined. Without measure
theory proper understanding of statistical mechanics and dynamical systems is impossible.

1.A.1 Reader’s guide to this appendix.
(1) + (3) is the minimum of this appendix:
(1) The ordinary Lebesgue measure = volume is explained up to 1.A.9. These entries should be very easy
to digest. Remember that Archimedes reached this level of sophistication more than 2000 years ago.
(2) General Lebesgue measure is outlined in 1.A.10-1.A.12. This is an abstract repetition of (1), so the
essence should be already obvious.
(3) Lebesgue integral is defined in terms of the Lebesgue measure in 1.A.16 with a preparation in 1.A.15.
This leads us naturally to the concept of functional and path integrals (1.A.17).
(4) Probability is a measure with total mass 1 (i.e., normalized) (1.A.20).
(5) If we read any probability book, we encounter the triplet (Ω,B, P ). The reason why we need such a
nonintuitive device is explained in 1.A.21-1.A.22.

1.A.2 What is volume? — An example of conceptual analysis
For simplicity, we confine our discussion to 2-space, but our discussion can easily be extended to higher
dimensional spaces. The question is: what is ‘area’ ? It is not easy to answer this question for an arbitrary
shape.83 Therefore, we should start with a seemingly obvious example.

The area of a rectangle [0, a] × [0, b] (a ≥ 0, b ≥ 0) in R2 is ab. Do we actually know this? Why can
we say the area of the rectangle is ab without knowing what area is? To be logically conscientious we must
accept:
Definition. The area of a rectangle which is congruent84 to 〈0, a〉 × 〈0, b〉 (Here 〈 is [ or ( and 〉 is ] or )) is
defined to be ab. Notice that area is defined so that it is not affected by whether the boundary is included
or not.85

1.A.3 Area of fundamental set.
A set which is a direct sum (disjoint union) of finite number of rectangles is called a fundamental set. The
area of a fundamental set is defined by the sum of the areas of constitutive rectangles.

It should be intuitively obvious that the join and the common set of fundamental sets are again
fundamental.

1.A.4 Heuristic consideration.
For an arbitrary shape, the strategy for defining its area should be to approximate the figure with a sequence
of fundamental sets. We should use the idea going back to Archimedes; we must approximate the figure
from its inside and from its outside. If both sequences converge to the same area, we should define the area
to be the area of the figure.

1.A.5 Outer measure, measure zero.
Let A be a set. We consider a cover of A with finite number of rectangles Pk (inclusion or exclusion of their
boundaries can be chosen conveniently →1.A.2), and call it a rectangular cover P = {Pk} of A. Let us
denote the area of a rectangle Pk by m(Pk). The outer measure m∗(A) of A is defined by

m∗(A) ≡ inf
∑

k

m(Pk), (1.7.1)

where the infimum is taken over all the finite or countable rectangular covers of A.
If m∗(A) = 0, the set A is called a measure zero set (or a null set).

83As we will see soon in 1.A.22, if we stick to our usual axiomatic system of mathematics ZF+C, there
are figures without area.

84This word is defined by the superposability.
85Thus, topological concepts are much more detailed and difficult than measure-theoretical concepts in

the theory of dynamical systems.
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1.A.6 Inner measure.
For simplicity, let us assume that A ⊂ E ≡ [0, 1]× [0, 1]. Then, the inner measure m∗(A) of A is defined by

m∗(A) = 1−m∗(E \A). (1.7.2)

Obviously,
m∗(A) ≥ m∗(A) (1.7.3)

for any figure A.

1.A.7 Measurable set, area = Lebesgue measure.
Let A be a subset of E.86 If m∗(A) = m∗(A), we say A is measurable (in the sense of Lebesgue), and m∗(A)
written as µ(A) is called its area (= Lebesgue measure).

1.A.8 Additivity.
Assume that all the sets here are in a bounded rectangle, say, E above. The join and the common set of
finitely many measurable sets are again measurable. This is true even for countably many measurable sets.
The second statement follows from the preceding statement thanks to the finiteness of the outer measure of
the join or the common set.

1.A.9 σ-additivity.
Let {An} be a family of measurable sets satisfying An ∩Am = ∅ for n 6= m. Let A = ∪nAn. Then,

µ(A) =
∑

n

µ(An). (1.7.4)

This is called the σ-additivity of the Lebesgue measure. ut
[Demo] A is measurable due to 1.A.8. Since {An} covers A, µ(A) ≤

∑
µ(An). On the other hand A ⊃

∪N
n=1An, so that for any N µ(A) ≥

∑N
n=1 µ(An).

1.A.10 Measure, general case.
A map from a family of sets to R is called a set function. A set function m satisfying the following three
conditions is called a measure.
(1) m is defined on a semiring87 S. [Note that the set of all the rectangles is a semiring.]
(2) m(A) ≥ 0.
(3) m is an additive function: If A is direct-sum-decomposed in terms of the elements of S as A = ∪n

k=1Ak,
then m(A) =

∑n
k=1m(Ak).

Therefore, the area µ defined in 1.A.7 is a measure on the set of all the rectangles. In the case of area,
the definition of area is extended from rectangles to fundamental sets (→1.A.3). This is the next step:

1.A.11 Minimum algebra on S, extension of measure.
The totality of sets A which is a finite join of the elements in S is called the minimum algebra generated by
S. Notice that the totality of fundamental sets in 1.A.3 is the minimum algebra of sets generated by the
totality of rectangles. Just as the concept of area could be generalized to the area of a fundamental set, we
can uniquely extend m defined on S to the measure defined on the algebra generated by S.

1.A.12 Lebesgue extension.
We can repeat the procedure to define µ from m∗ and m∗ in 1.A.7 for any measure m on S (in an abstract
fashion). We define m∗ and m∗ with the aid of the covers made of the elements in S. If m∗(A) = m∗(A),

86It should be obvious how to generalize our argument to a more general bounded set in R2.
87If a family of sets S satisfies the following conditions, it is called a semiring of sets:

(i) S contains ∅,
(ii) If A,B ∈ S, then A ∩B and A ∪B are in S,
(iii) if A1 and A are in S and A1 ⊂ A, then A \A1 can be written as a direct sum (the join of disjoint sets)
of elements in S.
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we define the Lebesgue extension µ of m with µ(A) = m∗(A), and we say A is µ-measurable.

1.A.13 Remark.
When we simply say the Lebesgue measure, we usually mean the volume (or area) defined as in 1.A.7.
However, there is a different usage of the word. µ constructed in 1.A.12 is also called a Lebesgue measure.
That is, a measure constructed by the Lebesgue extension is generally called a Lebesgue measure. This
concept includes the much narrower usage common to physicists.

1.A.14 σ-additivity.
(3) in 1.A.10 is often replaced by the following σ-additivity condition: Let A be a sum of countably many
disjoint µ-measurable sets A = ∪∞n=1An. If

µ(A) =
∞∑

n=1

µ(An), (1.7.5)

we say µ is a σ-additive measure.
The Lebesgue measure defined in 1.A.7 is σ-additive. Actually, if m is σ-additive on a semiring of

sets, its Lebesgue extension is also σ-additive.

1.A.15 Measurable function.
A real function defined on a set D is called a µ-measurable function for a Lebesgue measure µ on the set, if
any ‘level set’ {x | f(x) ∈ [a, b]}∩D is µ-measurable. When we simply say a function is measurable, it means
that any level set has a well defined volume in the ordinary sense.

1.A.16 Lebesgue integral with measure µ.
Let µ be the Lebesgue measure on Rn. Then the Lebesgue integral of a µ-measurable function on U ⊂ Rn

is defined as ∫
U

f(x)dµ(x) = lim
ε→0

∑
aµ({x | f(x) ∈ [a− ε/2, a+ ε/2)} ∩ U), (1.7.6)

where the sum is over all the disjoint level sets of ‘thickness’ ε (> 0).88

1.A.17 Functional integral.
As the reader has seen in 1.A.16, if we can define a measure on a set, we can define an integral over the
set. The set need not be an ordinary finite-dimensional set, but can be a function space. In this case the
integral is called a functional integral. If the set is the totality of paths from time t = 0 to T , that is, if the
set is the totality of continuous functions: [0, T ]→ Rd, we call the integral over the set a path integral. The
Feynman-Kac path integral is an example (→X1.10.2).89

1.A.18 Uniform measure.
The Lebesgue measure defined in 1.A.17 is uniform in the sense that the volume of a set does not depend
on its absolute location in the space. That is, the measure is translationally invariant (see 1.A.21 below
for a further comment). However, there is no useful uniform measure in infinite dimensional spaces. Thus,
every measure on a function space or path space must be non-uniform (cf., X1.10.5).

1.A.19 Borel measure.
Usually, we mean by a Borel measure a measure which makes measurable all the elements of the smallest
algebra (→1.A.11) of sets containing all the rectangles.

88The measures m satisfying µ(A) = 0⇒ m(A) = 0, where µ is a Lebesgue measure, is said to be absolutely
continuous with respect to µ. If a measure is absolutely continuous with respect to the Lebesgue measure
(volume), it has a density as an ordinary function.

89However, the definition of the Feynman path integral is too delicate to be discussed in the proper
integration theory.
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1.A.20 Probability space.
A (Lebesgue) measure P with the total mass 1 is called a probability measure. To compute the expectation
value with respect to P is to compute the Lebesgue integral w.r.t. the measure P .

When we read mathematical probability books, we always encounter the ‘triplet’ (Ω,B, P ) (= a prob-
ability space), where P is a probability measure, Ω is the totality of elementary events (the event space;
P (Ω) = 1) and B is the algebra of measurable events.
Discussion 1. If the base space is not bounded, sometimes the choice of B seems to matter. Read and
summarize T P Hill, The Significant-digit Phenomenon, Am. Math. Month. April 1995, p322. ut
This specification is needed, because if we assume that every composite event has a probability, we have para-
doxes. This was realized through the characterization of ‘uniform measure’ in a finite dimensional Euclidean
space:

1.A.21 Lebesgue’s measure problem.
Consider d-Euclidean space Rd. Is it possible to define a set function (→1.A.10)m defined on every bounded
set A ∈ Rd such that
(1) The d-unit cube has value 1.
(2) Congruent sets have the same value,
(3) m(A ∪B) = m(A) +m(B) if A ∩B = ∅, and
(4) σ-additive
?
This is called Lebesgue’s measure problem.

1.A.22 Hausdorff and non-measurable set.
Hausdorff demonstrated in 191490 for any d there is no such m satisfying (1)-(4) of 1.A.21. Then, Hausdorff
asked what if we drop the condition (4). He showed that m does not exist for d ≥ 3.91 He showed this by
constructing a partition of a 2-sphere into sets A,B,C,D such that A, B, C and B∪C are all congruent and
D is countable. Thus, if m existed, we had to conclude 1 = 2. Therefore, we must admit non-measurable
sets.92

90WWI began, Panama canal officially opened.
91Banach demonstrated in 1923 that there is a solution for d = 1 and for d = 2.
92under the current popular axiomatic system ZF + C. The reader might think such a set is far from any

field of physics, but a popular characterization of chaos (Li -Yorke’s theorem) in dynamical systems uses sets
that are not measurable, if it is not measure zero (Baba-Kubo-Takahashi).
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Chapter 2

Equilibrium Statistical Mechanics
Revisited

In this second introductory chapter, we wish to ‘dust’ our equilibrium statistical thermody-
namics. It is not interesting to do so by going through the standard textbooks, so let us try
to trace the birth of statistical mechanics. Thus, the main purpose of this chapter is to give a
(hopefully) readable story of statistical thermodynamics. The reader will clearly see that it
was born of kinetic theory of gases = study of nonequilibrium processes. Elementary kinetic
approaches are covered in this chapter. Also she will recognize that statistical mechanics
cannot be justified without thermodynamics.

For those who still feel that they need a standard statistical mechanics course, the lec-
turer recommends them to study

R Kubo, Statistical Mechanics, an advanced course with problems and solutions (North
Holland, 1965)
and its sister volume:

R Kubo, Thermodynamics, an advanced course with problems and solutions (North Hol-
land, 1968).1

Solve all the problems at least up to level B (these books are problem books with full de-
tailed solutions; even ‘passively’ reading the solutions is useful, but a more active learning is
recommended). No course of elementary equilibrium statistical mechanics is needed, if the
reader studies these books seriously.

The sister lecture notes, Introductory Equilibrium Statistical Mechanics, are available
from http://www.rinst.org. The level of these notes is around Kubo quoted above. A rather
extensive set of problems with complete solutions can be found.

1Actually, the first half of the original book in Japanese, Thermodynamics and Statistical Mechanics
(Shokabo, 1951), is “Thermodynamics” and the second half “Statistical Mechanics.” It is designed for
undergraduate students and not at all advanced.
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2.1 Gibbs’s Statistical Mechanics

We are all told that equilibrium statistical mechanics we know now was established by J. W.
Gibbs (1839-1903).2 Using the framework, we can compute the Helmholtz free energy A as

A = −kBT lnZ, (2.1.1)

where kB is the Boltzmann constant, T is the absolute temperature, and Z is the (canonical)
partition function defined by

Z =
∑

microstates
e−βH (2.1.2)

with β ≡ 1/kBT , and H being the Hamiltonian (= energy function) of the system.
To understand the nature and the scope of statistical mechanics, let us browse through

Gibbs’s famous book.3

2.1.1 Gibbs, “Elementary Principles in Statistical Mechanics” (19024)5

The problem Gibbs wished to solve was: “not to follow a particular system through its
succession of configurations, but to determine how the whole number of systems in a given
ensemble will be distributed among the various conceivable configurations and velocities at
any required time, when the distribution has been given for some one time.” (Gibbs pvii).

However, “in the present state of science, it seems hardly possible to frame a dynamic
theory of molecular action which shall embrace the phenomena of thermodynamics, of ra-
diation and of the electrical manifestations which accompany the union of atoms.” This
difficulty “deterred the author from attempting to explain of mystery of nature, and have
forced him to be contented with the more modest aims of deducing some of the more obvious
branch of mechanics.”(px).

The outline of his book6 is as follows: To begin with Gibbs explains the concept of
ensemble: a collection of clones of a system satisfying some common conditions (say, identi-
cal energy).7 He then considers “especially ensembles of systems in which the logarithm of

2M J Klein, “The physics of J. Willard Gibbs in his time,” Physics Today, September 1990, p40-48; This
is based on the first paper by the same author in Proceedings of the Gibbs Symposium, Yale University, May
15-17, 1989 (edited by D G Caldi and G D Mostow) (AMS & APS, 1990).

3A much more careful summary may be found in the already cited Gibbs Symposium (1989) Proceedings:
A S Wightman, “On the Prescience of J. Willard Gibbs,” p23-38.

4What sort of year was it? In these notes, to have a glimpse of the cultural background or the Zeitgeist,
the contemporary historical events are mentioned in the footnote. In 1902, Britain and Japan concluded
a naval alliance (the Anglo-Japanese Alliance (mainly against Russia)); The Second Boer War ended; Ibn
Saud recovered Riyadh; V. Pareto’s The Socialist Systems, a refutation of the Marxist economics. As we
will see Einstein should have been completing his system of statistical mechanics.

5M J Klein loc cit writes, “It is not impossible that the pressure to contribute to the Yale Bicentenial
series propelled Gibbs into completing a book that he might otherwise have considered not quite ready to
publish.” According to Klein, Gibbs asked himself questions like, “What is the entropy of a system not in
equilibrium?” at several places in his notes.

6Its full title read, Elementary Principles in Statistical Mechanics developed with especial reference to the
Rational Foundation of Thermodynamics (Yale UP 1902, reprinted from Dover).

7In the standard formulation of statistical mechanics, ‘ensemble’ is only a device to visualize probabil-
ity distribution (→2.4.1). In this interpretation, do not imagine we actually have that many copies of
macroscopic systems. Those who feel this approach unphysical, go to 1.6.14.
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probability of phase is a linear function of energy. This distribution, on account of its unique
importance in the theory of statistical equilibrium, I have ventured to call canonical.”(pxi).
From this he finds “a differential equation relating to average values in the ensemble which
is identical in form with the fundamental differential equations of thermodynamics, the av-
erage logarithm of probability of phase, with change of sign, corresponding to entropy, and
the modulus to temperature” (→2.1.4). These are the contents of his book up to Chapter
XIII.8 He discusses microcanonical ensemble and its equivalence to the canonical ensemble
in the thermodynamic limit in Chapter XIV. The last chapter deals with multicomponent
systems.

Preface tells us that Gibbs regards statistical mechanics as exact, but thermodynam-
ics as the (approximate and empirical) laws of mechanics of systems of a great number of
particles. This point of view is diametrically different from that of the lecturer’s, but let us
follow his logic for the time being.

2.1.2 Gibbs introduces canonical ensemble
Let P be the probability density on the phase space defining a given ensemble.9 Then, P
for an equilibrium ensemble must satisfy (→2.7.7)

[H,P ]PB = 0, (2.1.3)

where H is the system Hamiltonian, and [ , ]PB is the Poisson bracket (→2.7.1). If P is a
function of energy (i.e., H), this is automatically satisfied. Gibbs introduces the canonical
distribution:

P = e(ψ−H)/Θ, (2.1.4)

where ψ is determined by normalization (in the original book ε is used for energy):

e−ψ/Θ =
∫
dΓe−H/Θ (2.1.5)

with dΓ being the volume element of the phase space. Θ is a positive numerical constant.
According to Gibbs this is “the most simple case conceivable since it has the property

that when the system consists of parts with separate energies, the laws of the distribution
in phase of the separate parts are of the same nature.”(p33). He notes, “Θ has properties
analogous to those of temperature in thermodynamics.”(p35); his reasoning is based on the
compound system: combining two systems at the same temperature to make a single system;
if we can ignore the interaction energy between system 1 and 2 (because both are macro-
scopic and the surface contribution should be negligible), the canonical distribution of the
compound system reads e(ψ−H)/Θ = e(ψ1−H1)/Θe(ψ2−H2)/Θ with ψ = ψ1+ψ2 and H = H1+H2.

2.1.3 Computing differential of ψ
Let ai be “certain coordinates of bodies which we call external, meaning by this simply that

8Chapter XII is about the approach to equilibrium. There, he points out that spreading of the nearby
trajectories is needed for the approach to equilibrium (p150).

9We must clearly recognize that probability theory was not at all popular in those days. Hilbert’s problem
number 6 (1900) was meant to be an axiomatization of probability theory with special reference to kinetic
theory (Wightman, loc cit). In modern terms, we consider a probability space (Γ, P ), where Γ is the phase
space of the system. See 1.1.5.

54



they are not to be regarded as forming any part of the system, although their positions affect
the forces which act on the system.” Then, from (2.1.5) we get

−dψ +
ψ

Θ
dΘ =

1

Θ
dΘ

∫
dΓHe(ψ−H)/Θ +

∑
i

dai

∫
dΓAie

(ψ−H)/Θ, (2.1.6)

where

Ai ≡
∂H

∂ai
. (2.1.7)

That is,

dψ =
ψ − 〈H〉

Θ
dΘ−

∑
I

〈Ai〉dai, (2.1.8)

where 〈 〉 implies the ensemble average.
If we introduce

η = logP =
ψ −H

Θ
, (2.1.9)

(2.1.8) may be rewritten as
dψ = 〈η〉dΘ−

∑
i

〈Ai〉dai. (2.1.10)

2.1.4 Thermodynamics analogue
From (2.1.10), we have dψ = d〈H〉+ Θd〈η〉+ 〈η〉dΘ, so

d〈H〉 = −Θd〈η〉 −
∑
i

〈Ai〉dai. (2.1.11)

“This equation, if we neglect the sign of averages, is identical in form with the thermodynamic
equation”(Gibbs p44)

dE = TdS +
∑
i

Xidxi, (2.1.12)

where E is the internal energy, T the absolute temperature, S the entropy, etc. “We may
also compare (2.1.10) with the thermodynamic equation,”

dA = −SdT +
∑
i

Xidxi. (2.1.13)

“How far, or in what sense, the similarity of these equations constitutes any demonstra-
tion of the thermodynamic equations, or accounts for the behavior of material systems, as
described in the theorems of thermodynamics”(Gibbs p45) is the crucial question.

2.1.5 Gibbs’ entropy formula and thermodynamics-mechanics correspondence
The above analogy suggests the entropy formula (cf., 1.3.2):

S ‘=’ 〈η〉 = −
∫
dΓP logP. (2.1.14)

Gibbs demonstrates that under the constant Θ condition the canonical distribution minimizes
〈η〉 + 〈H〉/Θ (Gibbs p161). “We have thus precisely defined quantities, and rigorously

55



demonstrated propositions, which hold for any number of degrees of freedom, and which,
when the number of degrees of freedom is enormously great, would appear to human faculties
as the quantities and propositions of empirical thermodynamics.” (Gibbs p169).

This is Gibbs’ ‘justification’ of −ψ/Θ = logZ, or in the modern notation

A = −kBT logZ (2.1.15)

with

Z =
∫
dΓe−βH . (2.1.16)

Exercise 1. Demonstrate that 〈η〉+ 〈H〉/Θ is minimum for the canonical distribution. ut

2.1.6 Summary of Gibbs’ logic
As the reader has realized, Gibbs’ logic is based on
(1) correspondence ‘in form’ and
(2) the demonstration that general thermodynamic properties are satisfied by the analogue
quantities.

However, is this really satisfactory?10 Gibbs claims that he demonstrated the perfect
parallelism between his statistical mechanical system and thermodynamics. However, for
example, there is no counterpart of heat in his framework, so even the famous equilibrium
relation dS = dQ/T has no statistical mechanical interpretation (also see 2.7.14).11

Gibbs’ canonical ensemble may be a solution to his problem of finding microscopic ex-
pressions for thermodynamic quantities, but how unique is the solution? Even Gibbs knew
that microcanonical ensemble would do as well (→2.6.8).

There are a lot of conceptual holes in Gibbs’ statistical mechanics, and we inherit many
of them.

2.1.7 What made Gibbs conceive his equilibrium statistical mechanics?
To see this we must go back almost to the starting point of the modern natural science. We
will eventually realize how modern Einstein is. Learning statistical mechanics, the reader
will recognize that we have hardly progressed since Einstein with respect to fundamental
issues.

2.2 Prehistory of Statistical Mechanics

To understand the prehistory of equilibrium statistical mechanics, we must go almost all
the way back to the birth of the modern science. We will see how equilibrium statistical

10L Navarro, “Gibbs, Einstein and the Foundations of Statistical Mechanics,” Arch. Hist. Exact Sci.
53, 147-180 (1998) [kindly informed by R Clegg] criticizes Gibbs almost bitterly, saying “This foundation
is however confined to the establishment of analogies between two different frameworks (mechanical and
thermodynamics), and therefore its reductionist value is dubious.” The lecturer is fully sympathetic to this
criticism, but see the last footnote in 2.5.2; he is also very sympathetic to Gibbs.

11It is worth comparing this with what Einstein did. →2.5.3-.

56



mechanics originated from the struggle to understand the second law. However, the success
of equilibrium statistical mechanics left many questions about nonequilibrium phenomena
unanswered.

Recommended reading:
S G Brush, Statistical Physics and the Atomic Theory of Matter, from Boyle and New-

ton to Landau and Onsager (Princeton UP, 1983) Chapter 1.12

D Lindley, Boltzmann’s Atom, The great debate that launched a revolution in physics
(The Free Press, New York, 2001).
The second book may be more readable and sometimes more detailed than Brush’s (perhaps
with too many gossips).13

2.2.1 Everything started with Descartes and Newton
One of the main goals of Principia was to demonstrate the inadequacy of Descartes’ theory
of the universe. ‘Therefore’, Newton adopted Boyle’s conception of air pressure due to the
springiness of air particles instead of Descartes’ swirling atoms. This lead to a static model
of gases in which the pressure was attributed to interatomic repulsive forces and hampered
the development of the kinetic theory (Brush p22).

On the other hand Newton seems to have accepted the atomism in the Greek sense
also: “the Changes of corporeal Things are to be placed only in the various Separations and
new Associations, and Motions of these permanent Particles · · ·” (Optics quoted in Brush
p23). However, the static theory dominated the scene. Even Laplace was under the strong
influence of static repulsion theory of pressure.14

2.2.2 ‘Modern kinetic theory’ of D. Bernoulli
Daniel Bernoulli’s gas model15 (173816) is the first fully kinetic model: there are indefinitely
large number of similar particles of diameter d and speed v moving in a closed container
of volume V supporting a piston with pressure p by their impacts. The average distance
between particles is D, and the temperature T is a function of v.

His conclusions are (Brush p30; as the reader can see these are quite modern →2.3.5):
(1) Boyle’s law pV = const. in the d/D → 0 limit.
(2) The deviation from Boyle’s law is given as a function of d/D.
(3) If v is varied at constant volume, p ∝ v2.
(4) A temperature scale may be defined by using pV = CT , where C is a positive constant,
so T ∝ v2.

It is noteworthy that Bernoulli did not give his particles any properties other than size;
in particular no mass is specified.

12In Japanese, T Yamamoto, Historical Development of Thoughts about Heat (Gendai Sugakusha, 1987)
is an excellent book (more detailed in certain respects than Brush).

13The reader will see why Maxwell was not so impressed by Boltzmann’s kinetic theory; why Thomson
and Planck disliked kinetic theory; what the real issue was of the difference between Mach and Boltzmann,
etc.

14Laplace got interested in the properties of gases due to the necessity of accurate measurement of the
positions of stars through the atmosphere (Yamamoto p189). Gay-Lussac was his chief experimentalist
partner after Revolution. Note that Gay-Lussac was one of the first generation of scientists who were
educated by systematic science education and who earned their living doing science.

15This was in his book on hydrodynamics.
16This year J S Bach composed Mass in B minor (BWV 232).
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However, the kinetic theory of the 18th century was totally forgotten by the 19th cen-
tury (→2.2.4).

2.2.3 Modern atomism and molecular theory
Between Daniel Bernoulli and the modern kinetic theory was the general acceptance of chem-
ical atomic theory and the birth of physics in the modern sense. The most important result
is Dalton(1766-1844)’s law of partial pressure: the total pressure of a gas mixture is simply
the sum of the pressures each kind of gas would exert if it were occupying the space by itself.
This is naturally understood with the aid of kinetic theory.17

Gay-Lussac (1778-1850) then established three important laws (ca 181018):
(i) the law of thermal expansion of gases (also called Charles’ law).
(ii) the law of constant temperature under adiabatic expansion: if a gas is suddenly allowed
to occupy a much larger space by displacing a piston, there is practically no temperature
change.
(iii) the law of combining volume: in gas phase reactions the volumes of reactants and prod-
ucts are related to each other by simple rational ratios.
(iii) implied that ‘particles’ cannot generally be atoms, but Dalton rejected this interpreta-
tion (suggesting, e.g., that Gay-Lussac results were not accurate, etc.)

At last in 181119 Avogadro proposed Avogadro’s hypothesis: every gas contains the same
number of molecules at the same pressure, volume, and temperature.

However, the molecular theory was not generally accepted until 1860, when Cannizzaro
presented it to the Karlsruhe Congress (However, Clausius (→2.2.5) accepted this by 1850
(Brush p51); actually, Cannizzaro mentioned Clausius.20).

2.2.4 What is heat?
To arrive at the modern kinetic theory, there was one more obstacle: the caloric theory of
heat. Even though the experiments of Rumford (1753-1814) and Davy were well known in
the 1820s, no one considered them to be crucial; the heat generated by friction could be
ascribed to caloric squeezed out of the bodies.

Rumford stressed that heat was not conserved: in his memoir of 180421 he said that he
only found that heat source was inexhaustible. Thus, heat cannot be matter, because the
latter is conserved. In contrast, the emphasis of the caloric theory was on the conservation
law; this was reinforced by the theory of latent heat: whenever the conservation law looked
violated, they generalized the concept of latent heat, and the theory became more versatile.
Only after Joule(1818-1889)’s work in 184022 were Rumford’s experiments correctly inter-
preted (Yamamoto p241).

The caloric theory was replaced in the 1830s by the wave theory of heat. The identity
of heat and light favored the same theory for both. Its definite formulation was by Ampère

17Dalton arrived at his atomic theory not very inductively as is stressed by Brush on p32; Dalton’s writings
are sometimes hard to comprehend due to arbitrary thoughts and their outcomes being nebulously mixed
up with real experimental results (Yamamoto p194).

18Napoleon married Marie Louise of Austria.
19This year J Austine published Sense and Sensibility.
20C. Cercignani, “The rise of statistical mechanics,” in Chance in Physics, Lect. Notes Phys. 574 (edited

by J. Bricmont, D. Dürr, M. C. Galavotti, G. C. Ghirardi, F. Petruccione and N. Zanghi) p25 (2001). This
article gives a good summary of Boltzmann’s progress.

21This year Code Napoléon established the principle of equal citizenship; Haiti gained independence.
22Opium Wars; Feuerbach’s The essence of Christianity would be published next year.
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(1832,23 183524): heat flows between vibrating atoms by means of ether vibration. This
theory provided a fairly smooth transition from the caloric theory of the early 1800s to the
kinetic theory of the 1850s.25

In the 1840s the first law of thermodynamics was established by Mayer (1814-1878),26

Joule, Helmholtz (1921-1894), and others. Clausius began developing its application to in-
terconversion of heat and mechanical work (185027 and on).

2.2.5 Clausius, “The kind of motion we call heat” (185728)
Since Clausius (1822-88) had been working on interconversion of mechanical work and heat,
it was very natural that he wished to know the ‘real picture’ : He stated in this paper that he
had been thinking about molecular motion even before his first article on thermodynamics
in 1850.29 He gave a clear molecular picture of the three phases of matter, and explained
latent heat, evaporation due to fluctuation, etc.
Exercise 1. The reader must have a clear molecular picture of the so-called three phases
of matter. (Sample questions: what is the major distinction between gas and liquid?; what
is the difference between the molecular pictures of volume expansion upon heating in solids
and liquids? [Hint. Pay attention to the coordination number.]) ut

He assumed that particles may contain more than one atoms (before Cannizzaro→2.2.3)
and that molecules were extremely small: “the space actually filled by the molecules of the
gas must be infinitesimal in comparison to the whole space occupied by the gas itself.” He
assumed also that molecular forces could be ignored, and derived the equation of state of
the ideal gas (→2.3.5).

2.2.6 Mean free path
At the end of the 1857 paper Clausius calculated the speed of molecules at 0◦C: oxygen
461m/s, nitrogen 492m/s, and hydrogen 1,844m/s.
Exercise 1. Are these numbers accurate? ut

Dutch meteorologist C. H. D. Buys-Ballot noticed that if the molecules of gases really
moved that fast, the mixing of gases by diffusion should have been much faster than we
observed it to be.

Upon this criticism, Clausius (185830) had to assume that the gas molecules have large

23This year Faraday established the laws of electrolysis; Goethe died.
24The Boers began the Great Treck; the second Seminor War.
25However, J. Herapath (1790-1868) was an exception in the heyday of caloric theory, proposing kinetic

theory of gases; he arrived at his theory through realizing the intrinsic difficulty of caloric theory. But for
him (since he did not know Bernoulli→2.2.2) Newton’s springy particle theory was an obstacle (Yamamoto
p245). His paper was rejected by the Royal Society in 1820 (Davy rejected it, saying that it was too
speculative), but appeared elsewhere in 1821. His theory almost completely covered the elementary kinetic
theory (→1.3), but it took 30 years for the paper to be recognized properly. However, he was much more
fortunate than Waterston (1811-83) whose 1845 paper was also rejected by the Royal Society and was not
published for half a century. The reader can find more about Waterston in Lindley’s book.

26However, it is noteworthy that Mayer explicitly rejected to regard heat as a kind of motion (Yamamoto
p240).

27Telegraph cable connection across the English Channel.
28The Indian Mutiny by the Sepoy troops; Universities were established in Calcutta, Bombay and Madras;

C. Baudraire, Les Fleurs du Mal.)
29This is the paper establishing the second law with the concept of entropy.
30This year, the Lincoln-Douglas debate, the Government of India Act. However, the most important

event was that the idea of natural selection was officially published by Darwin and Wallace. Physicists
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enough diameters that a molecule cannot move very far without colliding with another one.
In this way Clausius defined a new parameter called the mean free path ` of gas. We can
obtain it by dimensional analysis as

` = cV/Nd2, (2.2.1)

where V is the volume, N is the number of molecules in the volume, and c is a numerical
constant (whose precise value was a matter of dispute for some time →2.3.6).
Exercise 1. Obtain the above formula. ut

Clausius did not have any independent method to estimate N and d. Then came
Maxwell, who showed that ` could be related to transport properties of gases, and so could
be determined experimentally (→2.3.6).

2.3 Maxwell and Introduction of Statistics

When Maxwell was 19 years old, he read an article introducing the continental statistical
theory into British science (e.g., Gauss’s theory, cf. 2.3.2, 1.7.1), and was really fascinated.
He wrote to his friend: “the true logic for this world is the Calculus of Probabilities · · ·”
(Brush p59)

For the elementary theory of gases
J Jeans, An Introduction to The Kinetic Theory of Gases (Cambridge UP 1952)

may be of some use.

2.3.1 J. C. Maxwell, “Illustrations of the dynamical theory of gases” (186031)
First, Maxwell (1831-79) demonstrates32 that the velocity of the gas particle obeys the
Maxwell distribution (→2.3.2). Based on this distribution, he gave the formula for the
mean free path (→2.3.6):

` =
1√

2πnd2
. (2.3.1)

Also he derived the equation of state of ideal gas (→2.3.5) and gave an explanation of Avo-
gadro’s law.

Next, he computed the shear viscosity of gases (→2.3.7). Comparing his result with
Stokes’ experimental result, he concluded that the mean free path was 1/447000 inch and
a particle collides with other particles 8,077,200,000 times in a second. He demonstrated
that the viscosity was independent of density. He commented that this was remarkable, and
that the existing experiments did not confirm this. Actually, his letter to Stokes (May, 1859)
reads, “This is certainly very unexpected, that the friction should be as great in a rare as in a

should recognize that Boltzmann called the 19th century the century of Darwin (not of Maxwell) (see E
Broda, Ludwig Boltzmann, Mensch·Physiker·Philosoph (F Deuticke, 1955) Part III). The actual chronology
is as follows: In June 1858 Darwin received a thin well-wrapped package from Ternate sent by Wallace. The
papers by Darwin and Wallace on natural selection were read at the Linnean Society on July 1, 1858. For
more about this meeting see the footnote for Brown in 3.1.1.

31This year, Lincoln was elected president; the British raided Beijing.
32The incomplete nature of this derivation was later remedied by himself in 1866 (→2.3.3).
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dense gas. The reason is, that in the rare gas the mean path is greater, so that the frictional
action extends to greater distances. Has the reader the means of refuting this result of the
hypothesis?” Did Maxwell believe in the kinetic theory at that time?

It is a good occasion to learn (or review) elementary kinetic theory of gases. Let us see
more details in 2.3.7 and on, but in these lecture notes no stress will be put on the topic.

2.3.2 Maxwell’s velocity distribution
In his “Illustrations of the dynamical theory of gases” (1860) Maxwell introduced the density
distribution function f(v) of the velocity of gas particles.

Maxwell assumed that the orthogonal components of the velocity are statistically inde-
pendent (→1.2.2). This implies that we may write

f(v) = φx(vx)φy(vy)φz(vz), (2.3.2)

where φx, etc., are density distribution functions for individual components. Maxwell also
assumed the isotropy, so f is a function of v2 ≡ |v|2, f(v) ≡ F (v2) and φx, etc., do not
depend on the suffices specifying the coordinates: ψ(s2) ≡ φx(s) = · · · . Therefore,

F (x+ y + z) = ψ(x)ψ(y)ψ(z). (2.3.3)

If we assume that F and ψ are once differentiable, we obtain

F ′(x+ y + z) = ψ(x)ψ(y)ψ′(z). (2.3.4)

Setting y = z = 0, we obtain

F (x) = ψ(x)ψ(0)ψ(0), F ′(x) = ψ(x)ψ(0)ψ′(0). (2.3.5)

Therefore, F ′(x)/F (x) must be a constant. This implies a Gaussian distribution33

f(v) =

(
1√
2πσ

)3

e−v2/2σ2

. (2.3.6)

Discussion 1. The reader may have wondered whether there is no other solution, if we drop
the differentiability assumption. Try to demonstrate that the Gaussian form is the unique
outcome of (2.3.3), assuming only the continuity of F .34ut
Discussion 2. We know from the equilibrium statistical mechanics that the distribution
function can be obtained as e−βE, where E is the energy of the particle. This was ob-
tained from the consistency with thermodynamics (→2.1.5). In the above derivation of the
Maxwell distribution, we have used only independence and isotropy, and no mechanics at
all. Therefore, these two results seem to suggest that thermodynamics dictates the form of
kinetic energy. Is this really true?35 ut

Maxwell did not like the independence assumption, so he rederived his distribution a
few years later (in 186636). The argument relies on detailed balance (→2.7.6), reminiscent
of Boltzmann’s argument (→2.4.9).

33The easy way to compute the normalization is:
[∫

dx e−x2/2σ2
]2

= 2π
∫∞
0
e−r2/2σ2

rdr = 2πσ2.
34Certainly, if we do not assume that F is continuous, there are uncountably many solutions.
35Considering the relativistic case may clarify the situation. Although most modern textbooks do not cast

any doubt about independence, Maxwell’s doubt about it indicates his correct intuition.
36This year Boltzmann published his first attempt to demonstrate the second law from mechanics. This

is one year after Clausius introduced the concept of entropy,
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2.3.3 Maxwell’s rederivation of Maxwell’s distribution
Suppose a binary collision between particle 1 with velocity v1 and particle 2 with v2 pro-
duces particle 1 with velocity v′1 and particle 2 with velocity v′2. Then, the detailed balance
(→2.3.4) requires37

f(v1)f(v2) = f(v′1)f(v′2) (2.3.7)

for any choice of velocities compatible with the collision. Energy conservation implies

v2
1 + v2

2 = v′
2
1 + v′

2
2. (2.3.8)

Therefore, if we assume the isotropy and the continuity of the density distributions, these
relations imply that log f is a linear function of v2.38

2.3.4 Cyclic balance vs. detailed balance
In equilibrium, we do not observe any macroscopic change (time dependence). For this to
be possible, for example, cyclic balance would do: suppose we have three microscopic states,
a, b, and c; if the positive cycle a→b→c→a→b→c→· · · is equally likely as the negative
cycle c→b→a→c→b→a→· · ·, we would not see any macroscopic change, even if a→b is not
as likely as b→a. However, in equilibrium, there is a detailed balance (→2.7.6): a→b and
b→a are equally likely. That is, a microscopic process and its (time) reversed process occur
equally likely.

We will learn that detailed balance is crucial in understanding near equilibrium irre-
versible processes (→4.1.1).

2.3.5 Pressure of ideal gas - Bernoulli’s formula
The (kinetic interpretation of) pressure on the wall is the average momentum given to the
wall per unit time and area. Consider the wall perpendicular to the x-axis. Then, the
number of particles with its x-component of the velocity being vx that can collide the unit
area on the wall per unit time is given by nvxf(v),39where n is the number density of the
gas molecules. Each particle gives the momentum 2mvx upon collision to the wall, so

p =
∫
vx≥0

dv 2mnv2
xf(v) =

1

3
mn〈v2〉. (2.3.9)

Or,

pV =
2

3
N〈K〉, (2.3.10)

where K is the kinetic energy of the single gas particle, and N is the number of particles in
the volume V . This equation is called Bernoulli’s equation (→2.2.2).

Comparing this with the equation of state of an ideal gas pV = NkBT , we obtain the
well-known relation:

〈v2〉 = 3kBT/m. (2.3.11)

37If the reader wishes to be more elementary, the phase volume element for the two particles must be
written. The reader can rely on Liouville’s theorem (for the two particle system under consideration)
(→2.7.7) to ignore these volume elements.

38Proving this is not so trivial as is quoted in 2.4.8.
39Precisely speaking, we must speak about the number of particles in the (velocity) volume element d3v,

that is, nvxf(v)d3v, but throughout these notes, such obvious details may be omitted.
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If we use (2.3.6) to compute the average, we can fix the parameter σ as σ2 = kBT/m, and
we obtain the Maxwell distribution:40

f(v) =
(

m

2πkBT

)3/2

e−mv2/2kBT . (2.3.12)

Remark. Although the Boyle-Charles law is obtained, this does not tell us anything about
molecules, because we do not know N . We cannot tell the mass of the particle, either.
Remember that kB was not known when the kinetic theory of gases was being developed. A
notable point is that with empirical results that can be obtained from strictly equilibrium
studies, we cannot tell anything about molecules. ut
Exercise 1. The virial theorem tells us

K = −1

2

∑
i

qiFi, (2.3.13)

where qi is the position coordinates and Fi is the force (i.e., ṗi = Fi, where pi is the conjugate
momentum of qi), and the overline is time average.41

(i) Demonstrate (2.3.13) (Hint: d(
∑
piqi)/dt = 2K +

∑
i qiFi).

(ii) Fi consists of the force F0i due to the particle-particle interactions and the force Fwi due
to the wall. If the interaction with the wall is short ranged, near the wall perpendicular to
the x-axis at the x-coordinate Lx we obtain

∑
i qiFwi = Lx

∑
i Fwi. Show that

∑
i Fwi = −pA,

where A is the area of the wall.
Thus, we have arrived at the virial equation of state (V = LxA):

pV =
2

3
K − 1

3

∑
i

qiF0i. (2.3.14)

Notice that this is correct both classically and quantum mechanically, irrespective of the
phase (not necessarily for the gas phase), and both in and out of equilibrium (if time-
independent or change is sufficiently slow). ut

2.3.6 Mean free path: more details
We already know that the mean free path ` ∝ 1/nd2, where n is the number density and
d the diameter of the molecule (→2.2.6). If the molecule we study were the only moving
particle in a gas,

`πd2n = 1 (2.3.15)

should have been true. That is, ` = 1/πnd2. However, all the molecules are moving.
The velocities of different molecules are statistically independent, so on the average the

velocities are orthogonal, but the averages of the speed must be identical. When they collide,
the average relative speed must be

√
2 times the mean velocity. Therefore,

` =
1√

2πnd2
(2.3.16)

40About experimental verification, see Jeans, p124 ∼.
41With an appropriate reinterpretation of the overline, the theorem holds for quantum mechanical cases

as well.
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must be the true mean free path length.
Exercise 1. Let w be the average relative speed. Then, the number z of collisions per unit
time is given by

z = πd2nw. (2.3.17)

Show that the (density) distribution function for w is

f(w) ∝ e−mw2/4kBT , (2.3.18)

so w =
√

2v, where v is the speed of a molecule. This is the relation we discussed above.
Now,

` =
mean displacement per unit time

mean number of collision per unit time
=
v

z
. (2.3.19)

This is (2.3.16). ut
Exercise 2. An explicit calculation of z with the aid of the distribution function is a good
practice. ut
Exercise 3. Compare the mean distance δ between the molecules and the mean free path.42

ut
Exercise 4. If a particle moves very slowly, its free path length must be short. Therefore,
the mean free path is a function of the particle speed v: ` = `(v). What can the reader guess
about this function? Is it a bounded function from above? 43 ut.
Exercise 5. The free path length = the distance traversed by a molecule between two
successive collisions is not constant. Its distribution function f(x) does not have a simple
analytic expression but is very accurately approximated by (Jeans p145)

f(x) ∝ e−1.04x/`. (2.3.22)

Show that the free path length distribution fv for a particle of speed v is given by44

fv(x) ∝ e−x/`(v). (2.3.23)

ut

2.3.7 Shear viscosity and mean free path
We consider gases that are dilute enough to obey the ideal gas law, but with mutual collisions
occurring sufficiently frequently.

Suppose we have a shear flow with the velocity V in the x-direction and the velocity
gradient in the z-direction; we assume ∂Vx(z)/∂z is constant. We further assume that the
particle velocity obeys the “local equilibrium distribution”: this implies that v−V (r) obeys

42Roughly, `/δ = (`/d)2/3.
43The mean free path of a gas molecule running at speed v is given by (Jeans p141)

`(v) =
βmv2/2

√
πnd2ψ(v

√
βm/2)

, (2.3.20)

where
ψ(x) = xe−x2

+ (2x2 + 1)
∫ x

0

e−y2
dy. (2.3.21)

44If this is averaged over v, we obtain (2.3.22).
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the Maxwell distribution at each point r,45 where v is the particle velocity.
On the average, the particle reaching the plane z = 0 comes from distance ` away from

the point where the particle crosses this plane. The mean momentum carried by this particle
is

mV (−` cos θ) ' mV (0)−m` cos θ
∂V

∂z
, (2.3.24)

where θ is the angle the particle makes with the z-direction. The number of particles with
this angle that goes through the plane z = 0 in unit time must be

nv cos θ
(

1

2
sin θdθ

)
. (2.3.25)

The total momentum flux J = −η∂Vx/∂z must be (2.3.24) times (2.3.25) averaged over
angle θ from 0 to π:

J = −mn
2
v`
∂Vx
∂x

∫ π

0
cos2 θ sin θdθ = −1

3
mnv`

∂Vx
∂z

. (2.3.26)

Therefore, the shear viscosity η is given by

η =
1

3
mnvl. (2.3.27)

With the already obtained estimate of ` (2.3.16) and v =
√

8kBT/πm, we obtain46

η =
2

3d2

√
mkBT

π3
. (2.3.28)

This is independent of the density n as noted by Maxwell (→2.3.1). Furthermore, the vis-
cosity increases with temperature.

Other transport quantities such as heat conductivity may be obtained similarly, but we
will do this in a slightly streamlined fashion later (→2.3.9).
Discussion 1. One of the arguments for the caloric theory of heat was as follows: if heat
were a form of motion of molecules, then in solids its propagation should be wave like and
should be much faster than we actually observe. Diffusion like behavior of heat (or temper-
ature) is a good evidence of a fundamental conserved substance called caloric whose density
determines temperature. ut

2.3.8 Estimating Avogadro’s constant from viscosity
We have noted in 2.3.5 that it is impossible to determine the properties of particles through
equilibrium studies alone.

45More accurately, in the volume element around each point r; we assume that we can choose a volume
macroscopically sufficiently small (so, for example, in our present case V does not change inside), but contains
sufficiently many microscopic objects that we can consider statistics meaningfully. For local equilibrium to
hold, we need sufficiently many collisions among particles.

46If we assume that the particle mass, the cross section (d2) and the particle thermal velocity are only
relevant quantities, dimensional analysis gives essentially this result. Even if we try to take the density of
the gas into account, it automatically drops out of the formula.
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If we consider a cylinder of diameter d and height `, it should contain on the average a
single molecule. Therefore, Clausius guessed (as we have already seen in 2.2.6)

πd2` = 1/n, (2.3.29)

where n is the number density, but no quantity in this formula was known. mn is measurable,
and from the ideal gas law we can estimate 〈v2〉 (→(2.3.9)) or v. Now, the viscosity is
measurable, so we can determine ` (→(2.3.27)). Still, without any microscopic parameter
directly related to the molecule (say, its mass m or its size d), there is no way to obtain n
(or the Avogadro’s constant NA/molar volume of a gas).

In 187347 van der Waals proposed his equation of state of imperfect gases:

p(V − V0) = NkBT −
α

V
(1− V0/V ). (2.3.30)

Here, α > 0 is a constant describing the effects of intermolecular attractive interactions, and
V0 corresponds to the actual volume occupied by the molecules: V0 ' bNπd3/6, where b is a
geometrical constant of order unity. This equation allows us to determine d. Thus, we can
compute NA. The method gives NA ' (4 ∼ 6)× 1023.48

Exercise 1. Compute `, v and the number of collisions per molecule in unit time (or the
reciprocal of the mean free time `/v) for appropriate gas samples.ut

2.3.9 General formula of transport coefficients in terms of mean free path
Let X be a physical quantity carried by a volume element (for example, X =

∑
dV mvx is

the quantity considered in 2.3.7, where the sum
∑
dV is taken over all the particles in the

volume element dV around r). We assume a local equilibrium, so the average density of X,
indicated by the overline as X, depends on the position r:

〈X〉r/dV = X(r), (2.3.31)

where dV is the volume of the volume element (we are computing the local density). The
z-component of the flux JX of X at r may be computed as

JX(r) = 〈[X(r − `)−X(r)]vz〉θ, (2.3.32)

where ` is the free path vector and 〈 〉θ implies the average over the direction of the particle
motion (that is parallel to `). Expanding the expression, we obtain

JX(r) = −〈vz`〉θ · gradX(r). (2.3.33)

Since, the gradient has only the z-component, we need49

〈vz`z〉θ '
1

3
v`. (2.3.34)

Thus,

JX(r) = −1

3
v`
∂X

∂z
. (2.3.35)

47Maxwell, A Treatise on Electricity and Magnetism was published this year.
48The most accurate method to estimate Avogadro’s constant is to use the X-ray analysis of crystals. See,

Mana, Rivista Nuovo Cim 18(3) (1995); P. Beker, “History and progress in the accurate determination of
the Avogadro constant,” Rep Prog Phys 64 1945 (2001).

49Note that v and ` are parallel.
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2.3.10 Viscosity, heat conductivity, and diffusion constant for dilute gas
For viscosity X =

∑
dV mvx in 2.3.9, so X(r) = nmV (r), and we recover η (2.3.27) from

(2.3.35).
To obtain the heat conductivity λ, X must be the energy contained in the volume

element: X =
∑
dV mv2/2, so X(r) = 3nkBT (r)/2. Since J = −λ∇T , we obtain

λ =
1

2
nkB`v. (2.3.36)

For self-diffusion (i.e., isotope diffusion) X =
∑
dV 1, so X(r) = n(r). J = −D∇n

implies

D =
1

3
v` =

`2

3τ
, (2.3.37)

where τ is the mean free time τ = `/v.
Notice that η = nmD, η/λ = 2m/3kB and λ/D = 3nkB/2. The last relation tells us

λ = cVD, where cV is the specific heat per molecule of gas under constant volume. Again,
we should note that these relations do not tell us anything about the microscopic properties
of the gas particles.

2.3.11 What happens at wall?
In 1860 Helmholtz and Piotrowski showed that for a small tube the flow behavior of liquid
appreciably deviates from Poiseuille’s flow,50 and later (in 1875) Kundt and Warburg showed
the same for gases.51.

If the collision with the wall is specular (that is, the momentum component parallel to
the wall is maintained and that perpendicular to the wall flips its sign), we expect a slip-
pery boundary condition for the velocity at the wall. However, if the wall is microscopically
rough, the reflected momentum is randomized and the average of its components parallel to
the wall may be close to zero. This case we expect a sticky boundary condition we usually
use for hydrodynamics. The above experiments clearly say that sometimes randomization is
not complete.

Maxwell used such experimental results to estimate the ratio of specular and random
reflections at the wall, and concluded that their contributions could become comparable for
some surfaces.52

2.3.12 Knudsen flow
If the gas density is low and the mean free path becomes comparable to the representative
size of the system (e.g., the diameter of a pipe), the flow in a pipe behaves like a plug flow.

Consider a thin pipe whose diameter is smaller than the mean free path length. The
local average velocity becomes independent of the distance from the wall and is constant u
in this case. The gas particles colliding with the tube wall would lose momentum mu on the

50For a modern demonstration using a thin gap, see Granick et al., Limits of the Hydrodynamic No-Slip
Boundary Condition, Phys. Rev. Lett. 88, 106102 (2002).

51Read Jeans p168.
52The reader might think it is only a mere detail, but if we wish to study nonequilibrium states with the

aid of molecular dynamics, this is one of the sources of headache.
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average. The number of collisions is proportional to nv/4 per unit time.53 Therefore, along
the tube of radius R and length L, the lost momentum per unit time must be

2πRL×mu× 1

4
nv. (2.3.38)

This must balance with the force due to the pressure difference: πR2∆p. Therefore, we can
compute the average flow velocity

u =
2R∆p

Lnmv
. (2.3.39)

The total mass flux J is given by

J = nmuπR2 =
2R3∆p

Lv
. (2.3.40)

Notice that this decreases with an increase of temperature. Its intuitive reason should be
obvious to the reader.
Exercise 1. The boundary layer is the layer where the effect of the wall is significantly felt
by the flow velocity field. Estimate its thickness and argue that it is of the order of the mean
free path for the gas where the kinetic theory works (use the results in 2.3.7). ut
Exercise 2. Discuss the pressure balance between the two vessels at different temperatures
connected by a very thin tube. ut
Exercise 3. If there is no gas, obviously there should not be any flow nor any viscous drag.
Discuss how the gas viscosity behaves as a function of density. ut

2.4 Boltzmann and Modern Kinetic Theory

2.4.1 Maxwell-Boltzmann distribution
In 1868 Boltzmann (24 years old; 1844-1906) extended Maxwell’s distribution theory to the
cases with external forces, and introduced the so-called Boltzmann factor e−V/kBT . Notice
that the probability of a microscopic state is explicitly defined by Boltzmann as the ratio of
the sojourn time of the system in that state and the total time of observation.
Exercise 1. Can the reader explain to her lay friend that the Boltzmann factor is indeed
plausible? [Consider the balance between the pressure and the force acting on the gas par-
ticles for an ideal gas.] ut

Later (1879), Maxwell rederived the result in a much more general fashion; his mo-
tivation was to show that Boltzmann’s result was more general than was suggested by the
theoretical method used by Boltzmann applicable only to dilute gases. Maxwell realized that
the only needed assumption is that sooner or later all the phase points in an energy shell
is visited by the trajectory of the system (‘ergodicity’ in Boltzmann’s terminology →1.5.9).
To this end Maxwell introduced the concept of ensemble = a set of numerous systems that
are different only for their initial conditions (but with the same total energy).54

Exercise 2. Consider a single component monatomic gas consisting of N atoms of mass

531/2 comes from the fact that the one half of molecules are going away from the wall at any moment; the
other 1/2 factor comes from the average of the cos factor.

54Notice that Maxwell introduced the concept of ensemble only to visualize probability.

68



m. Let {q, p} denote collectively the phase coordinates of all the atoms. We wish to trace
Maxwell’s logic.
(1) Obtain the phase volume Γ({q}) of the state with total energy E and the spatial posi-
tions of atoms being in the volume element dq around {q} (this is the collective expression
of all the spatial coordinates). Assume that V ({q}) be the potential energy of interatomic
interactions.
(2) Suppose V is smaller than E ≡ 3NK, where K is the average kinetic energy per particle,
demonstrate that Γ({q}) ∝ e−V/2K .ut

By around 1870 it was clearly recognized that:
Thermal equilibrium condition in mechanics terms is the equality of average kinetic energy
per atom.

2.4.2 Why and how did Boltzmann reach statistical mechanics?
Since Boltzmann started his physicist career trying to demonstrate the second law mechan-
ically, it was natural for him to ask how the equilibrium Maxwell distribution was reached:
Maxwell demonstrated that once the Maxwell distribution was established, it did not change
(→2.3.3), but he did not show that the distribution was unique nor was reached from any
initial distribution.

To complete Maxwell’s program, Boltzmann decided to study the time evolution of the
probability density function f(q, p) of the one particle state of a (monatomic) molecule in a
gas specified by its position q and momentum p (the probability measure on the µ-space55),
and proposed his famous equation, the Boltzmann equation (in 1872,56 →2.4.7). The equa-
tion has the following structure

∂f

∂t
+
p

m

∂f

∂q
= effect of binary collisions. (2.4.1)

Boltzmann introduced a quantity corresponding to (negative) entropy (per particle)
called H-function defined by

H =
∫
f log f dpdq, (2.4.2)

and demonstrated that dH/dt < 0 (= only for the Maxwell distribution, if f obeys the
Boltzmann equation. This assertion is called the H-theorem →2.4.10). In other words,
from any initial condition, the ultimate equilibrium distribution is reached that is given by
Maxwell’s distribution. Thus, Boltzmann believed that he could demonstrate the second law
of thermodynamics starting from mechanics.

Then, his colleague Loschmidt commented that mechanics was time-reversal symmetric,
so the asymmetry of the Boltzmann equation, if claimed as a result of pure mechanics, was a
paradox (the Loschmidt paradox). Boltzmann realized that an extra assumption was needed,
and clearly understood the meaning of the second law: the time evolution of the system to
the most probable state. Now, he also realized that then, the most probable distribution had
to be the equilibrium distribution. This is the birth of equilibrium statistical mechanics: we
can study the statistical behavior of a macroscopic system without explicit use of mechanics
(→2.4.11).

55µ for ‘molecule’; Γ is actually for ‘gas.’
56This year, Yellowstone was established as the first NP; the Challenger expedition began (one year before

Maxwell’s Treatise on electromagnetism); G Elliot, Middlemarch.
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If the reader is interested in more details about the story outlined here, read the follow-
ing entries (2.4.4 -2.4.11).57

2.4.3 Maxwell’s reaction to attempts to derive the second law
Maxwell introduced his demon (Maxwell’s demon) that can segregate molecules with more
kinetic energies (faster molecules). A container is divided into two chambers H and C by
a wall with a hole. The hole is equipped with a frictionless sliding door. The Demon sits
besides the door, watching the gas molecules in both chambers. When a molecule in H (resp.,
in C) whose speed is slower (resp., faster) than the average in H (resp., in C) comes to the
hole, he opens it and let it go into the other room. This way the chamber H becomes hotter
and C colder, apparently violating the second law.

From his point of view the second law is equivalent to a denial of our power to perform
the operation that the Demon can. “Hence, if the heat consists in the motion of its parts,
the separate parts which move must be so small that we cannot in any way lay hold of them
to stop them.”58 Thus, the second law cannot be a mere theorem of mechanics. Naturally,
Maxwell was not thrilled by the German/Austrian development.

2.4.4 Elementary derivation of Boltzmann’s equation: streaming term
The Maxwell distribution (→2.3.2) is the distribution of the velocity of a single particle.
Therefore, Boltzmann wished to study the single-body distribution function f(r,v, t), where
f(r,v, t)drdv is the probability of finding a particle whose state specified by its position r
and velocity v in a 6-dimensional volume element dvdr centered at (r,v). That is, f is the
probability density on the µ-space.59

If the particles do not interact with each other, then

∂

∂t
f + v · ∂

∂r
f = 0 (2.4.3)

in the homogeneous space. The second term on the LHS describes the motion of the particle
‘flowing with the stream with velocity v,’ so it is called the streaming term.
Exercise 1. This describes a ballistic motion. Its solution with the initial condition
f(r,v, 0) = f0(r,v) reads f(r,v, t) = f0(r − vt,v). Check this statement. ut
Exercise 2. This is the Liouville equation (→2.7.7) for a single body. ut.

If the particle interact with other particles (if there are collisions), the above equation
is not true and we must write

∂

∂t
f + v · ∂

∂r
f =

(
∂f

∂t

)
col

, (2.4.4)

where the subscript col indicates the contribution of collisions. The reader should immedi-
ately realize that the streaming term does not contribute irreversibility at all.

57In these notes the Boltzmann equation will not be discussed in detail; this may be historically important,
and may still be relevant to gases, but we are much more interested in condensed phases, for which the
equation is irrelevant. Also it should be irrelevant to the foundation of statistical mechanics, because the
equation applies only to rather dilute gases.

58J. C. Maxwell, Theory of Heat (Longmans, London 1871).
59The ‘true’ µ-space is spanned by the position coordinates and the momentum coordinates instead of

velocities.
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2.4.5 Two-body collision term
To obtain the collision term, we assume the following:
(1) There are only two-body collisions.
(2) “Stosszahlansatz”:60 colliding particles are statistically uncorrelated.
(3) f does not change as a function of spatial position within the range of the particle-particle
interactions.
According to the assumption (2) the probability of collisions between the particles with
velocity v and velocity v′ around r may be written as nf(r,v)f(r,v′)dvdv′drdr, where n
is the number density of the particles.

Suppose the relative velocity of the two colliding particles (far before the collision) is
g, and the collision parameter is b. The collision parameter is the distance vector between
the two colliding particles projected to the subspace orthogonal to g. More precisely, let us
write the ith particle coordinates be (ri,vi). Then,

g = v2 − v1, (2.4.5)

b = (r2 − r1)(1− ggT/g2), (2.4.6)

where g = |g|. The number of particles coming with the collision parameter b per unit time
can be written as

2πbdb nf(r2,v2, t)g, (2.4.7)

where b = |b|. Therefore, the expected number of collisions with the particle with velocity
v2 per unit time experienced by the particle with velocity v1 at r1 may be expected to be

2πbdb nf(r1,v1, t)f(r1,v2, t)g dv1dv2dr1. (2.4.8)

Here, we have used (3) to identify all the spatial coordinates in the density distribution
functions.

2.4.6 Contribution of collisions to time evolution
The above collision process describes the collision {v1,v2} → {v′1,v′2}, where the primed
velocities after the collision are determined according to the energy and momentum con-
servation. Since mechanics is time reversal symmetric, there must be the collision process
{v′1,v′2} → {v1,v2} as well.61 Therefore, the expectation value of the number of collisions
that give velocity v1 after collision must be given by

2πb′db′nf(r1,v
′
1, t)f(r1,v

′
2, t)g

′dv1dv2dr1. (2.4.9)

Combining the above results, we may write(
∂f

∂t

)
col

dr1dv1 = n
∫

2πb′db′f(r1,v
′
1, t)f(r1,v

′
2, t)g

′dv′1dv
′
2dr1

− n
∫

2πbdbf(r1,v1, t)f(r1,v2, t)gdv1dv2dr1. (2.4.10)

Now, we use the equality

b′db′g′dv′1dv
′
2dr

′
1 = bdb g dv1dv2dr1 (2.4.11)

60hypothesis of collision numbers
61Here, more precisely, we use the detailed balance (→2.7.6).
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that holds thanks to Liouville’s theorem (→2.7.2) applied to the two-body phase volume.
Thus, we finally obtain(

∂f

∂t

)
col

= n
∫

2πbdbdv2g [f(r1,v
′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] . (2.4.12)

After the collision the relative velocity changes its direction to the direction specified
by the azimuthal angle θ measured from the direction of g = v2 − v1.

2πbdb = σ(θ)dΩ, (2.4.13)

where Ω is the solid angle of the annule between θ and θ+dθ, and σ(θ) is called the differential
scattering cross section.62(

∂f

∂t

)
col

= n
∫
σdΩdv2 g [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] . (2.4.14)

2.4.7 Boltzmann equation
Thus, we have arrived at the Boltzmann equation

∂

∂t
f + v · ∂

∂r
f = n

∫
σdΩg [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] . (2.4.15)

Here, v1 + v2 = v′1 + v′2 (and the energy conservation law) must be satisfied when the inte-
gration is performed.
Exercise 1. If there is an external force field F , the streaming term (→2.4.4) must be
modified. Give a necessary modification and write down the most general Boltzmann equa-
tion allowing spatial nonuniform equilibrium distributions. Of course, the external field must
change spatially sufficiently gently to satisfy our assumption (3) in 2.4.5. ut.

A more careful (but still formal) derivation will be given later from the BBGKY hier-
archy (→2.7.10).

The Boltzmann equation is an equation for a one-body distribution function. The actual
system is an N (→∞) body system, so the justification of the Boltzmann equation is equiv-
alent to justification of the reduction of N body description to the single body description.
This has been accomplished by Lanford63 for the hard core gas case for a very short time
(∼ 1/4 of the mean free time) in the so-called Boltzmann-Grad limit: N → ∞, Nd2 → 1,
where d is the hard core diameter). That is, the reliability of the Boltzmann equation has
been demonstrated only for this microscopic time scale.
Remark. If the limit N → ∞, Nd3 → 1 is considered, then the Enskog equation that
replaces the collision term of the Boltzmann equation with the one that takes into account
the spatial difference of the distribution at the scale of d is expected.64 ,65 ut

62There are other definitions as well.
63O E Lanford, III, “Time evolution of large classical systems,” Lecture Notes in Physics 38, 1-111 (1975).
64The Enskog equation is known to be a good model even for liquid. For example, see T. Scopigno, R.

Di Leonardo, L. Comez, A. Q. R. Baron, D. Fioretto, and G. Ruocco, “ Hard-Sphere-like Dynamics in a
Non-Hard-Sphere Liquid,” Phys. Rev. Lett., 94, 155301 (2005).

65See a related paper: F Rezakhanlou, “A stochastic model associated with Enskog equation and its kinetic
limit,” Commun. Math. Phys. 232, 327-375 (2003).
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2.4.8 Collision invariants
Let ϕ be a function of single particle coordinates. Let us write ϕi be the quantity associated
with particle i before the collision and ϕ′i after the collision. Suppose particles 1 and 2
undergo a collision. If

ϕ1 + ϕ2 = ϕ′1 + ϕ′2, (2.4.16)

we say ϕ is a collision invariant.
The collision invariant, if continuous, must have the following form

ϕ = A+ B · v + Cv2, (2.4.17)

where A,C are constants and B is a constant vector (actually, they can be functions of the
position r). This is not very trivial to show.66

If ϕ is a collision invariant, then

I =
∫
σdΩdv1dv2 g ϕ(v1) [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] = 0. (2.4.18)

This follows from the following identity that is valid for any function of the single particle
coordinates

I =
1

4

∫
σdΩdv1dv2 g (ϕ1 + ϕ2 − ϕ′1 − ϕ′2) [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] .

(2.4.19)
Here, an abbreviation ϕ′2 = ϕ(r′2,p

′
2), etc., is adopted.

A demonstration follows:

I =
∫
σdΩdv1dv2 g (f(1)f(2) − f(1′)f(2′))ϕ1, (2.4.20)

=
∫
σdΩdv1dv2 g (f(1)f(2) − f(1′)f(2′))ϕ2. (2.4.21)

Here, we have used the abbreviation f(1) = f(r1,v1, t), etc. Now, we change the variable as
(v1,v2)→ (v′1,v

′
2) to obtain (with the aid of (2.4.11))

I =
∫
σdΩdv1dv2 g (f(1′)f(2′) − f(1)f(2))ϕ

′
1, (2.4.22)

=
∫
σdΩdv1dv2 g (f(1′)f(2′) − f(1)f(2))ϕ

′
2. (2.4.23)

Combining all of them, we reach the desired result.

2.4.9 Local equilibrium distribution
A density distribution function satisfying(

∂f

∂t

)
col

= 0 (2.4.24)

66A proof can be found in C Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag,
New York, 1988), p74-78. If the reader accepts that there are only four additive constants of motion, the
equation (2.4.17) looks trivial, but here, we are actually demonstrating that the additive invariants are only
linear momenta and kinetic energy (in our case, we do not take into account of the angular momenta of the
particles).
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is called a local equilibrium distribution. A local equilibrium distribution function must have
the following form

log f = A+ B · v + Cv2, (2.4.25)

where A,C are functions of spatial coordinates and B is a vector dependent only on the
spatial coordinates. Therefore, notice that a local equilibrium distribution is not generally a
stationary distribution function (cf., 5.1.8).

To demonstrate this, we demonstrate the following fundamental inequality

J =
∫
σdΩdv1dv2 g log f(r1,v1, t) [f(r1,v

′
1, t)f(r1,v

′
2, t)− f(r1,v1, t)f(r1,v2, t)] ≤ 0

(2.4.26)
for any density distribution f . Thanks to (2.4.19) we obtain (for the abbreviations see above
(2.4.22))

J =
∫
σdΩdv1dv2 g log

f(1)f(2)

f(1′)f(2′)
(f(1′)f(2′) − f(1)f(2)). (2.4.27)

Let λ = f(1)f(2)/f(1′)f(2′). Then, this can further be rewritten as

J =
∫
σdΩdv1dv2 g (1− λ) log λ f(1′)f(2′). (2.4.28)

Since (1− λ) log λ ≤ 0,67 we are done.
Thus, we have demonstrated that (2.4.24) implies that λ = 1. That is, log f must be

an additive invariant of the collision. This concludes the demonstration of (2.4.25) (with the
aid of 2.4.8). That is, for a spatially uniform case, the Maxwell distribution (→2.3.2) is
the unique invariant solution of the (spatially uniform) Boltzmann equation.
Remark. Often the Boltzmann equation is approximated with finitely many choices of ve-
locity values instead of continuous velocities. If the Galileian invariance is violated as such
cases, the equation is not generally compatible with thermodynamics. See Cercignani.68

2.4.10 H-theorem
We know that if there is no external force, the Maxwell distribution is the unique stationary
solution of the Boltzmann equation as can be seen from 2.4.9). Boltzmann’s original aim was
to show not only that this is the unique stationary state but also that any initial condition
would reach this state eventually.

To this end Boltzmann devised a Lyapunov function called H-function

H =
∫
f log fdrdv. (2.4.29)

Let us study its time evolution

dH

dt
=
∫

(1 + log f)
∂f

∂t
drdv =

∫
log f

∂f

∂t
drdv. (2.4.30)

The streaming term (→2.4.4) does not change H(
dH

dt

)
str

=
∫

log f

(
∂f

∂t

)
str

drdv, (2.4.31)

= −
∫

log f v
∂

∂r
fdrdv = 0. (2.4.32)

67f(λ) = (1− λ) log λ takes the unique maximum 0 at λ = 1; it is convex upward.
68C. Cercignani, “Temperature, entropy, and kinetic theory,” J. Stat. Phys. 87, 1097-1109 (1997).
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The collision term does change H as we have just seen in (2.4.26)(
dH

dt

)
col

=
∫
σdΩdv1dv2 g log f(1)

[
f(1′)f(2′) − f(1)f(2)

]
≤ 0. (2.4.33)

That is,
dH

dt
≤ 0. (2.4.34)

This vanishes if and only if log f is a sum of additive invariant as we have already seen in
2.4.9. That is, H is a Lyapunov function whose unique minimum is given by the Maxwell
distribution.

Thus, Boltzmann concluded that his equation describes the irreversible process whose
unique destination is the equilibrium state (for a mathematical statement see 2.4.13).

2.4.11 Boltzmann reaches S ∝ log(Komplexionszahl).
Thus, Boltzmann thought he demonstrated the second law purely mechanically. Almost im-
mediately, his colleague Loschmidt69 pointed out that without approximation time-reversal
symmetric mechanics could not conclude such an irreversible equation.

Boltzmann realized the probabilistic element had been smuggled into his argument70

and wrote a fully statistical paper:71 basically, he asserts that the mechanical content of the
second law was that the macroscopic state evolves to the direction that increases the number
of Komplexions = microscopic states compatible with the macroscopic state.

The most important conclusion is that the equilibrium state is the most probable macro-
scopic state allowed to the system, so it can be studied without explicit dynamical considera-
tion. This way, the study of nonequilibrium states receded from the main stage of statistical
mechanics.
Exercise 1. I wish you to trace Boltzmann’s logic, answering the following questions.

Suppose there are N gas particles. Let wn be the number of particles with the energy
between (n− 1)ε and nε (ε > 0).
(1) Obtain the number of Komplexions (ignoring the energy constraint), and (with the aid
of Stirling’s formula) show that its maximization condition is equivalent to the minimization
condition of

M =
∑

wi logwi. (2.4.35)

(2) Write wi = w(x)ε and simultaneously take the n → ∞ and ε → 0 limits, maintaining
x = nε finite. Show that minimizing M is equivalent to minimizing

M ′ =
∫
w(x) logw(x)dx. (2.4.36)

(3) We should not ignore the constraints that the total number of particles is N and the total
energy is K. Under this condition, derive Maxwell’s distribution in 3-space by minimizing
M ′. [In the original paper Boltzmann first reduced the problem to a single particle problem,

69About him and his relation to Boltzmann see the book by Lindley.
70This will be discussed when we rederive the Boltzmann equation from the BBGKY hierarchy (→2.7.10).
71“Über der Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der

Warscheinlichkeitsrechnung respective den Sätzen über des Wärmegleichgewicht,” Wiener Ber. 76, 373-
435 (1877) [On the relation between the second principle of mechanical heat theory and probability theory
with respect to theorems of thermal equilibrium].
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and wrote w(x) as f(u, v, w), where u, v, w are three components of the velocity. Also
Boltzmann understands w to be the probability density distribution function.]
(4) Now, Boltzmann realized that M ′ gives the entropy of the ideal gas. Show this.
Based on this finding, he proposed

S ∝ log (Number of Komplexions). (2.4.37)

At the end of this same paper he says, although the relation could be demonstrated rigor-
ously (sic) with the aid of kinetic gas theory, he cannot do so for other phases. However, he
also claims that the relation is likely. ut

2.4.12 What is statistical mechanics?: Fundamental problem
We have just witnessed the moment of the birth of statistical mechanics in 2.4.11.

Since the fundamental assumption is that any macroscopic system is governed by me-
chanics, in principle, we only need mechanics to understand its state. The essence of statis-
tical mechanics is to get rid of mechanic with the aid of a statistical principle. In modern
terms, what Boltzmann found is: the probability of a state with a given energy is propor-
tional to the number of microscopic states. That is, all the microscopic states with the same
energy have the same statistical weight.

In this sense nonequilibrium statistical mechanics general enough to be a counterpart of
equilibrium statistical mechanics does not yet exist. The fundamental problem of nonequi-
librium statistical mechanics is to find a statistical principle as general as possible to remove
explicit mechanical considerations.

Equilibrium thermodynamics is the key to establish a statistical principle as we see in
Gibbs’s work (→2.1.5) or in Einstein’s work (→2.5.3). This tells us that if one wishes
to establish nonequilibrium statistical mechanics, one must first establish a nonequilibrium
phenomenology. If there is no general phenomenological framework, there is no general
statistical framework. Therefore, the only thing those who are interested in extending the
realm of statistical mechanic must do at present is to try to find such a phenomenological
framework.72

2.4.13 What did actually Boltzmann demonstrate?
In the course of replying to Loschmitd’s criticism Boltzmann realized that the choice of the
initial condition is very crucial. Irreversibility is not derived but produced or smuggled into
the result through the statistical assumption that the correlation produced by collision is
always ignored. This point will be much clearer to the reader later (→2.7.10).

Logically speaking, even without such extra assumption, since we can justify the Boltz-
mann equation only for a very short time (→2.4.7), we are not entitled to discuss any long
time asymptotic behavior with the aid of the Boltzmann equation. Therefore, demonstration
of irreversibility from mechanics is out of question. Only when we accept the Boltzmann
equation as a model of the gas dynamics can we discuss the irreversibility of gases in terms
of the Boltzmann equation.

72Certainly, the lecturer has been trying this; Y Oono and M Paniconi, “Steady state thermodynamics,”
Prog. Theor. Phys. Suppl. 130, 29-44 (1998). See also T. Hatano and S. Sasa, “Steady-State Thermody-
namics of Langevin Systems,” Phys. Rev. Lett. 86, 346 (2001). At least the generalized second law seems
experimentally verified very recently, E. Trepagnier, C. Jarzynski, F. Ritort, G. E. Crooks, C. Bustamante,
and J. Liphardt, “Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality,” Proc. Nat.
Acad. Sci., 101, 15038 (2004).
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Even in this case the H-theorem can imply something meaningful only when the Boltz-
mann equation has a solution. The initial value problem of the Boltzmann equation is so far
proved to be solvable only when the initial distribution is close to the equilibrium distribu-
tion. Therefore, even under the assumption that Boltzmann equation can describe a system,
we can say that the irreversible behavior is demonstrated only for near equilibrium states.

2.5 Einstein’s Equilibrium Statistical Mechanics

It is well known that in 1902-4 Einstein wrote three papers to found thermodynamics on
mechanics.73 These are virtually his first papers. From the physicist’s point of view his
approach, albeit not polished, may be more appealing than Gibbs’s approach. As the reader
will realize, the current standard way of teaching statistical mechanics (as can be seen in
Kubo’s problem book) is closer to Einstein’s logic (although without one very crucial physics
as will be seen) than Gibbs’ supposedly orthodox framework.

Let us see an elementary introduction to equilibrium statistical mechanics roughly fol-
lowing Einstein.74

2.5.1 Einstein’s statistical mechanics: microcanonical ensemble as starting point
Einstein’s starting point is the principle of equal probability on the energy shell. In the first
paper Einstein ‘derives’ this with the aid of Liouville’s theorem (→2.7.2). In the second
paper Einstein ‘derives’ this from the generalized Liouville equation (→3.5.1) and the con-
dition that only energy is the constant of motion.75 His interpretation of probability is the
relative sojourn time: the probability of a system being in a phase volume dΓ ∝ (time spent
in the phase volume). That is, he is requiring that the phase space average is identical to
the time average (this is the ergodic hypothesis due to Boltzmann).76

In short, Einstein assumes that the microscopic states (corresponding to each phase
point) of an isolated system in equilibrium are all equally probable. Such a set of states with
uniform probability is called a microcanonical ensemble.77

2.5.2 Introduction of canonical ensemble = canonical measure
To study a system at constant temperature, Einstein regards the total system = system +
thermostat as an isolated system in equilibrium.

Let H be the system Hamiltonian and HT the Hamiltonian of the thermostat (= heat
bath). Since we consider a macroscopic system, we ignore the interaction energy.78 Let

73Ann. Phys. 9 417 (1902); “Eine Theorie der Grundlagen der Thermodynamik,” 11, 170 (1903) and 14,
354 (1904); One of its culminations is his Brownian motion paper →3.1.3.

74This is the closest to the best introduction, although the ergodicity requirement must be weakened
considerably (→1.5.10).

75As to the impossibility of deriving the principle from mechanics, see 2.6.2.
76Ergodicity is neither necessary nor sufficient condition for statistical mechanics to hold. See 1.5.9∼.

Also we now know that to interpret macroscopic observables as time averaged quantities is not a good way
of understanding equilibrium statistical mechanics.

77It is much better to say that the set of microscopic states is equipped with a microcanonical measure
(or at least microcanonical distribution).

78This is allowed if the molecular interaction potentials decays faster than 1/rd.
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Ω(E)dE be the number of microstates for the system with energy in the energy shell E ∼
E + dE, and ΩT (E) the analogous quantity for the thermostat. Then, the the probability
p(E) of the system energy E to be in the energy shell79 is proportional to

W (E)WT (E0 − E) = W (E) exp logWT (E0 − E), (2.5.1)

where E0 is the total energy of the system + heat bath. To evaluate the second factor we
Taylor-expand the exponent as

logWT (E0 − E) = logWT (T0)− E
d

dE0

logWT (E0) + · · · . (2.5.2)

Thermodynamically, we know that E0 is proportional to the size of the thermostat, and that
logWT is bounded by at most N logN ,80 so the higher order derivatives are much smaller
than order unity. Therefore, we may write

p(E) ∝ W (E)e−βE, (2.5.3)

where β = d logWT (E0)/dE0 is a constant determined by the thermostat. We can identify
it with 1/Θ of Gibbs or 1/kBT , if we refer to the ideal gas. This is the canonical ensemble
defined by Gibbs (→2.1.2).81

Exercise 1. Let us consider a system which is enclosed in a diathermal freely deformable
membrane and which is placed in a large reservoir system. The whole system is isolated in
a rigid container. Find the simultaneous distribution function of the energy and the volume
of the system, mimicking Einstein. ut

2.5.3 Relation between thermodynamics and statistical mechanics
An interesting point is beyond 2.5.2. Gibbs ‘did not derived’ the relation between ther-
modynamics and statistical mechanics; he ‘demonstrated’ a parallelism (→2.1.5): ‘A’ =
−kBT logZ was shown to be consistent with the Helmholtz free energy A. In contrast, Ein-
stein ‘derived’ A = −kBT logZ.

To make a contact between statistical mechanics and thermodynamics we need two
ingredients. One is the identification of internal energy with the expectation value of the
system energy. This is straightforward and not at all controversial. Since thermodynamics
discusses heat, we must have a certain interpretation of heat or related quantities in terms
of mechanical quantities (in terms of microscopic quantities); the reader can equivalently say
that we need a microscopic interpretation of entropy.

In thermodynamics heat cannot be defined without the concept of adiabatic walls.
Therefore, Einstein proposes a mechanical interpretation of adiabaticity.

Suppose the system Hamiltonian contains parameters {λ} that can be controlled exter-
nally (these correspond to ai of Gibbs in 2.1.3). The total change of energy may be written
as

dE =
∑
i

∂E

∂λi
dλi +

∑
i

∂E

∂yi
dyi, (2.5.4)

79More precisely, p(E)dE is the probability we discuss.
80If we properly take into account the indistinguishability of identical particles, this is bounded by N .
81However, Gibbs noted (on p183) that a small portion of a large microcanonical ensemble is canonical;

It is likely that Gibbs knew everything Einstein wrote but refrained from writing ‘theoretical physics-style
hand-waving arguments.’
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where yi are the canonical coordinates. The first sum is the change of energy when the control
parameters are varied, so this can be done adiabatically. Therefore, Einstein concludes that

dQ ≡
∑
i

∂E

∂yi
dyi = 0 (2.5.5)

is the adiabatic condition.82 Then, this dQ must be the heat, and the first term in (2.5.4)
must be the work.83

2.5.4 Derivation of A = −kBT log Z
Let P = ec−βE be the canonical distribution (→2.5.2), where c is determined by the nor-
malization condition. Let us vary the temperature (i.e., β) and {λ}:

0 = δ
∫
Pdy =

∫
dy

[
δc− Eδβ − β ∂E

∂λi
δλi

]
P. (2.5.6)

Using the microscopic expression of heat in (2.5.5), we may rewrite this as (we will write
〈Q〉 again as Q)

βdQ = −dc+ d(β〈E〉). (2.5.7)

We identify 〈E〉 with the internal energy E, so (let us ignore the constant kB) according to
thermodynamics

dS = βdQ = d
(
E − Tc
T

)
(2.5.8)

or dc = d(A/T ). Integrating this and ignoring the arbitrary integration constant,84 we arrive
at

A = −kBT logZ. (2.5.9)

2.5.5 How satisfactory is Einstein’s derivation of equilibrium statistical mechan-
ics?
The crucial point of Einstein’s approach 2.5.4 is his mechanical interpretation of adiabatic-
ity in 2.5.3. Certainly, the wall satisfying Einstein’s requirement is adiabatic. However,
as can be seen from its consequent definition of mechanical work, the characterization of
adiabaticity is still excessively microscopic. As we will see later (→2.7.19), the conclusion
derived from this interpretation is still contradictory to thermodynamics.

We will have to conclude (→2.7.18) that there is still a grave incompleteness in our
understanding of the “kind of motion we call heat.”

82We should regard this equivalence as the fundamental identification. Notice the vital importance of the
concept of adiabatic condition.

83The splitting (2.5.4) is actually not required in Einstein’s derivation of A = −kBT logZ. What we need
is that inside (2.5.6) δE is the work part of the total energy change. No explicit form of heat as (2.5.5) is
required.

84This can be set zero by appropriately choosing the origin of energy.
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2.5.6 What can we learn from history?
(1) Initially, they wished to understand thermodynamics in terms of mechanics. However,
Boltzmann clearly realized that no truly dynamical study was needed to understand thermo-
dynamic equilibrium (→2.4.2). This line was perfected by Einstein and Gibbs as we have
seen in 2.1.4 and up to 2.5.4 of this section.
(2) As is clear from the preface of Gibbs’ book, he thought mechanics was much better
established than thermodynamics that is “an approximate empirical result.” However, what
actually Gibbs did is to find a system compatible with mechanics and thermodynamics si-
multaneously. It is clear that even though Gibbs claimed mechanics was more fundamental
(→2.1.1), without thermodynamics he could not build his statistical theory.

This is clearer from Einstein’s derivation of equilibrium statistical mechanics with the
aid of thermodynamics (→2.5.3, 2.5.4). The subsequent history eloquently tells us that
mechanics was less reliable than thermodynamics (cf. 2.7.15). Thus, it is fair to say that
although the founding fathers of statistical thermodynamics wished to construct the whole
theory exclusively on mechanics, they failed (cf. 2.4.2). This failure was actually an impetus
for Boltzmann’s statistical mechanics.
(3) The success of equilibrium statistical mechanics that is virtually independent of mechan-
ics left many basic questions untouched or at best incompletely answered. For example,
no one has been successful in computing thermodynamic entropy change due to irreversible
processes using mechanics except for dilute gases with the aid of the Boltzmann equation
(→2.4.10) (if we could trust it →2.4.7). We do not have a good microscopic expression for
entropy; Einstein’s expression in 2.5.1 is hardly usable.

There are many physicists who confess that they have really understood entropy after
learning statistical mechanics. However, as we have seen, we still do not have a good under-
standing of entropy. Only those who do not carefully think about entropy may be able to
feel that statistical mechanics really makes us understand entropy.

2.6 Equilibrium Statistical Thermodynamics — Brief

Summary

This section summarizes important rudiments of equilibrium statistical thermodynamics as
we now know it. However, the reader should not regard this section as a substitute for an
introduction to the topic. The emphasis here is on the topics more or less directly related to
fluctuations and dynamics. As already seen, to understand statistical mechanics, the reader
needs good understanding of thermodynamics. Recommended references are repeated here.

Recommended thermodynamics references:85

H B Callen, Thermodynamics (Wiley, 1960)86

R Kubo, Thermodynamics (North-Holland, original 1951).

85In Japanese, H. Tasaki, Thermodynamics (Baifu-kan, 2002) is recommended; better than the books
mentioned here.

86Do NOT confuse this with H B Callen, Thermodynamics and an introduction to thermostatistics (Wiley,
1985).
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Recommended statistical mechanics references:
R Kubo, Statistical Mechanics (North-Holland, original 1951),
Landau-Lifshitz, Statistical Mechanics (Pergamon),
M Toda, R Kubo, and N Saito, Statistical Physics I (Springer Series in Solid-State Sci-

ence 30, 1985)87

2.6.1 Fundamental postulate of statistical description
The assumption that mechanical description is the most detailed description of any system
is the most fundamental assumption of statistical mechanics.
Discussion 1. If one can demonstrate that the assumption is true, then it is no more
an assumption. Try to demonstrate that the above assumption is actually true. (Can the
reader demonstrate that a piece of chalk is governed by mechanics, say, quantum mechan-
ics?) Clearly recognize its metaphysical nature (= beyond any empirical demonstration).ut

2.6.2 Principle of equal probability
If we could derive the fundamental relation between statistical mechanics and thermody-
namics stated at the beginning of 2.1 purely in terms of mechanics, the microscopic world
view could be said to be complete. However, this dream has never come true; recall that
what Gibbs really showed was only that statistical mechanics is apparently consistent with
thermodynamics (→2.1.4, 2.1.5). Actually, this dream cannot in principle come true, be-
cause the equation of motion is not enough to describe the mechanical motion of any system;
we need an initial condition that is not governed by the equation of motion. Recall that
Boltzmann himself recognized the importance of initial conditions in ‘demonstrating’ the
second law (→2.4.2, 2.7.10).

Thus, we need an extra assumption that is independent of mechanics laws (cf., 2.4.12).
Usually, it is the principle of equal probability for an isolated mechanical system:

On a constant energy surface H = E, the a priori probability distribution is
uniform with respect to the Liouville measure, restricted to H = E.

Here, H is the system Hamiltonian, and the Liouville measure means the phase volume
(→2.7.2). This principle means that the equilibrium probability of a classical state with
energy E is proportional to

δ(H − E)dqdp. (2.6.1)

Here, dqdp is, as usual in these notes, a short-hand notation of
∏
i dqidpi, where i runs over

all the degrees of freedom of the system (canonical coordinate pairs).
Exercise 1. Let dσ be the surface element of the constant energy surface. Then, demonstrate
that

µE(dqdp) ∝ dσ

|gradH|
, (2.6.2)

where µE is the uniform probability measure (i.e., the microcanonical measure; for a measure
in general see Appendix to Chapter 1) on the constant energy surface, and grad is taken
with respect to the phase coordinates. ut

If a system is not isolated but in contact with a heat bath at constant temperature T ,

87Not Statistical Physics II.
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the Gibbs postulate is that the equilibrium probability for the system to be in the phase
volume element dqdp is given by88

1

ZN !
e−βHdqdp, (2.6.3)

where β ≡ 1/kBT and the canonical partition function Z is defined by

Z =
1

N !

∫
e−βHdΓ, (2.6.4)

with dΓ = dqdp being the volume element of the phase space.
The relation between the canonical and the microcanonical ensembles is discussed in

2.5.2, but rigorizing it, even if possible, is not trivial, so it is not a bad attitude to accept
this as another principle.89

We must clearly recognize that these postulates transcend mechanics (any mechanics);
they dictate the way we observe Nature and even transcend physics.90

However, some authors, especially authors of popular statistical mechanics textbooks
(e.g., Huang), tend to assert, explicitly or implicitly, that ‘from a purely logical point of view
there is no room for an independent postulate.’ For the reader of this notes, it should be clear
that this is a statement due to a fundamental misunderstanding of nature of mechanics.
Remark. However, there is a serious attempt to derive the canonical distribution from
quantum mechanics by Tasaki.91ut

2.6.3 Postulate about expression of free energy.
Usually, we say the principle of equal probability (→2.6.2) is the fundamental postulate,
and tend to regard it is the only postulate. However, the purpose of statistical mechanics is
to study macroscopic properties of matter in terms of microscopic states, so we must spec-
ify how to interpret expectation values obtained by statistical mechanics. First of all, the
identification of the expectation value of energy with the internal energy in thermodynamics
must be required. This is, so to speak, the relation corresponding to the first law of thermo-
dynamics.92

We need a relation between statistical mechanics and the aspect of thermodynamics
related to the second law as well. As we have learned in 2.5.3, Einstein obtained this

88As was noted in 2.5.2 this can be derived from the microcanonical ensemble in an asymptotic sense.
Cf., the contraction principle 1.6.11.

89There is an approach from the so-called zeroth law of thermodynamics (i.e., the transitivity of equilibrium
relations): A Frigeiro, V Gorini and M Verri, “The zeroth law of thermodynamics,” Physica 137A 573-602
(1986). See 2.7.19.

90If we accept quantum mechanics, the uncertainty principle seems to suggest that δpδq ≥ h̄ is not
compatible with the states confined on a Lebesgue measure zero set (i.e., not compatible with a measure
not absolutely continuous with respect to the Riemann volume of the phase space). Thus, the absolute
continuity of the invariant measure with respect to the Riemann volume seems to be a consequence of
quantum mechanics. This sounds like a very appealing proposal, but we must recall the meaning of the
uncertainty principle: if p and q are measured for a given state of a particle, the product of the variance of
observed p and that of q cannot be smaller than some positive number. This does not mean anything about
the nature of the support of the distribution of p; it could be an everywhere dense measure zero set.

91H Tasaki, “From quantum dynamics to the canonical distribution: general picture and a rigorous exam-
ple,” Phys. Rev. Lett. 80, 1373-1376 (1998).

92In the accompanying equilibrium lecture notes (section 1.2), it is clearly stated that we need two prin-
ciples: interpretation and statistical principles to establish statistical mechanics.
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relation through microscopic identification of heat. This is based on an interpretation of
adiabatic processes. This interpretation is not without problems (→2.7.18) and the sub-
sequent derivation is not easily regorizable, either. Therefore, mathematically, it is safe to
postulate the outcome: the Helmholtz free energy in thermodynamics is written in terms of
the canonical partition function as

A = −kBT logZ. (2.6.5)

2.6.4 Quantum equilibrium statistical mechanics
If we interpret that the internal energy is the average of the eigenvalues of the system
Hamiltonian, we readily arrive at a quantum counterpart of (2.6.4):

Z = Tre−βH . (2.6.6)

This is, strictly speaking, a postulate (with (2.6.5)).
To obtain the relation between this and (2.6.4), perhaps the most elegant method is to

use the path integral expression of (2.6.6) (see Feynman p77). A more elementary method
may be as in Landau-Lifshitz. The correction should start with h̄2, because h̄ always appears
with i in quantum mechanics.
Exercise 1. A ≥ Aclassic? (Feynman and Landau give opposite inequalities!) ut

2.6.5 Laplace transformation vs. Legendre transformation
We know that the Gibbs free energy G is obtained from A as93

G = inf
V

(A+ pV ) = − sup
V

((−p)V − A). (2.6.7)

This is called Legendre transformation.94 Recall that A is the maximum work we can gain
from the system (or the minimum work we need to make a desired change in the system)
under constant temperature.95 Now, G is the maximum work we can gain from the system
under constant temperature and pressure.

The Gibbs free energy is given by the pressure ensemble:

G = −kBT log γ(p), (2.6.8)

where

γ(p) =
∫
Z(V )e(−p)V/kBTdV. (2.6.9)

Here, Z(V ) is the canonical partition function with fixed volume V . Thus, we see that in
statistical thermodynamics Legendre transformation corresponds to Laplace transformation.

Let us see why there is such a relation: (2.6.9) can be written as

γ(p) =
∫
dV e(−pV−A)/kBT . (2.6.10)

93sup implies supremum = the smallest value that is not smaller than any values allowed to the set; inf
implies infimum = the largest value that is not larger than any values allowed to the set. The open interval
(a, b) does not have any maximum or minimum, but its infimum is a and supremum is b.

94Large deviation theorists call it the Legendre-Fenchel transformation.
95Never forget this constant temperature condition. The same should be true for ∆G; never forget the

constancy of T and p.
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The integrand is dominated by its maximum value, so we may approximate this as

γ(p) ' esupV (−pV−A)/kBT = e− infV (pV+A)/kBT . (2.6.11)

Taking the logarithm of this formula, we obtain (2.6.7).

2.6.6 Laplace-Legendre correspondence: summary and practice
The correspondence between Laplace transformation in statistical mechanics and Legendre
transformation in thermodynamics is quite a general relation that may be summarized in
the following commutative diagram:

J
J=−kBT logQ(x)←→ Q(x)yLg

yLp

K = infx(J + xX)
K=−kBT logR(X)←→ R(X) =

∫
dxQ(x)e−xX/kBT

Here, Lg implies the Legendre transformation, and Lp implies the Laplace transformation.
A practical way to find an appropriate partition function for a given thermodynamic

potential may be as follows: Let us take G as an example. We know A = G − pV and
Z = e−βA, so Z(V ) = e−β(G−pV ), where we clearly recognize that Z is under a fixed V .
Therefore, formally, Z(V )e−βpV = e−βG, but this must be the result of the maximum term
approximation of the integral γ(p) ≡

∫
dV Z(V )e−βpV . We have obtained (2.6.9).

Exercise 1. If the system is connected not only to a heat bath but to a chemostat, the
appropriate thermodynamic potential is obtained by the following Legendre transformation

q = inf
N

(G− µN) = − sup
N

(µN −G). (2.6.12)

(1) What is the physical (thermodynamic) meaning of q?
(2) Construct an appropriate partition function (which is called the grand (canonical) parti-
tion function). ut
Exercise 2. We wish to study a magnet under constant magnetic field. What is a conve-
nient partition function to study the system statistical mechanically? ut
Exercise 3. The Helmholtz free energy A is obtained by a Legendre transformation from
the internal energy E. How can one understand the relation between A and the canonical
partition function with the aid of the above commutative diagram? ut
Exercise 4. Let us consider an ideal rubber band96 whose number of microscopic states is
given by N(L) when its length is L. The first law may be written as dE = TdS + FdL,
where F is the tensile force. Under a constant force we wish to obtain the average length of
the rubber band. Construct the most convenient partition function. ut

We will learn that large deviation theory in probability theory is a closely related topic
(→2.5). If the reader knows convex analysis, she would immediately realize that statistical
mechanics is an elementary application of large deviation theory.

96Here, ‘ideal’ means that the total energy of the band does not depend on its length (just as the energy
of an ideal gas does not depend on its volume). We can imagine an ideal rubber band as a very flexible
polymer chain. Can the reader demonstrate that under an adiabatic condition relaxing the band decreases
its temperature?
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2.6.7 Ensemble equivalence is always correct in the thermodynamic limit
There are numerous ensembles, and it is practically important to choose the most conve-
nient one when we study a particular system. However, the choice is strictly a matter of
convenience and the obtained thermodynamics is independent of the choice of the ensemble.
This is called the equivalence of ensembles.

The precise meaning of the equivalence of ensembles is:
In the thermodynamic limit (or for sufficiently large N) any thermodynamic observable is
obtained correctly (up to logN correction to the extensive quantities; logN/N correction to
the intensive quantities) irrespective of the ensemble used to compute it.

For a demonstration and details read 1.8.16-1.8.18 in IESM.

2.6.8 Orthodicity
Gibbs realized (cf. 2.1.1) that the ensembles that are compatible with thermodynamics are
not unique. We learn in elementary statistical mechanics that in the thermodynamic limit
microcanonical, canonical, and grand canonical ensembles all give the same thermodynamics.
Thus, their weighted averages are also compatible with thermodynamics: there are infinitely
many ensembles that are compatible with thermodynamics.

Boltzmann posed the question: when can an ensemble = stationary probability distri-
bution on the phase space (= invariant measure, we will come back to this later →2.7.4)
be interpreted as a macroscopic state of a system governed by equilibrium thermodynamics?
This problem is called the orthodicity problem, because Boltzmann called such ensembles
orthodic ensembles.

We do not know what characterizes ‘orthodicity’; the problem is widely open.97

97The problem is stressed by G Gallavotti, Statistical Mechanics, a short treatise (Springer, 1999). ‘Com-
plete’ understanding of this question could reveal itself equivalent to the dynamical foundation of thermody-
namics: the very problem that one is hoping to circumvent by deciding to only “build a mechanical model
of thermodynamics, i.e., an orthodic ensemble.”
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Appendix: Convex Analysis

The standard textbook is:
R. T. Rockafeller, Convex Analysis (Princeton UP 1970)98

2.A.1 Convex set and convex hull
A subset C of Rn99 is a convex set, if

x ∈ C, y ∈ C ⇒ (1− λ)x+ λy ∈ C (2.A.1)

for any λ ∈ [0, 1].
If A,B ⊂ Rn are convex, then A ∩B is convex.
The convex hull of a set A ⊂ Rn is the smallest convex set containing A, and is denoted

by convA.
Let x1, · · · , xn ∈ Rn. The convex hull of the finite set {x1, · · · , xn} is called the convex

combination of the points in the set, and may be written as {λ1x1+· · ·+λnxn |λ1+· · ·+λn =
1, λi ≥ 0}.
Exercise 1. Let C be a convex set. Then, the convex combination of any n points in C is
contained in C. The converse also holds.ut
Exercise 2. convA contains all the convex combination of the elements of A. ut
Exercise 3. If A and B are convex, then {x+ y |x ∈ A, y ∈ B} is convex. ut

2.A.2 Supporting hyperplane and supporting half space
Let C be an open convex set in Rn.100 If there is an affine set M such that C ∩M = ∅, then
there is a hyperplane H containing M such that C is contained on one side of H. This is
the Hahn-Banach theorem.

Let C be a closed convex set. Then, it is a common set of all the closed half spaces
containing C.101 This should be intuitively obvious.

A hyperplane H is called a supporting hyperplane of a convex set C, if the open kernel
of C is contained in one side of this hyperplane and H ∩ C 6= ∅ (that is, if H is ‘touching
C’). The closed half space defined by a supporting hyperplane and containing C is called a
supporting half space.

2.A.3 Epigraph and convex function
Let f : S(⊂ Rn)→ [−∞,+∞].102 The epigraph of f denoted by epif is defined as

epif = {(x, µ) |x ∈ S, µ ≥ f(x)}. (2.A.2)

A function on S is a convex function, if epif is a convex set. A convex function f on S is
regarded as a convex function on Rn by setting f(x) = +∞ for x 6∈ S. Therefore, here,
following Rockafeller, we suppress the domain of a convex function.

98reprinted as a book in the series Princeton Landmarks in Mathematics in 1997.
99This can be any affine space. An affine space is a space containing the line passing through any pair of

the points in it.
100To assert this in the general affine space, the openness of the set must be more carefully defined. See

Rockafeller p44.
101Rockafeller, Theorem 11.5.
102Here, ±∞ are allowed as the values of f .

86



Exercise 1. Let f1 and f2 be convex. Then f1 + f2 is convex. ut
Exercise 2. Let f : S → R be convex and ϕ : R→ R be a non-decreasing function. Then,
ϕ ◦ f is convex. ut.

2.A.4 Bottom.103 Let F be a subset of Rn+1, and S be its projection to Rn. The bottom
of F over S denoted by botF is a function on S defined as

botxF = botF (x) = inf{µ | (x, µ) ∈ F, x ∈ S} (2.A.3)

If f is a convex function, then
f(x) = botx(epif). (2.A.4)

The convex hull of a function g denoted by convg is a function defined by

convg(x) = botx(conv(epig)). (2.A.5)

Exercise 1. Let {fi} be a family of convex functions. Then, f = supi fi is a convex function.
ut

2.A.5 Convex function is continuous
Let us consider a typical case (proper convex function): f is a proper convex function, if it
is a finite convex function on an open domain C that is convex. Then, f is continuous on
C.104

To demonstrate this, first we show that f is lower semicontinuous: f is lower semicon-
tinuous at x, if lim infy→x f(y) = f(x).

The closure of a function f , denoted as clf , is defined by

clf(x) = botx([epif ]), (2.A.6)

where [ ] denotes the closure of the set. It is easy to see that clf is lower semicontinuous.
If f is as assumed above (proper convex function), then on C clf = f , because epif is

a closed set. Therefore, f is lower semicontinuous.105

The remaining thing is to demonstrate that for any α {x | f(x) < α} is an open set.
Then, f is upper semicontinuous, so f must be continuous. To show the closedness of
{x | f(x) ≥ α} we note that the common set of epif and {(x, µ) |µ ≥ α} is a closed set.
Therefore, its complement must be open.
Remark. Actually, a convex function is Lipschitz continuous on a closed bounded set: f
is Lipschitz continuous on any closed bounded subset in the domain of f .106 Notice that
Lipschitzian implies uniform continuity as well. ut.

103This terminology is not generally used, but is convenient.
104For a precise statement see Rockafeller Theorem 10.1.
105If you wish to have a formal proof, see Rockafeller Theorem 7.1.
106Rockafeller Theorem 10.4; The basic idea of the proof is as follows: Let S be a closed set in the open

kernel of the domain of f . Then, we can find ε > 0 such that for any ε ball B S +B is again in the domain.
Let x, y ∈ S and take z on the small extension of the segment connecting x to y: z = y + ε(y − x)/|y − x|
which is in some S +B. Since f is convex on this S +B, we have

f(y) ≤ f(x) + |y − x|f(z)− f(x)
ε+ |y − x|

.

This inequality is valid for any x and y in S. Since f is bounded on S + B, this implies the Lipschitz
continuity of f on S.
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2.A.6 Pointwise convergence preserves convexity
Let {fi} be a sequence of finite convex functions on a relative open convex set C, and is
pointwise convergent on a dense subset C ′. Then, the sequence converges pointwisely on C
to a convex function.107

We first note that on any closed subset S of C, the set {fi} is equi-Lipschitzian:108 that
is, we can find α > 0 such that

|fi(x)− fi(y)| < α|x− y| (2.A.7)

for any x, y ∈ S. This follows from f ≡ supi fi majorizing all the functions is convex, and
g(x) = botx{conv(∪epifi)} minorizing all the functions is also convex.

Now, we make an ε/3α net N of S (that is, any point of S is within ε/3α of N). Then,
thanks to the equi-Lipschitzian nature of {fi}, for any x ∈ S and z ∈ C ′ within ε/3α of x

|fi(x)−fj(x)| < |fi(x)−fi(z)|+|fi(z)−fj(z)|+|fj(z)−fj(x)| < 2ε/3+|fi(z)−fj(z)|. (2.A.8)

By assumption we may find k ∈ N such that |fi(z) − fj(z)| < ε/3 for i, j > k. Therefore,
for each x {fi} is a Cauchy sequence, so {fi} converges on C. Clearly, this convergence is
uniform on S. The convexity inequality is preserved, so the limit is convex.
Remark. It should be clear from this that if {fi} is a sequence of convex functions majorized
by a bounded function on a relatively open convex set C, then we may choose a uniformly
converging subsequence to a convex function on closed bounded subsets of C.109

2.A.7 One-sided differentiability
The one-sided directional derivative of f at x in the direction of y is defined as

f ′(x; y) = lim
λ→0+

f(x+ λy)− f(x)

λ
, (2.A.9)

if it exists. The two-sided directional derivative exists if and only if

f ′(x; y) = −f ′(x;−y). (2.A.10)

Notice that if f is differentiable, then110

f ′(x; y) = ∇f(x) · y. (2.A.11)

For a convex function, the one-sided derivative exists in its domain everywhere, and

−f ′(x;−y) ≤ f ′(x; y) (2.A.12)

for all y.111

To show the existence everywhere, we first note that the ratio defining the directional
derivative is a convex function of y. Let h(y) = f(x+ y)− f(x). Then, we may write

f(x+ λy)− f(x)

λ
= λ−1h(λy) = boty(λ

−1 epih). (2.A.13)

107Rockafeller Theorem 10.8.
108Rockafeller Theorem10.6.
109Rockafeller Theorem 10.9.
110We do not discuss subgradient, so ∇ always implies the usual gradient.
111Rockafeller Theorem 23.1.
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Since epih contains the origin, λ−1epih112 is an increasing set as λ → 0. This implies that
λ−1h(λy) is monotone decreasing for any y as λ → 0. This is obviously bounded from
below,113 so the directional derivative exists everywhere for any y.

Notice that f ′(x; y) is a convex function of y, and by definition f ′(x; 0) = 0. Therefore,

1

2
f ′(x;−y) +

1

2
f ′(x; y) ≥ 0. (2.A.14)

This is (2.A.12).
Exercise 1. Let f be a bounded convex function on a closed interval. Let us write its right
derivative as f ′+ and the left derivative f ′−.114 Then, for any interior point of the interval
z1 < x < z2, we have115

f ′+(z1) ≤ f ′−(x) ≤ f ′+(x) ≤ f ′−(z2). (2.A.15)

Moreover,

lim
z↘x

f ′+(z) = f ′+(x), lim
z↗x

f ′+(z) = f ′−(x), (2.A.16)

lim
z↘x

f ′−(z) = f ′+(x), lim
z↗x

f ′−(z) = f ′−(x). (2.A.17)

ut

2.A.8 Differentiability except on null set
The fundamental theorem of the gradient of a convex function is as follows:116

Let f be a bounded convex function on a bounded closed set C (i.e., a proper convex func-
tion). Then, f is differentiable on the set C ′ ⊂ C with C \C ′ being a null set. Furthermore,
∇f is continuous on C ′.

The basic assertion is that for any vector y the directional derivative exists on C ′′ ⊂ C
with C\C ′′ being a null set.117 In essence all the assertions are reduced to the one-dimensional
case along the line in the y direction.

First, note that when f ′(x; y) is continuous, f ′(x; y) = f ′(x;−y) or

lim inf
z→x

f ′(z; y) = −f ′(x;−y). (2.A.18)

This follows from: the existence of the directional derivatives implies the continuity of the
one-sided directional derivatives. The computation of directional derivative for a fixed y is
just that for g(λ) = f(x + λy). Therefore, Exercise in 2.A.7 implies the assertion. C \ C ′′

consists of points x such that q(x) ≡ f ′(x; y) + f ′(x;−y) > 0. That is, this set is a union of

Sk{x : q(x) ≥ 1/k, x ∈ C}. (2.A.19)

However, Sk must be a finite set.

112λA for a set A = {x} means λA = {λx}. That is, uniform linear scaling of the space around the origin.
113because there is a hyperplane going through the origin, below which λepih cannot invade
114f+(x) = f ′(x; +1) and f−(x) = f ′(x;−1).
115Rockafeller Theorem 24.1.
116Rockafellar Theorem 25.5.
117Rockafellar Theorem 25.4.
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2.A.9 Convergence of derivative
Let f be a convex function which is finite and differentiable on an open convex set C. Let
{fi} be a sequence of convex functions which are finite and differentiable on C such that
fi → f pointwisely on C. Then,

lim
i
∇fi(x) = ∇f(x) (2.A.20)

on C. That is, if the limit is differentiable, its derivative can be computed from the limit of
derivatives.118

We know the derivative is continuous.

2.A.10 Conjugate function and Legendre transformation119

Let f : Rn → R be a convex function. Then, epi f is a convex set, so there is a hyperplane
y = bx−β, where b ∈ Rn and β ∈ R, such that epif is above it (→2.A.2) That is, obviously
for any x, we may choose b and β such that

f(x) ≥ bx− β. (2.A.21)

Since epi f is convex, it can be reconstructed from the totality of such hyperplanes (we know
that supporting hyperplanes will do). That is,

F ∗ ≡ {(x∗, µ∗) | f(x) ≥ x∗x− µ ∗ for ∀x ∈ Rn} (2.A.22)

contains the same information as f . The inequality in the definition of F ∗ may be rearranged
as

µ∗ ≥ x∗x− f(x), (2.A.23)

so we can define a function f ∗ of x∗ as

f ∗(x∗) ≡ sup
x

[xx∗ − f(x)]. (2.A.24)

Notice that epi f ∗ = F ∗. Since F ∗ is a convex set, f ∗ is a convex function, and is called the
conjugate function of f . By construction f ∗ and f have exactly the same information: one
can be reconstructed from the other. Indeed,

f(x) = sup
x∗

[xx∗ − f ∗(x∗)] (2.A.25)

obviously from the symmetry. f and f ∗ are called the conjugate pair. Notice that

f1 ≤ f2 ⇐⇒ f ∗1 ≥ f ∗2 . (2.A.26)

and
f ∗∗ = f. (2.A.27)

Exercise 1. Show:
(1) For f(x) = ex

f ∗(x∗) =


x∗ log x∗ − x∗ if x∗ > 0,

0 if x∗ = 0,
+∞ if x∗ < 0.

(2.A.28)

(2) For f(x) = |x|p/p (p > 1) f ∗(x∗) = |x∗|q/q (q > 1 and 1/p+ 1/q = 1).
(3) Let Q be a regular matrix. Then, for f(x) = x′Qx/2 f ∗(x∗) = x∗′Q−1x∗/2.ut

118Rockafeller Theorem 25.7.
119This transformation = the Legendre transformation is called the Legendre-Fenchel transformation in the

large deviation theory community, because Legendre never considered non-smooth cases.
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2.A.11 Fenchel’s inequality.
Let f and f ∗ be a conjugate pair. Then,

f(x) + f ∗(x∗) ≥ xx∗. (2.A.29)

This is immediate from (2.A.24). The equality holds if and only if f(x) = xx∗/2. This can
be explicitly checked.

2.7 Mechanics vs. Thermodynamics

Let us summarize basic analytical mechanics and quantum mechanics relevant to statistical
mechanics. Needless to say, this section cannot substitute any introductory course of the
topic. It is a good lesson to learn that although the founding fathers of statistical mechanics
thought mechanics was fundamental and reliable, it was thermodynamics that was much
more reliable.

Recommended textbooks of mechanics are
Landau-Lifshitz, Mechanics,
J J Sakurai or G Baym, Quantum Mechanics.

2.7.1 Classical mechanics
Let q, p collectively denote the positions and momenta of (point) particles in a system, and
the system Hamiltonian H = K + U , where K is the kinetic energy and U the potential
energy. Then, the equation of motion of particles is written as

dq

dt
=
∂H

∂p
,
dp

dt
= −∂H

∂q
. (2.7.1)

This is called the canonical equation of motion. These equations can be written in a sym-
metric form with the aid of the Poisson bracket:

[A,B]PB ≡
∑
i

(
∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi

)
(2.7.2)

as
dq

dt
= [q,H]PB,

dp

dt
= [p,H]PB. (2.7.3)

In general, if F is a phase function (a function of the canonical coordinates q, p, and
time t) and is differentiable,

dF

dt
=
∂F

∂t
+ [F,H]PB. (2.7.4)

This is the Hamilton’s equation of motion for a phase function (dynamical observable) F .
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2.7.2 Liouville’s theorem
Let {q(t), p(t)} be a solution to the equation of motion (2.7.1) whose initial condition is given
by {q(0), p(0)}. Then, the following Jacobian is unity:

∂(q(t), p(t))

∂(q(0), p(0))
=
∣∣∣∣ ∂q(t)/∂q(0) ∂q(t)/∂p(0)
∂p(t)/∂q(0) ∂p(t)/∂p(0)

∣∣∣∣ = 1. (2.7.5)

This is called Liouville’s theorem (see Exercise 1 below).120 Note that even if the Hamilto-
nian is time-dependent, the assertion is true.

This may also be interpreted that the Hamiltonian flow is incompressible.
Exercise 1. Demonstrate the incompressibility of the Hamiltonian flow. (This is a demon-
stration of Liouville’s theorem.)ut
Exercise 2. Suppose the system is not Hamiltonian, but its equations for the momenta are
modified as

dp

dt
= [p,H]− αp, (2.7.6)

where α > 0 is a constant. What happens to the phase volume? ut

2.7.3 Time evolution of distribution on phase space
Suppose A0 is a set with a finite volume in the phase space of a Hamiltonian mechanics
system. Studying the solutions of the equation of motion with the initial conditions chosen
in A0, we may study the fate of this volume flowing in the phase space riding on the dynamics.

Let µ0 be a measure121 assigned to the phase space at time t = 0. That is, the reader
may regard µ0(A) be the number of systems whose states are in A for the initial ensemble.

Let us introduce the time evolution operator Tt such that Ttx(0) = x(t), where x(0) is
the initial coordinates of the system under consideration in its phase space, and x(t) those
at time t. For a set A, we can introduce T−1

t A ≡ {y : Tty ∈ A}, that is, the set of all the
points that visit A in time t.

The number of systems in the ensemble does not change, so in order to determine the
time evolution of the measure we may require

µ0(T
−1
t A) = µt(A) (2.7.7)

for any set A of finite measure in the phase space. This is the equation of motion for the
distribution (= ensemble).
Exercise 1. Why does the invariance condition (2.7.7) use T−1

t instead of Tt itself to write
µ0(A) = µt(TtA)? [Hint: Consider the case when the trajectories can merge. It is true that
this never happens within a finite time for a system described by a differential equation, but
if we consider reduced systems (e.g., dynamics projected on a subspace of its phase space),
we often encounter such cases.]ut

120This implies that the Lebesgue measure of the phase space is an invariant measure of a Hamiltonian
system. →2.7.4

121See Appendix to Chapter 1, if the reader wishes to have some notion of this concept. However, here the
reader may simply understand it as a weighted volume, or weight; µ(A) implies the (statistical) weight of
the set A.
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2.7.4 Invariant distribution = invariant measure
If a measure µ (= weight of sets) satisfies

µ(T−1
t A) = µ(A) (2.7.8)

for any set A, this weight does not change in time. If µ satisfies (2.7.8), we say µ is an
invariant measure (stationary distribution, stationary measure) for the time evolution Tt.

Liouville’s theorem 2.7.2 tells us that the ordinary phase volume (= Lebesgue measure
of the phase volume) is an invariant measure of any Hamiltonian system. If there were only
one such measure, then statistical mechanics could have been founded firmly on mechanics,
but generally speaking there are infinitely many (uncountably many) invariant measures, so
we must confront the selection problem. The selection is done by the way we set up the
set of initial conditions. This is the reason why we need an extra-mechanical assumption
(→2.6.2).
Exercise 1. Suppose ẏ = G such that its i-component Gi does not depend on yi. Then,
the Lebesgue measure of the phase space dy1 · · · dyn is obviously invariant. ut.122

2.7.5 Time reversal symmetry of mechanics
In classical mechanics, we know that even if the time is reversed: (t, q, p)→ (−t, q,−p), the
equation of motion is intact. Therefore, a movie of a mechanical motion played backward is
again a solution to the equation of motion; to obtain it we have only to flip the directions
of all the momenta in the final state of the original trajectory and solve the equation of
motion with this initial condition. That is, there is a one-to-one correspondence between
a trajectory and its time reversed counterpart. This is the implication of the time reversal
symmetry in classical mechanics.

Consider a bunch of trajectories (for a time span t) starting from a set V . Let the set
of the totality of the end points of this bunch of trajectories be W . We can also imagine the
time reversed bunch of trajectories.

Intuitively speaking, the number of trajectories in both bunches are identical due to the
one-to-one correspondence between a trajectory and its time reversed counterpart. There-
fore, if each trajectory is evenly weighted when being counted, then according to the natural
motion of the system

P (V → W ) = P (W̃ → Ṽ ), (2.7.9)

where P is the measure of the initial conditions for the bunches and the tilde implies the time
reversal operation (i.e., p → −p; formally W̃ = {(q,−p) : (q, p) ∈ W}). The principle of
equal probability (→2.6.2) just requires an even weighting of trajectories, so in equilibrium
states (2.7.9) holds.

In quantum mechanics, the transition probability from state |a〉 to |b〉 is written as
Pa→b = |〈b|Tt|a〉|2, where Tt is the time evolution operator. Tt is a unitary operator, so
Pa→b = |〈a|T−t|b〉|2 which is indeed the transition probability from |b〉 to |a〉 with the time
reversed motion.

2.7.6 Detailed balance
Let A and B be two sets in the phase space of a Hamiltonian system. Also let us assume

122An application may be found in F Legoll and R Monneau, “Designing reversible measure invariant
algorithm with applications to molecular dynamics,” J. Chem. Phys. 117, 10452-10464 (2002).
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these sets are invariant under time reversal symmetry. That is, if (q, p) is in A (in B),
(q,−p) is also in A (in B).123 Let AB be the set of all the points in A that visit B in t,
and BA the set of all the points in B that visit A in t (What are they in terms of Tt?).

Let the time reversed set of AB be ÃB.
In t this set goes into B, so ÃB is TtBA,
where Tt is the time evolution operator.

Let us reverse all the momenta in AB and make ÃB(→2.7.5). Since A is invariant
under time reversal, ÃB is also in A. In t this set goes into B, so ÃB is TtBA, where Tt is
the time evolution operator. Let µ be a stationary distribution (invariant measure) on the
phase space. Then, obviously, µ(AB) = µ(ÃB) = µ(BA).

If we use the conclusion of 2.7.5, µ(AB) = µ(B̃A).
If we make the ratio µ(AB)/µ(A), this is the transition probability from A to B in t.

Let us write
T (A→ B) = µ(AB)/µ(A), T (B → A) = µ(BA)/µ(B). (2.7.10)

Then, µ(AB) = µ(BA) can be rewritten as

µ(A)T (A→ B) = µ(B)T (B → A). (2.7.11)

If this holds for any t, it is called the detailed balance condition for µ. For microcanonical
and canonical distributions, this holds. Its essence is just µ(AB) = µ(BA). However, do not
forget that A and B must be time reversal symmetric.124

The detailed balance condition is extremely important in equilibrium.125 For example,
if a chemical reaction system is in equilibrium, all the reactions are canceled in detail by
their reverse reactions. A quasiequilibrium process is retraceable thanks to this detailed
balance condition. The importance of detailed balance was first emphasized by Onsager.126

However, detailed balance alone does not imply that the distribution is in equilibrium.

2.7.7 Liouville’s equation
If the measure µt (= probability distribution) has a density f(q, p, t) such that

f(q, p, t)dqdp = µt(dqdp), (2.7.12)

then, thanks to Liouville’s theorem (cf. 2.7.2), we have

f(q, p, t) = f0(T
−1
t q, T−1

t p). (2.7.13)

123If we are interested in a set corresponding to a macroscopic state, then this is not a very strong constraint,
especially in equilibrium.

124A more general version is in X1.11.1.
125The mechanical detailed balance implies the detailed balance at the macroscopic level. However, even

if there is no mechanical (microscopic) detailed balance, there may still be a detailed balance condition for
macroscopic processes.

126L Onsager, “Reciprocal relations in irreversible processes I,” Phys. Rev. 37, 405-426 (1931).
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Now, let us assume the infinitesimal time evolution (→(2.7.3))

f(q, p, t+ dt) = f(T−1
dt q, T

−1
dt p, t) = f(q − [q,H]PBdt, p− [p,H]PBdt, t),

(2.7.14)

= f(q, p, t)− ∂f(q, p, t)

∂q
[q,H]PBdt−

∂f(q, p, t)

∂p
[p,H]PBdt,

(2.7.15)

= f(q, p, t)− [f(q, p, t), H]PBdt. (2.7.16)

That is,
∂f(t)

∂t
= [H, f(t)]PB, (2.7.17)

which is called Liouville’s equation.127

If the ensemble is time-independent, the corresponding measure (= weight) µ = µt must
be time-independent (i.e., an invariant measure →2.7.4)), and its density f must also be
time independent: [f,H]PB = 0.

2.7.8 Active and passive time evolutions
Compare the Liouvilles equation (→2.7.7) and the Hamilton’s equation of motion (→2.7.1).
If we use the time evolution Tt introduced in 2.7.3, then we realize (see (2.7.13))

f(q, p, t) = f(q(−t), p(−t), 0) = T−tf(q, p, 0). (2.7.18)

Therefore, the ensemble average at time t of an observable F denoted by 〈F 〉t can be written
as

〈F 〉t =
∫
dqdpF (q, p)f(q, p, t) =

∫
dqdpF (q, p)f(T−tq, T−tp, 0). (2.7.19)

Using Liouville’s theorem, we can rewrite this as

〈F 〉t =
∫
dqdpF (q(t), p(t))f(q, p, 0) = 〈Ft〉0, (2.7.20)

where Ft is the observable F at time t and 〈 〉0 is the average over the initial ensemble.
In (2.7.19) the dynamical observable F does not evolve in time. That is, the values of

F are averaged over the time-evolving distribution. This is the passive description (passive
picture) of the system dynamics.

In contrast, in (2.7.20) the dynamical observable evolves in time, but the probability
measure to average it is as given at the initial time. Therefore, this description of dynamics
is called the active description (active picture).

As the reader realizes the passive picture corresponds to the Schrödinger picture and the
active to the Heisenberg picture in quantum mechanics (→2.7.12). As she will learn later, in
the theory of stochastic processes Kolmogorov’s forward equation (Fokker-Planck equation
→??) corresponds to the passive picture and Kolmogorov’s backward equation (→X1.9.2)
to the active one.

127This can be written as df/dt = 0.
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2.7.9 BBGKY hierarchy
The Liouville equation (→2.7.7) is for all the particles in the system. Suppose the system
consists of N identical particles of mass m interacting with each other through binary in-
teractions whose potential may be written as φ(|q|), where q is the vector connecting two
interacting particles. Its Hamiltonian is

H =
∑
i

p2
i

2m
+

1

2

∑
i6=j

φ(|qi − qj|). (2.7.21)

Therefore, the Liouville equation (→2.7.7) for the whole N particle system reads

∂fN
∂t

= −
∑
i

pi
m
· ∂
∂qi

fN +
1

2

∑
i6=j
∇iφ ·

(
∂

∂pi
− ∂

∂pj

)
fN , (2.7.22)

where fN is the probability density distribution on the phase space of the N particles.
On the other hand, we know that the Boltzmann equation (→2.4.7) is an equation for

a single body density distribution function (an equation on the µ-space). The single body
distribution may be derived as the following marginal distribution, because the first particle
may be used as a representative:

‘f1(q1, p1, t)’ =
∫
dq2dp2dq3dp3 · · · fN({p, q}, t). (2.7.23)

However, in the thermodynamic limit V → ∞ (with N/V = n being kept constant), this
quantity vanishes.128 Therefore, it is convenient to define the single body distribution with
a multiplication of V :

f1(q1, p1, t) ≡ V
∫
dq2dp2dq3dp3 · · · fN({p, q}, t). (2.7.24)

Let us integrate out the variables for i ≥ 2 from the Liouville equation to derive the
equation for f1.

∂

∂t
f1 = −p1

m
· ∂

∂q1

f1 +
∑
j( 6=1)

∫
∇1φ(|q1 − qj|) ·

(
∂

∂p1

− ∂

∂pj

)
1

V
f2(q1,p1, qj,pj, t)dqjdpj,

(2.7.25)
where

f2(q1,p1, qj,pj, t) ≡ V 2
∫ without dqjdpj︷ ︸︸ ︷
dq2dp2dq3dp3 · · · dqNdpN fN({p, q}, t). (2.7.26)

Using the permutation symmetry wrt the particles, we arrive at

∂

∂t
f1 = −p1

m
· ∂
∂q1

f1+n
∫
dq2dp2∇1φ(|q1−q2|) ·

(
∂

∂p1

− ∂

∂p2

)
f2(q1,p1, q2,p2, t), (2.7.27)

128See, for example, for an ideal gas
∫
dpf1 = 1/V .
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where n is the particle number density.
Since (2.7.27) is not a closed equation for f1, we need an equation for f2. As the

reader easily guesses, the equation for f2 will not be closed, because it depends on the
three-body distribution function f3 defined analogously as (2.7.26). This way we obtain
a hierarchy of equations for reduced distribution functions. The hierarchy is called the
BBGKY-hierarchy.129

2.7.10 Derivation of Boltzmann equation from BBGKY hierarchy
To study f1 to the lowest order in n, we need not worry about the higher order contribution

to f2, so we may regard the equation for f2 be closed. Let T
(2)
t be the time evolution operator

for the two body dynamics. Then,

f2({q, p}, t) = T
(2)
−t f2({q, p}, 0), (2.7.28)

because in the Liouville equation the Poisson bracket with H appears as [H, f ]PB in contrast
to [f,H]PB in Hamilton’s equation of motion (→2.7.8).

Assume that the initial two-body distribution is given by

f2({q, p}, 0) = f1(q1,p1, 0)f1(q2,p2, 0). (2.7.29)

This is to assume that colliding particles are statistically independent (the so-called Stosszahlansatz
→2.4.5) at the initial time.130 Now, (2.7.27) reads

∂

∂t
f1 = −p1

m
· ∂
∂q1

f1 +n
∫
dq2dp2∇1φ(|q1−q2|) ·

(
∂

∂p1

− ∂

∂p2

)
T

(2)
−t f1(q1,p1, 0)f1(q2,p2, 0),

(2.7.30)
This is equivalent to the Boltzmann equation. The rest is to rewrite this in a more appealing
form.

2.7.11 Derivation of Boltzmann equation: technical part
Thanks to the 2-body Liouville equation, notice that

∇1φ(|q1 − q2|) ·
(
∂

∂p1

− ∂

∂p2

)
T

(2)
−t =

(
v1

∂

∂q1

+ v2
∂

∂q2

)
T

(2)
−t , (2.7.31)

= (v1 − v2) ·
∂

∂q12

T
(2)
−t , (2.7.32)

where q12 = q1 − q2. Therefore, the collision terms reads

−n
∫
dq2dp2 g · ∂

∂q12

T
(2)
−t f1(q1,p1, 0)f1(q2,p2, 0). (2.7.33)

If we perform the integration over q2, we can rewrite this expression with the aid of Gauss’s
theorem as

n
∫
dp2dS · gT

(2)
−t f1(q1,p1, 0)f1(q2,p2, 0). (2.7.34)

129Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy.
130This probabilistic assumption smuggles in irreversibility.

97



Here, dS is the surface element of a sphere centered at particle 1 with a radius small compared
with the mean free path length but large enough to include the interaction range of ϕ.

Up to the surface from outside, the two-body dynamics is a simple ballistic motion, so
we may write the above formula as

n
∫
dp2dS · gf1(q1,p1, t)f1(q2,p2, t). (2.7.35)

There are two contributions from the surface integral g · dS < or > 0. They correspond, re-
spectively, to pre and post collision configurations. Thus, we have arrived at the Boltzmann
equation (→2.4.7).

2.7.12 Quantum mechanics
The equation of motion corresponding to Hamilton’s equation of motion (→2.7.1) in quan-
tum mechanics is Heisenberg’s equation of motion:

ih̄
dFt
dt

= [Ft, H], (2.7.36)

where [ , ] is the commutator, and H is the energy operator (Hamiltonian). This may be
obtained by the canonical quantization from (2.7.4): the commutator is ih̄ times the result
of Poisson bracket (→2.7.1), if we interpret classical phase functions as observables.

The time evolution operator Ut is defined by the following operator equation (called the
Schrödinger equation)

ih̄
dUt
dt

= HUt (2.7.37)

with the initial condition U0 = 1. Then, the solution to (2.7.36) with the initial condition
F0 at t = 0 can be written as131

Ft = U−1
t F0Ut. (2.7.38)

If we introduce the state ket at time t as |t〉, we have Ut|0〉 = |t〉. Therefore,

〈t|F (0)|t〉 = 〈0|U−1
t F (0)Ut|0〉, (2.7.39)

so132 (cf. (2.7.20) for the classical counterpart)

〈t|F (0)|t〉 = 〈0|F (t)|0〉. (2.7.40)

2.7.13 Density operator and von Neumann’s equation
Let ρt be an operator, called a density operator, that gives the expectation value of an
observable F at time t through

〈F 〉t = Tr ρtF. (2.7.41)

131If we introduce A×B = [A,B], then dF/dt = A×F can be formally solved as F (t) = exp(tA×)F (0).
Assuming that t is not large, we can expand this as

F (t) = 1 + tA×F (0) + · · · = (1 + tA+ · · ·)F (0)(1− tA+ · · ·).

This gives the desired result.
132This is the relation between the Schrödinger picture and the Heisenberg picture.
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If we require (cf. 2.7.8)
〈F 〉t = Tr ρ0Ft (2.7.42)

for ρ0 for any observable F ,133

ρt = Utρ0U
−1
t . (2.7.43)

Therefore, the time dependence of the density operator must be governed by

ih̄
dρt
dt

= [H, ρt]. (2.7.44)

This is the quantum counterpart of Liouville’s equation (→2.7.7) and is called von Neu-
mann’s equation.

2.7.14 Gibbs’ entropy is invariant
Gibbs proposed the following microscopic interpretation of entropy as we have seen in 2.1.5

S = −kB
∫
ρ log ρ dΓ, (2.7.45)

where ρ is the density distribution function of microscopic states on the phase space. We
know in the thermodynamic limit that this is in agreement with the Boltzmann entropy
(→2.4.2; as we have seen, the formula was fist written down by Boltzmann).

An interesting feature of this formula is that this entropy is a constant of motion:
dS/dt = 0. Let us check this invariance.

dS

dt
=
∫
dΓ(1 + log ρ)

∂ρ

∂t
, (2.7.46)

so with the aid of Liouville’s equation (→2.7.7) and an integration by parts we obtain

dS

dt
=
∫
dΓ(1 + log ρ)[ρ,H]PB =

∫
dΓ
∂ρ

∂t
= 0. (2.7.47)

What does this mean?
Exercise 1. Demonstrate the quantum version. ut
Exercise 2. The reader must immediately see that the Boltzmann entropy SB = kB log Ω
is also invariant. (If the phase volume Ω is replaced by the number of states in quantum
mechanics, the assertion does not change.)134 ut
Comment. In classical mechanics suppose the measure does not have a density.135 Then,
neither Gibbs nor Boltzmann entropy can be defined. For a closed (isolated) classical me-
chanical system, unless the initial measure is singular, this never happens.

133If (2.7.43) is assumed, certainly (2.7.42) holds. Is the choice unique? We need more conditions such as
the KMS condition (→X2.4.11) that is assumed to be true in equilibrium (or is used to characterize the
equilibrium state).

134However, if Ω is replaced by Ω(Et), that is, the phase volume of the set of phase points whose energy
does not exceed Et at time t, this entropy increases under nonequilibrium adiabatic condition. Then, is this
a better microscopic interpretation of entropy? Another possibility is to interpret Ω(E) as the phase volume
of the energy shell of energy E.

135i.e., the measure is not absolutely continuous wrt the phase volume
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2.7.15 Thermodynamics as precursor of quantum mechanics
We know that Quantum Revolution left thermodynamics intact. It is fair to say that ther-
modynamics paved the road to Quantum Revolution as can be seen from Planck’s derivation
of black-body radiation law. Gibbs’ paradox136 may be considered as an example of the in-
compatibility of classical picture of atoms and thermodynamics, if we stick to his statistical
framework.

Titeica (1955137) demonstrated the following. Let p(E) be the statistical weight of states
up to the energy E with the lowest possible energy being taken as its origin. Then, unless

lim
E→0

p(E) > 0, (2.7.48)

the entropy is not bounded from below in the T → 0 limit. That is, classical mechanics con-
tradicts thermodynamics, because classically the above limit must vanish. The zero-point
energy represents the discontinuous onset of the energy spectrum of the whole system.
Exercise 1. The energy spectrum of a single particle may not have this discontinuity at
E = 0. Still, the energy spectrum of the whole many-body system must have this discon-
tinuity. Check that this is indeed the case for fermions or bosons (for weakly interacting
quantum gases).ut

2.7.16 Second law and equilibrium statistical mechanics
The driving motivation for Boltzmann when he was around 20 years old was to understand
the second law in terms of mechanics.138 Boltzmann wished to have a clear picture of how
a system reaches its equilibrium state (→2.4.2).

However, to demonstrate the second law we need not worry about how a system relaxes
to its equilibrium state. We have only to show, e.g., Thomson’s principle:

∆A ≤ W, (2.7.49)

that is, the work needed to change a system from an equilibrium state a to another equilib-
rium state b cannot be smaller than the free energy difference ∆A = Ab − Aa, where Ax is
the free energy of state x.
Exercise 1 [Adiabatic small systems are never reversible]. Read K Saito et al, “Ir-
reversibility resulting from contact with a heat bath caused by the finiteness of the system,”
Phys. Rev. E 66, 016119 (2002), and summarize their argument to demonstrate that for
almost all small systems adiabatic processes cannot be reversible.

However, thermodynamic adiabaticity and the adiabatic condition used in this paper
are different, so the conclusion of the paper should be taken with caution. ut

2.7.17 Equilibrium statistical mechanics implies second law
Consider a quantum system with the Hamiltonian H(λ) with a parameter. The initial state
is with λ = 0 and the final one is with λ = 1. {|iλ〉} is the totality of the eigenstates of
H(λ). We assume H(λ)|iλ〉 = Ei(λ)|iλ〉 and Ei(λ) ≤ Ei+1(λ) for all λ ∈ [0, 1].

136Distinguishability of particles violates extensivity of entropy.
137Einstein died (Mar 14, 1879 ∼ Apr 18).
138His first long paper (his second paper) “Über die mechanische Bedeutung des zweiten Hauptsatzes der

Wärmetheorie” (Wiener Berichte 53, 195-220 (1886)) was written when he was 22. This year Liszt died;
Jeronimo surrendered; Statue of Liberty erected (what an irony!).
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If we change the parameter sufficiently slowly (adiabatic change), the adiabatic theorem
tells us that there would be no level crossing, so |i0〉 would end up with |i1〉 for all i. Suppose
the initial distribution is given by the canonical distribution (i.e., the density matrix is
given by ρ(0) = e−βH(0)/Z). Let U be the time evolution operator corresponding to the
parameter change from λ = 0 to 1. The density matrix at the end of this process is given
by ρU = Uρ(0)U−1. Then,139

〈H〉U ≥ 〈H〉ad, (2.7.50)

where 〈 〉U is the average over the final density matrix ρU and 〈 〉ad is the average after the
adiabatic evolution.

If the initial average of energy Trρ(0)H(0) is subtracted from this, we obtain

W ≥ ∆A. (2.7.51)

Therefore, the second law is a consequence of equilibrium statistical mechanics.140

2.7.18 Physical vs. mechanical adiabatic condition
However, there is one thing we have not understood. For the quantum adiabatic theorem
to hold, the necessary time for the time evolution is of order h̄/δE, where δE is the suit-
ably averaged spacing of the adjacent energy levels. This spacing is exponentially small for
many-body systems ∼ 10−N , where N is the number of degrees of freedom. That is, we can
never realize such a slow change for reasonably macroscopic systems.

Still, in reality, we know the inequality in (2.7.51) holds for practically slow processes,
so to really demonstrate the second law, we must be able to demonstrate that the equality
in (2.7.51) holds for much faster changes than required for the adiabatic theorem to hold.
We have no clear theory for this. In short, we have not yet understood the nature of the
motion we call heat.

2.7.19 Canonical ensemble is ‘implied’ by the second law141

Conversely, Lenard demonstrated that essentially the second law and the fourth law142 of
thermodynamics imply the canonical ensemble.

More precisely, the assumptions are:
(1) Passivity: This is essentially the second law. Let H(t) be a time-dependent Hamiltonian
and the density operator ρ(t) obeys von Neumann’s equation with this Hamiltonian with no
time dependence for t outside [0, 1] and H(0) = H(1). Then, the work needed for this cycle
is nonnegative:

W (K, ρ0) =
∫ 1

0
dt Trρ(t)

dH(t)

dt
≥ 0 (2.7.52)

(2) Structural stability: any small perturbation of the Hamiltonian does not destroy the
system passivity.
(3) Let a compound system consist of two subsystems and in a passive structurally stable

139See, e.g., H Tasaki, Statistical mechanical derivation of the second law of thermodynamics, cond-
mat/0009206. The statement is more general.

140However, obviously, we cannot take the thermodynamic limit before the proof. Therefore, we must take
the statement with caution that equilibrium statistical framework implies the second law.

141A Lenard, “Thermodynamical proof of the Gibbs formula for elementary quantum systems,” J. Statist.
Phys. 19, 575 (1978).

142“There are only extensive and intensive quantities in thermodynamics.”
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state. Its density operator is the product143 of the density operators of the two subsystems.
(1) implies that H and ρ are commutative and the simultaneous eigenvalues have a con-

sistent order: the eigenvalue of ρ is larger for the smaller energy eigenvalue. This is actually
the converse of 2.7.16.
(2) then implies that ρ = f(H), i.e., the density operator is an operator function of H.
Finally, (3) implies that log ρ is proportional to H.

Combining 2.7.16 and the above result, the reader might conclude that the orthodicity
question (→2.6.8) is solved. This contradicts our knowledge that the canonical ensemble is
not the only orthodic ensemble. What is wrong? A hint has already been discussed at the
end of 2.7.16. The passivity is unrealistically strict. Perhaps this is in accordance with the
unrealistically strict adiabatic condition (→2.7.18). We need a much more realistic expres-
sion of the second law than (2.7.52).
Remark. The zeroth law can be used to obtain the canonical form as well.144 The key
idea is that the equilibrium condition is not destroyed by small perturbations of the system
Hamiltonian.
(1) If the state ρ is stable under small perturbations of the system Hamiltonian, then
ρ = f(H) (ρ is an operator function of H).
(2) If the equilibrium contact condition is stable under small perturbations, then the eigen-
values have the consistent order (see (1) above; 2.7.16 implies that the systems are passive).
(3) If the equilibrium contact among three systems is stable under small perturbations, then
ρ ∝ e−βH . ut

2.7.20 Jarzynski’s equality145

Another related theorem is due to Jarzynski. This is an equality that leads to the second
law (2.7.49).

Suppose a thermostated system has a parameter λ(t) that can be changed experimentally
externally from λ(0) to λ(1). Let W be the work needed to perform this change. Then, the
free energy change ∆A from the equilibrium state with λ(0) and to that with λ(1) may be
obtained by

〈e−βW 〉 = e−β∆A, (2.7.53)

where the average is over many experiments with the same protocol. This is called Jarzyn-
ski’s equality.146,147

More precisely, suppose a system is described classically with the Hamiltonian H(x, λ(t)) with a time-
dependent parameter λ(t), which may be externally controlled. The initial state a is distributed canonically
at the temperature T = kB/β and with the Hamiltonian H(x, λ0). Let state b be an equilibrium state with

143More precisely, tensor product
144A Frigeiro, V Gorini and M Verri, “The zeroth law of thermodynamics,” Physica 137A 573-602 (1986)
145C. Jarzynski, “Nonequilibrium equality for free energy differences”, Phys. Rev. Lett. 78, 2690-2693

(1997). The latest note dispelling misunderstanding is: C. Jarzynski, J. Stat. Mech. 2004, P09005, “Nonequi-
librium work theorem for a system strongly coupled to a thermal environment.” Chris Jarzynsky calls his
equality, ‘nonequilibrium work theorem.’ In this latest paper, Jarzynski discusses how H may be interpreted
as the effective Hamiltonian of the system when the system interacts strongly with the heat bath; this is
directly relevant to ‘single molecule physiology.’ How did he arrive at this remarkable formula? He realized
the relation when he was analyzing a numerical experimental result. That is, the relation was suggested first
empirically.

146The equality holds if the system obeys a Markov process as seen in 6.5.9.
147For a cycle (i.e., ∆A = 0), this was demonstrated by Bochkov and Kuzovlev in the 1980’s (according to

C. Jarzynski); G. N. Bochkov and Yu. E. Kuzovlev, Zh. Eksp. Teor. Fiz. 72, 238 (1977) [Sov. Phys.-JETP
45, 125 (1977)]; Physica 106A, 443, 480 (1981).
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the Hamiltonian H(x, λ1) at the same temperature. We fix the protocol to change the system by fixing the
function λ(t) (λ(0) = λ0 and λ(tf ) = λ1, where tf is the last time to modify the parameter). We embed this
system in a large thermostat that can be described by a Hamiltonian H0. Let us write the Hamiltonian of
the whole system as Hw(z, λ(t)), where z denotes the phase variables of the whole system collectively. This
Hamiltonian includes the interaction Hamiltonian between the system and the thermostat. We assume this
effect may be ignored.

Now, W is the work done on the system during the change under the condition that the whole system
is isolated.148 Then, the above equality holds.
Warning. The final state actually reached by the protocol at time tf is usually very different
from the final equilibrium state we are interested in. ut
Exercise 1. There is a macromolecule whose end-to-end distance can be controlled. We
change its length from L0 to L1 in one second (linearly in time). The free energy difference of
the equilibrium states with parameters L0 = 1nm and L1 = 3nm is given by ∆A = 40pNnm
(= pico newton × nanometer) (i.e., the stretching increases the free energy this much if one
does this in a quasiequilibrium fashion). The experiments told us that the work done to the
molecule W was distributed according to a Gaussian distribution, and the average work was
〈W 〉 = 60pNnm. Assuming that the temperature is 300K, find the variance of the work.
(Check that 300kB = 4pNnm). ut
Exercise 2. It is often hard to obtain equilibrium free energy change with actual experiments
performed at finite speeds. Thus, sometimes Jarzynski’s equality is practically meaningful.
Read the paper: “Equilibrium information from nonequilibrium measurements in an exper-
imental test of Jarzynski’s equality” by Liphardt et al.149 in Science 296, 1832-1835 (2002),
and summarize the content.150 ut
Discussion 1. There is a box separated into two compartments with a separating wall. One
compartment is empty but the other is filled with gas. Now, the separating wall is removed
by sliding quickly without any work. In this case, the free energy decreases because entropy
increases. However, there is definitely no external work. Therefore, Jarzynski’s equality
cannot hold. ut

2.7.21 Demonstration of Jarzynski’s equality
The work done on the system is given by W = Hw(z(tf ), λb)−Hw(z(0), λa), because it is as
a whole isolated. Therefore,

〈e−βW 〉 =
1

Ya

∫
dz(0)e−βH(z(0),λa)−βW (2.7.54)

=
1

Ya

∫
dz(0)e−βH(z(tf ),λb). (2.7.55)

Here, Ya is the partition function for the system with the Hamiltonian H(x, λa) + the
thermostat. According to Liouville’s theorem (→2.7.2), this reads

〈e−βW 〉 =
1

Ya

∫
dz(tf )e

−βH(z(tf ),λb) =
Yb
Ya
, (2.7.56)

148For the following equality to be correct, the temperature of the whole system must not change, but if
the bath is large enough, this is not a constraint.

149by J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, Jr., and C. Bustamante.
150See also a recent paper by the same group: PNAS 99 13544-13548 (2002), and Jensen et al. on GlpF

PNAS 99 6731 (2002).
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where Yb is the partition function for the system with the Hamiltonian H(x, λb) + the
thermostat. Since the Hamiltonian of the thermostat is intact, and we ignore the interac-
tion Hamiltonian that may depend on the parameter λ, Yb/Ya = Zb/Za, where Zc is the
canonical partition function for the system with the Hamiltonian H(x, λc). Thus, we have
demonstrated (2.7.53).151

Since e−x is convex, (2.7.53) implies

〈W 〉 ≥ ∆A. (2.7.57)

This is Thomson’s principle.
Warning. Notice that the whole system is isolated, so if the total work done to the system is
large, then the final temperature would be definitely higher than the initial one. Still (2.7.53)
holds. However, ∆A compared there is not the free energy change between the initial and
the actual final equilibrium states experiments realize.

2.7.22 Jarzynski’s equality and rare fluctuations
We know that the difference W −∆A can be made large without bound. Still, Jarzynski’s
equality (2.7.53) holds. What does this mean?

Let us consider the simplest case; we make a cycle, and the initial and the final equilibria
are identical. ∆A = 0, so

〈e−βW 〉 = 1. (2.7.58)

If we make a rapid change, very likely W > 0; maybe it is often very large. Still, the equality
must hold, so we need fairly large negative W occasionally. That is, we must wait for a fairly
large scale ‘violation’ of the second law (cf. 4.1.3). This implies that we must wait for a very
long time to use (2.7.53) for a macroscopic system or for a process with large dissipation,
even if a system under study is not macroscopic.
Exercise 1. Imagine a cylinder with a piston containing an ideal gas. The whole system is
in a thermostat. Let us pull out the piston extremely rapidly (ignore the mass of the piston),
and then very slowly and gently we return the piston to the original position. [Do not believe
that all the questions below can be answered with the conditions given here; Appropriate
information must be added.]
(1) What is the total work needed on the average?
(2) What is the heat generated?
(3) What sort of fluctuations does one have to wait for (2.7.53) to hold?
(4) Estimate their probabilities.
(5) How long should we wait for such fluctuations? ut

2.8 Equilibrium Fluctuation and Response

Einstein thought fluctuations were the window to the more microscopic level of the world
below the thermodynamic level (→3.1.3). The study of fluctuations is a crucial key to statis-
tical mechanics. Furthermore, violent fluctuations could relatively easily happen at smaller

151This is the derivation given in the original paper, but it is hardly justifiable, because ‘no change’ in the
heat bath does not imply the ratio of its partition functions before and after the change of the heat bath is
unity (it is ∞/∞). If we can model the whole system as a Markov process, we can justify the formula as we
will see in 6.5.9.
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scales, so studying them may give considerable hints at nonequilibrium processes. This was
the leitmotif of Onsager’s study (→4.1.2).

For the study of fluctuations in equilibrium IESM Section 1.9 is more detailed than this
section.

2.8.1 Response and second moment
Suppose we have an ensemble with constant intensive parameter x. Let X be its conjugate
variable (wrt energy, i.e., +xdX appears in the differential form dE). Then, the thermody-
namic potential suitable for this ensemble is

Â = −kBT log Ẑ (2.8.1)

with

Ẑ =
∫
dX Z(X)exX/kBT , (2.8.2)

where Z(X) is the canonical partition function under the constant X (say, V ) condition.
Therefore,

χ ≡ ∂X

∂x

∣∣∣∣∣
T,V

= kBT
∂2log Ẑ

∂x2
=

1

kBT
(〈X2〉 − 〈X〉2) =

1

kBT
〈δX2〉. (2.8.3)

Here, δX = X − 〈X〉. The left-hand side is the susceptibility of X. For example, if x = H
(magnetic field) and X = M (magnetization), then χ is the magnetic susceptibility, describ-
ing the response of the magnetization to the change of magnetic field.

We have found that susceptibility is essentially a second moment.
Warning. (2.8.3) is derived using classical statistical mechanics, so the result is generally
not applicable to non-classical cases. The reason is seen from (2.8.6). There, the Taylor
expansion formula ea+δa = ea + δa ea + · · · is used, but this equation is not correct when a
and δa do not commute. See 4.3.5.ut.

2.8.2 Fluctuation-response relation
More generally, the cross correlation should give the cross susceptibility (no summation
convention):

〈δXi〉 = β〈δXiδXj〉xj, (2.8.4)

where xi
152 is the conjugate variable of Xi (with respect to energy, not entropy), and δ

implies the difference from the average before the perturbation. This is called the fluctuation-
response relation. This can be obtained easily as follows (classically):

〈Xi〉 =
∫
dΓXie

−β(H−xjXj)/
∫
dΓ e−β(H−xjXj) (2.8.5)

= 〈Xi〉0 + β〈XiXj〉0xj − β〈Xi〉0〈Xj〉0xj + · · · . (2.8.6)

Here 〈 〉0 implies the average without perturbation. (In the RHS of (2.8.4), 〈 〉0 and 〈 〉 make
only a higher order difference, so you need not write 〈XiXj〉0.)

(2.8.4) is equivalent to

〈δXiδXj〉 = kBT
∂Xi

∂xj
. (2.8.7)

152= δxi; we assume the unperturbed state is with xi = 0 for simplicity.
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Notice that Maxwell relations follow from this.
Exercise 1. Obtain the magnetic susceptibility in terms of the fluctuation of the magneti-
zation. ut
Exercise 2. Obtain the isothermal compressibility in terms of fluctuation. ut
Exercise 3. What fluctuation gives the constant volume specific heat? What does the
reader think happens if the compressibility diverges? ut
Exercise 4. Let us take the ideal rubber band discussed in 2.6.5. Obtain the Hooke’s
constant in terms of the length fluctuation. ut
Exercise 5. The above exercise is a prototype of an experimental technique to determine
‘spring constants’ of molecular machines. Suppose there is a torsional spring with the tor-
sional stiffness K (i.e, τ = Kθ, where τ is the torsion, and θ is the angle displacement). The
mean square average of the angle is 44◦. What is the torsional stiffness?153

2.8.3 Magnitude of fluctuation
Notice that χ in (2.8.3) is an extensive quantity, so we know that the fluctuation around an

equilibrium state is of order
√
N , where N is the total number of particles in the system.

The reader may wonder what happens near the critical point, where fluctuations become
large. As we can see from the central limit theorem (→1.7.1), the most natural interpre-

tation of order
√
N is that there are O[N ] independent stochastic variables in the region of

space we study the fluctuation. This means that the correlation length of the fluctuation is
much smaller than the region we observe fluctuations. Thus, it is clear that even if the sys-
tem is close to a critical point, if the diameter of the region on which we observe fluctuations
is much larger than (say, 5 times as large as) the correlation length, the O[

√
N ] behavior of

fluctuations holds.
However, exactly at the critical point the correlation does not decay exponentially, so

the correlation length is infinitely long. Still, the correlation decays algebraically, and the
fluctuation should decay as the system size. It is no more as fast as

√
N . For example, for

the magnetization at the critical point 〈M2〉 = O[N1+(2−η)/d], where η > 0 but small, so the
fluctuation is significantly larger than the noncritical cases (critical fluctuations).

2.8.4 Importance of studying fluctuations
To study nonequilibrium processes the time correlation function of x, assuming that x is a
function of time x(t), defined as

C(t) = 〈(x(t)− 〈x〉)(x(0)− 〈x〉)〉 (2.8.8)

is a very important quantity; its Fourier transform is called the power spectrum (→ around
3.7.4) and is often experimentally directly measurable. Note that the ‘equal time correla-
tion’ (i.e., C(0)) gives equilibrium (or thermodynamic) response. Then, it is a natural guess
that response to time-dependent perturbation must be closely related to time correlation
functions. This is indeed the case as we will learn later (→3.2.8).

153This is the stiffness of the kinesin dimer neck taken from W Hua, J Chung and J Gelles, Science 295,
844 (2002). Their estimate seems wrong. The assertion of the paper on kinesin has been totally disproved
by many people in 2003; see, for example, A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin
walks hand-over-hand,” Science 303, 676 (2004).
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2.8.5 Thermodynamic fluctuation theory
Einstein (in 1910154 →2.8.8) inverted the Boltzmann formula (2.4.37) as

W ({X}) = eS({X})/kB , (2.8.9)

where {x} collectively denotes extensive variables. Since we know the statistical weights, we
can compute the probability of observing {X} as

P ({x}) =
W ({x})∑
{x}W ({x})

. (2.8.10)

The denominator may be replaced with the largest term in the summands, so we may rewrite
the formula as

P ({x}) ' W ({x})
W ({xeq})

= e[S({x})−S({xeq})]/kB , (2.8.11)

where ' implies the equality up to a certain unimportant numerical coefficient, and {xeq} is
the value of {x} that gives the largest W (maximizes the entropy), that is, the equilibrium
value.

The reader must have wondered why (2.8.9) may be used, even though the system (or
a small portion of a system) is not isolated; we should look at the general partition function
dictated by the general relation 2.6.5. Thus, the probability of deviations {x} must read

P ({x}) = e[S({x})−S({xeq})−
∑

(xj−xj,eq)Fj ]/kB . (2.8.12)

Here, we have assumed that the intensive variables Fj are maintained by appropriate reser-
voirs. Notice that Fj = ∂S/∂xj (the conjugate intensive variable of x with respect to
entropy).

To the second order in δx = x−xeq, (2.8.11) and (2.8.12) give identical results, because

S({x}) = S({xeq}) +
∑

δxjFj +
1

2

∑ ∂2S

∂xixj
δxiδxj + · · · . (2.8.13)

That is, both approaches give the following famous result

P ({δx}) = eδ
2S/2kB . (2.8.14)

However, the agreement is up to this order, and (2.8.12) is more general (→2.8.6).
The second law implies that the quadratic form logP in this approximation is negative

semidefinite. Notice that this is the stability condition of the equilibrium state; this stability
implies that the fluctuations are bounded on the average.

Strictly speaking, since we are discussing deviations from equilibrium states, we cannot
use equilibrium thermodynamics to derive (2.8.9). Therefore, if we wish to be logically
fastidious, we must regard

P ({δx}) = Y ({x})/Y ({xeq}) (2.8.15)

to be the fundamental principle of thermodynamic fluctuation theory, where Y is the par-
tition function for an appropriate ensemble corresponding to the intensive variables kept
constant in the observation region in space of the fluctuation (cf. 2.6.5).

154This year Cannizzaro died.
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Exercise 1. Show that (2.8.15) may be interpreted as
P ∝ exp(− minimum work needed to create the fluctuation/kBT ).

This relation was also recognized by Einstein. ut
Exercise 2. Compute the second moment of entropy fluctuation under constant volume
and constant pressure. [A more systematic and practical formula is in 2.8.7.] ut
Exercise 3. Generally speaking, (2.8.3) is consistent with thermodynamic fluctuation the-
ory. Discuss the relation between the fluctuation theory and (2.8.7). ut

2.8.6 Massieu functions
The functions obtained from entropy S through Legendre transformations are generally
known as Massieu functions. The thermodynamic fluctuation principle (2.8.15) is most
conveniently written in terms of these functions. The principle says that for an isolated
system (as Einstein said)

P ({δx} ' eδS/kB . (2.8.16)

Here ' implies ‘modulo unimportant numerical factors.’ If an intensive quantity X is fixed,
and this quantity appears in dE as Xdx (x is its conjugate extensive quantity), (2.8.15)
reads

P ({δx}) ' eδΨ/kB , (2.8.17)

where
Ψ = S +Xx/T. (2.8.18)

This is called the (generalized) Massieu function.155 Note that

dΨ =
1

T
dE + xd

(
X

T

)
. (2.8.19)

Exercise 1. Obtain the Massieu function for the pressure ensemble (the ensemble with
constant T and p). ut

2.8.7 Practical formula for thermodynamic fluctuations156

Let dE = TdS − pdV + µdN +Xdx. From this

δS =
1

T
(δE + pδV − µδN −Xδx). (2.8.20)

To study the fluctuation we need δ2S. This can be computed from the above formula as
(this is the second order term of the Taylor expansion, so do not forget 1/2)

δ2S =
1

2

[
δ
(

1

T

)
(δE + pδV − µδN −Xδx) +

1

T
(δpδV − δµδN − δXδx)

]
,

(2.8.21)

= − δT

2T 2
TδS +

1

2T
(δpδV − δµδN − δXδx). (2.8.22)

Therefore, we arrive at the following useful expression worth remembering

δ2S =
−δTδS + δpδV − δµδN − δXδx

2T
. (2.8.23)

155The original Massieu function is for the temperature ensemble, so Ψ = −A/T .
156See IESM 1.9.13 may slightly be kinder.

108



As an example, let us study the fluctuations of V and T , assuming that N and x are
fixed. To this end we express δS and δp in terms of δV and δT .

δS =
∂S

∂T

∣∣∣∣∣
V

δT +
∂S

∂V

∣∣∣∣∣
T

δV =
CV
T
δT +

∂p

∂T

∣∣∣∣∣
V

δV, (2.8.24)

δp =
∂p

∂T

∣∣∣∣∣
V

δT +
∂p

∂V

∣∣∣∣∣
T

δV. (2.8.25)

Therefore,

δTδS − δpδV =
CV
T

(δT )2 − ∂p

∂V

∣∣∣∣∣
T

(δV )2. (2.8.26)

Hence, we find

〈δT 2〉 =
T 2

CV
, 〈δV 2〉 = −T ∂V

∂p

∣∣∣∣∣
T

, 〈δTδV 〉 = 0. (2.8.27)

Note that 〈δV 2〉 = O[V ] as expected in 2.8.3.
Exercise 1. Again, let us assume N and x are kept constant. Study the fluctuation of S
and p. ut
Exercise 2. Study the energy fluctuation 〈δE2〉. [Hint. We have already computed the
fluctuations of V and T , so let us write δE = TδS − pδV in terms of δV and δT .] ut
Exercise 3. If an extensive variable x and an intensive variable Y are not conjugate, then
〈δxδY 〉 = 0. ut.
Exercise 4. What can we say generally about the sign of 〈δXiδxi〉? [The reader must
explain why.] ut

2.8.8 Einstein’s motivation to study fluctuations
The purpose of Einstein to construct the theory of fluctuation was to understand critical
fluctuations (critical opalescence) quantitatively. As a byproduct he explained why the sky
was blue.

Let us humbly take note that it is still only less than 100 years since we first understood
why the sky was blue.
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Part II. Outline of Nonequilibrium Statistical
Mechanics

Part II consists of two parts, the Outline part (Chapters 3-5) and more detailed auxil-
iary chapters (X1-X3). The Outline part may be used as an introductory (or undergraduate
level) course of nonequilibrium statistical mechanics; the reader is expected to become ac-
quainted with several narratives of nonequilibrium processes, and to pick up typical modes of
thinking and rudimentary techniques of nonequilibrium statistical mechanics as well as some
important keywords such as the fluctuation-dissipation relation. Chapters X1-X3 explain
more advanced topics and technically complicated matter. These chapters tend to contain
more typos, etc., than not-X-rated chapters. Please be careful.

Elementary kinetic theory will not be discussed (→2.3.9). The Boltzmann equation
(→2.4.7, 2.7.10) will not be discussed, either; in short, we do not emphasize topics that
are not useful to understand nonequilibrium statistical physics in general. We wish to focus
on the general theoretical framework applicable to condensed phases or systems immersed
in condensed phases.

If the reader wishes to review equilibrium statistical mechanics briefly, go to Section
2.6. If she wishes to do so at a leisurely pace, read the historical account in Chapter 2. If
she wishes to review rudiments of probability theory, read Chapter 1. All the contents of
these previous chapters will be extensively and in detail referred to at the places where we
need them, so the reader need not review these materials before they become needed.

Chapter 3 outlines the Brownian motion. After describing the historical background,
Einstein’s work is explained, and its fundamental importance to nonequilibrium statistical
thermodynamics is stressed. Then, the basic tools to study the Brownian motion (Langevin
and Fokker-Planck equations) are explained. Several important consequences such as the
fluctuation dissipation relations and the Green-Kubo relations are illustrated with simple
examples. The relation between mechanics and stochastic models with the aid of projections
is discussed. Also stochastic differential equations (Itô calculus) are intuitively introduced.
The chapter concludes with the noise analysis (the Wiener-Khinchine theorem) and dynam-
ical form factors (the van Hove theory).

Chapter 4 is an outline of Onsager’s work, the regression principle and nonequilibrium
thermodynamics. The Green-Kubo relations are derived from the study of fluctuations (both
classical and quantum cases) and Onsager’s reciprocity is explained. A general kinematic
framework of linear response theory and an outline of the usual formal derivation of linear-
response theory conclude the Chapter. Detailed examples, NMR (the Kubo-Tomita theory),
electric conductivity (the Nakano theory) are relegated to Chapter X3.

Chapter 5 discusses the hydrodynamic limit and hydrodynamic equations. First, the
problem is discussed from the conventional conservation law side. Then, the same problem
is studied from Onsager’s regression point of view.
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Chapter 3

Brownian Motion

The standard rudiments such as Langevin equations and Fokker-Planck or Smoluchowski
equations and their elementary applications (e.g., barrier crossing) are covered. (The entries
for Brownian ratchets will be further augmented.) Advanced topics such as spectral analysis
and stochastic calculus are also discussed at an elementary level.

3.1 Brownian Motion

First, the history of the topic is followed, and then the fundamental mode of thinking of
nonequilibrium statistical mechanics due to Einstein is outlined (→3.1.7). The relation be-
tween diffusion and random walk is also discussed.1

3.1.1 What did Mr. Brown really do?
Robert Brown (1773-1858)2(1773-1858) discovered in the summer of 18275 the Brownian

1F. Yonezawa, Brownian Motion (Kyoritsu, 1986) is an excellent and admirable book (in Japanese) on
the Brownian motion in general.

2He was perhaps the greatest botanist (and a great microscopist; Alexander von Humboldt called him
‘the glory of Great Britain’) in the first half of the 19th century. He wrote (1810) a classic of systematic
botany describing the Australian flora, following his expedition (1801-5). He recognized the nucleus of the
cell3 and so named it (1831; This name was later imported by Bohr to atomic physics). Before departing for
his Beagle expedition (Dec., 1831 - Oct., 1836),4 Darwin asked for Brown’s advice in 1831, buying a portable
dissecting microscope recommended by Brown; after returning to England, Brown encouraged Darwin to
visit him every Sunday morning. Later, Brown was regularly invited to parties at Darwin’s home. The
participants of the now historical Linnean Society meeting, where the theory of natural selection was first
read (July 1, 1858), were there mainly to listen to Lyell reading the eulogy for Brown and to praise his
career. Cf. J. Browne, Charles Darwin, voyaging (Knopf, 1995), Charles Darwin, the power of place (Knopf,
2002).

5Beethoven died in March; Democratic party was founded.
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motion of particles, coming from ruptured pollens, suspended in water.6 We are usually
given an impression that he simply observed the “Brownian motion.” However, he did a
very careful and thorough research to establish the universal nature of the motion.

Since the particles came from living cells, initially he thought that it was a vital phe-
nomenon. Removing the effect of advection, evaporation, etc., carefully, he tested many
flowers. Then, he tested old pollens in the British Museum (he was the director of the
Botanical Division), and still found active particles. He conjectured that this was an organic
effect, testing even coal with no exception found. This suggested him that not only vital
but organic nature of the specimens were irrelevant. He then tested numerous inorganic
specimens (including a piece of Sphinx; he also roasted his specimens).

He really deserves the name of the motion.
See Philip Pearle, Brian Collett, Kenneth Bart, David Bilderback, Dara Newman, and Scott
Samuels, “What Brown saw and you can too,” AJP 78, 1278 (2010).

3.1.2 Before Einstein
There was no work published on the Brownian motion between 1831 and 1857, but the phe-
nomenon was well known. From 1850s new experimental studies began by Gouy and others.
The established facts included:7

(1) Its trajectory is quite erratic without any tangent lines anywhere (→3.4.1).
(2) Two Brownian particles are statistically independent even when they come within their
diameters.
(3) Smaller particles move more vigorously.
(4) The higher the temperature, the more vigorous the Brownian motion.
(5) The smaller the viscosity of the fluid medium, the more vigorous the motion (→3.1.3).
(6) The motion never dies out.
etc.
In the 1860s there were experimentalists who clearly recognized that the motion was due to
the impact of water molecules. Even Poincaré mentioned this motion in 1900,8 but somehow
no founding fathers of kinetic theory and statistical mechanics paid any attention to Brow-
nian motion.9

3.1.3 Einstein’s paper10 of 1905; Einstein’s formula
Einstein’s key idea was that a Brownian particle may be treated both as a large molecule
and as a tiny macroscopic particle at the same time:
(a) its diffusion obeying Fick’s law must be driven by the osmotic pressure gradient.
(b) its mean velocity under an external force is obtained with the aid of fluid dynamics

6The work was published the next year, but was communicated to Stokes very soon in August, 1827.
7Yonezawa p45-.
8His student Bachelier published in 1900 a paper on the dynamics of stock market in terms of numerous

but small random variations. L Bachelier, “Théorie de la spéculation.” Ann. Sci. de L’École Normal Supérier
17, 21 (1900). This is the first paper of mathematical finance.

9The fact that the equipartition of energy did not seem to hold for Brownian particles seems to have
been a big obstacle (See Editorial note p206 of Collected Papers of Albert Einstein vol.2); it was not hard to
measure the mass of the particle (about 1pg), but to measure the velocity was the problem (→3.1.5). Only
the average velocity was measured, so it was slow and the kinetic energy (that must be equal to 3kBT/2
(→2.3.5)) was grossly underestimated. Einstein was successful, because he avoided any direct discussion of
the true velocity.

10“Über die von der molekularkinetischen Theorie der Wärme geforderten Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 17, 549 (1905) [On the motion of suspended particles in
stationary fluid required by the molecular kinetic theory of heat.]
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(Stokes’ law).
First of all, according to van’t Hoff, the osmotic pressure Π of a solute is given by

Π = nkBT, (3.1.1)

where n is the number density of the suspended particles.11 If there is a concentration
gradient, there is an osmotic pressure gradient. If a stationary gradient is caused by an
external force (e.g., gravity) f (per molecule), there must be a force balance:

−∇Π = nf . (3.1.2)

Therefore, the force per molecule due to the osmotic pressure gradient must be given by

f = −kBT∇ log n. (3.1.3)

This is the consequence of (a).
On the other hand, the average molecular velocity v is given by ζv = f , where ζ is the

friction constant that may be measured or computed for a given particle. If we use Stokes’
law, ζ = 6πaη, where a is the radius of the particle, and η is the viscosity of the fluid in
which the particle is suspended.12 Therefore, the consequence of (b) is

6πaηv = f . (3.1.4)

nv must be the diffusion flux. This must be equal to the result given by Fick’s law, so

−D∇n = nv. (3.1.5)

Therefore, we conclude
D = kBT/6πaη. (3.1.6)

This equality is called the Einstein relation. This equation allows us to obtain kB or, since
the gas constant R is known, to calculate Avogadro’s constant.

3.1.4 Mean square displacement of Browning particle
Due to the bombardment of water molecules, the Brownian particle executes a zigzag motion,
and on the average it is displaced.

Einstein derived the diffusion equation for the particle and computed the mean square
displacement.

The diffusion flux j must be given by

j = −Dgrad n. (3.1.7)

Therefore, the conservation of the number of particles implies the diffusion equation:

∂n

∂t
= −divj = D∆n. (3.1.8)

Its Green’s function13 describes the displacement distribution in d-dimensional space

G(r, t) =
(

1

4πDt

)d/2
e−r2/4Dt. (3.1.9)

11Einstein actually derived this from statistical mechanics in this 1905 paper
12For a proof see Landau-Lifshitz, Fluid Dynamics.
13on the whole 3-space with the boundedness condition everywhere.
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Therefore, after t, the mean square displacement must be

〈r(t)2〉 = 2dDt. (3.1.10)

That is, if we observe the mean square displacement of a particle, then D of the ensemble
of such particles may be measured.

The left are four sample paths and their average is on the right. [Courtesy of Prof. Nishizaka
of Gakushuin Univ.]

3.1.5 Experimental verification of Einstein’s theory
Now in the 21st century, we feel Einstein’s argument is impeccable, but his theory was not
immediately accepted, because of several logical or physical gaps in his argument outlined
in 3.1.3.

The ingredient (a) is not immediately clear, because it is not obvious whether such a
large particle as a Brownian particle obeys exactly the same law as ordinary molecules (the
formula for the osmotic pressure). The ingredient (b) is also not very obvious due to an
opposite reason; we are not very sure whether the macroscopic fluid dynamics (i.e., Stokes’
law) is applicable to the average velocity of such a small particle as a Brownian particle.14

Perrin experimentally checked that these premises were right.
Then, Perrin used (3.1.10) and measured D. With the aid of (3.1.6) it is possible to

determine kB. That is, we may obtain Avogadro’s constant NA. Perrin performed such
studies and consistently obtained NA (various methods all gave ∼ 6.5× 1023). Thus, Perrin
declared that it had become difficult to deny the existence of atoms.
Remark 1. However, do not naively conclude that the observation of erratic motion ‘proves’
the existence of atoms and molecules. It only tells us that around a Brownian particle is a
pressure fluctuation. The consistency of several different measurements of Avogadro’s con-
stant is the key. ut

14The reader may suggest a molecular dynamic simulation to check this and might add that there is already
such a paper (e.g., M Vergeles, P Keblinski, K Koplik, and J R Banavar, “Stokes drag at the molecular level,”
Phys. Rev. Lett. 75, 232 (1995); this paper suppresses the fluctuation of the Brownian particle by choosing
the particle mass very large). However, since the hydrodynamic effect is long-ranged (→5.2.6), realistic
simulation requires a huge system and is not easy.
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Exercise 1. The diffusion constant of insulin is about 8.2× 10−11m2/s. What is the typical
time scale for the insulin molecule to diffuse across a typical cell? ut
Exercise 2. How about ribosomes in a cell? How long will it take for a complete ribosome
to diffuse across a eukaryotic cell or a prokaryotic cell?15 ut

3.1.6 Einstein’s remark on instantaneous velocity of Brownian particle
In 1907 Einstein remarked: for a Brownian particle its average velocity may be obtained
from its short-time displacement, but a very short time average does not make sense. An
argument very similar to the one we have seen in (3.1.10) shows that the mean displacement
during time t is proportional to

√
t. This implies that the instantaneous velocity must be

undefinable; the motion is very erratic. Perrin commented that the Brownian path is every-
where nondifferentiable. See 3.4.1 (cf. X1.4.6).
Exercise 1. A Brownian particle of radius 0.1 µm is suspended in water. Estimate the
time needed for the initial speed to decay to its 1/10. What does this tell you about the
observability of the speed of the particle? ut

3.1.7 Fundamental idea of Einstein
Einstein’s fundamental ideas dominate nonequilibrium statistical mechanics:

Microscopic fluctuations can build up (semi)macroscopic fluctuations whose dy-
namics is on the average governed by the laws of macroscopic time evolution.

Brownian motion is a semimacroscopic (mesoscopic) motion that is a result of building up
of microscopic fluctuations. Its decay is described by Stokes’ law, a macroscopic dissipative
dynamics.

This was later more clearly stated by Onsager as the regression hypothesis (→4.1.2).

3.1.8 Random walk and diffusion
Due to the pressure fluctuation caused by microscopic motion of fluid molecules, a Brow-
nian particle executes an erratic motion. We know that its velocity is hardly well-defined
(→3.1.6). However, we can observe its displacement vectors for a fixed time interval, say τ
(stroboscopic observation). Let ri be the i-th total displacement between time (i− 1)τ and
iτ . Thus, we may model the movement of a gas molecule by a random walk: for every τ the
point makes a displacement r

After N steps (after Nτ), the total displacement R is given by

R = r1 + · · ·+ rN . (3.1.11)

For a Brownian particle we know that 〈ri〉 = 0 (there is no systematic movement) and the
steps may be regarded mutually statistically independent (→1.2.2). Therefore, the mean-
square displacement is (notice that (3.1.11) is a sum of iid random variables, cf., 1.7.1)

〈R2〉 = 〈r2
1〉+ · · ·+ 〈r2

N〉 = N〈r2
1〉 = N`2, (3.1.12)

where 〈r2〉 = `2 which may be observable. Comparing this with (3.1.10) with t = Nτ , we
obtain

D = `2/2dτ. (3.1.13)

Here, d is, as before, the spatial dimensionality.
15This tells us why we eukaryotes need molecular transport devices.
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Actual observation results of a latex particle trajectory for 3.3 sec. The left every 1/8000
sec, and the right every 1/30 sec. [Courtesy of Prof Nishizaka of Gakushuin U]

3.1.9 Diffusion equation and central limit theorem
We can also apply the central limit theorem 1.7.1 to the stroboscopic observation in 3.1.8:

each component of R/
√
N`2/d = R/

√
2Dt obeys asymptotically N(0, 1) (here, D is given

by (3.1.13))

f(R, t) =
(

1

4πDt

)d/2
e−R2

/4Dt. (3.1.14)

This of course agrees with the Green’s function of the diffusion equation (→(3.1.9)).
Let us more directly arrive at the diffusion equation in a theoretical physicists’ fash-

ion. Let us consider the characteristic function (→1.4.7) ψ(k, N) of R. Let ω(k) be the
characteristic function of each step r. Then,

ψ(k, N) = ω(k)N . (3.1.15)

Assuming that N is very large, we can differentiate this as

∂

∂N
ψ(k, N) = [logω(k)]ψ(k, N). (3.1.16)

We are interested in small k, so ω(k) = 1− `2k2/2d+ · · ·, and (3.1.16) reads

∂

∂N
ψ(k, N) = − `

2

2d
k2ψ(k, N). (3.1.17)

This is just parallel to the demonstration of the central limit theorem in 1.7.1. Replacing
N with t/τ , this is the spatial Fourier transform of the diffusion equation (3.1.8):

∂

∂t
ψ(k, N) = −Dk2ψ(k, N). (3.1.18)

There is a way to make the above argument rigorous due to Lindeberg.
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3.1.10 Chapman-Kolmogorov equation, Markov property
Suppose the probability to find the random walker in a volume element centered at position
r′ at time t is known as P (r′, t)d3r′. If we know the distribution p of the next one step `,
we should be able to obtain the probability to find the walker around a specified location r
at time t+ τ . We can write

P (r, t+ τ) =
∫
d` p(`)P (r − `, t). (3.1.19)

This type of equation is called the Chapman-Kolmogorov equation. It is nothing but a con-
sistency condition among various probabilities and transition probabilities.16

The reason why we can write down the Chapman-Kolmogorov equation (3.1.19) is that
what happens next depends only on the knowledge about the present (more precisely, what
happens after time t0 is dependent only on the state of the system at t0 and not on the states
at t < t0).

17 Such a process is called a Markov process (→6.1.3).

3.1.11 From Chapman-Kolmogorov equation to diffusion equation
Since we assume |`| is small (or P does not change appreciably for this length scale), we
should be able to reduce the Chapman-Kolmogorov equation to a differential equation. To
this end it is convenient to rewrite (3.1.19) as

P (r, t+ τ) =
∫
d` p(`)e−`· ∂

∂rP (r, t). (3.1.20)

Here, we have used the formal expression that can easily be guessed from the Taylor series18

ea(d/dx)f(x) =

[
1 + a

d

dx
+

1

2!
a2 d

2

dx2
+ · · ·+ 1

n!
an

dn

dxn
+ · · ·

]
f(x), (3.1.21)

= f(x) + af ′(x) +
1

2!
a2f ′′(x) + · · ·+ 1

n!
f (n)(x) + · · · , (3.1.22)

= f(x+ a). (3.1.23)

Or, this is equivalent to the statement that the momentum is the generator of translation in
quantum mechanics.

Let us compute the average over `. We assume that p is Gaussian.19∫
d` p(`)e−`· ∂

∂r = exp

[
〈`i`j〉

2

∂

∂ri

∂

∂rj

]
= exp

[
〈`2〉
2d

∆

]
. (3.1.24)

16p governs the transition from the position at present to the position at the next time step, so it is called
the transition probability.

17Of course, the past influences the future in this case, but only through the state at time t0.
18This is only formal; or more precisely, this is used only inside the integration symbol, we may use the

theory of generalized function. For an operator A eA is defined by the operator series

eA ≡ 1 +A+A2/2! + · · ·+An/n! + · · · .

This is meaningful only when A is a bounded operator. Differential operators are unbounded, so our calcu-
lation is only formal.

19One plausibility argument for this is that this displacement is a result of numerous collisions, so the
central limit theorem (→1.7.1) suggests the Gaussianness of p.
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Therefore,

P (r, t) + τ
∂

∂t
P (r, t) + · · · = exp

[
〈`2〉
2d

∆

]
P (r, t) =

(
1 +

`2

2d
∆ + · · ·

)
P (r, t). (3.1.25)

That is, if we set D = `2/2dτ as before (→(3.1.10)), we arrive at the diffusion equation again

∂P

∂t
= D∆P. (3.1.26)

3.2 Introduction to Langevin Equation

Langevin’s original:
Langevinfs paper in translation: Am. J. Phys. 65 (11), November 1997, 1079.

3.2.1 Path space description of random phenomenon
Einstein’s original treatment of Brownian particles is to study them through averages.20 De-
scription of Brownian particles in terms of distribution functions is the next step (the next
theoretical refinement). We have already glimpsed this approach through the study of diffu-
sion equation (→3.1.8): it is an equation governing the time evolution of the spatial density
distribution of Brownian particles.21 We will further discuss this approach later (→3.3).

The reader must have thought that the ultimate description of the Brownian motion
is to study the ‘trajectory’ of each sample particle; that is, we should describe the time-
dependent phenomenon in its path space = history space.22 To this end we need a detailed
modeling of the motion of each Brownian particle.

3.2.2 Langevin introduced path space description of Brownian motion
Such a description was proposed by Langevin (1872-1946): he tried to model the equation
of motion of a Brownian particle:

m
dv

dt
= −ζv + F (t) + w(t), (3.2.1)

where v is the velocity of the particle, m is its mass, ζ is the friction constant, F is a
systematic mechanical force that may be time-dependent, and w is the noise corresponding
to the impacts of water molecules on the particle. This is Newton’s equation of motion,
but the nature of the noise force w is very different from the ordinary forces in mechanics
(→3.2.3; 3.7.6).

In modern terms Langevin introduced a stochastic differential equation (→3.4.4. 6.5)

m
dv(t, ω)

dt
= −ζv(t, ω) + F (t) + w(t, ω), (3.2.2)

20This is the ‘level 1’ in the terminology we have used in large deviation theory (→1.6.2).
21This is the ‘level 2’ in the terminology we have used in large deviation theory (→1.6.7).
22This is the ‘level 3’ in the terminology of large deviation theory.
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where ω is the stochastic parameter (see 1.4.1, 1.4.2) . For each sample (for each observa-
tion) a different ω is chosen from a probability space.

To model a Brownian particle, we need a stochastic process (→1.4.2) w(t, ω), a map
from a probability space to a function of time that should not be differentiable.

3.2.3 How to specify noise driving force
We may assume that the random force is, on the average, zero: the average 〈w〉 = 0, where
〈 〉 implies the ensemble average = average wrt the stochastic parameter ω. Therefore, at
least we must specify its fluctuation (second moments).

Let us specify its time correlation function (in this case it is a matrix)

C(t, s) = 〈w(t, ω)wT (s, ω)〉, (3.2.3)

where t ≥ s, T denotes the transposition of the vector, and the average is over ω.23 Langevin’s
idea is as follows:24 Even at the same time different components are statistically indepen-
dent; the same component (say, x-component) at different times may be correlated, but its
‘memory’ is very short. Also he assumes that the noise is stationary. That is, statistical
properties do not depend on the absolute time. Thus, C(t, s) = C(t− s, 0); We may simply
write C(t, 0) as C(t). The ultimate short memory model is defined by the following ‘white
noise,’25

C(t) ≡ 〈w(t)wT (0)〉 = 2αIδ(t). (3.2.4)

Here, α is a positive constant, and I is the 3× 3 unit matrix.26

Although we have not completed the specification of the noise,27 we do not need any
more detail, if we wish to compute only two-time correlation functions.

3.2.4 Langevin model of free Brownian particle: introduction
Let us assume that there is no external force in (3.2.1):

m
dv

dt
= −ζv + w(t). (3.2.5)

With the initial condition v(0) we can solve it as

v(t) =
1

m

∫ t

0
w(s)e−(ζ/m)(t−s)ds+ v(0)e−(ζ/m)t. (3.2.6)

If a particle is with radius a and the viscosity of the fluid medium is η, ζ = 6πaη with a
sticky particle-surface-fluid boundary condition (Stokes’ law).28

Using this result, let us compute the mean square velocity:

〈v(t) · v(t)〉 =
3α

mζ
+

(
〈v(0)2〉 − 3α

mζ

)
e−2(ζ/m)t. (3.2.7)

23If the existence of the stochastic parameter ω is obvious from the context, it will be suppressed.
24of course, in the modern notation
25It is said to be ‘white’, because the noise changes so rapidly in time that all the frequencies appear. We

will outline harmonic analysis of Langevin equations soon (→3.7.4).
26The prefactor 2 is very convenient (cf. X1.2.10). 3 is the spatial dimensionality, so in d-space I should

be the d× d unit matrix.
27Often we say we assume the Gaussian white noise. Then, the statistical specification of the noise is

complete in terms of correlation functions, because any higher order moments are completely determined by
the second moment for a Gaussian distribution.

28If we use a slippery boundary condition, it is 4πaη. See Landau-Lifshitz, Fluid Mechanics.
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Here, we have assumed that the noise and the initial velocity are statistically independent.

3.2.5 Fluctuation-dissipation relation of the second kind
We are studying a Brownian particle suspended in an equilibrium fluid. Therefore, after
a sufficiently long time 〈v2〉 must be time independent and the equipartition of energy
〈v2〉 = 3kBT/m must hold. Therefore, (3.2.7) implies α = kBTζ. That is,

〈w(t, ω)wT (s, ω)〉 = 2ζkBTIδ(t) (3.2.8)

is required. This is called a fluctuation dissipation relation of the second kind (for a general
form see X1.2.6, X2.3.15): it relates the noise amplitude and the magnitude of the damp-
ing factor through the requirement that they are compatible with equilibrium statistics: if
the damping factor is large, the random driving force must be large to maintain sufficiently
vigorous thermal motion. Notice that this relation automatically makes 〈v(t) · v(t)〉 time-
independent as it should be.

3.2.6 Langevin model of Brownian particle: summary
Let us summarize the Langevin model of a particle subject to the equilibrium noise. The
equation may be used to describe a suspended particle of radius a in a fluid of viscosity η and
temperature T subject to an external force F .29 The equation is called a Langevin equation:

m
dv

dt
= −ζv + F (t) + w(t, ω), (3.2.9)

where ζ = 6πηa and the noise is a stationary Gaussian white noise:

〈w(t, ω)〉 = 0, (3.2.10)

〈w(t, ω)w(0, ω)T 〉 = 2ζkBTIδ(t). (3.2.11)

The last equation is the fluctuation dissipation relation of the second kind, and is required to
maintain the Maxwell distribution of the particle velocity. In classical statistical mechanics,
the velocity distribution is always the same independent of the external force. Therefore,
our consideration for a free particle in 3.2.3 should work.

3.2.7 Equilibrium time correlation function of Brownian velocity
Even in equilibrium there are fluctuations that are explicitly time dependent. The study of
time evolution of various quantities in equilibrium is an important topic of ‘nonequilibrium’
statistical mechanics (→Onsager’s principle 3.2.10).

Since we know v(t, ω) for any initial condition (and for any noise sample specified by
the stochastic parameter ω),30 we can compute the equilibrium time correlation function of
the velocity of a free (i.e., F = 0) Brownian particle: for t > 0

〈v(t, ω)vT (0, ω)〉 = 〈v(0, ω)vT (0, ω)〉e−(ζ/m)t =
kBT

m
Ie−(ζ/m)t. (3.2.12)

29Here, v also depends on ω, but this dependence is not explicitly written.
30Here, the stochastic parameter ω only specifies a noise sample, but does not specify the initial condition

for the velocity randomly sampled from the equilibrium ensemble. Mathematically, v is a sample path,
so it may be better to let ω specify both the stochastic objects, the noise and the initial velocity. Here,
mathematically-oriented readers may interpret the notation as follows. We could introduce two stochastic
parameters for these two stochastic = random objects to make the situation explicit, but the stochastic
parameter for the initial condition is suppressed, since v(0) appears explicitly.
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Here, as above, I is the 3 × 3 unit matrix, and T denotes the transposition of vectors. In
obtaining this we have used the statistical independence of noise and the initial velocity, and
have assumed that the initial velocity distribution is Maxwellian (→2.3.2).

Equilibrium dynamics should be time reversal symmetric (cf. 3.7.4, X2.3.2), so for all
t, the Langevin model of the Brownian dynamics tells us that

〈v(t, ω)vT (0, ω)〉 =
kBT

m
Ie−(ζ/m)|t|. (3.2.13)

Notice that this is not differentiable at t = 0. We will discuss its implication later (→3.3.3),
but the reader should start thinking about it (cf., 3.1.6). Here, it is simply pointed out
that the inertia should make the time correlation differentiable at t = 0. Thus, the Langevin
equation should not be reliable for a very short time scale.
Discussion 1. Experimentally, we can obtain some information about dynamics from the
time correlation. Read the following paper and summarize the content:
M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton,
“Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the
Hidden Time Structure,” Biophys. J, 88, L33-L36 (2005). ut

3.2.8 Fluctuation-dissipation relation of the first kind: a prototype
Now, let us apply an external force F as described by (3.2.1). We use the noise satisfying
the fluctuation-dissipation relation of the second kind (3.2.8).

It is easy to solve the equation as

v(t, ω) =
1

m

∫ t

0
(F (s) + w(s, ω)) e−(ζ/m)(t−s)ds+ v(0)e−(ζ/m)t. (3.2.14)

Its noise ensemble average (this is the average over the stochastic parameter ω) reads

〈v(t, ω)〉 =
1

m

∫ t

0
F (s)e−(ζ/m)(t−s)ds+ v(0)e−(ζ/m)t. (3.2.15)

Furthermore, if we average over the initial condition that is sampled from an equilibrium
ensemble, we obtain the response of the velocity of the Brownian particle in equilibrium:

〈v(t, ω)〉 =
1

m

∫ t

0
F (s)e−(ζ/m)(t−s)ds. (3.2.16)

This implies that the response has the following form:

〈v(t, ω)〉 =
∫ t

0
φ(t− s)F (s)ds, (3.2.17)

where φ is called the response function (in our case it is a 3×3 diagonal matrix) and is given
by (cf. (3.2.12), X2.2.1)

φ(t) = 〈v(t, ω)vT (0)〉/kBT. (3.2.18)

Here, the average is over ω (thermal noise) and the initial velocity v(0). Such a relation
expressing the response function in terms of the correlation function of the quantity under
consideration is called the fluctuation-dissipation relation of the first kind (→X2.3.11).

The reader must have thought that she had already encountered an analogous relation
in equilibrium (fluctuation-response relation →2.8.2).
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3.2.9 Prototype of Green-Kubo relation
Let us study the diffusion constant D of the Brownian particle. It is defined by (see 3.1.4,
3.1.8)31

D = lim
t→∞
〈r(t)2〉/6t, (3.2.19)

where r(t) is the position of the particle at time t that started from the origin at t = 0.
Since r(t) =

∫ t
0 v(s)ds,

D = lim
t→∞

1

6t

∫ t

0
ds
∫ t

0
ds′〈v(s) · v(s′)〉. (3.2.20)

With the aid of l’Hospital’s rule,32

D =
1

3

∫ ∞

0
〈v(s) · v(0)〉ds. (3.2.21)

That is, transport coefficients can be computed by the time integral of correlation functions.
Such a relation is called the Green-Kubo relation (→4.1.12, 4.1.14, X2.3.12). Note an
intimate relation between the response function and the transport coefficient (3.2.18).
Exercise 1. Compute D for the Brownian particle of radius a in a viscous fluid of viscosity
η with the aid of the Green-Kubo relation. ut
Discussion 1. The self-diffusion constant of a liquid is not easy to measure, but viscosity
is much easier to measure. If Einstein’s relation (3.1.6) holds for a single atom or molecule,
we could easily obtain the diffusion constant. How reliable is the result? Study noble gas
liquids and simple organic liquids (e.g., benzene, methane, etc.). ut
Discussion 2. In Discussion 1 try the slippery fluid velocity boundary condition. For argon
it is known that the relation with the slippery boundary condition is quantitative. In any
case, as the reader has seen there, the order of the diffusion constant is roughly correct. A
possible argument explaining this success is dimensional analysis: the relevant length scale
is only a, so if we perform dimensional analysis taking into account kBT , η, and the general
belief that the numerical constant appearing in the dimensional analytic result is of order
unity, we must conclude that the Einstein relation is correct even for atoms. Is this a sound
argument? ut

3.2.10 Large deviation, Onsager’s principle, and Langevin equation
This entry is largely a repetition of 1.6.15. In 3.2.7, it is pointed out that the Langevin
equation is not reliable for short times. This implies that the microscopic mechanics time
scale and the time scale tM we observe the Brownian motion must be well separated, and
that the time scale of the Langevin equation must be the intermediate time scale. Let us
write this time scale as τ .

Suppose dx/dt is the true derivative (in the sense used in mechanics). Then, it fluctuates
violently. However, if we average it for τ ,

∆x

∆t
≡ 1

τ

∫ τ

0
ds
dx(t+ s)

dt
=
x(t+ τ)− x(t)

τ
(3.2.22)

fluctuates much less violently. Its expectation value is, however, not constant at the scale
of tM , and obeys a certain macroscopic law of evolution (regression principle →3.1.7 and

31Here, 6 is 2× d.
32We must assume that the system is infinitely large. This is an example of noncommutativity of space

and time infinity limits. That is, macroscopic limit is a singular limit. Cf. X2.3.7.
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4.1.2) on the average: 〈
∆x

∆t

〉
= f(x) in the mean. (3.2.23)

Here, 〈 〉 is the equilibrium ensemble average.33 Notice that for us macroscopic observers the
mesoscopic time scale τ may be interpreted as infinitesimal dt, so we may write ∆x/∆t =
dx/dt in Langevin equations.34

For a Brownian particle, the expectation value (the equilibrium ensemble average) of
dv/dt averaged over τ , that is, the ensemble average of (1/τ)(v(t+ τ)− v(t)), is −ζv(t).

We assume that the large deviation principle (→1.6.2) holds for the short time average
introduced just above (denoted by an overline):

P (dx/dt ∼ ẋ|x(t)) ' e−τI(ẋ|x(t)), (3.2.24)

where x(t) is written after | to denote explicitly that the noise is studied for a given ‘macro-
scopic state,’ and I is the rate function, whose form we will discuss later. Here, the x(t)
dependence of the rate function I is explicitly denoted with the added x(t) after the vertical
line; the rate function is under the condition that the initial condition is x(t). Let us call
this Onsager’s principle.35 Roughly, we may say (for a more detail →X1.1.3):

Onsager’s Principle: Large deviation principle holds for the time average over
the mesoscopic time scale.

We know the value ẋ(t) that minimizes I (that is, I = 0) must be the most probable
value we observe. This should be identical with the macroscopically observable result. This
is Onsager’s regression hypothesis. Thus, it may be better to call the following slightly
restricted version as Onsager’s principle:

Onsager’s Principle (more conventional): Large deviation principle holds for the
time average over the mesoscopic time scale. The rate function vanishes for the
macroscopically expected result.

The rate function I is convex and vanishes for the most probable value (expectation value)
(→1.6.2). Therefore, I must vanish if and only if the phenomenological law holds. This
is the above restricted version. I is usually differentiable, so we may assume that near the
origin I has a quadratic form. Therefore, for the velocity of a Brownian particle in a viscous
medium, we can write

I(v̇(t)|v(t)) =
1

4ζkBT
(v̇ + ζv)2. (3.2.25)

This rate function is compatible with the Langevin equation. That is, the Langevin equation
is an expression of Onsager’s principle in the Gaussian approximation. Here, the overall
coefficient of the quadratic term is chosen to be compatible with what we already know (the
fluctuation dissipation relation of the second kind), we will discuss how to determine this

33under the condition that x(t) is specified; precisely speaking, short time average of x(t) is specified.
34Do not confuse this notation and the ‘true’ time derivative in the integrand of (3.2.22).
35Needless to say, the naming is anachronistic, because large deviation theory being used in these lecture

notes is much newer than Onsager. Hashitsume named the Onsager’s original proposal the Onsager’s prin-
ciple after correcting it (→4.1.19); the large deviation theoretical form given here is due to the lecturer,
because he believes that if Onsager knew large deviation theory, he should have written down this form as
his fundamental proposal.
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within Onsager’s principle later (→4.1.18).
Since ẋ(t)τ = x(t+ τ)− x(t), P (ẋ(t)|x(t)) = P (x(t+ τ)|x(t)). Therefore, (3.2.24) may

be interpreted as the transition probability of a Markov process:36

P (x(t+ τ)|x(t)) ' e−τI(ẋ(t)|x(t)). (3.2.26)

From this we can define a path integral (→4.1.16) that describes the solution to the Fokker-
Planck equation.37

3.3 Langevin Equation: relation to mechanics

3.3.1 How realistic is Langevin model?
What is −ζv in the Langevin equation (→3.2.2)? Is the v really instantaneous velocity in
the genuine sense of the word in mechanics? Its square average satisfies the equipartition of
energy,38 so it looks as a microscopic true velocity. However, the friction constant ζ which is
usually obtained as ζ = 6πaη is not applicable to such an instantaneous velocity (cf. 3.1.5).
This implies that there is a certain inconsistency (or at least a mismatch) in the Langevin
equation. This is saved by the ‘artificial choice’ of the noise amplitude according to the
fluctuation dissipation relation (→3.2.5). Therefore, the equation should not be trusted for
very short time scales.

We have noticed that the time correlation function of the velocity at the origin is not
differentiable (→3.2.7); there is a cusp as |t| there. Since velocity is differentiable due to
inertia, this is inconsistent with (classical) mechanics.

Therefore, again we reach the same conclusion: the Langevin model of the Brownian
motion must not be trusted for very short times (a time scale much shorter than the macro-
scopic scale).

This feature is very clear from the large deviation interpretation of the Langevin equa-
tion (→3.2.10); the Langevin equation is a result of short-time average of the microscopic
dynamics.

3.3.2 Realistic energy consideration is possible with Langevin equation
It is stressed that the Langevin equation is reliable only in the time scale longer than the
noise memory time scale in 3.3.1. However, beyond the memory time scale of the noise the
Langevin equation or, more generally, the models with stochastic noises could be sufficiently
reliable.

(3.2.1) is a Newton’s equation of motion, so the RHS must be the force acting on the
Brownian particle. F is a systematic force exerted by an external agent. Then, the remaining
force

FB ≡ −ζv + w (3.3.1)

must be the force due to the interaction of the particle and its surrounding environment
(fluid).

36See 6.2.1; we will discuss this in a much more detailed fashion in Chapter 6.
37The reader should have recalled the relation between the Schrödinger equation and the Feynman path

integral. Formally, they are equivalent.
38This is NOT a consequence of the equation, but is imposed. However, we must recognize that the

Langevin equation can accommodate this requirement.
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What is the work done by the force FB on the Brownian particle? The resultant energy
flow must be heat: the work done by FB may be consistently interpreted as heat imported
to the particle from the surrounding fluid.39 This is the theory of stochastic energetics due
to Sekimoto (→X1.6).40 With this framework we can discuss the second law of thermody-
namics and efficiency of thermal ratchets, etc.

3.3.3 Mechanics and stochastic processes
The reader may have complaints about the nature of the Langevin equation, because it is
written down apparently independent of mechanics, although it is said that it is a Newton’s
equation of motion. As she has worried, it is even inconsistent with mechanics (→3.3.1).
We certainly have the definite microscopic mechanical picture of a Brownian particle and its
surrounding liquid medium. What is the relation between this true (many-body) mechanics
and the Langevin equation that contradicts mechanics?

In this section one strategy (the ‘projection strategy’) is outlined. The form of the
Langevin equation can be derived (or the equation of motion can be recast in this form;
Mori theory →3.3.6). The basic idea is to single out the slow (or systematic) coordinates
describing the center of mass of the Brownian particle and derive a closed equation for them
with the aid of the formal solution to the equation of motion for the remaining variables
(Nakajima-Zwanzig projection method→3.3.4). After this formal reduction we introduce an
approximation that the time correlation function of the noise decays to zero instantaneously
(white noise approximation or Markovian approximation) to reach the Langevin equation
introduced in 3.2.2. Thus, we see that the result may be reliable for longer time scales, but
not so for microscopic time scales as expected.

Whenever we wish to derive a stochastic process from mechanics, we need some extra
probabilistic assumptions (→X1.2.10; recall that even the Boltzmann equation needed such
an assumption→2.4.11, 2.7.10). However, we cannot freely assume an arbitrary stochastic
process. In equilibrium the most important requirement is the consistency with the equi-
librium distribution: the solution to the Langevin equation must be compatible with the
equilibrium distribution after a sufficiently long time. We have just seen such a typical ar-
gument (fluctuation-dissipation relation →3.2.5).

The lesson we must learn is that a reasonable stochastic model can be constructed only
when we know the equilibrium (or more generally, steady state) distribution, because we
have no argument based solely on mechanics to model the noise.

This implies that if we are away from equilibrium, we have no firm basis for any stochas-
tic model that is guaranteed by mechanics. No stochastic model can be used to answer
fundamental questions of nonequilibrium statistical mechanics.

3.3.4 Idea of projection operator
We have learned that the essence of the Brownian motion is the possibility of separating
two time scales, microscopic and macroscopic, clearly. Therefore, if we can remove rapid
fluctuating motions from the true microscopic mechanical equation of motion of the system
consisting of the Brownian particle and the surrounding water molecules, then the remaining
dynamics would describe the systematic part (long time and large length scale motion) of
the Brownian particle.

A natural idea is to project out the noise part of dynamics to obtain the systematic
long time global dynamic.41 This can be formally accomplished by applying a projection P

39As usual, the sign convention is: importing is positive.
40K. Sekimoto, Stochastic Energetics (Iwanami, Tokyo, 2004) [in Japanese].
41The idea of projection was introduced by Nakajima and (later) by Zwanzig and was utilized by Zwanzig

and Mori (→X1.2.6) to derive mesoscopic dynamic equations.
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to the equation of motion. P is a linear operator acting on a linear space of functions or
vectors such that

PP = P. (3.3.2)

If P is a projection, then Q ≡ 1− P is also a projection. Of course, PQ = 0.
Notice that local time averaging is a projection.

3.3.5 Kawasaki identity
We can write the equation of motion as

d

dt
A = iLA (3.3.3)

for both classical and quantum mechanics. L is often called the Liouvillian (Liouville opera-
tor). Here, A may be a phase function (classically) or an operator (quantum-mechanically).
Exercise 1. What is iL? (cf., 2.7.1,2.7.12) ut
Let P be a time-independent projection operator. Then, the following identity called the
Kawasaki identity42 holds:

d

dt
eiLt = eiLtPiL+

∫ t

0
ds eiL(t−s)PiLeQiLsQiL+ eQiLtQiL. (3.3.4)

where Q = 1− P .
[Demo] The equation of motion for the evolution operator (propagator) is

d

dt
eiLt = eiLtPiL+ eiLtQiL. (3.3.5)

We wish to separate the ‘noise’ part eQiLtQiL:

d

dt
eiLt = eiLtPiL+ (eiLt − eQiLt)QiL+ eQiLtQiL (3.3.6)

Now, we use the identity:

eiLt − eQiLt =
∫ t

0
ds eiL(t−s)PiLeQiLs, (3.3.7)

and we get (3.3.4).
The easiest way to demonstrate (3.3.7) is to use Laplace transformation: LeiLt = (s −

iL)−1. Then, (3.3.7) is nothing but the so-called resolvent identity:

(s− A)−1 − (s−B)−1 = (s− A)−1(A−B)(s−B)−1. (3.3.8)

Exercise 2. Demonstrate the above identity (note that A and B may not commute). ut
By choosing an appropriate projection P , the Kawasaki identity becomes various known

useful equations.43

42K. Kawasaki, J. Phys. A 6, 1289 (1973).
43Here, the identity is introduced abruptly, but a more natural derivation may be found in Chapter X1.
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3.3.6 Mori’s generalized Langevin equation
Mori44 cast Heisenberg’s equation of motion (3.3.3) to quantum Langevin equation.

First, the projection operator P must be chosen physically correctly. Because (→4.3.5)

e−β(H−xjXj) = e−βH
[
1 +

∫ β

0
ds esHxje

−sHXj + · · ·
]
, (3.3.9)

the effect of perturbation can be written as

〈δxi〉 =

〈∫ β

0
ds esHδxje

−sHδxi

〉
Xj. (3.3.10)

Thus, it is natural to introduce the following ‘scalar product’ symbol (called the canonical
correlation)45

〈A;B〉 = β−1
∫ β

0
ds Tr(ρee

sHAe−sHB). (3.3.11)

Here, ρe is the equilibrium distribution (density operator).
Let us define P as

PB = A〈A;B〉/〈A;A〉. (3.3.12)

This may be expressed more conveniently as

P |B〉 = |A〉〈A|B〉/〈A|A〉 (3.3.13)

with the interpretation of the bracket product as the canonical correlation.
Using this projection the Kawasaki identity reads Mori’s generalized Langevin equation

d

dt
|A(t)〉 = iΩ|A(t)〉+

∫ t

0
dsKAA(t− s)|A(t)〉+ |f(t)〉, (3.3.14)

where
|f(t)〉 = eitQLQQiL|A〉, (3.3.15)

which is supposedly the noise term, and

KAA(t) = 〈f(0)|f(t)〉/〈A|A〉, iΩ = 〈A|iL|A〉/〈A|A〉. (3.3.16)

The iΩ term represents the reversible term. The first relation is the fluctuation-dissipation
relation of the second kind (→3.2.5) generalized to the case with memory.

3.3.7 Markov approximation of Mori’s Langevin equation
(3.3.14) or

d

dt
A(t) = iΩA(t) +

∫ t

0
dsKAA(t− s)A(t) + f(t), (3.3.17)

has a memory, so dA/dt is not determined by A(t) (and f(t)) alone. That is, the equation
does not describe a Markovian stochastic process. Actually, the equation is obtained by a

44H. Mori, Prog. Theor. Phys. 33, 423 (1965).
45That this correlation defines a scalar product may be seen from the general properties summarized in

X2.5.7.
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formal transformation of the equation of motion, so it is still a mechanical equation and has
no direction of time. By discarding the memory, (3.3.17) becomes a (Markovian) stochastic
equation. This procedure is called the Markov approximation. The result reads

d

dt
A(t) = iΩA(t)− ζAA(t) + f(t), (3.3.18)

where

ζA =
∫ ∞

0
KAA(t)dt (3.3.19)

and
〈f(t)f(0)〉 = 2kBTζAδ(t). (3.3.20)

Notice that discarding short=time detailed information is crucial to derive stochastic
equations.

3.3.8 Limitations of Mori’s Langevin equation and projection onto space spanned
by gross variables
Mori’s Langevin equation projects the motion onto the space spanned by |A〉 (i.e., by an
observable A). Therefore, e.g., A2, which is not expressible as a constant multiple of A, is
treated as nonsystematic noise. However, A2 surely contains a systematic part that does not
average out even if A averages out. Therefore, Mori’s Langevin equation (3.3.14) is reliable
only when |A| � A2.

If we really wish to study a nonlinear system with noise, we must project the dynamics
onto the space spanned by all the functions of macrovariables = gross variables A. Let us
discuss the classical cases only.

For the linear case the projection operator we use should reduce to Mori’s choice (its
classical version). Therefore, as its natural extension we introduce the set of (real) orthonor-
mal polynomials φn(A) of gross variables A (φn(A) are multivariate polynomials of A) such
that ∫

dΓρe(Γ)φn(A(Γ))φm(A(Γ)) = δnm, (3.3.21)

where ρe is the equilibrium distribution function on the phase space. The gross variables are
considered as functions of microscopic variables Γ in the calculation of projection; A without
explicit specification of Γ-dependence means gross variables as macroscopic variables. The
projection operator P is defined as

PX =
∑
n

φn(A)
∫
dΓρe(Γ)φn(A(Γ))X(Γ) =

∑
n

φn(A)〈φn(A(Γ))X(Γ)〉, (3.3.22)

where 〈 〉 is the equilibrium average. On the right-hand side X is expressed in terms of
mechanical (microscopic) variables, but after projection PX is a function of A.

3.3.9 Zwanzig’s nonlinear Langevin equation46

We use the projection introduced in 3.3.8 in the Kawasaki identity 3.3.5. The result, called
Zwanzig’s nonlinear Langevin equation, reads (for a derivation, see X1.3.5)

d

dt
Aj = vj(A(t)) +

∫ t

0
ds

1

Pe(A(t− s))
∑
k

∂

∂Ak(t− s)
[Kkj(s; A(t− s))Pe(A(t− s))] + fj(t),

(3.3.23)

46R Zwanzig, Memory effects in irreversible thermodynamics, Phys. Rev. 124, 983-992 (1961).
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where

Pe(A) =
∫
dΓδ(A−A(Γ))ρe(Γ). (3.3.24)

and

vj(A) = 〈iLAj|A〉, (3.3.25)

Kij(t; A) = 〈fifj(t)|A〉, (3.3.26)

and the conditional average is defined as

〈B|A〉 = Pe(A)−1
∫
δ(A−A(Γ))B(Γ)ρedΓ. (3.3.27)

vj is called the streaming term and Kij is called the memory kernel. (3.3.26) is the
fluctuation dissipation relation of the second kind (for a prototype see 3.2.5). Very short
time dynamics is governed by the streaming term, and is the instantaneous time-reversal
part of dynamics. The streaming term has an important property that it does not affect the
equilibrium distribution (→X1.3.6, cf. X1.11.6).

3.3.10 Markov approximation of Zwanzig’s nonlinear Langevin equation
If the noise is close to the white noise, we may use the ‘Markov approximation’47 (see
cautionary remarks in X1.3.9). If we write the equilibrium distribution as Pe(A) ∝ e−βF ,
where F is the free energy, the nonlinear Langevin equation reads, ignoring the explicit
A-dependence of the Onsager coefficients, (3.3.23) reads

d

dt
Ai = vi(A)−

∑
j

Lij
∂F

∂Aj
+ fi, (3.3.28)

〈fi(0)fj(t)〉 = 2LijkBTδ(t). (3.3.29)

This is the starting point of the study of critical dynamics (mode coupling theory initiated
by Fixman and fully developed by Kawasaki →X1.3.8).

3.4 Brownian Path and Stochastic Differential Equa-

tion

3.4.1 How zigzag is Brownian path?
As we have seen, Perrin said that the Brownian path is nowhere differentiable, and Einstein
remarked that the instantaneous velocity of a Brownian particle is not definable (→3.1.5).
However, since a Brownian particle is a classical object, if we magnify the time scale suffi-
ciently, we should observe inertial effects. Then, the trajectory must be twice differentiable
with respect to time.

The point is that there are two time scales: tm the microscopic time scale of the
molecules, and tM the time resolution of our macroscopic observation (such as done by

47dA/dt is governed by the state of the system at time t; the effect of the past is only through the state
at time t. There is no memory.
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Perrin). For t ∼ tm we should see full Newtonian mechanics behavior, but for t > tM we see
what Perrin saw. Usually, tM/tm � 1, so mathematically perhaps it is better to idealize the
situation by taking the tm → 0 limit.

This implies that we ignore the short-time inertial effect, and as we have already ob-
served, the time correlation function of velocity loses differentiability at t = 0 (→3.2.7).
In this limit the noise is accurately modeled by a white noise (→3.7.3). The velocity v
of a particle obeying classical mechanics (i.e., no damping ζ = 0 in (3.5.8)) driven by this
white noise is the mathematical Brownian motion (Wiener process →X1.4.4; an intuitive
introduction is in 3.4.2).

How rugged is the graph of, say, vx(t) for this mathematical Brownian motion? As Per-
rin said it is nowhere differentiable with probability one (→X1.4.6). An interesting property
is: if the reader lands on this graph, ‘she will surely land on a peak’. That is, for any t we
can take two times t1 and t2 on both sides of t : t1 < t < t2 within any positive ε (i.e.,
t− t1 < ε, t2 − t < ε) such that vx(t1) < vx(t) > vx(t2) (with probability one).48

A Brownian path is almost surely nondifferentiable and its Hausdorff dimension is 2.

3.4.2 Intuitive introduction to Wiener process
Let us start with the Langevin equation summarized in 3.2.6 without any systematic force.
We can write it as

m

ζ

d2r

dt2
+
dr

dt
= ν(t), (3.4.1)

where ν is a Gaussian stationary noise with 〈ν〉 = 0 and 〈ν(t)νT 〉 = (2kBT/ζ)δ(t). If the
mass is small and the viscosity is large enough, we may ignore the inertial effect.49 That is,
we have only to study

dr

dt
= ν. (3.4.2)

This is a model of what Brown and Perrin observed (see an illustration in 3.1.8); they saw
only the position of the particle at long time scales. Notice that without inertia the velocity
need not be differentiable. Solving this equation is easy:

r(t) = r(0) +
∫ t

0
dsν(s). (3.4.3)

From this, we obtain (let us assume that the initial position is the origin)

〈r(t)2〉 =
∫ t

0
ds
∫ t

0
ds′ 〈ν(s) · ν(s′)〉 =

2kBT

ζ
d t = 2dDt. (3.4.4)

Here, D = kBT/ζ (Einstein’s relation →3.1.3 with ζ = 6πaη). Einstein concluded from
this that the Brownian trajectory was not differentiable (its velocity was not well defined)
(→3.1.6). Thus, the differential equation (3.4.2) is self-contradictory.

To clarify the problem further, let us consider B(t) formally introduced as

dB(t)

dt
= w(t), (3.4.5)

48Adelman, Israel J. Math. 50, 189 (1985) is a good summary; the statement is due to Dvoretsky, Erdös
and Kakutani.

49If you are interested in the time scale beyond m/ζ, this can be justified.
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where w is a Gaussian noise50 with mean zero and

〈w(t)w(s)〉 = δ(t− s). (3.4.6)

We already know that (3.4.5) does not make sense. How about, then

B(t) =
∫ t

0
w(s)ds ? (3.4.7)

We can formally calculate 〈B(t)〉 = 0 and

〈B(t)B(s)〉 = min{t, s}. (3.4.8)

We can define a Gaussian process B(t) by these expectation values. This is called the Wiener
process (→X1.5.7).

We will see later that w may be understood as white noise. Intuitively,

w(t) =
∑
ω

cωe
iωt, (3.4.9)

where cω obeys N(0, 1) and statistically independent for different ω’s.51 We have indeed

〈w(t)w(s)〉 =
∑
ω

∑
ω′
〈cwcω′〉eiωt+iω

′s =
∑
ω

e−iω(t−s) ∝ δ(t− s). (3.4.10)

Thus, intuitively, the Wiener process B(t) is an integral of white noise; it is continuous
but not differentiable. As already mentioned in 3.4.1 the sample path is extremely rugged.

3.4.3 How to interpret Langevin equation for velocity
We have seen that (3.4.2) is not well defined but its formal integrated version can make sense.
Then, we should follow the same idea to make sense of the Langevin equation summarized
in 3.2.6:

v(t) = v(0)e−t/ζ +
∫ t

0
e−(t−s)/ζ

√
2kBTζdB(s). (3.4.11)

Here, in the last term a formal calculation∫ t

0
e−(t−s)/ζw(s)ds =

∫ t

0
e−(t−s)/ζdB(s). (3.4.12)

is used. B is a 3D version of the Wiener process.52 It is not hard to show that this is
mathematically respectable.53

Our trouble with w and B is due to its white-noise limit; this causes extremely rapid
violent changes in functions, and we must stretch the use of the ordinary calculus as we have
managed up to this point. We could do this because the noise amplitude is constant. If not,
we are in real trouble; if we wish to take the white noise limit before solving the differential
equations, we have a severe difficulty.

50Precisely speaking, that A(t) is a Gaussian process means that for any countably many time points {tk},
the simultaneous distribution of the sample values {A(tk)}Nk=1 is a N -dimensional Gaussian distribution.

51Here, cw is a complex number, so 〈cwcω′〉 = δω,−ω′ .
52If we have 1D Wiener process, then we prepare three statistically independent 1D Wiener processes and

regard them as components of the vector B(t).
53For

∫
f(t)dg(t) to exist for any continuous function f g must be of bounded variation. Unfortunately,

B(t) is not of bounded variation, but if f is of bounded variation, we may formally use an integration by
parts to write

∫ t

0
f(s)dg(s) = f(t)g(t)− f(0)g(0)−

∫ t

0
g(s)df(s) that makes sense.
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3.4.4 What is stochastic or Itô calculus?
As we have discussed in 3.4.3 a mathematically respectable interpretation of the Langevin
equation (3.2.1) (here we pay attention only to one component) is in terms of a stochastic
differential equation (the stochastic parameter ω is suppressed)

dv = −ζvdt+
√

2kBTζdB, (3.4.13)

that is interpreted as a short-hand notation of the following integral equation:

v(t) = v(0)− ζ
∫ t

0
ds v(s) +

√
2kBTζB(t), (3.4.14)

where B is the Wiener process.
Mathematically, (3.4.13) is an example of the general stochastic differential equation

(SDE)
dx = f(x, t)dt+ σ(x, t)dB, (3.4.15)

that is understood as a short-hand notation of the following integral equation:

x(t) = x(0) +
∫ t

0
f(x(s), s)ds+

∫ t

0
σ(x(s), s)dB(s). (3.4.16)

The problem now is that σ is no more constant, and contains nondifferentiable x, so the
(formal) Riemann-Stieltjes integral in (3.4.16) (the last term) does not make sense. If the
noise is physical (without strong high frequency components), then we may use the ordinary
calculus to compute (3.4.16), but we know memory terms are the source of nuisance, so we
wish to take the memoryless white-noise limit before any calculation. This simplification
cannot be obtained for free.

The minimum price we must pay may be stochastic calculus. It is defined so that the
above diagram becomes commutative. The last integral in (3.4.16) with respect to B is
defined as an Itô integral. That is, a new calculus (Itô calculus→X1.5.6) is needed.54 How-
ever, practically (at least for physicists and other practitioners), its intuitive understanding
and mastering one or two calculation rules must be enough (i.e., the rest of this entry, 3.4.5,
3.4.6 and a summary 3.4.7).

The most notable feature of (3.4.15) is that the noise increment dB is statistically in-
dependent of x up to time t (i.e, dB is non-anticipating). The physical noise with finite
correlation time cannot have this property, so the calculation of the cross terms such as
f(x)dB is a source of nuisance; its effect remains even after the white noise limit.55 With
the Itô calculus, however, this problem can be avoided completely.

54The reason is, as already noted in other entries, that this formal Stieltjes integral is not uniquely defined
in the usual Riemann-Stieltjes fashion, because B is not of bounded variation.

55This is a big reason why the white noise limit and the calculus do not commute.
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3.4.5 Itô’s lemma, a preview
Perhaps, the most conspicuous feature of Itô calculus is the following rule (Itô’s lemma
→X1.5.10). Let x be a solution to (3.4.15) and u a smooth function of x and t. Then,56

du(x, t) =
∂u

∂t
dt+

∂u

∂x
dx+

1

2

∂2u

∂x2
dx2 (3.4.17)

with the interpretation dx2 = σ2dt (i.e. dB2 = dt). That is, (3.4.17) is the following
stochastic differential equation:

du(x, t) =

(
∂u

∂t
+
∂u

∂x
f(x, t) +

1

2
σ2∂

2u

∂x2

)
dt+

∂u

∂x
σ(x, t)dB. (3.4.18)

This is physically very appealing, because the small displacement dx is of order
√
dt as Ein-

stein pointed out (→3.1.6).

3.4.6 Physical and mathematical Langevin equations
As we have discussed, physical noises are all of bounded variation before idealization. Math-
ematicians write physical Langevin equations with physical noise as

dx = a(x, t)dt+ σ(x, t) ◦ dB, (3.4.19)

where ◦ is used to denote clearly that the term is NOT interpreted in Itô’s sense, but in the
usual calculus sense. Since Itô’s lemma tells us

d
∫ B(t)

0
σ(x)dx = σ(B(t))dB(t) +

1

2

dσ

dx

∣∣∣∣∣
x=B

dt, (3.4.20)

and since the LHS can be calculated as the ordinary calculus formula, the ◦ product must
be interpreted as

σ(B(t)) ◦ dB = σ(B(t))dB(t) +
1

2
σ′(B(t))dt. (3.4.21)

This implies that, if we wish to apply Itô calculus to (3.4.19), we must interpret (→X1.5.13)

σ(x, t) ◦ dB = σ(x, t)dB +
1

2

∂σ

∂x
dxdB = σ(x, t)dB +

1

2
σ
∂σ

∂x
dt. (3.4.22)

Thus, the physical Langevin equation (3.4.19) with the noise term dependent on x must be
mathematically interpreted as

dx =

(
a(x, t) +

1

2
σ
∂σ

∂x

)
dt+ σ(x, t)dB. (3.4.23)

The relation between (3.4.19) and (3.4.23) is called Wong-Zakai’s theorem.

56The equality is in the almost sure sense. That is, with probability 1.
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3.4.7 Practical summary of Itô calculus
Let

dx = f(x, t)dt+ σ(x, t)dB. (3.4.24)

Then,
(1) dB is statistically independent of x(t) (consequently, independent of σ(x(t), t)),
and
(2) when you calculate du(x, t), regard dx ∼

√
dt57 and truncate at O[dt]. Then, replace

(dx)2 with σ2dt.
To apply Itô calculus, the Langevin equation must be rewritten as a proper stochastic

differential equation. See 3.4.6 or X1.5.13.
Some examples follow:

d(x2) = 2xdx+ (dx)2 = (2xf + σ2)dt+ 2xσdB. (3.4.25)

This implies that d〈x2〉/dt = 〈2xf + σ2〉.

deB(t)−t/2 = eB(t)−t/2
(
dB(t)− 1

2
dt
)

+
1

2
eB(t)−t/2dB(t)2 = eB(t)−t/2dB(t). (3.4.26)

This implies
〈
eB(t)−t/2

〉
= 1 or

〈
eB(t)

〉
= et/2. This is, of course, directly obvious from the

definition of B(t).

3.4.8 Simple example of Wong-Zakai’s theorem
Let us consider an oscillator whose frequency fluctuates: we introduce z = x + iy, where
(x, y) is the (appropriately normalized) canonical coordinates. The equation of motion may
be modeled (physically) as

dz

dt
= i

(
1 +

√
2ζw

)
z. (3.4.27)

This is supposedly a physical model, so should be interpreted as a physical Langevin equation:

dz = izdt+ i
√

2ζz ◦ dB. (3.4.28)

With the aid of Wong-Zakai’s theorem (→3.4.6, or X1.5.13), we have

dz = (i− ζ)zdt+ i
√

2ζzdB. (3.4.29)

Therefore,
d〈z〉 = (i− ζ)〈z〉dt. (3.4.30)

Notice that the average decays to zero. Its implication to irreversibility will be discussed in
3.5.12.
Exercise 1. Show that d|z|2 = 0. ut

57Actually, it may be written as
√
dtχ, where χ obeys N(0, 1) and is statistically independent from any

time increment at other instant.

134



3.4.9 Numerical computation of Langevin equations: simplest scheme
If (3.2.1) is not solvable analytically as is often the case with a force F , we need a numerical
scheme to solve this equation. A modification of the simple Euler scheme works that is also
helpful in building our intuition. For simplicity, we consider the following one dimensional
equation

dx

dt
= −γx+ φ(x) + w. (3.4.31)

Integrating this from t to t+ δt, we obtain

x(t+ δt)− x(t) = −γ
∫ δt

0
dδs x(t+ δs) +

∫ δt

0
dδsw(t+ δs). (3.4.32)

The expectation value of the last term is zero, but its variance is of order δt:〈[∫ δt

0
dδsw(t+ δs)

]2〉
= 2αδt. (3.4.33)

This implies that the ‘instantaneous value’ of the last term of (3.4.32) is of order
√
δt, which

is much bigger than δt. We may replace this with (approximation in law!)∫ δt

0
dδsw(t+ δs) =

√
2αδtχ, (3.4.34)

where χ is a Gaussian random variable obeyingN(0, 1),58 and is uncorrelated with increments
at different times.

This implies that x(t+ δs)− x(t) is not of order δs but of order
√
δs, but still we may

ignore it in the first term of (3.4.32): we have arrived at the following difference scheme59

x(t+ δt) = x(t)− gx(t)δt+
√

2αδtχ. (3.4.35)

Exercise 1. The above equation is correct to order δt, so the error should not accumulate
to order 1 after integration. However, this is not always good enough. For simplicity, set
g = 0 and study the time evolution of x2(t) with this difference scheme.
(1) What do you have to conclude?
(2) You might say that such a pathology is not harmful, if g > 0. Really?60 ut

3.5 Introduction to Fokker-Planck Equation

The ensemble of Brownian particles may be described by their density distribution function.
Its time evolution is governed by the Fokker-Planck equation (or by the Smoluchowski equa-
tion when overdamped).

58Mnemonics: the square of a random variable obeying N(0, 1) obeys the χ2-distribution.
59For a crude simulation, this may be OK, but this scheme has a defect of systematic increase of 〈x2〉, if

the systematic part is not linear. For the simple equation without external force, this is fine.
60Sekimoto’s comment (1999): The wrong difference scheme produces its own heat, so even if the solution

may look all right with damping, the resultant state may not realize an equilibrium state, but a driven steady
state.
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3.5.1 Generalized Liouville equation
To study the time evolution of the density distribution function of the Brownian particle
position, first, we discuss the so-called generalized Liouville’s equation approach.

Suppose an equation of motion is given as a differential equation

ẋ(t) = f(x(t)). (3.5.1)

Instead of following each trajectory (solution curve), we could follow the cloud of points;
this is the basic idea of ensemble. This would give us an equation governing the density
distribution on the phase space (= the space spanned by the basic dynamical variables x).

Suppose µ is a measure (= distribution) on the phase space. Since no sample disappears
(→2.7.7), the equation of motion of the measure reads

µt(dx(t)) = µt+dt(dx(t+ dt)). (3.5.2)

Here, dx denotes symbolically the volume element around x riding on the solution curves
(on the flow determined by the equation of motion). If we introduce its density61 φ(t,x),
this equation reads

φ(t+ dt,x(t+ dt))
∂(x(t+ dt))

∂(x(t))
= φ(t,x(t)), (3.5.3)

where ∂(x(t+ dt))/∂(x(t)) is the Jacobian and is given by (to the first order in dt)62

∂(x(t+ dt))

∂(x(t))
= 1 + divfdt. (3.5.4)

In our case we usually do not have an analogue of Liouville’s theorem (divf = 0 for a
Hamiltonian dynamical system, →2.7.2), so we cannot ignore the second term.

Combining (3.5.3) and (3.5.4), we obtain

∂φ

∂t
+ div(fφ) = 0. (3.5.5)

This is the generalized Liouville equation.
Exercise 1. Show that (3.5.5) may be rewritten as

dlog φ

dt
= −divf . (3.5.6)

divf is called the phase compression factor. [Notice that the time derivative on the LHS is
not a partial derivative.]ut
Exercise 2. For dq/dt = [q,H], dp/dt = [p,H] − αp, where H is the system Hamiltonian,
find the phase compression factor. ut

61As usual, we allow densities in the distribution sense, so even if µt is not absolutely continuous wrt the
Riemann volume of the phase space (i.e., no Radon-Nikodym derivative exists in the conventional sense), we
freely introduce the density.

62Note that det(1 + εA) = 1 + εTrA+ · · ·, and that the trace of the Jacobi matrix is the divergence.
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3.5.2 Stochastic Liouville equation
The position r of a Brownian particle is described by (→3.2.2)63

dr(t)

dt
= v(t), (3.5.7)

∂v(t)

∂t
= − ζ

m
v(t) +

F

m
+

w(t, ω)

m
. (3.5.8)

Here, F is the external force, and as before, ζ is the friction constant, m is the particle
mass, and w is the fluctuating force (noise). Let us apply the generalized Liouville equation
(→3.5.1) straightforwardly to this coupled equation: our phase space is spanned by r and v,
so the probability density function φ is a function of these variables and time. The obtained
equation64

∂φ

∂t
+

∂

∂v
·
[(
− ζ

m
v +

F

m

)
φ

]
+

∂

∂v
·
[
w

m
φ
]

+
∂

∂r
· [vφ] = 0 (3.5.9)

is called a stochastic Liouville equation. Notice that the equation depends on the stochastic
parameter (→1.4.2) through w.

3.5.3 Derivation of Fokker-Planck equation
We wish to average (3.5.9) over the stochastic parameter (average over the noise ensemble).
Since φ is a solution to this equation, it also depends on ω, so the technical point is how to
compute the cross term 〈wφ〉.65 An important point to realize is that w is, intuitively, of

order
√
dt as can be seen from 〈(

∫ t+∆t
t wdt)2〉 ∼ ∆t.66

Perhaps the most transparent method (if we avoid Itô calculus; if not →3.5.4) to
compute the noise average is to use the formal solution for φ at time t+ dt in terms of that
at time t written as

φ|t+dt = edtL0+dtL1φ|t, (3.5.10)

where the differential operators are defined as

L0 = − ∂

∂v
·
(
− ζ

m
v +

F

m

)
− ∂

∂r
v, L1 = − ∂

∂v
· w
m
. (3.5.11)

Although these two operators do not commute, since dt is infinitesimal, we may approximate
exp(dtL0 + dtL1) = exp(dtL0) exp(dtL1) + o(dt).67 We obtain68

〈edtL1〉 = exp
(

1

2

〈
(dtL1)

2
〉)

, (3.5.12)

63Since w depends on the stochastic parameter ω, r and v must also depend on ω, but ω is not explicitly
written in them.

64 ∂
∂x is used interchangeably with ∇x.

65The reader might say that there are other terms such as vφ, but in this partial differential equation v
is an independent variable, not a function of time or the stochastic parameter. Incidentally, the calculation
of the cross terms becomes transparent with the aid of stochastic calculus (→3.4.5, X1.5.14).

66We have already encountered this in 3.4.5. If you are not satisfied with an intuitive explanation, see
X1.5.9.

67Although obvious, it is a very important observation basic to Trotter’s formula, important in constructing
path integrals (→4.3.5).

68We need an extracondition to guarantee that the tail of the noise is not very fat, and the moments
(cumulants, more precisely, →1.4.11) higher than the second order must be assumed to be ignored; if we
assume the noise to be Gaussian, there is no problem at all.
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= exp

(
1

2m2

∂

∂v
〈wdtwTdt〉 ∂

∂v

)
= exp

(
dt
ζkBT

m2

∂2

∂v2

)
. (3.5.13)

Here, 〈wwT 〉dt = 2ζkBTI (→(3.2.8)) has been used (i.e., δ(t)dt = 1, formally). Therefore,
if we introduce P (r,v, t) = 〈φ(r,v, t)〉, the outcome of averaging reads

∂P

∂t
= − ∂

∂r
vP − ∂

∂v

[
− ζ

m
v +

F

m
− kBTζ

m2

∂

∂v

]
P, (3.5.14)

which is called the Fokker-Planck equation (or this particular equation for the Brownian
particle is sometimes called the Kramers equation).
Exercise 1. The more standard way to derive the Fokker-Planck equation is to use Chapman-
Kolmogorov equation as we did in 3.1.10:

P (r,v, t+ dt) =
∫
d`duφ(`,u|r − `,v − u)P (r − `,v − u, t), (3.5.15)

where φ is the transition probability between t and t + dt. This transition probability may
be obtained from the stochastic equations (3.5.7) and (3.5.8) (Hint: 3.4.9). Derive (3.5.14)
with the aid of (3.5.15).69ut
Exercise 2. Demonstrate that the Maxwell-Boltzmann distribution is the equilibrium so-
lution for (3.5.14) (cf. 3.5.9). Discuss that this condition implies the fluctuation-dissipation
relation of the second kind (→3.2.5). [That is, assume that the noise is generally defined as
3.2.3, and then impose that the Maxwell-Boltzmann distribution is the stationary solution.
What is the condition imposed on the noise amplitude?] ut

3.5.4 Derivation of Fokker-Planck equation via Itô calculus
The most standard derivation is in 3.5.3, but if we use the Itô calculus (especially, Itô’s
lemma →3.4.5), then the derivation becomes very transparent (easy). We start with the
definition of the density distribution (→1.4.5)

P (r,v, t) = 〈δ(r − r(t))δ(v − v(t))〉, (3.5.16)

where the average is over the noise; r and v without t dependence are the variables in
the density distribution and r(t) and v(t) are dynamical variables obeying the equation of
motion (3.5.7) and (3.5.8). Thus, r(t) and v(t) depend on the stochastic parameter ω. wdt
is mathematically

√
2ζkBTdB(t), where B is a three dimensional vector whose components

are independent Wiener processes (i.e., 3D Wiener process). We use Itô’s lemma as

d[δ(r − r(t))δ(v − v(t))] =

[
−dr(t)

∂

∂r
− v(t)

∂

∂v
+ (dv(t))2 1

2

∂2

∂v2

]
[δ(r − r(t))δ(v − v(t))].

(3.5.17)
Here, r(t) is at least once differentiable, so we may ignore (dr(t))2. However, v(t) is not
smooth, so we need the second order term:

dvi(t)dvj(t) =
2ζkBT

m2
δijdt. (3.5.18)

69A more general discussion may be found in 6.2.16.
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Precisely speaking, the third term in the square brackets must be interpreted as

(dv(t))2 1

2

∂2

∂v2
=

1

2
dvi(t)dvj(t)

∂

∂vi

∂

∂vj
. (3.5.19)

Thus, we see

d[δ(r − r(t))δ(v − v(t))] =
∂

∂r
(−v(t)dt) [δ(r − r(t))δ(v − v(t))]

+
∂

∂v

[
− ζ

m
v(t)dt+

F

m
dt+

√
2ζkBT

m
dB(t)

]
[δ(r − r(t))δ(v − v(t))] +

∂2

∂v2

[
ζkBT

m2
dt

]
δ[(r − r(t))δ(v − v(t))].

. (3.5.20)

Taking the expectation value of (3.5.20), we obtain the Fokker-Planck equation (3.5.14); no-
tice that the average of the term containing dB simply disappears due to its non-anticipating
nature.

3.5.5 Smoluchowski equation
In many cases, the effect of inertia is unimportant,70 so we may ignore v̇(t)/ζ in (3.5.8) (for
a detail →X1.7.4). Thus, we obtain the following reduced equation that is also called a
Langevin equation — physicists call all the equations with noise terms (especially additive
noise terms) Langevin equations:

dr

dt
=

1

ζ
(F + w) =

1

ζ
F + ν, (3.5.21)

where we have introduced the new noise ν which has mean zero and the time correlation
function (cf. (3.2.8))

〈ν(t)νT (0)〉 = (2kBT/ζ)Iδ(t). (3.5.22)

Notice that the fluctuation-dissipation relation of the second kind holds (→3.2.5).71

Now, we can apply the stochastic Liouville equation (→3.5.2) to obtain the equation
for the position distribution of the particles

∂P (r)

∂t
=

∂

∂r

(
−F

ζ
+
kBT

ζ

∂

∂r

)
P. (3.5.23)

This reduced Fokker-Planck equation is often called the Smoluchowski equation.72

3.5.6 Does Smoluchowski equation have a solution?
Generally, a constant diffusion coefficient equation

dφ

dt
= D∆φ−∇ · (vφ), (3.5.24)

where v is a vector field on an oriented manifold has a solution for initial value problems. It
is shown that if v is Cm (m ≥ 1), then the equation has a unique steady state (of smoothness
Cm−1) to which all the solutions tend.73

70For example, for proteins the dynamics slower than the time scale of 1ps is surely overdamped.
71In this case the relation may also be interpreted as a fluctuation-dissipation relation of the first kind.
72There is a way to reduce the Fokker-Planck equation directly to the Smoluchowski equation (→X1.7.5).
73C. S. C. Lin, B. Yang, and F. Chen, “On stability of a dynamical system,” SIAM J. Math. Anal. 26,

428-435 (1995).
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3.5.7 Thermodynamic interpretation of Smoluchowski equation
(3.5.23) can be rewritten as

∂P/∂t = −divJ (3.5.25)

with

J =

[
F

ζ
−
(
∂

∂r

kBT

ζ
logP

)]
P, (3.5.26)

which is the probability flux.
Look at the quantity in the square brackets above. kBT logP is the chemical potential

for an ideal gas, if we interpret P as the particle density. F − ∇kBT logP is the total
‘thermodynamic’ force on the ideal gas particle in this interpretation. This produces the
velocity

u = (F −∇kBT logP )/ζ (3.5.27)

under the overdamping condition. Thus, J = Pu is the probability flux. The conservation
law of probability (3.5.25) is the Smoluchowski equation. That is, if we interpret the ensem-
ble as an ideal gas of sample points, we can introduce a thermodynamic driving force that
is the gradient of the chemical potential for this ideal gas.
Exercise 1. A similar interpretation is possible for Fokker-Planck equations.ut

3.5.8 Detailed balance and equilibrium condition
In equilibrium we know the system must satisfy the detailed balance condition (→2.7.6).

For the Smoluchowski equation the state of the system described by it is specified by
r. Any state (that is, r) is trivially invariant under time reversal, so the detailed balance
condition must hold between any pair of states in equilibrium. If we write the probability
flux as J = Pu (→3.5.7), u describes the imbalance of transitions between infinitesimally
different adjacent states (i.e., between r and r + dr). Therefore, u = 0 or J = 0 everywhere
is a necessary and sufficient condition for an equilibrium density distribution P . See also
X1.11.3.
Exercise 1. What happens, if F is not conservative (that is, does not have a potential)?74 ut

3.5.9 H-theorem for Smoluchowski equation
We are discussing irreversible processes, so we should have a guarantee that the solution
of the Smoluchowski equation for any time-independent potential force field can reach its
equilibrium distribution (that certainly exists →3.5.6).

First of all, we must obtain the equilibrium distribution. Let us assume that the force
F is a potential force F = −∇V . Then, the probability flux (3.5.26) for the Smoluchowski
equation can be written as

J = −kBT
ζ
e−βV∇(PeβV ). (3.5.28)

Therefore, in the equilibrium state J = 0 and Peq ∝ e−βV as we expect. Can all the
initial conditions eventually reach this distribution? Remember that this was the question
Boltzmann asked as to the Maxwell distribution (→2.4.2).

We know the Kullback-Leibler entropy (→1.6.9)

K(P, Peq) =
∫
dxP log(P/Peq) ≥ 0, (3.5.29)

74Far away from equilibrium, detailed balance does not generally hold, and an interesting thing could
happen (→6.7.5).
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where the integral is all over the domain under consideration. K vanishes if and only if
P = Peq. Therefore, if we could show that its time derivative is negative definite for P 6= Peq,
we are done.75

Let us compute dK/dt:

dK

dt
= −kBT

ζ

∫ 1

P
[βP∇V +∇P ]2. (3.5.30)

This is negative except when [ ] vanishes,76 but the latter condition is the equilibrium con-
dition. Such a theorem guaranteeing the relaxation to the unique equilibrium is generally
called an H-theorem after the celebrated original H-theorem by Boltzmann for the Boltz-
mann equation (→2.4.10).
Discussion 1. What happens if F does not have any potential? ut
Exercise 1. Find the corresponding statement for the Fokker-Planck equation and demon-
strate it.77 ut

3.5.10 Passivity of Smoluchowski equation
Consider a system described by the Smoluchowski equation (3.5.23). Here, we interpret r to
be generalized coordinates (we imagine that the system has many parts each of which may
have its own coordinates) on some orientable manifold M . The net power W done to the
system by the force F may be written as

W =
∫
M

F · uPdr, (3.5.31)

where u is the velocity (generalized velocity) that has appeared in 3.5.7: Pu = J . In the
steady state div J = 0. Since F = (ζJ + kBT∇P )/P , we can compute

W = ζ
∫
M

J · J
P

dr + kBT
∫
M
div(J logP )dr. (3.5.32)

The last term is zero, so W ≥ 0. That is, we cannot obtain any work from the steady state.78

The above argument was used to demonstrate that Maxwell’s demon could not violate
the second law of thermodynamics.79 However, what we have to show is for any time-
dependent choice of F , we cannot gain any free lunch. Thus, the above calculation is not
the demonstration of the assertion.

3.5.11 No demon can gain net work in the long run
Let us change the force by controlling it. Now, the system is governed by the Smoluchowski
equation with F (t), and P is of course not a steady state. Still, we should not be able to

75This is the so-called Lyapunov’s second method to prove the stability of Peq. Although it is said here
“we are done,” needless to say, we must show that the solution does exist. In contrast to the Boltzmann
equation (→2.4.13), this is not a problem in this case (→3.5.6).

76The reader might wonder whether P is everywhere nonzero. This is actually guaranteed for any positive
t even if the initial P is delta-function like, thanks to the parabolic nature of the equation.

77In the case of the Smoluchowski equation, the H-theorem is directly related to the work, but this case
it does not seem so.

78For the Fokker-Planck equation, see X1.6.8.
79M. O. Magnasco, “Szilard’s heat engine,” Europhys. Lett. 33, 583-588 (1996).
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gain work from the system. Let W (t) be the net power at time t. What we should assert
is that the long time average of W (t) cannot be negative. That is, even if the demon has a
high intelligence and control the force (or the system) in a clever fashion, no net work can
be gained in the long run. Let us demonstrate this.∫ t

0
W (t)dt =

∫ t

0
dt
∫

F (t) · Jdr, (3.5.33)

=
∫ t

0
dt

[
ζ
∫ J · J

P
dr + kBT

∫
J · ∇ logPdr

]
(3.5.34)

=
∫ t

0
dt

[
ζ
∫ J · J

P
dr + kBT

∫
div(J logP )dr − kBT

∫
logPdivJdr

]
(3.5.35)

=
∫ t

0
dt

[
ζ
∫ J · J

P
dr + kBT

∫
logP

∂P

∂t
dr

]
. (3.5.36)

Now, integrating by parts with respect to time, we know that the last term can be rewritten
as the difference of entropy S = −kB

∫
P logPdr:

kBT
∫
P (t) logP (t)dr − kBT

∫
P (0) logP (0)dr, (3.5.37)

so the time average of the power reads

1

t

∫ t

0
ζ
∫ J · J

P
dr − T

t
[S(t)− S(0)] . (3.5.38)

Therefore, if the entropy is bounded, then no work can be obtained in the long run. See also
X1.6.7.

3.5.12 Where does irreversibility come from?
Consider a particle going around the unit circle with a slightly fluctuating angular velocity.
Its (x, y) coordinate may be expressed in terms of a complex number z = x + iy, and the
evolution equation is

dz

dt
= i(1 + ω(t))z, (3.5.39)

where ω is a stationary Gaussian white noise with mean zero and 〈ω(t)ω(0)〉 = 2ζδ(t). Then,
as already discussed in 3.4.8,

〈z(t)〉 = z(0)eit−ζt. (3.5.40)

Therefore, the average eventually vanishes, never to recover any finite value. This is nothing
but clear irreversibility.

Now, look at individual oscillators. There is no damping of its oscillation at all; we only
see dephasing. The reader may have thought about the spin echo experiment.
Exercise 1. If we have only a finite number of such oscillators, we do not have an irreversible
behavior. What is the expected ‘recovery time’ as a function of the number of oscillators?
ut
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3.6 Applications of Smoluchowski Equation

3.6.1 Sedimentation or centrifugation equilibrium
Consider a column of liquid along the z-axis in which small particles (macromolecules or
colloidal particles) are suspended. We assume that the bottom of the column is closed and
is at the origin. Applying a uniform gravitational or centrifugal force f in the negative
z-direction, we wish to study the distribution of these particles along the z-axis.

We may assume that the viscosity is sufficiently high, so we may use the Smoluchowski
equation (→3.5.5):

∂P

∂t
=
mg

ζ

∂P

∂z
+
kBT

ζ

∂2P

∂z2
, (3.6.1)

where m is an effective mass with the buoyancy effect taken into account.
Notice that mg/ζ is the sedimentation speed — if there were no bottom of the column

(but if some how the fluid column is kept stationary), the particle reaches this average speed
(in the negative direction of z) eventually.

The particle flux is proportional to (→(3.5.27))

J =
1

ζ

(
−mg − kBT

∂

∂z
logP

)
P. (3.6.2)

In equilibrium we may assume J = 0 (why? →3.5.8), so we obtain a familiar Boltzmann
result: P (z) = P (0)e−βmgz (immediate from the form of J given in 3.5.9).

To solve (3.6.1) we need an initial and a boundary condition. The initial condition is
the initial distribution. For a column of liquid with a solid bottom the upper boundary
condition is that P should be zero at infinity,80 and at the bottom, no particle can go though
the bottom, so the flux must vanish there for t > 0:

−mgP (0)− kBT
∂P

∂z

∣∣∣∣∣
z=0

= 0. (3.6.3)

The rest is technicality.
Exercise 1. Sedimentation coefficient s is defined by v = sα where v is the speed of the
sedimenting particle, and α is the acceleration α = g in sedimentation or in the case of
ultracentrifugation α = rω2, where ω is the rotor angular velocity and r is the distance
between the particle and the center of the rotor axis. For proteins s is measured in the unit
of 10−13s and is called Svedberg (S). For example, eukaryote ribosome has 80S (4.2 ×106 D).
(1) Derive

s = D
m(1− vρ)
kBT

, (3.6.4)

where D is the diffusion constant, m is the molecular mass (=M/NA), v is the specific vol-
ume (1/density)81 of the particle, and ρ is the density of the fluid medium.
(2) An eukaryotic ribosome consists of two particles with 30S and 50S. Why is its sedimen-
tation coefficient only 70S? ut

80Actually, assuming the boundedness at infinity is enough. For a general discussion of auxiliary conditions,
see X1.8.1 and on.

81For proteins this is about 0.7 cm3/g.
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3.6.2 Escape through potential barrier — Kramers theory82

Suppose there is a constant probability flux across a potential barrier along the x-axis (=
reaction coordinate). See the figure.

Integrating (3.5.28) ×eβV from xA to xB, we get

J
∫ xB

xA

eβV dx =
kBT

ζ

[
PeβV

]xA

xB

. (3.6.5)

Therefore,

J =
kBT

ζ

P (xA)eβV (xA) − P (xB)eβV (xB)∫ xB
xA

eβV dx
. (3.6.6)

If we prepare the particle in state xA and remove all the particles from xB, then

J =
kBT

ζ
P (xA)eβV (xA)

/∫ xB

xA

eβV dx. (3.6.7)

We wish to make this formula easier to use when the barrier height E 6= is significant. If nA is the total
probability of finding the particle in the potential well around xA, then Pesc = J/nA is the escape probability
per unit time. This nA may be computed as

nA =
∫
P (xA)e−βV dx, (3.6.8)

where the integration is over the potential well around xA. If we approximate the potential well with
a harmonic potential mω2

Ax
2/2 (we may identify mω2

A with the potential curvature around xA: mω2
A =

V ′′(xA)), then

nA =
P (xA)
ωA

√
2πkBT

m
. (3.6.9)

Therefore,

Pesc =
kBT

ζ
ωA

√
m

2πkBT

/∫ xB

xA

eβV dx. (3.6.10)

Now, the denominator must be dominated by the contribution from the potential barrier whose height
we assume to be E 6= (see the figure). Then, near this peak we may approximate V = E 6=−mω2

E(x−x6=)2/2

82Cf. M Dresden, Kramers’s contributions to statistical mechanics, Physics Today, September 1988 p26-33.
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(V (xA) = 0 is assumed for convenience), where x6= is the location of the barrier peak (mω2
E = −V ′′(x6=)).

Then, ∫ xB

xA

eβV dx ' eβE 6=
∫
dy eβmωEy2/2 = eβE 6= 1

ωE

√
2πkBT

m
. (3.6.11)

Combining this result and (3.6.10), we finally obtain Kramers’ escape probability formula:83

Pesc =
ωAωE

2π(ζ/m)
e−βE

6=
=

√
V ′′(xA)|V ′′(x 6=)|

2πζ
e−βE

6=
(3.6.12)

By the way, if the friction is small, the particle crosses the barrier and reach the lower
potential well without losing energy very much, so the particle may be bounced back to
the original metastable state. This implies that there is a right friction that can maximize
the rate of successful transition. Let ω be the frequency in the metastable well (1/ω is the
number of trials per unit time to cross the barrier). The time constant is m/ζ, where m
is the mass of the particle, so dimensional analytically ζ = cmω, where c is a numerical
constant, is the optimal friction.84

3.6.3 Brownian particle in periodic potential
Let us consider an overdamped Brownian particle in a periodic potential V such that V (r+
L) = V (r). The Langevin equation reads as usual with an equilibrium noise ν satisfying the
fluctuation-dissipation relation:

dr

dt
= −1

ζ

dV

dr
+ ν. (3.6.13)

The corresponding Smoluchowski equation is

∂P

∂t
= −1

ζ

∂

∂r

(
−dV
dr
P − kBT

∂P

∂r

)
. (3.6.14)

Since the space is infinite, no normalizable steady (= time-independent) state can exist
(steady solutions are spatially extended). To study a steady state, we have only to solve
(3.6.14) on one period with a periodic boundary condition: P and J are continuous (P (0) =

P (L), J(0) = J(L)). The continuity of J may be replaced with the continuity of ∇
(
PeβV

)
thanks to (3.5.28). Notice that in the steady state J must be constant. This constant must
be zero for a periodic system, so no particle net flow is possible.

The particle current is defined as 〈ṙ〉. The simplest way to obtain this is to average
(3.6.13)

〈ṙ〉 = −1

ζ
〈V ′(r)〉 = −1

ζ

∫ L

0
dr V ′(r)P (r, t). (3.6.15)

Since J = uP and u is the particle velocity, we can also write

〈ṙ〉 =
∫ L

0
dr J(r, t). (3.6.16)

83There is another derivation based on the waiting time for escape. See X1.9.6.
84H. Frauenfelder and P. G. Wolynes, Rate theories and puzzles of hemoprotein kinetics, Science 229, 337

(1985) around page 341 may be readable. Also see, G. R. Fleming and P. G. Wolynes, Chemical dynamics
in solution, Physics Today, May 1990, p36-43 (esp., Figure 5).
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That is, generally, we can write
〈ṙ〉 = LJst, (3.6.17)

where Jst is the steady state flux.
If the system is periodic, then the distribution is an equilibrium distribution in each

periodic portion of the space, so there cannot be any flux. That is. the particle current must
be zero.

3.6.4 Brownian particle in tilted periodic potential
Let us tilt the ratchet.

dx

dt
= −1

ζ
V ′(x(t)) + F + ν(t), (3.6.18)

The steady state85 can be obtained as

P̂ st(x) = N ζ

kBT
e−βV (x)+βFx

∫ x+L

x
dy eβV (y)−βFy, (3.6.19)

〈ẋ〉 = LN
[
1− e−βLF

]
, (3.6.20)

where N is the normalization constant for P̂st.
i) It can be proved that the current is monotonic in F .
ii) The current is maximum for a fixed F when V = const.
iii) Linear response is symmetric wrt F .

If F is not very small, the system is far away from equilibrium, and the Einstein relation

Deff = kBT
d〈ẋ〉
dF

(3.6.21)

does not hold.
If the thermal energy is sufficiently smaller than the barrier height, we can apply the

saddle point method to evaluate (3.6.19), etc. However, the reader should have realized that
that is nothing but an application of the Kramers theory of barrier crossing (→3.6.2). We
obtain

〈ẋ〉 = L(k+ − k−), (3.6.22)

k+ =
|V ′′
eff (xM)V ′′

eff (xm)|1/2

2πζ
e−β∆Veff , (3.6.23)

k− = k+e
−βFL. (3.6.24)

3.6.5 Brownian ratchet
We have learned that no particle net motion is possible on a periodic structure, if the system
is in a steady state (→3.6.3). Actually, there is no steady state other than the equilibrium
state, so to have a steady particle current, we need a condition that prevent the system
from reaching an equilibrium state. A system with spatial periodicity (on the average) that

85This must be maintained by the source and the sink of the particles at infinity.
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exhibits a nonzero particle current is called a Brownian ratchet.86

To realize a Brownian ratchet we must
1) break thermal equilibrium (detailed balance),
2) break the spatial inversion symmetry.
Let us write down a general Langevin equation (overdamped):87

dx

dt
= − ∂

∂x
W (x, t) + F (x, t), (3.6.25)

Here, W is the potential that can change in time (maintaining the periodicity on the aver-
age), and F is the external force including the noise. A Brownian ratchet may be realized
by
1) Changing force: W is fixed but without inversion symmetry. F is a noise violating the
fluctuation-dissipation relation, or a non-thermal chaotic force.88

2) Changing potential: F is the usual noise satisfying the fluctuation-dissipation relation,
but W changes.

There are two typical cases:
Pulsating ratchet W oscillates between two periodic shapes W1 and W2. The transition may
be periodic or stochastic.
Tilting ratchet W oscillates between two shapes W± = W0 ± Fr tilted in the opposite di-
rections (on the average, they are periodic), where W0 lacks inversion symmetry. This case
may be an example of 1).

Curie’s principle tells us that what is not forbidden by symmetry principles will occur.
Thus, nonequilibrium spatially noninvertible system should exhibit nonzero particle current
in general.

3.6.6 How does pulsating ratchet work?
The following figure tells us why a periodically pulsating ratchet can produce a non-zero
particle current. Notice that the direction of the current is given by the sign of the steeper
slope. This is true for saw-tooth potential; generally the relation between the potential shape
and the sign of the current is highly delicate.

86F. Jülicher, A. Ajdari and J. Prost, “Modeling molecular motors,” Rev. Mod. Phys. 69, 1269 (1997); P.
Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361, 57-265 (2002). The
former is an introductory review by the group initiated the Brownian ratchet study and the latter is an
encyclopedic review including many realization experiments.

87Usually, we do not discuss the inertial effect. Although the Brownian ratchet has no direct relevance
to molecular motors, these motors are overdamped; also many transport experiments discuss overdamped
situations.

88A beautiful example is due to Hondou: T. Hondou, and S. Sawada, “Dynamical behavior of a dissipative
particle in a periodic potential subjected to chaotic noise: Retrieval of chaotic determinism with broken
parity,” Phys. Rev. Lett. 75, 3269 (1995).
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The potential oscillates periodically be-
tween W1 (flat) and W2 (asymmetric
saw-tooth). When the potential is flat, the
particle diffuses from the sharper spatial
distribution to a broader one above. The
right tail of the distribution will fall into the
next potential minimum.

Even if the transition between the potentials is stochastic, qualitatively there is no dif-
ference.

3.6.7 How does tilting ratchet work?
We know that if there is no tilt, there is no net flux. That is, in (3.6.13) if F = −dV/dr is
zero on the spatial average, we cannot have any systematic flux. In the tilting ratchet, we
periodically change the tilt as a function of time (but its time average is still zero).89 This
ratchet was inspired by the ratchet model that changes V periodically in time due to Ajdari
and Prost:90

The following figure tells us why a periodically tilting ratchet can produce a non-zero
particle current. Notice that the opposite direction of the current is given by the sign of
the steeper slope. This is true for saw-tooth potential; generally the relation between the
potential shape and the sign of the current is highly delicate.

Red: +Fx tilt. The distribution stays
sharply localized in the potential minimum.
Green: −Fx tilt. In this case free diffusion
is possible, and a significant portion of the
distribution could be in the next potential
minimum, almost never to return.

89M. O. Magnasco, “Forced thermal ratchet,” Phys. Rev. Lett. 71, 1477 (1993).
90A. Ajdari and J. Prost, CR Acad Sci Paris 315, Ser II 1635 (1992).
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3.7 Analyzing Fluctuations and Noises

In this section harmonic analysis of noises is introduced. The relation between the correla-
tion function and the power spectrum is experimentally vital. As a related topic dynamical
scattering factor S(ω,k) is also briefly discussed.

3.7.1 Importance of time correlation functions
We have already encountered time correlation functions of various observables. We have
learned that the friction constant is determined by the noise correlation function (→3.2.5).
The system response is governed by the time correlation function (→3.2.8). Transport
coefficients and kinetic coefficients are given in terms of time correlation functions (the
Green-Kubo formulas →3.2.9). Fourier analysis is a very useful method to study correla-
tion functions.

3.7.2 Time correlation is maximum at t = 0
Let C(t) = 〈q(t)q(0)〉 for some observable q. Then, for a stationary system

|C(t)| ≤ |C(0)|. (3.7.1)

Exercise 1. Demonstrate this, using 〈[q(t)± q(0)]2〉 ≥ 0 and stationarity. ut.

3.7.3 Fourier transform of noise
When we introduced the Langevin equation (→3.2.4), it was mentioned that the noise is
‘white.’ Such a statement is best understood by analyzing the frequency spectrum of the
noise. To this end we must Fourier transform the noise.

Let us define the (time-domain) Fourier transform of a function f(t) by91

f̂(ω) =
∫ ∞

−∞
dt f(t)e−iωt. (3.7.2)

Its inverse is

f(t) =
1

2π

∫ ∞

−∞
dω f̂(ω)eiωt. (3.7.3)

|f̂(ω)|2 is related to the power spectrum of f(t). There is a device called the spectrum analyzer
that gives us the power spectrum of the signal.92

Let us compute the power spectrum of the noise appearing explicitly in the Langevin
equation (here, ω is NOT the stochastic parameter; we suppress it). Let w be, say, the
x-component of w in 3.2.4.

ŵ(ω) =
∫ ∞

−∞
dtw(t)e−iωt. (3.7.4)

91There are many different conventions, but the choice in these notes is the standard one in statistical
mechanics.

92|f̂(ω)| is called the voltage spectrum, and is also often considered, but as the reader will learn soon, the
power spectrum is more fundamental.
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Then,

〈ŵ(ω)ŵ(ω′)〉 =
∫ ∞

−∞
dt
∫ ∞

−∞
ds 〈w(t)w(s)〉e−iωt−iω′s, (3.7.5)

= 2ζkBT
∫ ∞

−∞
dt e−i(ω+ω′)t (3.7.6)

= 4πζkBTδ(ω + ω′), (3.7.7)

≡ 2πσ(ω)δ(ω + ω′). (3.7.8)

Here, (the multiplicative factor for 2πδ(ω + ω′))

σ(ω) = 2ζkBT (3.7.9)

is called the spectral density or power spectrum of w.93

The power spectrum σ(ω) of our noise appearing in the Langevin equation is constant
(independent of ω). Thus, the Langevin noise is deservingly called a white noise. However,
this is an idealization. We have already discussed that there is a time scale τ that corre-
sponds to the ‘cutoff’ frequency (→3.4.1); for shorter time scales the noise cannot change
appreciably, so σ(ω) for ω > 1/τ must decay to zero (→3.7.6).

3.7.4 Relation between power spectrum and correlation function: an illustration
As an example of ‘harmonic analysis of stochastic systems’ let us study the power spectrum
of a free Brownian particle discussed in 3.2.4.

Let C(t) = 〈v(t)v(0)〉 be the correlation function of the x-component of the velocity v
of a Brownian particle governed by (3.5.8). Then, (again ω is NOT a stochastic parameter
but the angular frequency)

v(ω) =
w(ω)

iωm+ ζ
. (3.7.10)

Therefore,

〈v(ω)v(ω′)〉 =
2πσw(ω)

ω2m2 + ζ2
δ(ω + ω′), (3.7.11)

where σw(ω) is the spectral density of the (x-component of the) noise w, given by σw(ω) =
2ζkBT (cf. (3.7.8)). Therefore, the power spectrum of the velocity σv(ω) reads

σv(ω) =
2ζkBT

ζ2 +m2ω2
. (3.7.12)

Let us Fourier-transform this back to the time domain: with the aid of the residue
theorem we get

1

2π

∫
dω σv(ω)eiωt =

kBT

m
e−ζ|t|/m. (3.7.13)

Compare this with the result in 3.2.7. We have

〈v(t)v(0)〉 =
1

2π

∫
dω σv(ω)eiωt, (3.7.14)

or

σv(ω) =
∫
dt〈v(t)v(0)〉e−iωt. (3.7.15)

That is, the Fourier transform of the power spectrum is the time correlation function, and
vice versa. This is actually a general theorem. See 3.7.5.

93Again, other definitions choose different numerical factors.
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3.7.5 Wiener-Khinchine theorem
Let q(t) be a stochastic process with integrable stationary time correlation function C(t) =
〈q(t)q(0)〉. Let us compute its power spectrum σ(ω):

〈q̂(ω)q̂(ω′)〉 =
∫ ∞

−∞
dt
∫ ∞

−∞
dsC(t− s)e−iωt−iω′s, (3.7.16)

=
∫ ∞

−∞
dt
∫ ∞

−∞
dτ C(τ)e−i(ω+ω′)t−iω′τ , (3.7.17)

= 2πδ(ω + ω′)
∫ ∞

−∞
dtC(t)e−iωt. (3.7.18)

That is (→3.7.3),

σ(ω) =
∫ ∞

−∞
dtC(t)e−iωt, (3.7.19)

or

C(t) =
1

2π

∫ ∞

−∞
dt σ(ω)eiωt. (3.7.20)

This is called Wiener-Khinchine’s theorem.
This is a practically very important theorem, because the equality (3.7.20) is the most

convenient method to compute the correlation function: the power spectrum is easy to com-
pute numerically from the original data thanks to the fast Fourier transformation (FFT).
Discussion 1 If you have never heard of the FFT, study the Cooly-Tukey algorithm.94 ut
Exercise 1. Show that the time correlation function is positive definite in the sense ap-
pearing in Bochner’s theorem (→1.4.8). This implies that if the correlation function is
continuous at the origin and if normalized as C(0) = 1, it is a characteristic function of a
certain probability distribution. We know that this ‘certain function’ is the corresponding
power spectrum. Therefore, the power spectrum may be interpreted as a probability distri-
bution function (of what?). Then, the information minimization technique (→1.3.5) may
be used to infer or model the time correlation function. Suppose the power spectrum is cen-
tered around the origin, and its second moment 〈ω2〉 is given. What kind of time correlation
function do you get? ut
Exercise 2. There is a small rotator whose equation of motion may be written as

I
d2θ

dt2
= −ζ dθ

dt
− kθ + w, (3.7.21)

where I, ζ and k are positive constants (the inertial moment, the viscous damping factor,
and the spring constant, if you wish to interpret them). w is an appropriate equilibrium
thermal noise. Assume that the damping factor is not large, and we can observe a damped
oscillatory behavior.
(1) What is the average of θ2 in equilibrium?
(2) Find the solution to the initial value problem for the equation of motion, assuming that
there is no noise, and the initial angular velocity is zero.
(3) Find the autocorrelation function 〈θ(t)θ(0)〉.
(4) What is the amplitude of the white noise w?
(5) Find the power spectrum of θ.
(6) Are the reader’s answer to (3) and (5) consistent? ut
Exercise 3. The noise current being observed consists of uncorrelated pulse of intensity I0

94As usual, Gauss used this method long before Cooly and Tukey.
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and duration τ . It is known that λ pulses occur on the average per unit time. You may
assume the signal is statistically stationary.
(1) Find the correlation function of the current.
(2) Find the power spectrum of the current.
(3) Confirm the Wiener-Khinchine theorem. ut

3.7.6 Long correlation means sharp spectrum
As we have learned, the power spectrum is easy to observe, so it is advantageous to have
some ‘feeling’ about the relation between correlation functions and power spectra. A sum-
mary statement is: “A signal that has a short time correlation has a broad band.” This is
intuitively obvious, because short time correlation means rapid changes that must have high
frequency components.

There may be several mathematical statements that are related to the above assertion.
Perhaps the most elementary is to look at the result in 3.7.4, or

C(t) = e−α|t| ↔ σ(ω) =
2α

ω2 + α2
. (3.7.22)

That is, the half-width of the power spectrum is the reciprocal of the ‘life-time’ of the signal.
(The power spectrum with the Cauchy distribution is often called the Lorentzian spectrum;
for its natural meaning see X2.6.8)

The result can be understood intuitively with the aid of dimensional analysis τω ∼ 1.
Exercise 1. The Riemann-Lebesgue lemma tells us that lim|ω|→∞ σ(ω) = 0 for time-
continuous signals. Learn about this lemma. This tells us that white noise (→3.7.3) we
have discussed is NOT continuous.95ut
Exercise 2. The Riemann-Lebesgue lemma also tells us that the decay rate of the power
spectrum for large |ω| gives information about the smoothness of the signal.
(1) Demonstrate that if the signal is m-times continuously differentiable with respect to time,
σ(ω) = o(ω−2m) for large ω.
(2) What is the general behavior of the power spectrum of the velocity of a Brownian particle
in the high frequency limit? Is (3.7.12) physically sensible? Discuss in terms of time scales
used in 3.4.1.
(3) What can you say about the signal whose power spectrum decays exponentially? ut.

3.7.7 Thermal noise in circuits: Nyquist’s theorem
The idea of the regression hypothesis that goes back to Einstein’s Brownian motion theory
(→3.1.7) implies that if a system dissipates energy due to a decay of some (macroscopic)
flow J , then the reverse process, that is, creation of J from thermal noise can occur by
fluctuation, albeit the created flow is at most mesoscopic.

Thus, if we have an electric circuit with a resistance R,96 the thermal noise in the resistor
(the noise voltage V (t) in the resistor) should create a current. This must be detected as
noise; this was observed by Johnson, and is called the Johnson noise. Nyquist explained this
noise along the line of the idea just discussed.97

95However, its integral called Wiener process (→X1.4.4) is continuous with probability one.
96One must have an element that destroys macroscopic effects, if one wishes to observe their spontaneous

creation. This is quite general; think about the role of mutation in evolution, or the role of viscosity in
Helmholtz’s vortex theorem.

97Johnson and Nyquist were friends, Swedish immigrants to the US. See D. Abbott, B. R. Davis, N. J.
Phillips, and K. Eshraghian, “Simple derivation of the thermal noise using window-limited Fourier trans-
forms,” IEEE Trans. Educ. 39, 1 (1996).
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Let us consider an RC circuit. The macroscopic equation (that may be obtained by
averaging a more microscopic equation over noise) reads

dQ

dt
= − 1

RC
Q, (3.7.23)

where Q is the charge stored in the capacitor of capacitance C. What actually happens may
be modeled in terms of the noise voltage as

dQ

dt
= − 1

RC
Q+

V (t)

R
. (3.7.24)

Due to thermal noise, Q does not settle down to zero, but fluctuates around 0. This fluctua-
tion changes the energy stored in the capacitorQ2/2C. From 2.8.1 (or from the equipartition
of energy), we obtain

〈Q2〉 = kBTC. (3.7.25)

The fluctuation-dissipation relation of the second kind (→3.2.5) should determine the
voltage noise. Let us compute the power spectrum σQ of Q in terms of that of V (→3.7.4):

σQ(ω) = σV (ω)/(R2ω2 + 1/C2). (3.7.26)

We expect that the correlation function for Q is given by 〈Q2〉eqe−|t|/RC , so (3.7.22) gives its
power spectrum immediately, and we conclude

σV (ω) = kBTR. (3.7.27)

This is called Nyquist’s theorem.

Exercise 1. What is the current fluctuation for the above circuit? ut
Exercise 2. If a resistor R is short circuited, what can you imagine to happen? ut
Exercise 3. A resistor of resistance R and the capacitor of capacitance C are connected in
series.
(1) What is the voltage fluctuation between the two ends of the open circuit?
(2) Suppose the input is the voltage across the open ends, and the response the current
through R. Find the response function.
(3) State the fluctuation-dissipation relation for the current. ut
Exercise 4. There is a circuit consisting of an inductor L and a resistor R.
(1) Write down the Langevin equation governing the equilibrium thermal noise current. (You
need not determine the noise.)
(2) What is the variation of the equilibrium current? (Think about the average energy stored
in L; this is an equilibrium statistical mechanics question.)
(3) What is the average Joule heat loss at the resistor?
(4) Determine the white noise in your Langevin equation.
(5) We know the answer to (3) is positive. Does not this violate the second law? ut

3.7.8 Nyquist’s theorem: quantum correction
Nyquist’s theorem (3.7.27) is not correct for very low temperatures or very high frequencies,
because the thermodynamic fluctuation theory does not hold under such conditions. The
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most natural guess is that kBT should be replaced by the average energy of a quantum
harmonic oscillator

Eω(T ) =
1

2
h̄ω cot

(
βh̄ω

2

)
. (3.7.28)

Notice that this asymptotically agrees with 1/β in the βh̄ω → 0 limit. Therefore, the most
general Nyquist’s theorem applicable to any temperature and frequency reads

σV (ω) = REω(T ). (3.7.29)

Of course, the constancy of R is an idealization: we should replace it with T and ω dependent
R.

We will see that the replacement of kBT with Eω(T ) is widely applicable in linear re-
sponse theory (cf 4.4.15).

3.7.9 Space-time correlation functions and its Fourier transform
Even if the system is spatially uniform, the fluctuations of various quantities are generally not
uniform in space. This implies that we should study not only the time-correlation function
but also space-time correlation functions. We will encounter such correlation functions in
the calculation of transport coefficients (→4.1.14).

As a concrete example, let ρ(r, t) be the density field.

C(r, t) = 〈ρ(r, t)ρ(0, 0)〉 (3.7.30)

is the space-time correlation function of ρ, where 〈 〉 implies the ensemble average.98 Here,
we have assumed that the system is in equilibrium and spatially uniform on the average.

C(r, 0) is an equilibrium density correlation function, so its Fourier transform is the form
factor S(k) that can be observed by a scattering experiment. In such an experiment transfer
of momentum of particles to the scatterer (elastic scattering) gives us the information about
S(k).

The space-time Fourier transform of C(r, t) is called dynamical form factor:

S(k, ω) =
∫
d3r

∫
dtC(r, t)ei(k·r−ωt). (3.7.31)

The reader may expect that this can also be obtained by some sort of scattering experiment.
This time, perhaps the transfer of energy in the scattering process (inelastic scattering)
gives the time-dependent information (van Hove theory). This is exactly the case, and such
scattering experiment is called a dynamical scattering experiment.
Exercise 1. Let ρ(r, t) be the number density field of a monatomic dense fluid.

S(r, t) = 〈ρ(0, 0)ρ(r, t)〉 (3.7.32)

is observable as the space-time Fourier inverse transform of the dynamical form factor. Ex-
plain (illustrate) the time dependence of S(r, t). ut

3.7.10 Van Hove theory: dynamical scattering experiment99

Dynamical form factors can be directly observed experimentally. To show this, we must

98In practice, this is the space-time average over a sample.
99L van Hove, Phys. Rev. 95, 249 (1954).
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analyze the scattering process: a monochromatic projectile of energy h̄ω and momentum
h̄k hits the target whose state is specified by its eigenstate with energy En. The state of
the whole system is specified by (En,k, ω). The outcome of this collision is assumed to be
(Em,k

′, ω′).
Let us assume that the density distribution function of the scatterers in the system

be ψ(r), and the interaction potential between the scatterer and the projectile be V : the
interaction Hamiltonian h between the projectile and the system may be written as

h(r) =
∫
dr′ V (r − r′)ψ(r′). (3.7.33)

The state ket of state (En,k, ω) may be written as |En〉|k, ω〉.
With the aid of the perturbation theory (the Fermi golden rule) the scattering transition

rate may be written as

P =
2π

h
|〈k′, ω′|〈Em|h|En〉|k, ω〉|2δ(h̄(ω − ω′) + En − Em). (3.7.34)

If we introduce ∆k = k − k′ and ∆ω = ω − ω′, and write the above P as P (∆k,∆ω), then

P (∆k,∆ω) ∝ S(∆k,∆ω). (3.7.35)

That is, studying the scattering rate with momentum and energy transfer of h̄∆k, and h̄∆ω
directly gives the dynamical form factor.

A demonstration is as follows. Since the plane wave is given by

〈r|k, ω〉 =
(

1
2π

)3/2

eik·r (3.7.36)

〈k′, ω′|〈Em|h|En〉|k, ω〉 =
1

(2π)3

∫
dr

∫
dr′ eik·r−ik′·r′

δ(r − r′)〈Em|h(r)|En〉

(3.7.37)

=
1

(2π)3

∫
dr ei(k−k′

)·r〈Em|
∫
dxV (r − x)ψ(x)|En〉

(3.7.38)

=
1

(2π)3

∫
dρ ei(k−k′

)·ρV (ρ)
∫
dx 〈Em|ei(k−k′

)·xψ(x)|En〉

(3.7.39)

Let us define (here, ∆k = k − k′)

W (∆k) =
∣∣∣∣∫ dρ e−i∆k·ρV (ρ)

∣∣∣∣2 . (3.7.40)

Then, the transition rate reads

P =
2π
h
W (∆k)

1
(2π)6

∫
dx

∫
dx′〈En|e−i∆k·xψ(x)|Em〉

× 〈Em|ei∆k·x′
ψ(x′)|En〉δ(h̄(ω − ω′) + En − Em).

(3.7.41)

=
2π
h
W (∆k)

1
(2π)6

∫
dx

∫
dx′ e−i∆k·x+i∆k·x′

〈En|ψ(x)|Em〉

× 〈Em|ψ(x′)|En〉δ(h̄(ω − ω′) + En − Em).
(3.7.42)
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Now, we rewrite the delta function as (here, ∆ω = ω − ω′)

δ(h̄∆ω + (En − Em)) =
1
h

∫
dt e−i(∆ω+(En−Em)/h̄)t (3.7.43)

With this we may rewrite (here, H is the system Hamiltonian)

〈En|ψ(x)|Em〉〈Em|ψ(x′)|En〉δ(h̄(ω − ω′) + En − Em)

=
1
h

∫
dt ei∆ωt〈En|ψ(x)|Em〉〈Em|eiHt/h̄ψ(x′)e−iHt/h̄|En〉. (3.7.44)

Now, recall the Heisenberg picture eiHt/h̄ψ(x)e−iHt/h̄ = ψ(x, t). We arrive at

P ∝W (∆k)
∫
dx

∫
dx′ ei∆k·(x′−x)

∫
dt e−i∆ωt〈En|ψ(x)|Em〉〈Em|ψ(x′, t)|En〉 (3.7.45)

What we observe is the average of P over the equilibrium distribution of the system initial energy En

1
Z
Tre−βEn〈En|ψ(x)|Em〉〈Em|ψ(x′, t)|En〉 =

1
Z
Tre−βHψ(x)ψ(x′, t), (3.7.46)

but this is the definition of the space-time correlation function

C(r, t) = Tr ρψ(0, 0)ψ(r, t), (3.7.47)

so we have (for neutron scattering W is almost constant)

P ∝
∫
dr

∫
dtei(∆k·r−∆ωt)C(r, t). (3.7.48)

The calculation may look acrobatic, but it is a rather routine calculation in linear re-
sponse theory (→X2.4.2).

3.7.11 Long-range correlation under nonequilibrium conditions100

A typical dynamics of the fluctuation of a conserved quantity obeys

dρ(k, t)

dt
= −Dk2q(k, t) + ik ·w(k, t). (3.7.49)

Here, we have already space-Fourier transformed the Langevin equation. If we write

〈w(k, t)w(k′, s)T 〉 = 2(2π)3Rδ(k + k′)δ(t− s), (3.7.50)

we may solve this just as we have done in 3.2.4, and after the initial memory is lost, we have

〈q(k, t)q(k′, 0)〉 = (2π)3kRk′

Dk2
e−Dk

2tδ(k + k′). (3.7.51)

The fluctuation-dissipation relation (the condition to guarantee the stationary state to be
the equilibrium state) implies kRk′/Dk2 = S(k), the static form factor; if we coarse-grain
the system spatially, S(k) ∼ χ, where χ is the compressibility.101 so there is no long-range

100P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn, “Long-range correlation for conserved dynamics,”
Phys. Rev. A 42, 1954-1968 (1990).

101Just as Wiener-Khinchine (→3.7.5), S(k) is the spatial Fourier transform of the spatial correlation
function 〈q(r)q(0)〉, so 〈q(0)2〉 = (1/2π)3

∫
S(k)d3k = V χ, where χ is the compressibility, so 〈q(k)q(−k)〉 ∝

χ.
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correlation; the spatial correlation is ∼ δ(r), very short-ranged.
However, if the system is not isotropic, or not in equilibrium, kRk′/Dk2 gives a long

range correlation ∼ 1/rd (like an electrostatic potential due to a quadrupole).102.
This result may be understood easily, if we accept the long time tail for conserved quan-

tities (→5.2.6) (actually, this can be derived from (3.7.51)). Due to the long time tail, two
points at a distance r apart are under the influence of a common disturbance that happened
t ∼ r2 ago. This effect decays as t−d/2, so the correlation between these two points should
be of order (r2)−d/2 = r−d.
Exercise 1. Show that 〈q(r, t)q(0, 0)〉 for fixed r behaves as t−d/2, using (3.7.51). ut
Warning. The generality of the above result is not known. There are different nonequilib-
rium systems. For example, experimentally, the system driven at the boundary (the system
wall) is definitely different from the system considered above. This entry will hopefully be
expanded in the near future.

102Remember the Poisson equation. It is easy to see the correspondence k2 ⇐⇒ 1/rd−2, so the Fourier
transform of kRk′/k2 ⇐⇒ ∇R∇(1/rd−2).
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Chapter 4

Fluctuations and Phenomenology

Let us pursue the line initiated by Einstein (→3.1.7): we can understand phenomenological
laws through the study of fluctuations. Onsager’s reciprocity, linear nonequilibrium ther-
modynamics, and the Green-Kubo relations are typical outcomes of this line of thoughts.
The reader will realize how crucial the study of fluctuations is (and large deviation theory is).

4.1 Dynamics of Fluctuations and Phenomenological

Laws

4.1.1 Large fluctuations in equilibrium
Big fluctuations can eventually be observed if we are patient enough. Its probability is con-
trolled by the thermodynamic theory of fluctuation (→2.8.5 = large deviation theory for an
equilibrium ensemble 1.6.4).
Exercise 1. There is a macromolecular chain that may be regarded as a harmonic spring
with the spring constant k = 10pN/nm. What is the probability of its reaching the displace-
ment of 20nm? Can you tell how long, on the average, we have to wait to encounter such a
fluctuation? [You may have to supply needed information to answer the questions.] ut

If we are patient enough, extremely big fluctuations may be observed. If we sample all
the members of the equilibrium ensemble with such extreme fluctuations (i.e., a conditional
ensemble), then the resultant ensemble (= a conditional ensemble) is certainly a nonequi-
librium ensemble. A natural generalization of Einstein’s fundamental idea (→3.1.7) is that
such an ensemble may be used to study nonequilibrium phenomena. We do not know yet
how legitimate this idea is. We know, as we will see soon, that Onsager’s articulation of
Einstein’s idea near equilibrium (regression hypothesis →4.1.2) seems to hold.
Discussion 1. F1ATPase is a rotary molecular motor that rotates stepwisely 2π/3 per one
ATP molecule when it is immersed in a solution of ATP.1 The molecule contains a central

1K. Kinoshita, Jr., K. Adachi and H. Ito ,“Rotation of F1 -ATPase: How an ATP-driven molecular
machine may work” Annu. Rev. Biophys. Biochem. Struct., 33 245-268 (2004). The original paper demon-
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shaft that rotates when ATP is consumed in the surrounding ring. A molecule of ATP goes
into a catalytic pocket and is hydrolyzed. The released energy is used to rotate the shaft.
In equilibrium in the ATP solution there are appropriate amounts of ADP molecules and
phosphate ions as well. Now, from this equilibrium ensemble construct a collection of F1-
ATPases that just received ATP in their pockets. Is it an equilibrium ensemble? ut

Notice that equilibrium dynamics is time reversible (due to detailed balance →2.7.6),
so on the average such extreme fluctuations should be produced quickly by the time rever-
sal of the decay process, once the building up process really starts.2 This symmetric quick
building up of large fluctuations can be illustrated nicely in an experiment on an electronic
circuit.3

Discussion 2. If the building up process is so quick, then why is the second law of thermo-
dynamics not violated often? [We have almost thought about this in Discussion 1]. ut

4.1.2 Large fluctuations and regression principle
Einstein’s theory of Brownian motion (→3.1.3) assumes, as a key idea, that the mesoscale
dynamics driven by fluctuations decay following macroscopic laws (in his case Fick’s law).
This already contains the idea that spontaneously formed fluctuations and the ‘same’ fluctu-
ations created through applying certain external perturbations are indistinguishable. More
precisely speaking, a local spontaneous fluctuation described by the deviation of thermody-
namic quantities {δx} is indistinguishable mesoscopically from the same deviation created
by an external means (say, by modifying conjugate thermodynamic fields).4

Then, the instantaneous time evolution (i.e., the differential equation governing the time
evolution) of the spontaneous fluctuation when it decays should be, on the average, identical
to the macroscopic equation describing the decay of the macroscopically prepared initial
condition. This idea is called Onsager’s regression hypothesis (19315).6

We could state Onsager’s regression hypothesis as follows:

In order to specify the macroscopic state of a system uniquely we can find a set
of macroscopic state variables {αi} the decay behaviors of whose spontaneous
fluctuations are on the average described by the macroscopic phenomenological
laws governing the time derivatives of {αi}.

This should be a principle. Accordingly, Onsager’s original hypothesis should be called On-
sager’s regression principle. A much more direct and transparent statement will be given in
the large deviation framework later (→4.1.15).

strating the rotation unequivocally is an many-vba award-winning paper by R. Yasuda, H. Noji, and K.
Kinosita, Jr, “F1-ATPase is a highly efficient molecular motor that rotates with discrete 120◦ steps,” Cell
93, 1117 (1998).

2See 4.1.3
3D. G. Luchinsky and P. V. E. McClintock, “Irreversibility of classical fluctuations studied in analogue

electrical circuit,” Nature 389, 463-466 (1997). As demonstrated in this paper under the nonequilibrium
driven condition, the formation process and the decay process of a large fluctuation is not symmetric in time,
because detailed balance is violated.

4There may be microscopic differences, but such differences are irrelevant at the larger scale we observe
the system.

5This year, Japan occupied Manchuria; nylon invented by Carothers; Empire State Bldg completed.
6L. Onsager, “Reciprocal relations in irreversible processes. II.” Phys. Rev. 38, 2265-2279 (1931).

Section 3 explains this idea.
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4.1.3 Probability of violation of the second law
We have seen that fluctuation can go to a considerable extent against the second law
(→4.1.1). After all, fluctuation decreases (local) entropy and without such fluctuations
Jarzynski’s equality (→2.7.20, also 4.1.4) cannot hold.

Let the classical system7 under study be described by its canonical coordinates y and
externally controllable parameters λ. The system history may be expressed by {y(t), λ(t)}.
We assume that the system satisfies the following microscopic reversibility:

P ({x, λ}t0|x(0))/P ({x, λ}0t |x(t)) ≡ P (→)/P (←) = e−βQ({x,λ}t
0), (4.1.1)

where {x, λ}t0 is the path = history with a given protocol λ(t), and the overline indicates the
time reversal operation.8 Q is the energy absorbed by the system from the heat bath during
the forward process.

If the initial and the final states are in equilibrium, the difference of the surprisal
(→1.3.2) − log ρ is interpreted as the entropy change. Therefore, we may assume9

Σ = log ρ(x(0))/ρ(x(t))− βQ, (4.1.2)

where Σ is the entropy production, ρ(x(t)) is the distribution of canonical coordinates at
time t.10 Notice that the probability of the entropy production to be Σ by the forward
dynamics is given by

PF (Σ) =
∑

ρ(x(0))P (→), (4.1.3)

where the sum is over all the transitions compatible with the entropy production Σ. An
analogous formula can be written for the backward dynamics PR

PR(−Σ) =
∑

ρ(x(t))P (←). (4.1.4)

There is a one to one correspondence between the forward and reversed paths, so the sum
above is over exactly the same paths (although reversed in time) in the sum for PF . We wish
to compute

PF (+Σ)

PR(−Σ)
=

∑
ρ(x(0))P (→)∑
ρ(x(t))P (←)

. (4.1.5)

Combining (4.1.1) and (4.1.2), we obtain for each path

ρ(x(0))P (→)

ρ(x(t))P (←)
= eΣ (4.1.6)

Now, take the following trivial identity:

a

b
=
c

d
⇒ a

b
=
c

d
=
a+ c

b+ d
. (4.1.7)

7not necessarily a deterministic system, but must be Markovian. Cf. 6.5.9.
8The conditional probability implies that we do not take into account the (equilibrium or stationary)

distribution of the states into account.
9The original paper: G. E. Crooks, “Entropy production fluctuation theorem and the nonequilibrium work

relations from free energy differences,” Phys. Rev. E 60, 2721 (1999) claims that the result is applicable far
away from equilibrium, but it is questionable simply because we have no clear definition of entropy away
from equilibrium.

10Precisely speaking, this ratio must be the reciprocal of the Radon-Nikodym derivative dρ(x(t))/dρ(x(0)).
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Therefore, (4.1.5) implies
PF (Σ)/PR(−Σ) = eΣ. (4.1.8)

This is called the fluctuation theorem. This type of theorems hold for sufficinetly chaotic
dynamical systems (→7.6.3).11

Exercise 1. The fluctuation theorem may be experimentally checked with a small system.
Read Wang et al. Phys. Rev. Lett. 89, 050601-1 (2002)12 and summarize its content. ut
Remark. There have been numerical and empirical attempts to check the fluctuation the-

orem: M. Dolowschí(a)k and Z. Kovács, “Fluctuation formula for nonreversible dynamics
in the thermostated Lorentz gas,” Phys. Rev. E 65 066217-1-4 (2002). This is for a driven
periodic Lorentz gas, and is consistent. ut

4.1.4 Relation of fluctuation theorem to Jarzynski’s equality
Let Wd be the dissipated part of the work done to the system. Then,

Σ = βWd (4.1.9)

Therefore, from (6.7.22) we have
〈e−βWd〉F = 1. (4.1.10)

We know Wd = W −∆F , this is Jarzynski’s equality (→2.7.20).
Discussion 1.13 We can also derive

〈eΣ〉R = 1. (4.1.11)

This is, so to speak, an anti-Jarzynski equality. Can we use it? ut

4.1.5 Decay dynamics and time reversal symmetry
The regression principle (→4.1.2) asserts that the ‘macroscopic decay dynamics’ is on the
average identical to the decay dynamics of fluctuations. The dynamics of fluctuation may
contain non-decaying components, so we must separate thermodynamic effects and purely
mechanical (time reversible) effects.

Let a mesoscopic observable14 X be zero on the average in equilibrium, but be displaced
from zero due to fluctuation. Its time derivative may be described by a sum of the systematic
part (with suffix s) and noise w as in the Langevin equation (→3.2.2):

dX

dt
=

(
dX

dt

)
s

+ w. (4.1.12)

The systematic part may be defined by averaging the microscopic time derivative over the
ensemble whose members are specified by a particular initial condition for macrovariables

11This type of relation was first found numerically by D. J. Evans, E. G. D. Cohen and G. P. Morriss,
Phys. Rev. Lett. 71, 2401 (1993), and later proved for Anosov dynamical systems by G. Gallavotti and E.
G. D. Cohen, J. Stat. Mech. 80, 931 (1995) ( see 7.6.3). The form given here is due to G. E. Crooks, Phys.
Rev. E 60, 2721 (1999).

12by G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles and D. J. Evans, “Experimental demonstration
of violations of the second law of thermodynamics for small systems and short time scales.”

13from the question by Mr Y. Liu
14here, mesoscopic means the scale between microscopic and macroscopic and well-separated from both;

recall that this is the condition that Langevin equations may be used.
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and various realizations (samples) of the noise.15

The systematic part may be further classified into reversible and irreversible parts.
Under the time reversal transformation (→4.1.6 more systematically), the former should
behave as X times t (or as X/t or as computed according to pure mechanics), and the latter
behaves oppositely. For example, consider the velocity: dr/dt = v is a mechanical result,
and the both sides behave similarly, so there is no irreversible component. Or, look at the
Smoluchowski equation (→3.5.5) or the corresponding Langevin equation. Its systematic
part is F /ζ and is invariant under time reversal (behaves differently from dr/dt), so this
term describes an irreversible effect as we know.

4.1.6 Time reversal symmetry operator
The time reversal symmetry operation I is formally defined by I(q, p, t) = (q,−p,−t)). Thus, if everything
is purely macroscopically mechanical, we should not detect the effect of this operation.16 The reversible and
irreversible parts of a microscopically expressible observable X are defined formally as(

dX

dt

)
r

=
1
2

[(
dX

dt

)
s

− εXI
(
dX

dt

)
s

]
, (4.1.13)(

dX

dt

)
ir

=
1
2

[(
dX

dt

)
s

+ εXI
(
dX

dt

)
s

]
. (4.1.14)

We have assumed that IX = εXX.
Notice that the above equations are to be used to judge the reversible and irreversible parts in the

equation for X. Therefore, the force F is a reversible part in the Langevin equation for v, but not in the
equation for x. For the Langevin equation (3.2.1) for v, we know (dv/dt)s = −ζv + F , so (4.1.13) reads as

1
2
[(−ζv + F ) + I(−ζv + F )] =

1
2
[(−ζv + F ) + (ζv + F )] = F . (4.1.15)

Therefore, as we easily guess, F is the reversible part and −ζv is the irreversible part. However, for the
Langevin equation for x (dx/dt)s = ζF . Therefore, (4.1.13) reads in this case as

1
2
[F − IF ] = 0. (4.1.16)

That is, the term containing F is the irreversible part.

4.1.7 Implication of regression principle
The regression principle (→4.1.2) implies that on the average (denoted by the overline) the
dynamics of fluctuations is governed by

dX

dt
=

(
dX

dt

)
s

(4.1.17)

with the right hand side being identical with that given by the macroscopic phenomenological
laws (the law governing the dynamics of small macroscopic deviation from equilibrium).17

15However, as we will learn soon, this interpretation is not quite right (→4.1.13); only if we ignore short
time dynamics (of the time scale of tm in 3.4.1), the argument is right. Notice that the initial ensemble may
be obtained by selecting samples with extra conditions just as we do in the contraction principle (→1.6.11).

16This is not the same as the backward play of a movie. In that case (q, p, t)→ (q,−p, t) occurs, because
observer’s time still flows in the ordinary direction.

17A more precise statement may be as follows: make a subensemble of an equilibrium ensemble with the
condition that the mesocopic variable X be close to a particular value x. Then, the expectation value of
dX/dt for this ensemble is given by the macroscopic phenomenological law.
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Therefore, the overline denoting averaging.
The irreversible part of this macroscopic dynamics (the phenomenological law) is driven

by the thermodynamic potential δ2S18(→2.8.5). The dynamics may be assumed to be linear,
so we may write the irreversible phenomenological law as (henceforth X will be written as
x; we assume that the equilibrium values are defined to be zero)

dx

dt
= L∇xS,

that is,
dxi
dt

=
∑
j

Lij
∂S

∂xj

 (4.1.18)

where L is a positive semidefinite (→4.1.8) constant matrix whose elements are called ki-
netic coefficients.

This macroscopic law is assumed as given in linear irreversible thermodynamics (→4.2.2).
Some examples follow later (→4.2.4 and on). We will learn that fluid dynamic laws are also
examples (→5.2.5).
Warning. Up to 4.1.14 we discuss only spatially uniform systems. Thus, no spatial coor-
dinates appear in the argument. ut

How reliable is the regression principle? We can compute the dynamical form factor
with the aid of hydrodynamic fluctuation, and the result can be compared with experimental
results.

Is this a principle of nonequilibrium statistical mechanics? Yes, it is. As we have clearly
learned from the history and the logic of equilibrium statistical mechanics, we need some
extra mechanical principle (→2.6.2). However, no one knows how general the principle is;
at least very close to equilibrium it seems to be correct.

4.1.8 Second law implies positive semidefiniteness of kinetic coefficient matrix
Let us compute the change of entropy due to the decay of fluctuation. Since the starting
point is a large fluctuation, the entropy of the initial state must be low. Therefore, the
dynamics of fluctuation must increase the entropy on the average. That is, dS/dt ≥ 0.

Let us compute the entropy production σ

σ =
dx

dt
· ∂S
∂x

= L
∂S

∂x
· ∂S
∂x
≥ 0. (4.1.19)

Therefore, the second law implies that the kinetic coefficient matrix L must be positive
semidefinite.

4.1.9 Expression of kinetic coefficients in terms of correlation functions19

Integrating (4.1.12) with (4.1.18) for a short time ∆t, we obtain

x(t+ ∆t|t)− x(t) = LkB
∂logP

∂x(t)
∆t+ ∆w. (4.1.20)

18Although we say ‘potential’, in contrast to the ordinary potential it drives the system to the direction
to ‘increase it.’ That is, the driving force due to this ‘potential’ is given by the + gradient of the ‘potential,’
and not by the negative gradient of the potential.

19This argument is in L. Onsager, “Reciprocal relations in irreversible processes. I.” Phys. Rev. 37, 405
(1931).
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We have used δ2S/kB = logP+ const. Here, x(t+∆t|t) is the value of x at time t+∆t under
the condition that x is given at time t. If we multiply xT (t) (transposition) and average over
the initial condition at time t and over the noise, we obtain

〈x(t+ ∆t|t)xT (t)〉 − 〈x(t)xT (t)〉 =
∫
dx(t)LPkB

∂logP

∂x(t)
xT (t)∆t, (4.1.21)

= kBL
∫
dx(t)

∂P

∂x(t)
xT (t)∆t, (4.1.22)

= −kBL
∫
dx(t)P

∂xT (t)

∂x(t)
∆t. (4.1.23)

We have used integration by parts. We conclude

L = − 1

kB∆t
[〈x(∆t)xT 〉 − 〈xxT 〉], (4.1.24)

where x(∆t) is the value of deviations after ∆t with the initial condition x.

4.1.10 Onsager’s reciprocity relation
Let us apply the time reversal operation to the correlation function. We assume that each
variable has a definite parity ε = ±1 under this operation:

Ixi(t) = εixi(−t). (4.1.25)

If the system is under the influence of magnetic field B or is being rotated with angular
velocity ω, we must take their time reversal into account IB = −B and Iω = −ω.20

Let us study the time reversal symmetry of the time correlation function

〈xi(t)xj(0)〉B,ω = εiεj〈xi(−t)xj(0)〉−B,−ω. (4.1.26)

If we assume classical statistical mechanics,21 all the quantities commute, so we obtain

〈xi(t)xj(0)〉B,ω = εiεj〈xj(t)xi(0)〉−B,−ω. (4.1.27)

That is,
LijB,ω = εiεjLji−B,−ω. (4.1.28)

This relation is called Onsager’s reciprocity relation.22

20Onsager clearly recognized this comment as a trivial side remark, saying “Barring certain exceptional
cases∗ which can readily be recognized and sorted out, · · ·,” and with a footnote at *[Coriolis forces, external
magnetic fields (and permanent magnets).] He discussed the system under magnetic field briefly in Section
7.

21Even for quantum cases essentially the same proposition holds, cf., 4.4.13, X2.5.7.
22For experimental verification of this symmetry, see, e.g., D. D. Fitts, Nonequilibrium Thermodynamics

(McGraw-Hill, 1962). However, originally such a symmetry was semiempirically recognized by Thomson and
others as summarized in Onsager’s paper I.
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4.1.11 What happens to quantum systems? Nakajima’s Theory23

In the above derivation of the reciprocity relation, the commutativity of dynamical variables
has been used. Furthermore, honestly speaking, thermodynamic fluctuation theory cannot
be used generally for quantum systems, so (4.1.20) cannot be used as a starting point. Thus,
a slightly more careful approach is needed, which will be discussed in Section 4.3.

Nakajima’s approach is to start with (4.1.20) and iterpret it as

Tr [ρ(t+ ∆t|t)x]− x(t) = L
∂S

∂x
∆t = −LX

T
∆t, (4.1.29)

where ρ(t+ ∆t|t) is the conditional density matrix conditioned at time t. The, “It seems to
us that the most natural answer for the form of” this density matrix is

ρ(t+ ∆t|t) = exp[β(F −H) + βxX], (4.1.30)

where X is the conjugate variable to x (wrt energy).24 To compute (4.1.30) the following
formula is used (→3.3.6, 4.3.5)

exp[−β(H − xX)] = e−βH
(

1 +
∫ β

0
Xx(−ih̄λ)dλ+ · · ·

)
. (4.1.31)

Therefore, the LHS of (4.1.29) reads

Tr [ρ(t+ ∆t|t)x] = 〈x〉+X
∫ β

0
〈x(−ih̄λ)x(t+ ∆t)〉dλ+ o[X]. (4.1.32)

Setting ∆t = 0, we get

Tr [ρ(t|t)x] = x(t) = 〈x〉+X
∫ β

0
〈x(−ih̄λ)x(t)〉dλ+ o[X]. (4.1.33)

Combining these two, we obtain

Tr [ρ(t+ ∆t|t)x]− x(t) = X
∫ β

0
〈x(−ih̄λ)[x(t+ ∆t)− x(t)]〉dλ (4.1.34)

Therefore,

−kBL∆t =
1

β

∫ β

0
〈x(−ih̄λ)[x(∆t)− x(0)]〉dλ. (4.1.35)

That is, corresponding to (4.1.24), we obtain

L = − 1

kB∆t
[〈x;x(∆t)T 〉 − 〈xxT 〉]. (4.1.36)

Practically, if the correlation functions are replaced by the canonical correlation functions
(→3.3.6, 4.3.5), many classical results survive.

23The correct quantum formula for thermal distrubances was obtained by Nakajima: R. Kubo, M. Yokota
and S. Nakajima, “Statistical-mechanical theory of irreversible processes. II. Response to thermal distur-
bance,” J. Phys. Soc. Jpn., 12, 1203 (1957).

24In the original paper, this form is thought to be natural from the information theoretical argument
(maximization of entropy).
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4.1.12 Green-Kubo formula for kinetic coefficients
We are studying equilibrium fluctuations, so time correlations depend only on the relative
time. Therefore,

d2

dt2

〈
x(t)xT (0)

〉
=

d

dt

〈
dx(t)

dt
xT (0)

〉
, (4.1.37)

=
d

dt

〈
dx(0)

dt
xT (−t)

〉
, (4.1.38)

= −
〈
dx(0)

dt

dxT (−t)
d(−t)

〉
, (4.1.39)

= −
〈
dx(t)

dt

dxT (0)

dt

〉
. (4.1.40)

Integrating this formula twice with respect to t, we obtain (remember that T denotes trans-
position; the dot ˙ denotes the time derivative)

〈x(∆t)xT 〉 − 〈xxT 〉 = −
∫ ∆t

0
ds
∫ s

0
dsT 〈ẋ(s′)ẋT (0)〉. (4.1.41)

That is (→4.1.9),

L =
1

kB∆t

∫ ∆t

0
ds
∫ s

0
ds′〈ẋ(s′)ẋT (0)〉. (4.1.42)

Here, ∆t is macroscopically small, but compared with the noise correlation time scale it
is very long. Therefore, we may take ∆t→∞ limit, keeping the values of macrovariables.25

Using l’Hospital’s rule, we get

L =
1

kB

∫ ∞

0
ds〈ẋ(s)ẋT (0)〉. (4.1.43)

This is called the Green-Kubo formula (for a prototype see 3.2.9).
Exercise 1. Let us interpret the formula for the diffusion constant as (4.1.43). According
to Einstein D = kBT/ζ (→(3.1.6)), so v = F /ζ = βDF . βF = ∇x logP , where P ∝ e−βV

with V being the potential of the force F . That is, we may identify D/kB and L, so (4.1.43)
implies (3.2.21).ut

4.1.13 Warning: noise ensemble average is not enough
We have interpreted 〈 〉 up to this point in this section as a noise ensemble average. Let us
demonstrate that this interpretation contradicts equilibrium statistical mechanics.

Let us consider a simple situation that only x1 deviates from equilibrium. Then,

〈ẋ1x1〉 =

〈
L11

dS

dx1

x1

〉
= −kBL11 < 0, (4.1.44)

so something must be wrong.
The reader should have realized that in the derivation of the Green-Kubo relation we

25If you wish to mathematize the procedure we are using, we must take that ratios of time scales meso/micro
and macro/meso and take both to infinity.
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have ignored the correlations such as 〈ẋi(0)xj(0)〉. This is not the problem so long as ˙ is
interpreted as the true time derivative: it is easy to demonstrate that 〈ẋ1x1〉 = 0.26

The time derivative in the phenomenological linear law is actually calculated, according
to (4.1.20), as a short time average of the true time derivative:

A(t+ ∆t)− A(t)

∆t
=

1

∆t

∫ t+∆t

t
dsȦ(s). (4.1.45)

The paradox above is caused by careless identification of macroscopic time derivatives and
mechanically true time derivatives.

What is the lesson to learn? Although we introduced the Langevin equation as a true
mechanical equation of motion, if the driving force is thermodynamic, it is extremely dan-
gerous to interpret it this way. It should be interpreted as a semimacroscopic equation
whose time derivative is not the true mechanical time derivative but its short time average
as (4.1.45).

4.1.14 Green-Kubo formula for transport coefficients
We have given a general expression for the Onsager coefficients L in 4.1.12, but for spatially
uniform systems. We have already discussed spatial fluctuations and transport in nonuniform
systems, so let us derive a more convenient formula for general nonuniform systems.

Probably, the easiest approach is to divide the space into cells and the variables in each
cell {x} are denoted with the representative cell position as {x(r)}. Then, we interpret
(4.1.18) as (we write ∂S/∂x = F )

∂x(r)

∂t
=
∑
r′
L(r, r′)F (r′). (4.1.46)

Using (4.1.43), let us first proceed quite formally without paying attention to the convergence
of the time integral:

∑
r′
L(r, r′)F (r′) =

1

kB

∫ ∞

0
dt
∑
r′

〈
∂x(r, t)

∂t

∂x(r′)T

∂t

〉
F (r′), (4.1.47)

=
1

kB

∫ ∞

0
dt
∑
r′
〈div j(r, t) div j(r′)T 〉F (r′), (4.1.48)

= −divr
∫ ∞

0
dt
∑
r′
〈j(r, t)j(r′)T 〉∇r′F (r′) (4.1.49)

Here, j is the fluctuating part of the flux (non-systematic part).
On the other hand, the phenomenological law has the form in 4.2.1, i..e.,

∂x(r)

∂t
= −div(L∇F ). (4.1.50)

If F changes slowly compared with the correlation length of fluctuating flux, we may set
r′ = r in F , and we arrive at

L =
1

kB

∫ ∞

0
dt
∫
dr
〈
j(r, t)j(0)T

〉
. (4.1.51)

26Obviously, 〈ẋ1x1〉+ 〈x1ẋ1〉 = 0. Also, 〈x1(t)x1(0)〉 = ε21〈x1(0)x1(t)〉, so even quantum mechanically, this
average vanishes.
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If we introduce

J(t) =
∫
dr j(r, t), (4.1.52)

then

L =
1

V kB

∫ ∞

0
dt
〈
J(t)J(0)T

〉
. (4.1.53)

Here, V is the volume of the system (or the domain being paid attention). This is almost
the final result.

However, the time integral in (4.1.53) may not exist, because limt→∞ J may not be zero.
To avoid this, we can simply subtract this value from J , and define J− = J − limt→∞ J to
obtain the final result:

L =
1

V kB

∫ ∞

0
dt 〈J−(t)J−(0)T 〉. (4.1.54)

This is the Green-Kubo formula for transport coefficients.

4.1.15 Onsager’s principle
This is a continuation of 3.2.10. Onsager’s principle takes the following large deviation
principle form:

P (∆x/∆t ∼ ẋ|x(t)) ' e−τI(ẋ|x(t)). (4.1.55)

Here, x(t) is explicitly written to denote the starting point of the change ∆x(t). Combining
this with the regression principle (→4.1.2), we conclude that the rate function is written in
terms of macroobservables.

The basic idea of Onsager’s principle (interpreted in the large deviation principle sense)
has a clear intuitive and computational meaning:
If we wish to study a macroscopic evolution law, take statistics of a macroscopically short
time (= mesoscopic time) changes; their average provides the most probable time derivative
= the macroscopic evolution law. The distribution of the fluctuation around the most prob-
able evolution law is governed by the rate function that dictates the kinetic level stochastic
behavior of the system. Thus, there is a possibility that we can use short time simulations
to obtain coarse-grained evolution rule to accelerate simulations.

As noted in 1.6.3 some sort of variational principle is also expected for the mesoscopic
dynamics (→4.1.22).

4.1.16 Onsager-Hashitsume path integral
As already noted in 3.2.10, Onsager’s principle gives the transition probability:

P (x(t+ τ)|x(t)) ' e−τI(ẋ(t)|x(t)). (4.1.56)

Therefore,
P (x(t+ 2τ)|x(t)) '

∑
x(t+τ)

e−τ [I(ẋ(t+τ)|x(t+τ))+I(ẋ(t)|x(t))], (4.1.57)

where the summation (that may be an integration) over x(t+ τ) means the summation for
all the values of x at the intermediate time step t+ τ between t and t+ 2τ .

Repeating this procedure, we can bridge the macroscopic time span [t0, t1] as

P (x(t1)|x(t0)) '
∑

x1,x2,···,xn−1

e−τ
∑n−1

i=1
I(ẋi|xi), (4.1.58)
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where xi = x(t0 + iτ) and we assume t1 = t0 + nτ . Since τ is macroscopically very small
(in the mathematical idealization, infinitesimal and may be regarded macroscopically as dt),
(4.1.58) is understood as a path integral, and may be formally rewritten as (→X1.10.5)

P (xF , t1|xI , t0) '
∫ x(t1)=xF

x(t0)=xI

D[{x(t)}] exp
[
−
∫ t1

t0
ds I(ẋ(s)|x(s))

]
, (4.1.59)

This is often called the Onsager-Machlup path integral, but should better be called the
Onsager-Hashitsume path integral.27

Thus, Onsager’s principle may be restated as follows:
The Lagrangian is a rate function: the Lagrangian for the path integral representation of
the time evolution of probability of observing a macroscopic state is given by the rate func-
tion for the microscopic time scale average of the time derivative of macroscopic quantities
specifying the state.

4.1.17 Gaussian approximation and Langevin equation
The rate function I is convex and vanishes for the most probable value (expectation value)
(→1.6.2). Therefore, I must vanish if and only if the phenomenological law

ẋ = f(x) (4.1.60)

holds. I is usually differentiable, so we may assume that near the origin I has a quadratic
form:28

I(ẋ(t)|x(t)) =
Γ

4
(ẋ− f(x))2. (4.1.61)

This rate function is compatible with

ẋ = f(x) + w (4.1.62)

where w is a Gaussian noise such that 〈w〉 = 0 and

〈w(t)w(s)〉 =
2

Γ
δ(t− s), (4.1.63)

where 〈 〉 is the ensemble average (= average over the stochastic parameter →1.4.1). That
is, the Langevin equation (4.1.62) is another expression of Onsager’s principle in the Gaus-
sian approximation.

The numerical factor Γ may be related to the variance of ẋ. Let us compute it. Obvi-
ously,

2/Γ = τ〈ẋ2〉 − τ〈ẋ〉2. (4.1.64)

Notice that the first term on RHS is of order 1 and the second term of order τ .29 Therefore,
we may write for the use at our time scale

1

Γ
=

1

2
τ〈ẋ2〉 =

1

2τ

∫ τ

0
ds
∫ τ

0
ds′

〈
dx

dt
(s)

dx

dt
(s′)

〉
'
∫ ∞

0
ds

〈
dx

dt
(s)

dx

dt
(0)

〉
. (4.1.65)

27The transition probability (4.1.56) was essentially proposed by Onsager. Hashitsume introduced the
path integral in 1951; Onsager introduced the same path integral with his student Machlup in 1953. Thus,
it is fair to call this path integral the Onsager-Hashitsume path integral. We will learn its relation to the
Feynman-Kac formula later (→X1.10.5).

28Of course, more generally, I is a general quadratic functional of ẋ−f(x). This is equivalent to assuming
a noise with memory as in 3.3.6.

29Roughly speaking, 〈ẋ〉 = O[1], and 〈ẋ2〉 = O[1/τ ].

169



Here, dx/dt denotes the true mechanical time derivative, and we have assumed that the noise
correlation decays sufficiently fast in the time scale of tM , so we have replaced the upper
limits of the integrals with infinity.

4.1.18 Onsager’s principle near equilibrium and fluctuation dissipation relation
The original Onsager principle was proposed for the linear nonequilibrium regime. Here, the
phenomenological law reads (→4.1.7)

ẋ = L
∂S

∂x
, (4.1.66)

so that the Langevin equation is

ẋ = L
∂S

∂x
+ w, (4.1.67)

where the correlation function of the noise is given in (4.1.63). The steady distribution of
this Langevin equation may be obtained as

P (x) ∝ eLΓS (4.1.68)

as can be seen from the result in 3.5.5 (a good exercise30 ).
The equilibrium distribution of x is given by ∝ eS/kB (→2.8.5), so

Γ = 1/kBL. (4.1.69)

Combining this and (4.1.65), we obtain the Green-Kubo relation (→4.1.12):

L =
1

kB

∫ ∞

0
ds

〈
dx

dt
(s)

dx

dt
(0)

〉
. (4.1.70)

Thus, Onsager’s principle stated in the large deviation theoretical form + thermody-
namic fluctuation theory can construct a self-contained nonequilibrium statistical theoretical
framework.

4.1.19 Original Onsager’s principle
The transition probability in 4.1.15 close to equilibrium reads with the aid of 4.1.18

P (x(t+ τ)|x(t)) ' exp

− τ

4LkB

(
ẋ− L∂S

∂x

)2
 , (4.1.71)

30The Fokker-Planck equation reads

− ∂

∂x

(
L
∂S

∂x
P

)
+

1
Γ
∂2

∂x2
P = 0.

The equilibrium state satisfies

L
∂S

∂x
P − 1

Γ
∂P

∂x
= 0,

which implies (4.1.68).

170



so the joint probability at two different times reads (see thermodynamic fluctuation theory
2.8.5)

P (x(t+ τ), x(t)) ∝ P (x(t+ τ)|x(t))eS(t)/kB . (4.1.72)

To study its structure further, let us consider the exponents of (4.1.72):

1

kB

S(t)− τ

4L

(
ẋ− L∂S

∂x

)2
 =

S(t)

kB
− τ

2kB

1

2
L−1ẋ2 +

1

2
L

(
∂S

∂x

)2
+

τ

2kB

dS

dt
. (4.1.73)

Now, τdS/dt = S(t+ τ)− S(t), so we arrive at

P (x(t+ τ), x(t)) ' exp
1

2kB

[S(t+ τ) + S(t)]− τ

1

2
L−1ẋ2 +

1

2
L

(
∂S

∂x

)2
 . (4.1.74)

This is the original Onsager’s principle (with Hashitsume’s correction).
The transition probability reads

P (x(t+ τ)|x(t)) ' exp
1

2kB

[S(t+ τ)− S(t)]− τ

1

2
L−1ẋ2 +

1

2
L

(
∂S

∂x

)2
 . (4.1.75)

In these formulas the overall factor 1/2kB instead of 1/kB is due to Hashitsume.

4.1.20 Onsager principle for many variables near equilibrium
Let us summarize what we have learned, while generalizing the formulas to the many variable
case.

The phenomenological law is (corresponding to (4.1.66))

ẋi =
∑
j

Lij
∂S

∂xj
, (4.1.76)

where Lij are Onsager coefficients (a good occasion to review 4.1.12). The rate function for
ẋi is (corresponding to (4.1.61))

I({ẋi(t)}|{xi(t)}) =
1

4

∑
ij

Γij

(
ẋi(t)−

∑
i′
Lii′

∂S(t)

∂xi′(t)

)ẋj(t)−∑
j′
Ljj′

∂S(t)

∂xj′(t)

 , (4.1.77)

where
kBΓij = (L−1)ij (4.1.78)

is the fluctuation dissipation relation with an explicit form corresponding to (4.1.70):

Lij =
1

kB

∫ ∞

0
ds

〈
dxi
dt

(s)
dxj
dt

(0)

〉
. (4.1.79)

The Langevin equation is (corresponding to (4.1.67)

ẋi =
∑
j

Lij
∂S

∂xj
+ wi. (4.1.80)
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with the noise satisfying 〈wi〉 = 0 and

〈wi(t)wj(s)〉 = 2LijkBδ(t− s). (4.1.81)

The transition probability reads (corresponding to (4.1.75))

P ({xi(t+ τ)}|{xi(t)})

' exp
1

2kB

[S(t+ τ)− S(t)]− τ

1

2

∑
ij

(L−1)ijẋiẋj +
1

2

∑
ij

Lij

(
∂S

∂xi

)(
∂S

∂xj

) .
(4.1.82)

This is the original Onsager’s principle.
These formulas can easily be guessed from the single variable case (4.1.75) discussed in

detail above.

4.1.21 Variational principles near equilibrium
A large deviation principle implies a variational principle (→1.6.3). In our case, the varia-
tional principle implies that what we actually observe phenomenologically is the most prob-
able behavior of the system. The most probably behavior corresponds to the path from x(t)
to x(t + τ) that maximizes the transition probability. Therefore, x(s) that maximizes the
formula inside the curly brackets in (4.1.82) should correspond to the phenomenology. This
is a tautology for us.

The term inside the curly brackets in (4.1.82) may be rewritten as follows:

τ {σ(t)− [Φ({ẋi}) + Ψ({Fi})]} , (4.1.83)

where σ is the entropy production rate, and

Φ({ẋi}) ≡
1

2

∑
ij

(L−1)ijẋiẋj, (4.1.84)

Ψ({Fi}) ≡
1

2

∑
ij

LijFiFj (4.1.85)

with ∂S/∂xi = Fi (the conjugate driving force for xi). Φ is called the dissipation function.31

4.1.22 Onsager’s principle of minimum energy dissipation
If the thermodynamic forces Fi are given (i.e., xi are fixed), ẋi are determined by the condition
of maximizing (4.1.83), or equivalently, by the minimization of

Φ({ẋi})− σ(t). (4.1.86)

This is called Onsager’s principle of minimum energy dissipation. Differentiating the above
formula with respect to ẋi, we obtain∑

i

(L−1)ijẋj =
∂σ

∂ẋi
. (4.1.87)

31One thing we must be careful about is that in the above formalization F is a function of {xi(t)} that
are given as the state from which the transition occurs. However, F evaluated at {xi(t+ τ)} (the outcome
of the transition) and the original F differs by a quantity only of order some positive power of τ (likely to
be O[τ1/2]), so we may interpret all the variables in (4.1.83) are after the transition.
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The entropy production rate can be written as

σ(t) =
dS

dt
=
∑
i

∂S

∂xi
ẋi =

∑
i

Fiẋi. (4.1.88)

Therefore, (4.1.87) indeed implies the phenomenological law ẋi =
∑
j LijFj (→4.1.7).

4.2 Linear Irreversible Thermodynamics

4.2.1 Macroscopic phenomenological laws
To discuss heat and electric currents, we must discuss the spatially nonuniform fluctuations.

For the deviation of a quantity q(r) at r, the thermodynamic driving force is F (r) =
∂S/∂q evaluated at r; here for simplicity we assume only one quantity q fluctuates. This
driving force tries to change (actually to diminish) the deviation q at r. Thus, we can
imagine at each point there is F (r), and, if quantity q is conserved (like energy or matter
→5.2.4), its flow occurs only when F is not uniform; its gradient is the actual driving force
of the flow (flux) J of q:

J = Lqq∇
∂S

∂q

∣∣∣∣∣
r

. (4.2.1)

There is no negative sign, because the driving direction is opposite to the ordinary potential
as discussed in 4.1.7 (footnote).

Generalizing this to cases with simultaneously fluctuating quantities, the basic phe-
nomenological law reads

J i =
∑
j

Lij∇
∂S

∂xj
. (4.2.2)

Here, ∇ is the gradient with respect to the actual spatial coordinates, and L is the Onsager’s
kinetic coefficient matrix introduced in 4.1.7.32 The expression of Lij in terms of flux cor-
relations is called the Green-Kubo formula for transport coefficients (→4.1.14).

4.2.2 Linear irreversible thermodynamic framework
As we have seen in Chapter 1, thermodynamics was the key in constructing equilibrium sta-
tistical mechanics. Then, it should be useful to summarize nonequilibrium phenomenology
at least for the cases close to equilibrium. This is the linear irreversible thermodynamics.

The standing assumption is:
[0] The macroscopic state of a system is described by the field of equilibrium thermodynamic
variables. At each space-time point ordinary thermodynamic relations (e.g., the Gibbs rela-
tion) hold.

That is, if the equilibrium state is described by a thermodynamic space spanned by
extensive quantities {xi}, then the macroscopic state of the system is uniquely described by

32Not all the quantities couple each other; for example a scalar quantity does not couple with a vector
quantity, IF a system is isotropic (the so-called Curie’s theorem). This is understood easily by considering
the rotational symmetry of the quantities.
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the field of the corresponding densities. This is called the local equilibrium assumption.33

[1] Macroscopic phenomenology holds: i.e.,

J i =
∑
j

Lij∇Fi, (4.2.3)

where J i is the flux of xi, and Fi is the conjugate (intensive) variable (wrt entropy).
This becomes simpler without ∇, if we do not pay attention to the spatial nonuniformity.
[2] Onsager’s reciprocity relation holds: Lij = Lji.

34

This general theoretical framework is illustrated with thermoelectric effects in 4.2.4-.

4.2.3 Minimum entropy production in linear regime
Let us differentiate σ, assuming that L is symmetric and constant. With the summation
convention, we have

dσ

dt
= 2Lij

∂S

∂xi

∂2S

∂xjxk

dxk
dt

= 2
dxj
dt

∂2S

∂xjxk

dxk
dt

. (4.2.4)

but this is non-positive, because of the stability of equilibrium (which is again a consequence
of the second law):

dσ

dt
≤ 0. (4.2.5)

This implies that if there is an entropy production minimum state, it is stable.35 This is
called the principle of minimum entropy production (due to Prigogine). Notice that con-
stancy of L is crucial for this principle.

Thomson’s principle of minimum heat production is a classic example.

4.2.4 Thermoelectric effects: setting up theoretical framework
Consider a system that allows heat and electrical current conductions. Here, with the aid
of the thermoelectric effect as an example, a step-by-step explanation of how to use linear
irreversible thermodynamics is given.
(1) First, we must identify the thermodynamic variables whose change cause currents. For
heat, it is energy (density) u, and for electric current its carrier density n.
(2) We must know the dependence of entropy (density) on these variables:

ds =
1

T
du− µ

T
dn+ · · · . (4.2.6)

Here, µ is the electrochemical potential of the charge carrier (that is, the ordinary chemical
potential + eφ, where φ is the electric potential, and e is the charge carried by the carrier

33The word ‘local equilibrium’ appears in different contexts with different meanings. In statistical mechan-
ics ‘local equilibrium’ distribution (→5.2.3) implies the equilibrium distribution function with space-time
dependent parameters as we have already seen in the context of the Boltzmann equation (→2.4.9). This
‘local equilibrium state’ cannot properly describe transport properties (→4.3.3). In contrast, ‘local equi-
librium state’ in linear irreversible thermodynamics describes transport phenomena. Thus, thermodynamic
local equilibrium states cannot be described by the local equilibrium distribution functions of statistical
mechanics. Mori’s theory of thermal transport properties (→4.3.4) clearly tells us the difference.

34Here, we simplify this, assuming that there is no magnetic field nor Coriolis force (see 4.1.10 for the
detail).

35Again, we follow Lyapunov’s argument.
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under consideration).
(3) Now, identifying F , we can write down the linear phenomenological law:

Ju = Luu∇
1

T
+ Lun∇

(
−µ
T

)
, (4.2.7)

Jn = Lnu∇
1

T
+ Lnn∇

(
−µ
T

)
. (4.2.8)

Here, all the kinetic coefficients are assumed to be constant.
(4) Onsager’s reciprocity relation (→4.1.10) implies Lun = Lnu,

36 and the positive semidef-
initeness of L (→4.1.8) implies Luu > 0, Lnn >, and LuuLnn − L2

nu ≥ 0.

4.2.5 Thermoelectric effect in terms of more convenient fluxes
The remaining task is to make the phenomenological relation easier to use. Perhaps the first
thing to do is to introduce more practical fluxes.

To consider an ordinary metal, we assume the charge carriers are electrons, and let us
introduce the charge flux (current density) i and heat flux j as

i = −eJn, j = Ju − µJn. (4.2.9)

Here, Tds = du − µdn has been used to obtain the second relation. e is the elementary
charge (> 0). We can rewrite (4.2.8) as

i = L11
1

T
∇µ+ L12∇

1

T
, (4.2.10)

j = L21
1

T
∇µ+ L22∇

1

T
. (4.2.11)

Exercise 1. As is warned in (4) of 4.2.4, there is no automatic guarantee of L12 = L21

for such a ‘non-thermodynamic’ choice of driving forces. However, in this case we have
L12 = L21. Demonstrate this symmetry. Also show that this is a positive definite matrix. ut

4.2.6 Thermoelectric effects: practical results
Now, our starting point is (4.2.10) and (4.2.11).
(1) First, we should write electrical conductivity σ and thermal conductivity κ in terms of
Lij. σ is measured under constant temperature, and the measurement is done for a uniform
material ∇µ = −e∇φ = eE, where E is the electric field. Therefore,

i = L11
e

T
E ⇒ σ =

eL11

T
. (4.2.12)

To study thermal conductivity, there is no current i = 0. However, we cannot say µ is
constant, because temperature changes: i = 0 implies ∇µ = (L12/TL11)∇T . Putting this
into (4.2.11), we obtain

j = −(|L|/TL11)∇T, ⇒ κ = |L|/T 2L11, (4.2.13)

36This relation is automatically guaranteed only when we correctly choose thermodynamic driving force
and so forth as we have done.
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where |L| is the determinant of L and is positive.
Interesting phenomena are due to the cross effects among various currents.

(2) If there is no electrical current,

L11T∇µ = L12∇T, (4.2.14)

so ∆µ = (L12/L11)∆ log T . This allows us to translate the temperature difference into
the electrochemical potential difference, which can be measured as an electrical potential
difference, if we make an electrical cell connecting two different metals. This is the principle
of thermocouple and is called the Seebeck effect.
(3) Suppose we keep T constant everywhere and maintain the electrical current. Then, we
have

j = (L21/L11)i. (4.2.15)

If two different materials are connected, the kinetic coefficients are generally different, so if i
is constant, j cannot be constant. Thus, we may make a cooling device. This effect is called
the Peltier effect. You can generate electricity by maintaining j as well.
Exercise 1. The thermoelectric effect is essentially due to the change of electrochemical
potential depending on temperature. Therefore, temperature gradient can induce material
diffusion as well. This is called thermal diffusion. Discuss the Soret effect and Dufour effect.
What are they? ut
Exercise 2. Two chemical fluxes or two chemical reactions couple. Discuss typical exam-
ples. ut

4.3 Fluctuation and Response: Introduction to Gen-

eral theory

If we wish to have a general theory of fluctuation and response, purely mechanical theory
cannot be constructed, because not all the perturbations can naturally be treated as me-
chanical perturbations and because even a purely mechanical perturbation usually induces
various thermal effects.

Therefore, in these introductory lecture notes a physically very natural approach due to
Mori is adopted to explain the general framework. The usual formally mechanical approach
is given only for the completeness of the notes later in Section 4.5.

4.3.1 Impossibility of purely mechanical study
The reader may suggest that since we know the fundamental equation of motion of the dis-
tribution function (or the density operator), the Liouville (→2.7.7) or the von Neumann
equation (→2.7.13), we have only to solve the equation under an appropriate initial condi-
tion and boundary condition.37 One choice of the initial condition is a canonical distribution
imposed at t = −∞ (infinite past). The Liouville operator is a linear operator, so we can
write down the formal solution, if we know the Hamiltonian and the boundary conditions
for all t.

37Studying an infinite system is out of any serious question.
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The reader may assert the system Hamiltonian is not hard to write down. The Hamilto-
nian includes the effect of external mechanical perturbations. Due to the passivity (→2.7.19)
the system becomes hotter unless the heat is discarded. This must be accomplished by the
interaction with the external world. It may be possible to model the environment (heat
bath)-system interaction in terms of a certain interaction Hamiltonian. However, the vari-
ables describing the external thermal environment is not governed by the system and in-
teraction Hamiltonians. Therefore, purely mechanical description of the system turns out
to be difficult. Just as in the case of equilibrium statistical mechanics what is outside the
description of mechanics dictates the ensemble (= distribution).

4.3.2 Local equilibrium state
We have realized that pure mechanical study is out of question in 4.3.1. The easiest con-
ceivable strategy may be to use the values of macroobservables at t to construct the most
probable distribution, following the strategy outlined in 1.6.12. The resultant distribution
is called the local equilibrium distribution.38 It has the following form (→5.1.4):

ρL =
1

Z
exp

−∑
i

β(xi)

m(vi − v(xi))
2

2
+

1

2

∑
j

φ(xi − xj)− µ(xi)

 , (4.3.1)

where xi is the position of the i-th particle, vi is the velocity of the i-th particle, β (local
inverse temperature), µ (local chemical potential) and v (local flow velocity) are functions
of positions (i.e., they are classical fields) that change very slowly in space (→5.1.4, i.e., mi-
croscopically almost constant); φ is the pairwise particle-particle interaction potential that is
assumed to be short-ranged (i.e., at the length scale where φ changes appreciably, the fields
introduced above, i.e., v, β and µ, almost do not change).39

4.3.3 Local equilibrium state does not describe transport phenomena
Unfortunately, this distribution cannot describe transport phenomena (→5.1.8). At each
point x, it is just the ordinary equilibrium distribution, so if we compute fluxes, they are
fluxes of ideal fluid. Or, intuitively speaking, each particle cannot tell whether the ‘local’
equilibrium it is in is local or global, so there is no irreversible process (→5.1.10).

For example, the energy flux ĵE is microscopically defined as

ĵE(x) =
∑
i

m(vi − v(xi))
2

2
+

1

2

∑
j

φ(xi − xj)

vi. (4.3.2)

Here, the summation over i is just for particles in the volume element in dx around x.40 If
we average this with the local equilibrium distribution, we obtain

jE(x) = u(x)v(x), (4.3.3)

38In the framework of linear nonequilibrium thermodynamics (→4.2.2), it is assumed that the system is
in local equilibrium. Its meaning is that the Gibbs relation holds in each volume element. This assumption
is not the same as the local equilibrium assumption here in the statistical mechanics sense (→5.1.8). In the
former, the thermodynamic observables are assumed to satisfy the usual thermodynamic relations, but this
does not mean that the distribution is the local equilibrium distribution being discussed here. As we will see
soon, Mori constructs the distribution that is not a local equilibrium distribution but whose thermodynamic
variables take the same values dictated by the local equilibrium distribution.

39The binary interaction need not be assumed; any type of interactions are admissible if short ranged.
40Notation: Henceforth, the quantities with hats imply their microscopic expressions, and their averages

(macroscopic observables) will be without hats.
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where u(x) is the internal energy density (the total energy seen from the co-moving or the
center of mass coordinates), because the product of the fluctuation of energy (even under
spatial inversion) and that of the velocity (odd under spatial inversion) vanishes by symme-
try. Therefore, there is no conduction of energy (only advection) is possible; →5.1.9). That
is, there is no heat conduction.

The same is true for the particle flux, so there is no diffusion process (again, only ad-
vection is possible). With a similar argument we can show that the momentum flux has only
the advection terms. Therefore, there is no viscosity.

In short, local equilibrium distribution does not describe irreversible processes.
Notice that this distribution is not even a stationary solution of the Liouville equation

(→2.7.7).

4.3.4 Mori’s approach from local equilibrium: idea
We have seen that the local equilibrium distribution cannot describe nonequilibrium states
properly (→4.3.3). However, the distribution can give correct expectation values of static
observables at each time t of a system that is not in equilibrium. Therefore, if the thermo-
dynamic fields (= the intensive variable fields) are correct, the local equilibrium distribution
must be in a certain sense close to the true nonequilibrium distribution.

If we use the local equilibrium distribution at time t as the initial condition and solve
the Liouville (→2.7.7) or von Neumann equation (→2.7.13) for a very short time (for a
mesoscopic time scale which is a macroscopically negligibly short time), we should obtain
the true nonequilibrium distribution compatible with the static observables at present. This
is Mori’s fundamental idea.41

4.3.5 Technical interlude: canonical correlation, etc., revisited
Because of the noncommutativity of operators, various calculations become complicated, so
here some useful formulas are summarized.

Since generally eA+B 6= eAeB, we cannot write eA+εB = eA(1 + εB + · · ·), even if ε is a
small number, so even the differentiation of eA+xB with respect to x becomes nontrivial. We
have

d

dx
eA+xB =

∫ 1

0
dλ e(1−λ)(A+xB)Beλ(A+xB) =

∫ 1

0
dλ eλ(A+xB)Be(1−λ)(A+xB). (4.3.4)

An intuitive way to guess this is to use Trotter’s formula42

eA+B = lim
n→∞

(
eA/neB/n

)n
. (4.3.5)

Therefore, approximately

d

dx
εA+xB

∣∣∣∣∣
x=0

'
∑
j

1

n

(
eA/neB/n

)n−j
B
(
eA/neB/n

)j
. (4.3.6)

41H Mori, Phys. Rev. 112, 1829 (1958).
42This formula holds if at least A or B is a bounded operator. See J. Glimm and A. Jaffe, Quantum

Mechanics, a functional integral point of view, second edition, Section 3.2 (Springer, 1987). The idea of
Trotter’s formula is very important in numerical solutions of (nonlinear) partial differential equations.
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This is a Riemann sum formally converging to the above formula. A more respectable
demonstration is to check the following formal relation:

d

dt

{
e−t(A+xB) d

dx
et(A+xB) −

∫ t

0
dλ e−λ(A+xB)Beλ(A+xB)

}
= 0. (4.3.7)

Integrating this from t = 0 to 1, we obtain the desired formula.
With the aid of (4.3.6) we can Taylor expand as

eA+xB = eA
(
1 + x

∫ 1

0
dλ e−λABeλA + · · ·

)
. (4.3.8)

From this we have a more convenient formula for statistical physics:

e−β(A+B) = e−βA
(

1−
∫ β

0
dλ eλABe−λA + · · ·

)
. (4.3.9)

We have already used this (→3.3.6). Notice that

eβHAe−βH = A(−iβh̄). (4.3.10)

This is a pure imaginary time evolution of the observable (Recall the Heisenberg picture).
Therefore, if we wish to compute the perturbation effect on an equilibrium system whose

density operator is ρe ∝ e−βH , we have

Tr
(
e−β(H+h)B

)
= Tr

{
e−βH

(
1−

∫ β

0
dλ h(−iλh̄)

)
B

}
= Tre−βH(B − β〈h;B〉), (4.3.11)

i.e., for an observable B whose equilibrium average vanishes,43

〈B〉 = −β〈h;B〉, (4.3.12)

where we have used the canonical correlation 〈X;Y 〉 defined as

〈X;Y 〉 ≡ kBT
∫ β

0
dλ〈X(−iλh̄)Y 〉e. (4.3.13)

This was introduced in 3.3.6.

4.3.6 Time evolution of local equilibrium state
The local equilibrium distribution ρL(t) may be written in the following form:44

ρL(t) =
1

Z(t)
e−βH−βTF (t)B. (4.3.14)

If we may assume that the system is sufficiently close to equilibrium, we may use the linear
approximation (4.3.9):

ρL(t) = ρe

(
1− TF (t)

∫ β

0
dλ eλHBe−λH + φ(t) + · · ·

)
, (4.3.15)

43Notice that under this condition the effect of the perturbation on the normalization constant does not
appear in the final result.

44F is the conjugate intensive variable with respect to entropy, so we need T .
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where ρe is the unperturbed canonical density operator ρe = (1/Z)e−βH , and φ(t) is a
numerical factor coming from the mismatch between the normalization constant Z(t) for
ρL(t) and Z.

Now, we use this as the initial condition and solve the von Neumann equation:

∂ρ

∂t
= −iLρ = −i[H, ρ]/h̄ =

1

ih̄
H×ρ. (4.3.16)

The Hamiltonian in the above is the system Hamiltonian without any external perturbation,
because we are performing a perturbative calculation.

The symbol × implies the following: for an operator A, A×B = [A,B]. We have the following formula:

eA×
B = eABe−A. (4.3.17)

This may be shown by expanding the exponential functions.45

The solution we want reads at time t+ τ (t is the starting time of our natural motion,
and τ is a mesoscopic time)

ρ(t+ τ) = ρe

(
1− TF (t)

∫ β

0
dλ eτH

×/ih̄eλHBe−λH + φ(t) + · · ·
)
, (4.3.18)

= ρe

(
1− TF (t)

∫ β

0
dλB(−τ − iλh̄) + φ(t) + · · ·

)
. (4.3.19)

Here, note that in the von Neumann equation and in the Heisenberg’s equation of motion the
place of H in the commutator is different. Thus, we need − in front of τ in B (cf. 2.7.10).
Remark. Notice that the proper choice of the variables (or rather, variable pairs {x,X}
(wrt to energy) or {x, F} (wrt entropy)) relies heavily on thermodynamics. ut

4.3.7 Mori’s derivation of quantum Green-Kubo relation: prototype
Let Ĵ(t) be a flux of a certain physical observable. Then, its average over ρ(t+ τ) in (4.3.19)
is regarded as the average over the true distribution at time t (that is, τ is macroscopically
ignored).

J(t) = −TF (t)
∫ β

0
dλ 〈B(−τ − iλh̄)Ĵ〉e. (4.3.20)

This may be rewritten as (assuming B(0) = 0)46

J(t) = −TF (t)
∫ β

0
dλ 〈B(−τ − iλh̄)Ĵ〉e, (4.3.21)

= −TF (t)
∫ β

0
dλ

∫ τ

0
ds

〈
d

ds
B(−s− iλh̄)Ĵ

〉
e

. (4.3.22)

If we introduce the flux for B

ĴB =
dB(t)

dt
, (4.3.23)

45Or, in a smarter way by the following ‘Heisenberg’s equation of motion’

d

dt
etA×

= [A, etA×
] = A×etA×

.

46The equilibrium average of J vanishes, so even φ(t) disappears from the result.
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(4.3.22) reads

J(t) = TF (t)
∫ β

0
dλ

∫ τ

0
ds
〈
ĴB(−s− iλh̄)Ĵ

〉
e
, (4.3.24)

= TF (t)
∫ τ

0
ds
∫ β

0
dλ

〈
ĴB(−iλh̄)Ĵ(s)

〉
e

(4.3.25)

=
1

kB

∫ τ

0
ds 〈ĴB; Ĵ(s)〉F (t). (4.3.26)

Since τ is the time scale longer than the microscopic relaxation time, we may assume
that the correlation function decays by then, so we may set τ →∞. Thus, we have arrived
at the Green-Kubo formula for the transport coefficient for the flux J when there is a driving
force F that produces the flux of B:

σ =
1

kB

∫ ∞

0
ds
〈
ĴB(0); Ĵ(s)

〉
. (4.3.27)

If we compare this result with the formulas obtained in 4.1.14, we see that the quantum
version can simply be obtained by replacing the correlation in the classical version with the
canonical correlation.

4.3.8 Quantum Green-Kubo formula for transport coefficients
Up to this point we have not assumed that the auxiliary field F to be space-dependent. Let
us generalize the simple case discussed up to 4.3.7 to this case (→4.1.14). Actually, we do
not have anything extra to do than the classical case we have already discussed (→4.1.14).
For convenience, let us virtually repeat the argument.

To this end we first replace

BF (t)→
∫
dr

∑
j

Fj(r, t)Âj(r), (4.3.28)

where Âj is a microscopic description of the density of a macroscopic observable Aj, and Fj is
its conjugate (with respect to entropy) intensive variable (a classical field, not an operator).

Let us compute the flux density ĵi(r, t) of Âi. We must identify the counterpart of

dB/dt. It must be related to the derivative of (4.3.28). If we may assume all Âj are
conserved quantities, then, the conservation law

∂

∂t
Âj = −∇ · ĵj (4.3.29)

tells us that the substitute of dB/dt must be

dB

dt
F (t)→ −

∫
dr

∑
j

Fj∇ · ĵj. (4.3.30)

Therefore, (4.3.22) reads47

ji(r, t) = − 1

kB

∑
j

∫
dr′

∫ ∞

0
ds 〈∇ · ĵj(r′, 0); ĵi(r, s)〉Fj(r′, t), (4.3.31)

=
1

kB

∑
j

∫
dr′

∫ ∞

0
ds 〈ĵj(r′, 0); ĵi(r, s)〉∇Fj(r′, t). (4.3.32)

47The components are not carefully or explicitly written, but the outcome should be clear.
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Therefore, we obtain the formula we can easily guess from the classical case (→X2.3.13,
4.1.14):

σij =
1

kB

∫
dr
∫ ∞

0
dt 〈ĵj(0, 0); ĵi(r, t)〉. (4.3.33)

Again, the replacement of the correlation with the canonical correlation can be seen; it is not
the replacement with the symmetrized correlation function initially guessed even by Kubo.

4.4 General Framework of Linear Response Theory

Recommended References:
R. Kubo, Rep. Prog. Phys. 29, 255 (1966),
H. Nakano, Int. J. Mod. Phys. B 7, 2397 (1993).48

R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II (Springer, 1985) is perhaps a
kinder introduction, although it is not critical. Not recommended.49 The book covers the
materials in Chapters X1 and X2 of these notes.

4.4.1 Fluctuation and Response: what we already know
We have already seen in the static case that the response of the system is governed by the
fluctuation (→2.8.1)

〈δxi〉 = β〈δxjδxi〉Xj (4.4.1)

or in the quantum case (→3.3.6)

〈δxi〉 =

〈∫ β

0
dλ eλHδxje

−λHδxi

〉
Xj = β〈δxj; δxi〉Xj, (4.4.2)

where we have used the canonical correlation (→3.3.6; summary in 4.3.5). This suggests
that if the perturbation Xj is time-dependent, then

〈xi(t)〉 = β
∫ t

0
ds 〈δẋj(s); δxi(t)〉Xj(s). (4.4.3)

This is true as we will see later (→4.4.12).50 Also we have learned that the response function
is given by the fluctuation-dissipation relation of the first kind (→3.2.8). This has just the
form guessed above.

More generally, we have learned that the Onsager coefficients can be calculated in terms
of the time correlation of fluctuations (→4.1.12). Transport coefficients can be written in
terms of the correlation function of fluxes (the Green-Kubo relation→4.1.14). Also we have
learned that the Green-Kubo relation can be obtained directly from the Onsager principle
(→4.1.18).

The reader will see that all the important key concepts and results have already been
discussed at least in their simplest forms in Chapter 3.

48This contains an episode of Feynman on electric conductivity.
49However, the first volume of this book is strongly recommended.
50The dot is the time derivative; its necessity is easily guessed from the dimensional reason.
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4.4.2 Response function.
We believe that if the external perturbation of the system parameter or the change of the
thermodynamic force x(r, t),51 which may depend on space and time coordinates, is small,
the system response described by the change G(r, t) of thermodynamic densities (= the
extensive variables per volume)52 should also be small, and G is linearly related to X:

G(r, t) = L({X(r, t)}). (4.4.4)

Here, G(r, t) could depend on the values of X at the point away from r at a different
time from t (in the past only; this is causality →4.4.8). In these notes, we assume X is
the thermodynamic force (defined with respect to energy) and G is the conjugate density
(extensive quantities conjugate to x per unit volume). They may be vectors or tensors.

According to the Riesz representation theorem,53 such a linear functional can always be
written in the following form

G(r, t) =
∫
dr′

∫ t

−∞
dt′ φ(r − r′, t− t′)X(r′, t′). (4.4.5)

Here, we have assumed that the system is space-time uniform (no absolute position in time
and space matters) for simplicity. The function φ is called the response function in general
(see for a prototype 3.2.8).

4.4.3 Admittance
The space-time Fourier transform of the response function (→3.2.8, 4.4.2) is called the
admittance.

To define this unambiguously we must specify the convention of space-time Fourier
transformation. We adopt the following definition (consistent with the time Fourier trans-
formation already introduced):

f(k, ω) =
∫
dr
∫
dt e−i(ωt−k·r)f(r, t). (4.4.6)

The corresponding inverse transformation reads

f(r, t) =
1

(2π)4

∫
dk
∫
dω ei(ωt−k·r)f(k, ω). (4.4.7)

Notice that each harmonic component behaves as a plane wave54

ei(ωt−k·r) (4.4.8)

with the velocity ω/|k| in the direction of k.
Thus, the admittance χ is defined as

χ(k, ω) =
∫
dr
∫
dt e−i(ωt−k·r)φ(r, t). (4.4.9)

51In these notes, X is used for the thermodynamic intensive parameter appearing in the ordinary Gibbs
relation. The intensive variable in the entropy formula will be denoted by F . That is dE = · · ·+Xdx+ · · ·,
and dS = · · ·+ Fdx+ · · ·. This choice is different from IESM Lecture notes.

52Here, we define thermodynamic densities as the conjugate of x with respect to energy.
53e.g., K. Yosida, Functional Analysis (Springer, Berlin, 1965; Sixth edition 1980), p90. Here, it is a

theorem on the continuous (= bounded) linear map on the Hilbert space.
54We choose our convention so that the plane wave can be written as eixjkj

in terms of 4-vectors and the
relativistic scalar product with the usual indefinite metric (+,−,−,−).
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Therefore,
G(k, ω) = χ(k, ω)X(k, ω). (4.4.10)

4.4.4 Real and imaginary parts of admittance
Since X and G in our case are observable quantities, they must be real, and so must be the
response function. Therefore,

χ(k, ω) =
∫
dr
∫
dt ei(ωt−k·r)φ(r, t) = χ(−k,−ω). (4.4.11)

We introduce the real and imaginary parts of the admittance as (the names will become
clear in 4.4.5)

χ′(k, ω) = Reχ(k, ω) called dispersive or storage part, (4.4.12)

χ′′(k, ω) = −Imχ(k, ω) called dissipative or loss part, (4.4.13)

or
χ(k, ω) = χ′(k, ω)− iχ′′(k, ω). (4.4.14)

Here, do not forget the inclusion of − in the definition of χ′′. This negative sign is needed
to make this quantity positive definite as we will see later (→4.4.5).

We may write

χ′(k, ω) =
∫
dr
∫
dt cos(ωt− k · r)φ(r, t), (4.4.15)

χ′′(k, ω) =
∫
dr
∫
dt sin(ωt− k · r)φ(r, t). (4.4.16)

(4.4.11) now reads in terms of χ′ and χ′′ as

χ′(k, ω) = χ′(−k,−ω), (4.4.17)

χ′′(k, ω) = −χ′′(−k,−ω). (4.4.18)

That is, the real part of the admittance is an even function, and the imaginary part an odd
function.
Warning about conventions: If the definition of the space-time Fourier transformation
is different, then the signs may be flipped. If

f(k, ω) =
∫
dr
∫
dt ei(ωt−k·r)f(r, t), (4.4.19)

then, χ = χ′ + iχ′′ is the definition of χ′ and χ′′ (but (4.4.12) and (X2.2.10) are intact; that
is, their definitions are consistent in different conventions). For example, the convention
of D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions
(Benjamin, 1975) and L. P. Kadanoff and P. C. Martin, “Hydrodynamic Equations and Cor-
relation Functions,” Ann. Phys. 24, 419-469 (1963) is different from ours.
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4.4.5 Dissipation and admittance
The power p(r, t)dr supplied by the force X to the volume element dr around r of the
system is the product of X and the rate of change of the conjugate density G. Here, for
simplicity, let us assume that X is a scalar (for many-variable cases →X2.2.8). Therefore,

p(r, t) = X(r, t)
∂

∂t
G(r, t). (4.4.20)

Let us compute the time average of the power for the following special ‘monochromatic’
perturbation

X(r, t) = Re
(
ei(ωt−k·r)X̃

)
. (4.4.21)

Here, X̃ is called the phasor representation of the monochromatic force X (the definition is
the same as in the AC circuit theory). X̃ may be a complex number due to the phase.

The time average per unit volume 〈p〉 of the power p(r, t) is, as shown in 4.4.6, given
by

〈p〉 =
1

2
ωχ′′(k, ω)|X̃|2. (4.4.22)

In the steady state, the power supplied by the perturbation of X must be dissipated as heat
to the heat bath. Therefore, 〈p〉 must be the energy dissipation rate by the system per unit
volume. Therefore, the second law implies that χ′′ must be nonnegative definite, or more
generally,

ωχ′′ ≥ 0. (4.4.23)

4.4.6 Computation of average power loss
Postponing a smart derivation to 4.4.7, let us compute p(t) according to its definition
(4.4.20). Since

G(r, t) =
1

2

[
χ(k, ω)ei(ωt−k·r)X̃ + χ(−k,−ω)e−i(ωt−k·r)X̃∗

]
(4.4.24)

according to (4.4.5), we can obtain its time derivative easily. The time averaged power per
unit volume 〈p〉 may be computed as

〈p〉 =
1

V

ω

2π

∫ 2π/ω

0
dt
∫
V
dr p(r, t). (4.4.25)

Here, V is the system volume.55

Putting (4.4.24) and the formula for X into (4.4.25), we obtain

〈p〉 =
1

4
[iωχ(k, ω)− iωχ(−k,−ω)] |X̃|2. (4.4.26)

This is what we wished to demonstrate (do not forget χ′′ is defined with the negative sign
in (4.4.14)).

55We take the V →∞ limit after all the calculations are over.
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4.4.7 Phasor representation and dissipation
Let the plane wave be given as

A(t) = Re
(
eiωtÃ

)
. (4.4.27)

We call the complex number Ã the phasor representation of A. We have introduced the
phasor representation of the thermodynamic force X̃ in 4.4.5. The time average of the
product of two plane waves in the form of (4.4.27) is given by (the overline implies time
average)

AB =
1

2
Re Ã∗B̃. (4.4.28)

The space-time average is just a simple generalization of the above result.
The perturbation result G has the following phasor representation as clearly seen from

(4.4.24):
G̃ = χ(k, ω)X̃. (4.4.29)

Therefore, (the overline implies time and space average; not complex conjugate)

〈p〉 = X
∂G

∂t
=

1

2
Re X̃∗(iωG̃) =

1

2
Re

(
iωχ(k, ω)|X̃|2

)
. (4.4.30)

This is exactly (4.4.22).
Remark. The many variable case is discussed in X2.2.8.

4.4.8 Causality and analyticity of admittance
Although the perturbation result G(r, t) may depend on X(r, s) at time s different from t,
it cannot depend on X for s > t. This is causality.

Therefore, in terms of the response function φ(r, t) (→4.4.2), the causality can be
written as

φ(r, t) = 0 if t < 0. (4.4.31)

This may be written in terms of the admittance as

0 =
∫
dk
∫
dω ei(ωt−k·r)χ(k, ω), (4.4.32)

if t < 0.
For t < 0 eiωt decays exponentially for |ω| → ∞ if Imω < 0 (that is, on the lower half

complex ω-plane). Therefore, (4.4.32) implies that∮
C
dω ei(ωt−k·r)χ(k, ω) = 0. (4.4.33)

Since the exponential factor is analytic56 in the lower half plane, this implies that χ must be
analytic in the lower half complex ω plane.57 Conversely, if χ is analytic on the lower half
complex ω-plane, then the causality holds.

In short:
Causality ⇐⇒ Analyticity of admittance on the lower half complex ω-plane.58

56More precisely, we should use the term, holomorphic.
57This is not a trivial statement. This depends on the definition of the Fourier transformation. It is the

lower half plane with our convention.
58This was first recognized by H. Takahashi (1942).
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4.4.9 Kramers-Kronig relation — dispersion relation
Since the admittance is analytic on the lower half ω-plane, Cauchy’s theorem tells us

0 =
∮
C

χ(k, z)

z − ω
dz, (4.4.34)

where the integration contour C is the infinite semicircle on the lower half plane with the
straight line portion coinciding with the real axis. If ω is real, then there is a simple pole on
the contour, so we may use the Plemelij formula (→4.4.10) to obtain

P
∫ ∞

−∞

χ(k, z)

z − ω
dz + iπχ(k, ω) = 0. (4.4.35)

That is,

χ(k, ω) =
i

π
P
∫ ∞

−∞

χ(k, z)

z − ω
dz. (4.4.36)

Now, we split this into real and imaginary parts of χ.

χ′(k, ω) =
1

π
P
∫ ∞

−∞

χ′′(k, x)

x− ω
dx, (4.4.37)

χ′′(k, ω) = − 1

π
P
∫ ∞

−∞

χ′(k, x)

x− ω
dx. (4.4.38)

Here, P denotes the Cauchy principal value. These relations are known as the Kramers-
Kronig relation (dispersion relation) to physicists.59 As we will see soon, the dissipative part
of χ is experimentally easier to access (that is, χ′′ is easier to observe), so these relations
may be of practical importance to obtain χ experimentally.60

4.4.10 Plemelij formula
The following formula is called the Plemelij formula

1

x± iε
= P

1

x
∓ δ(x), (4.4.39)

where ε is an infinitesimal positive number. The equality holds inside the integral with re-
spect to x.61

There are several ways to demonstrate this. Perhaps the most elementary one is to use
the complex function theory. A simple pole on the integral path contributes one half of its
residue to the integral, and the remaining integral becomes the Cauchy principal value.

4.4.11 Spectral representation
Let us reconstruct χ from its imaginary part χ′′ with the aid of the Kramers-Kronig relation
4.4.9:

χ(k, ω) =
1

π
P
∫ ∞

−∞
dx

χ′′(k, x)

x− ω
− iχ′′(k, ω). (4.4.40)

59Well known formulas for the Hilbert transformation.
60However, to use these formulas the frequency range must be sufficiently widely observed.
61so, the limit ε→ +0 is the weak limit.
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With the aid of the Plemelij formula (→4.4.10), this can be rewritten as

χ(k, ω) = lim
ε→+0

1

π

∫ ∞

−∞

χ′′(k, x)

x− (ω − iε)
. (4.4.41)

Let us define the analytical continuation of χ′′ that is analytic on the lower half ω-plane
to the upper half ω-plane as

χ̂(k, z) =
1

π

∫ ∞

−∞
dx
χ′′(k, x)

x− z
. (4.4.42)

This has no singularity if Im z 6= 0. That is, the real axis is a branch cut. (4.4.43) implies
that

χ(k, ω) = lim
ε→+0

= χ̂(k, ω − iε). (4.4.43)

That is, the continuation from the lower half ω-plane gives the physically meaningful value.
Therefore, we call the lower half ω-plane as the physical sheet. Its analytical continuation
beyond the real axis gives the Riemann surface that contains the physically observable values
for real z.

The representation of χ in terms of χ′′ is called the spectral representation.

4.4.12 Response function
Let us consider a system under a perturbation that perturb Â directly. For simplicity, we
assume that the system is spatially uniform. Let us assume the perturbative Hamiltonian
to be

h = −X(t)Â. (4.4.44)

We can perturbatively solve the von Neumann equation to obtain the perturbed density
operator as

ρ(t) = ρe

[
1 +

∫ 0

−∞
duX(t+ u)

∫ β

0
dλ

˙̂
A(u− iλh̄)

]
. (4.4.45)

Here, we set −TF = X. The average of another observable B is given by (let us assume, for
simplicity, that its average is zero in equilibrium (without the perturbation))

〈B〉(t) =
∫ 0

−∞
duX(t+ u)

∫ β

0
dλ 〈 ˙̂A(u− iλh̄)B〉e, (4.4.46)

=
∫ t

−∞
duX(s)β〈 ˙̂A(s− t);B〉e. (4.4.47)

Therefore, the response function φBA reads

φBA(t) = β〈 ˙̂A;B(t)〉e. (4.4.48)

This can be further transformed to our familiar form in terms of the commutator (→X2.4.8)
with the aid of Kubo’s identity

[ρe, Â] = ih̄
∫ β

0
dλ ρe

˙̂
A(−iλh̄). (4.4.49)
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To show (4.4.53) we start with62

d

dβ
[Â, ρe] = −ih̄ ˙̂

Aρe −H[Â, ρe]. (4.4.50)

Now, let us write
[Â, ρe] = ρeC(β). (4.4.51)

Put this into (4.4.50), and we obtain

Ċ(β) = −ih̄ ˆ̇A(−iβh̄). (4.4.52)

This is

[ρe, Â] = ih̄
∫ β

0
dλ ρe

˙̂
A(−iλh̄) (4.4.53)

This is called Kubo’s identity.
Now, we can rewrite (4.4.48) as

φBA(t) =
1

ih̄
T r

(
[ρe, Â(−t)]B

)
, (4.4.54)

=
1

ih̄

∫ β

0
dλTr(ρe[Â(−t), B]). (4.4.55)

Therefore, we have arrived at

φBÂ(t) =
i

h̄
T rρe[B(t), Â]. (4.4.56)

It should be almost obvious that

φBÂ(r, t) =
i

h̄
T rρe[B(r, t), Â(0, 0)]. (4.4.57)

for the spatially nonuniform case.

4.4.13 Canonical correlation function: summary
We have already introduced the canonical correlation function (→4.3.5)63

〈X;Y 〉 = kBT
∫ β

0
dλTr(ρeX(−iλh̄)Y ). (4.4.58)

In terms of this the response function may be written, as we know well by now (→4.4.12)

φBÂ(t) = β〈 ˆ̇A(0);B(t)〉 = −β〈Â; Ḃ(t)〉. (4.4.59)

We have already seen how natural the canonical correlation function is in various contexts.64

Let us summarize its properties.

62This can be obtained by a straightforward differentiation and Heisenberg’s equation of motion.
63Here, for simplicity, we discuss only the cases with X and Y being self-adjoint.
64It is the retarded two time Green’s function in the field theoretical approach to many body theory.
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[A] 〈X;Y 〉 is a scalar product. That is,
(i) 〈X;Y 〉 = 〈Y ;X〉,
(ii) bilinear,
(iii) 〈X;X〉 ≥ 0 and X = 0 iff 〈X;X〉 = 0.

[B] Stationarity: 〈X(t);Y (t+ s)〉 = 〈X;Y (s)〉.
[C] 〈X;Y 〉 is real.65

[D] Symmetry: 〈X;Y 〉 = 〈Y ;X〉.
[E] Let L be the Liouvillian (→3.3.5) of the natural motion. Then

〈LX;Y 〉 = 〈X;LY 〉. (4.4.60)

[F] Reciprocity:
〈X;Y (t)〉H ,ω = εXεY 〈Y ;X(t)〉−H ,−ω. (4.4.61)

Here, H is the magnetic field and ω is the rotation angular velocity.
Using [F] and (4.4.59), we conclude

φBA(t)H ,ω = εAεBφAB(t)−H ,−ω. (4.4.62)

It is a good exercise to demonstrate [A] - [F].

4.4.14 Symmetrized correlation functions
We know that replacing the correlation function with the canonical correlation function, we
can generalize the classical results to their quantum counterparts. However, initially it was
thought that symmetrization of correlations 〈AB〉 → 〈AB+BA〉/2 was the right procedure
for this generalization. Let us define the symmetrized correlation function

C(X;Y ) ≡ 1

2
Trρe[XY + Y X]. (4.4.63)

Its salient features may be summarized as follows:
[A] C(X;Y ) is a scalar product:

(i) C(X;Y ) = C(Y ;X),
(ii) bilinear,
(iii) C(X;X) ≥ 0 and X = 0 iff C(X;X) = 0.

[B] Stationarity: C(X(t);Y (t+ s)) = C(X;Y (s)).
[C] C(X;Y ) is real.66

[D] Symmetry: C(X;Y ) = C(Y ;X).
[E] Let L be the Liouvillian (→) of the natural motion. Then

C(LX;Y ) = C(X;LY ). (4.4.64)

[F] Reciprocity:
C(X;Y (t))H ,ω = εXεYC(Y ;X(t))−H ,−ω. (4.4.65)

Here, H is the magnetic field and ω is the rotation angular velocity.
Thus, there is a very good parallelism between the canonical and symmetrized cor-

relation functions. Their precise relation is the fluctuation dissipation relation originally
obtained by Callen and Welton.67

65if X and Y are self-adjoint, but here we assume this.
66if X and Y are self-adjoint, but throughout this section we assume dynamical operators are all self-

adjoint.
67H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
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4.4.15 Relation between canonical and symmetrized correlations
The canonical correlation is closely related to responses, and (symmetrized) correlations are
more directly related to observable quantities such as scattering functions and power spectra.
Therefore, it should be very convenient, if we have a direct relation between them. Actually,
this direct relation is the essence of fluctuation dissipation relations.

The relation we seek is

βh̄ω

2
coth

βh̄ω

2

∫
dt 〈X−k(0);Yk(t)〉e−iωt =

∫
dtC(X−k;Yk(t))e−iωt. (4.4.66)

Let us start from the canonical correlation: Since Y ρe = ρeY (−iβ) (→(??))∫
dt e−iωtTr(ρeX−k(0)Yk(t)) =

∫
dt e−iωtTr(X−k(0)ρeYk(t− βih̄)), (4.4.67)

=
∫
dt e−iωtTr(ρeYk(t− iβh̄)X−k(0)). (4.4.68)

Now, we assume the KMS condition (→X2.4.12):

=
∫
dt e−iω(t+iβh̄)Tr[ρeYk(t)X−k(0)), (4.4.69)

= eβh̄ω

∫
dt e−iωt〈Yk(t)X−k(0)〉e. (4.4.70)

Therefore, with the aid of symmetry, from this we obtain∫
dt e−iωtC(X−k;Yk(t)) =

1
2
(1 + eβh̄ω)

∫
dt e−iωt〈X−kYk(t)〉e. (4.4.71)

On the other hand, we have∫
dt e−iωtTr(ρe[X−k, Yk(t)]) = (1− eβh̄ω)

∫
dt e−iωt〈X−kYk(t)〉e. (4.4.72)

Now, we use the two expressions of the response function (→(4.4.56), (4.4.59))

i

h̄
T r(ρe[X−k, Yk(t)]) = −β〈X−k; Ẏk(t)〉. (4.4.73)

Therefore, (4.4.72) reads∫
dt e−iωt〈X−k; Ẏk(t)〉 =

i

βh̄
(1− eβh̄ω)

∫
dt e−iωt〈X−kYk(t)〉e. (4.4.74)

Combining this and (4.4.71), we obtain the desired relation (X2.5.40).

4.4.16 How to calculate response functions
The typical examples can be found in X2.6 (Kubo-Tomita’s spectral line shape of NMR)
and in X2.7 (Nakano’s electric conductivity formula; that is, the famous formula erroneously
called the Kubo formula).
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Chapter 5

Hydrodynamics

Standard references for this topic are

D. Forseter, Hydrodynamic Fluctuations Broken Symmetry and Correlation Functions (Addison-
Wesley, 1989).
H. Spohn, Large Scale Dynamics of Interacting Particles (Springer-Verlag, 1991).

5.1 Review of Hydrodynamics

5.1.1 What is hydrodynamic description?
The reader may feel that ‘hydrodynamics’ is a word used as an old name for fluid dynamics.
In statistical mechanics, this word is used to denote a level of description of macroscopic
dynamics in terms of quantities averaged over the macroscopic volume elements. Indeed, the
usual fluid dynamics is in this sense a kind of hydrodynamic description.

If a macroscopic system is away from critical point (or phase transition point), the
atomic scale (the correlation scale) is microscopic (say, ∼1nm). On the other hand macro-
scopic observable, say, the fluid velocity field, is at our space-time scale. We have already
known that between these two levels, atomic and hydrodynamic levels (= micro and macro
scales), is the level described in terms of coarse-grained distribution functions or in terms
of stochastic processes (the mesoscopic scales). This is called the kinetic level. In the fluid
system Langevin equations (→3.2.2) are the tool to describe this level, and for gases, the
Boltzmann equation (→2.4.7). It is a traditional wisdom of nonequilibrium statistical me-
chanics that there are these three levels of describing nonequilibrium systems as has been
stressed already.

If the correlation length is too large, we must use raw mechanics. If this length is very
small, then the law of large numbers (→1.5.4) tells us the average is everything. When we
cannot ignore the scale of correlation, we must respect fluctuations. Therefore, we need large
deviation theory (→1.6.2).
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5.1.2 Why only three levels?
Why is it usually said that there are only three distinct levels to describe nonequilibrium
systems?

In equilibrium, there are three levels of descriptions, microscopic (mechanical or kinetic),
mesoscopic (fluctuational), and macroscopic (thermodynamic). The length scales character-
izing these levels are the size of molecules or atoms a, the correlation length ξ, and our scale
(perhaps larger than 1 µm). At our scale the world is not homogeneous, but in equilibrium
we regard the world consists of piecewise homogeneous equilibrium macroscopic systems.
Thus, there are only three crucial levels that may be clearly distinguished.

It is natural to expect three description levels for a nonequilibrium system near equi-
librium. There may be a larger scale structure (e.g., the Karman vortex train) produced by
a large scale fluid dynamics, but if we do not pay attention to such large scales, then it is
plausible that a system that may be described by a local equilibrium state has only three
levels of description.

Therefore, the answer to the question ‘why three?’ may be that if we can describe a
system with a local phenomenological framework (e.g., local equilibrium), then there is only
one length scale ξ between the macroscopic and the microscopic descriptions. If the system
is driven by an external perturbation sufficiently away from equilibrium, then perhaps new
dynamical scales (dynamical correlation length) appear between the microscopic and macro-
scopic levels. In this case the materials properties would be different from the ones we know.
However, it seems such drastic nonequilibrium processes are rare.1

5.1.3 What is hydrodynamic limit?
Let us introduce the scaling parameter ε

ε =
mesoscopic length scale

macroscopic length scale
, (5.1.1)

where the mesoscopic length scale is of the order of the correlation length ξ (usually a few
to a few tens of molecular diameters), and the macroscopic scale is the ‘size of the volume
element,’ i.e., the scale where the macroscopic observable does not change appreciably.2

The limit ε → 0 is called the hydrodynamic limit. That is, in this limit we consider a
macroscopic system whose macroscopic observables3 change only gently with space.

If ε� 1, then locally around a point x (in the volume element around this point), the
system looks to be in an equilibrium state with the macroscopic (thermodynamic) parame-
ters sampled in the volume element. That is, the microscopic distribution function in this
volume element must be close to a local equilibrium distribution (→2.4.9).

The law of large numbers (→1.5.4) tells us that the averaged observables in the volume
element tend to lose fluctuations, and should behave as deterministic variables.

1Perhaps because the equilibrium fluctuation is sufficiently fast from our macroscopic standard.
2Spohn defines as

ε =
variation of average density over one interparticle distance

average density

3Macroscopic observables are the average of microscopic mechanical observables over the scale of ξ/ε.
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5.1.4 Local equilibrium distribution: explicit form
Let us consider a classical particle system whose Hamiltonian may be written as (as in 2.7.9)

H =
∑
i

mv2
i

2
+

1

2

∑
i6=j

φ(|xi − xj|). (5.1.2)

The local equilibrium distribution function around x may be written as

P ∝ exp
(
−
∫
β(x)u(x)d3x

)
, (5.1.3)

where β is the ‘local temperature,’ and u is the internal energy density defined as

u(x) =
∑
i

1

2
m(vi − v(x))2 +

1

2

∑
j( 6=i)

φ(ri − rj)

 δ(ri − x), (5.1.4)

where v(x) is the local velocity of the volume element, and φ is the two-body interaction
potential.

Notice that the behavior of β(x) and that of u(x) are diametrically different. The
former does not change appreciably within the volume element, but the latter is a wildly
varying function of position x. Therefore, if we regard x as a macroscopic coordinate, then
a very small change of |x|/ε ∼ 1 would significantly alter the local energy density u. If we
wish to express this property explicitly, it is better to write u(x) → u(x/ε), etc. Thus, the
local equilibrium distribution (5.1.3) may be rewritten as

P ∝ exp
(
−
∫
β(x)u(x/ε)d3x

)
, (5.1.5)

Let us choose a volume Λε centered at x such that in the ε → 0 limit |Λε| → ∞ but
ε3Λε → 0. That is, from the macroscopic scale it is tiny enough, but is big enough from the
microscopic point of view. Then, the hydrodynamic observables around x is defined as (cf.
4.3.3)

ϕ(x) = lim
ε→0

1

|Λε|

∫
Λε(x)

dx′ϕ(x′/ε). (5.1.6)

Thanks to the law of large numbers, this is not a stochastic variable.
Henceforth, we will not explicitly scale the microscopic variable.

5.1.5 Local form of conservation laws and balance equation
Suppose ϕ is a hydrodynamic observable defined as (5.1.6) (we omit the overline for simplic-
ity). If it is a density of a conserved quantity, then

∂

∂t
ϕ = −div jϕ (5.1.7)

must hold, where jϕ is the flux of ϕ. This equation is called the conservation equation.
If the quantity whose density is ϕ may not be conserved but could be produced, then

we introduce the source σϕ, and write

∂

∂t
ϕ = −div jϕ + σϕ. (5.1.8)

This is called the balance equation. The source term is the production rate per unit volume.
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5.1.6 Microscopic expression of conserved densities
To describe a fluid, we pay attention to conserved quantities, the particle number, momen-
tum, and energy.4

The particle number density n0 has the following expression

n0(x) =
∑
i

δ(xi − x), (5.1.9)

where xi is the position vector of the i-th particle.
The momentum density nα (α = 1, 2, 3, 1 corresponds to the x-component, 2 to the y,

and 3 the z-component.)
nα(x) =

∑
i

pαiδ(xi − x), (5.1.10)

where pαi is the α-component of the momentum of the i-th particle. The total energy density
n4 is defined as

n4(x) =
∑
i

 p2
i

2m
+

1

2

∑
j( 6=i)

φ(xi − xj)

 δ(xi − x). (5.1.11)

5.1.7 Microscopic expression of flux
We expect the macroscopic conservation law in 5.1.5 is the averaged version of microscopic
counterpart. Let us compute the time derivative of the densities.

∂

∂t
n0 =

∑
i

(−∇xδ(xi − x))
dxi
dt
, (5.1.12)

= −div
(∑

i

pi
m
δ(xi − x)

)
, (5.1.13)

= −div j0, (5.1.14)

where

j0 =
1

m

∑
i

piδ(xi − x), (5.1.15)

which is the momentum density/m. That is, the particle number flux is the velocity field.
More complicated but analogous computations give a microscopic expression of conser-

vation of momentum
∂nα
∂t

= −div jα, (5.1.16)

where the β component of jα is given by

jαβ =
∑
i

1

m
piαpiβδ(xi − x)

+
1

2
Fα(xi − xj)(xiβ − xjβ)

∫ 1

0
dλ δ(λxi + (1− λ)xj − x), (5.1.17)

4The reason why we pay attention to these quantities is discussed in 5.2.4.
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where F = −∇φ.
Also for the energy density, we have

∂

∂t
n4 = −div j4, (5.1.18)

where

j4 =
∑
i

1

m
pi

 p2
i

2m
+

1

2

∑
J( 6=i)

φ(xi − xj)

 δ(xi − x)

+
1

2

∑
i,j

1

2m

[
(pi + pj) · F (xi − xj)

]
(xi − xj)

∫ 1

0
dλ δ(λxi + (1− λ)xj − x).

(5.1.19)

5.1.8 Local equilibrium state and local distribution function
We have noted that the local equilibrium state is the state that can be uniquely specified
by the thermodynamic fields (→4.2.2), but the state is not perfectly described by the local
equilibrium distribution function. The difference between the true distribution function for
the local equilibrium state and the local equilibrium distribution function should be of order
ε, because the difference is related to the gradient of the thermodynamic fields. Therefore, if
we ignore the O[ε] corrections, we can use the local equilibrium distribution to average the
microscopic quantities to obtain hydrodynamic descriptions.

Let us write this average as 〈 〉0. Let the microscopic expression of the density of an
observable to be ϕ(x, t). Precisely speaking, for the above procedure to be consistent, the
average 〈ϕ(x, t)〉0 over the initial condition with respect to the local equilibrium distribution
at time t = 0 must be equal (to O[ε]) to the average of ϕ(x) with respect to the local
distribution function at time t (cf. 2.7.8):

〈ϕ(x, t)〉0 = 〈ϕ(x)〉t +O[ε]. (5.1.20)

Here, 〈 〉t is the average with respect to the local equilibrium distribution at time t:

P ∝ exp
(
−
∫
β(x, t)u(x)d3x

)
, (5.1.21)

Notice that the time dependence of thermodynamic fields is slow; we must observe the sys-
tem for sufficiently long time to detect the time dependence.

5.1.9 Euler’s equation
If we average the conservation laws with respect to the local equilibrium distribution, we
obtain Euler’s equation (= the conservation equation for the momentum) and associating
equations for the number density and energy. By construction, the resultant macroscopic
equations are without dissipation (describe only advection).

The resultant set of equations is:

∂

∂t
ρ = −div(ρv), (5.1.22)

∂

∂t
mρvα = −div(mρvαv)− grad p, (5.1.23)

∂

∂t
e = −div{(e+ p)v}. (5.1.24)
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Here, the pressure p is given as a a function of u and ρ (the equilibrium equation of state is
used, consistent with the local equilibrium assumption), and e = u+ρv2/2, the total energy
density.

5.1.10 Origin of irreversibility
We see clearly that to have irreversible effects in fluids, we must take into account the order
ε corrections to the local equilibrium distribution (cf 4.3.3). Then, the equation for the
conserved quantities should have the following form

∂

∂t
ϕ = −div[reversible flux + ε(irreversible flux)]. (5.1.25)

The time scale of 1/ε describes the reversible hydrodynamic flux. Therefore, the above equa-
tion implies that the dissipation sets in in the time scale of 1/ε2.

5.1.11 Navier-Stokes equation
To augment Euler’s equation with the dissipative fluxes (the order ε terms, at the phe-
nomenological level), we use the linear irreversible laws. That is, we adopt linear irreversible
thermodynamics (→4.2.2) in the local form. The resultant equation is called the Navier-
Stokes equation (→5.2.5).5

Thus, it is clear that the supposedly fundamental equation of fluid dynamics is not de-
rived, but proposed as a plausible model of fluid motion at our scale. The present theoretical
status of the Navier-Stokes equation may be summarized as follows:
Microscopic derivation. As just said, there is no general derivation. There is a very
serious attempt for a system with some stochasticity (i.e., not pure classical mechanics) by
Yau and coworkers. A summary review is available.6 The Navier-Stokes equation is derived
from the Boltzmann equation, but this is unsatisfactory, because it is only for dilute gases
even if the starting point is reliable, which is not justifiable beyond microscopic time scales
(→2.4.13).
Empirical check. We could solve the Navier-Stokes equation numerically, and compare the
result with the actual flow experiments. For slow flows numerical analysis is reliable, and we
may safely conclude that empirically the Navier-Stokes equation is reliable for slow flows (for
small Reynolds numbers). However, for larger Reynolds numbers, there is no guarantee that
the numerical schemes actually solve the Navier-Stoke equation, so even if the numerical re-
sults agree with experiments (and such is often the case), this does not mean the correctness
of the original Navier-Stokes equation.
Mathematical studies. If the Reynolds number is sufficiently small, then the unique ex-
istence of the solution to the Cauchy problem is proven. However, generally speaking, the
existence of the solution is still questionable for the 3D Navier-Stokes equation.7

In short, the Navier-Stokes equation has never been derived nor empirically verified,
and we do not know whether it has a physically meaningful solution or not.

5Navier derived it in 1824, but the meaning of η was clarified by Stokes in 1845. See M. Cannone and S.
Friedlander, “Navier: Blow-up and Collapse,” Notices AMS 50, 7-13 (2003).

6H.-T. Yau, “Asymptotic solutions to dynamics of many-body systems and classical continuum equa-
tions,” in Current Development in Mathermatics, 1998, p155-236.

7For the 2D case, the unique existence of the solution is demonstrated, but as we see in 5.2.6, 2D fluid
dynamics is physically meaningless. For 3D the condition that guarantees the existence of the solution is
known, but the uniqueness condition is not known. So far, all the attempts to impose uniqueness destroys
all the solutions. Thus, it is a “million dollar” prize problem offered by the Clay Mathematics Institute. See
http://www.claymath.org/prizeproblems/navier stokes.pdf.
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5.2 Hydrodynamics from Onsager’s Point of View

5.2.1 Fluctuation of velocity field
In Chapter 4 we have considered fluctuations of quantities usually considered as thermody-
namic quantities. The key is the regression hypothesis or principle (→4.1.7), asserting that
the starting point of a nonequilibrium process may be created spontaneously by equilibrium
fluctuations.

As a Brownian particle can have nonzero velocity, fluctuation can spontaneously gener-
ate systematic (at least mesoscopic scale) velocity. Then, the study of velocity fluctuations
should give us the ordinary hydrodynamics outlined in 5.1, if we believe in Einstein and
Onsager.

To consider spontaneous creation of velocity field, the internal energy is inconvenient.
We should use the total energy per unit volume (total energy density) e = u+ ρv2/2 as the
fundamental quantity.8 The local Gibbs relation reads (if you are not very sure, see 5.2.2)

de = du+ v · d(ρv), (5.2.1)

= Tds+ µdn+ · · ·+ v · d(ρv). (5.2.2)

Here, · · · denotes the usual terms coming from the ordinary Gibbs relation. In other words,

ds =
1

T
de− µ

T
dn− v

T
· d(ρv). (5.2.3)

This equality clearly tells us that if a mesoscopic velocity is organized (i.e., v 6= 0), certainly
entropy goes down. The driving force for the dissipating dynamics of velocity is given by
−v/T . This is consistent with the systematic part of the Langevin equation (3.2.1).

Here, s is the entropy seen from the observer moving with the volume element that is
riding on the local velocity field.

5.2.2 Local form of Gibbs relation
Let us review the Gibbs relation and derive its local form in terms of thermodynamic den-
sities. The Gibbs relation is of the following form:

dU = TdS − pdV + µdN +Xdx. (5.2.4)

Since extensive quantities are homogeneous functions of degree one of the number of particles,
we have

U = TS − pV + µN +Xx. (5.2.5)

Therefore, we obtain the Gibbs-Duhem relation

SdT − V dp+Ndµ+ xdX = 0. (5.2.6)

Let us introduce the densities as u = U/V , s = S/V , n = N/V , and ρx = x/V . Then, the
Gibbs-Duhem relation and (5.2.5) tell us that

du = Tds+ µdn+Xdρx. (5.2.7)

Now, we introduce the total energy density e = u+ ρv2/2. Then, we have

de = Tds+ µdn+Xdρx + v · dρv. (5.2.8)

This is the local form of the Gibbs relation with explicit velocity or momentum density as a
thermodynamic variable.

8Y. Oono, “Physical meaning of δ2z of Glansdorff and Prigogine,” Phys. Lett. 57A, 207-208 (1976). The
paper indicates that Prigogine did not pay serious attention to fluctuations.
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5.2.3 Local equilibrium state
In a true equilibrium state, there is no flow field. In the above, we have assumed that
equilibrium thermodynamic relation holds locally despite flows. If this holds throughout
the system, we say the system is in a local equilibrium state. Thus, in the application of
irreversible thermodynamics (→4.2.2), we assume that the system is in such a state. We
have seen in 5.1 that the above assumption is asymptotically exact in the hydrodynamic
limit.

Local equilibrium distributions are convenient to compute local thermodynamic quanti-
ties, but they cannot correctly describe nonequilibrium states. For a state described by the
local equilibrium distribution the collisions of molecules cannot change the local equilibrium
state (cf. 2.4.9), so, for example, the temperature cannot change. From our point of view
(at the scale of 1/ε) the system is never in equilibrium, so there must be irreversible time
evolution of the system. The lesson is: to describe nonequilibrium processes we must pay
careful attention to the deviation of microscopic states from the local equilibrium distribu-
tion (→5.1.8).

If the evolution equations such as (4.2.2) are assumed to be given, we can use the local
equilibrium distribution, assuming that the parameters in it evolve according to these evo-
lution equations. However, it must be stressed again that the evolution equations cannot be
obtained with the aid of the local equilibrium distribution.

5.2.4 Decay dynamics of slow variables
When we look at fluctuations, there are a few long lasting ones that are governed by slow
dynamics compared with majority of fluctuations. A typical example is a fluctuation of a
conserved quantity. If q is conserved, it cannot be created nor annihilated, so it stays there
unless it goes somewhere else. Moving things always takes time. This is the reason why the
fluctuations of conserved quantities are slow.

Another important class of slow variables consists of variables associated with symmetry
breaking.9 For example, close to the phase transition point that breaks symmetry, a long
spatial correlation arises. Due to the long correlation, it is hard to change things locally, so
their dynamics become slow. Order parameters close to second order phase transitions are
such variables.
Exercise 1. Suppose the correlation length is 100nm. Estimate how many molecules are
correlated.10 ut
We will not discuss such slow modes in detail.

The dynamics of conserved quantities always take the form of conservation law (→5.1.5):

∂x

∂t
= −div(Jx + w), (5.2.9)

where Jx is the systematic part of flux of x, and w is its fluctuating part.11

The systematic part of flux consists of reversible and irreversible fluxes (cf. 4.1.5, 4.1.6).
This can be done by studying the time reversal symmetry of various terms (if x has a definite
parity). If the term J times x changes its sign under time reversal, it is a part of reversible
flux. If the sign changes, then it is a part of irreversible flux.

9If the distribution function does not have the full symmetry of the system Hamiltonian, we say the
state has a spontaneously broken symmetry. Most realistic systems break its symmetry spontaneously at low
temperatures. A recommended reference is P. W. Anderson, Basic Notions of Condensed Matter Physics
(Benjamin/Cummings Publ. Co. Menlo Park, CA, 1984) Chapter 2.

10Critical fluctuations easily reach this correlation length.
11If the conserved quantity can be imported from outside, we must add terms describing it.
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5.2.5 Outline of hydrodynamics from regression point of view
The main problem is to write down the irreversible and reversible parts of various fluxes in
(5.2.9).

The reversible fluxes may be obtained by mechanical considerations. The representative
reversible flux is the one due to advection having the form qv, where q is the density under
consideration. For mass this is ρv, for momentum ρvv + pv, where p is pressure, and for
energy ev. For momentum bodily forces (gravity, etc.) creates momentum, so we must add
terms describing it (e.g., ρF ) as a source term.

It is not very simple to write down irreversible parts, so here only an outline is given.
The crucial point is that the regression hypothesis works; that is, the forms guessed from
the consideration of fluctuations indeed agree with the phenomenological laws.

The irreversible flux can have a general form given in 4.2.2. Therefore, for mass, there
is no irreversible flux, because there is no corresponding term in (5.2.2). Therefore,

∂ρ

∂t
= −div(ρv). (5.2.10)

For momentum (its density is ρv), we have the following general form: the a-component
of the flux for the b-component of momentum reads

(J irr,ρvb
)a = Lab,cd∇c

(
−vd
T

)
+ Lab,c∇c

1

T
. (5.2.11)

The second term is the cross term between the energy flux and momentum flux.12 There is
a very strong constraint due to translational symmetry: the equation of motion for v must
not depend on the absolute value of v. This implies −∑d Lab,cdvd + Lab,c = 0.13 Assuming
the isotropy of the system, this reduces to the usual form of the viscous stress tensor with
only two scalar parameters corresponding to shear η and bulk ζ viscosities.

The irreversible flux for energy e is of the following form:

(J irr,e)a = La,bc∇b

(
−vc
T

)
+ λ∇a

1

T
. (5.2.12)

We may use Onsager’s reciprocity (→4.1.10) for the cross term coefficients La,bc.
This way, we can derive the Navier-Stokes equation

∂ρv

∂t
= −div(ρvv) + η∆v +

(
η

3
+ ζ

)
∇(div v)−∇p. (5.2.13)

and the equation describing the energy balance in fluid. Notice that the irreversible con-
tribution in the Navier-Stokes equation comes from higher order spatial derivatives of the
velocity field.

5.2.6 Long time tail
We have discussed the correlation function of the Brownian particle in ??, but an important
effect of the surrounding fluid medium is not included: the slowness of the dynamics of excess
momentum.

12The reader might say that such coupling ‘should not’ appear according to the so-called Curie’s theorem
mentioned in the footnote of 4.2.2. Notice that this ‘theorem’ applies only when no translational motion
exists; this motion violates the isotropy of the system.

13Simply set v is spatially uniform.
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When the Brownian particle decreases its speed, its momentum must be imparted to
the surrounding fluid. If it returns to the particle, the speed does not decay, so for further
decay, the momentum imparted to the fluid layer immediately surrounding the particle must
be handed over to the surrounding outer fluid layer, and so on. The process is mediated by
viscosity, which is a diffusion process of momentum (→3.1.8): the decay process of the par-
ticle speed is the diffusion process of momentum to a wider and wider domain surrounding
the particle.

Let R(t) be the domain the momentum is imparted by diffusion within time t. Its size
increases as t1/2 (think about the random walk →3.1.8, or use dimensional analysis), so the
mass of this ball is ∝ t3/2. The momentum in the ball must be conserved, so the speed of
the center of mass of the ball decays as ∼ t−3/2. The Brownian particle is riding on the ball,
so its velocity correlation has a positive tail decaying as t−3/2. This is called the long time
tail.
Exercise 1. What happens in 2D? What is its grave consequence (see (3.2.21))? If a particle
is floating on the surface of water, what happens? (Note that in the real world there is no
two dimensional fluid with momentum conservation; physically; 2D Navier-Stokes equation
is nonsensical.) ut

In the actual liquid, its microscopic structure must also relax to its equilibrium struc-
ture. This process may not be very fast, even though there is no conservation law. Thus,
this can cause a long time correlation that is often much more important than the above
long time tail. Such long time correlation due to the sluggishness of the structural relaxation
is called the molasses tail.

The reader may have wondered whether there is a long range spatial correlation as well,
if we have conserved quantities. As we see in 3.7.11, miraculously, this does not happen, if
we have a fluctuation-dissipation relation (→3.2.5). However, under non-equilibrium con-
ditions, generally we expect log-range spatial correlation as well.

5.2.7 Shear viscosity and thermal conductivity in Green-Kubo form
Let us give two examples of (4.1.54). The key is to identify the phenomenological law.

Let us consider the shear viscosity: Looking at the general form j = L∇F , we must
identify j that is proportional to η. Consider the transport of the x-component of the
momentum to the y-direction by shear stress. The xy-component of the stress tensor σxy

is the corresponding flux, so j is chosen to be the xy-component of the stress tensor. The
driving force F in the present case is v/T , so L∂(vx/T )/∂y = η∂vx/∂y, or η = L/T ; that is,
we must divide (4.1.54) by T :

η =
1

kBT

∫ ∞

0
dt
∫
dr 〈σxy(r, t)σxy(0, 0)〉. (5.2.14)

For thermal conductivity, we must isolate the conducting energy flux. The driving force
is 1/T , so q = L∇(1/T ) = −κ∇T . That is, to obtain κ (4.1.54) must be divided with T 2:

κ =
1

kBT 2

∫ ∞

0
dt
∫
dr 〈jxu(r, t)jxu(0, 0)〉. (5.2.15)

where ju is the energy flux due to conduction (advection terms must be subtracted; if we do
not, we must define j− as in the previous entry, but the outcome is the same as this formula).
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Part II Details for Chapters 3-5

Part II Details consists of three chapters about Brownian dynamics, Response theory
and Modeling. They may be read largely independently of Chapters 3-5 (most topics are
repeated with more details), butperhaps they contain too many materials for the first time
reading.

Chapter X1 discusses the so-called Brownian dynamics. Langevin equations (stochastic
equations) are frequently used modeling tools of nonequilibrium phenomena. Therefore, it
may be convenient to summarize their derivation, general properties and associated partial
differential equations (Fokker-Planck equations and the backward equations). Stochastic
calculus and path integrals (Feynman-Kac formulas) are outlined as well. The chapter
begins with an overview from the large deviation point of view.

Chapter X2 summarizes the (linear) response theory. Fluctuation dissipation relations
and Green-Kubo formulas are discussed with representative examples (the NMR line shape
and the electric conductivity formula by Nakano). This is a standard topic of the current
nonequilibrium statistical mechanics, but to stress it as its main topic is a very biased point
of view, deflecting our attention from the real problems of nonequilibrium statistical physics.
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Chapter X1

Brownian Dynamics II

The main purpose of this chapter is to give a reasonably detailed theory and practical
tips to study dynamics of fluctuations to deepen what we have learned in our introductory
survey (Sections 3.2 and 3.3) summarized in X1.1.1.

X1.1 is a unified overview from the modern statistical physics point of view (unified from
the large deviation point of view). X1.2 explains the projection technique to reduce systems
to stochastic models. X1.3 is its continuation to derive nonlinear Langevin equations that
are the starting point of kinetic theory of phase transitions and critical phenomena. Since
nonlinear Langevin equations have mathematically subtle problems, we then go on to define
white noise properly in X1.4. This is the section about the idealization. The Wiener process
is introduced and we will learn how to interpret nonlinear Langevin equations properly, and
how to analyze them with the aid of stochastic calculus in X1.5.

With these preparations, we discuss stochastic energetics — how to discuss the energy
balance of the system described by a Langevin equation in X1.6.

Beyond X1.7 is the study of fluctuations in terms of partial differential equations and
path integrals. For example, we will learn the famous Feynman-Kac formula.

X1.1 Onsager’s Principle

The purpose of this section is to outline the theory of Brownian motion from a unified point
of view: a large deviation point of view (→Section 2.4). Although many statements are not
yet fully justified mathematically, the lecturer believes that something close to the following
scenario will be mathematically justified.

X1.1.1 Brownian motion: Review
In Chapter 3, we have learned the history and elementary theories of Brownian motion. It
is essentially the motion driven by equilibrium thermal noise.

We have learned its model due originally to Langevin (→3.2.4)

m
dv

dt
= −ζv + F + w (X1.1.1)

that allows us to describe each sample path (→3.2.1). The crucial problem in this modeling
is to choose the correct noise w that drives the motion (→3.2.5). The requirement is that
the noise has only a very short memory, and that the solution to the model equation to be
compatible with equilibrium statistical mechanics: the fluctuation dissipation relation (of
the second kind) (→3.2.5). We have also seen that the Brownian paths are likely to be
extremely jagged (→3.4.1).

We have had a glimpse of important relations such as the Green-Kubo relation (→3.2.9)
and the fluctuation dissipation relation of the first kind (→3.2.8).
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The solution to a Langevin equation is a stochastic process, so its value at time t has a
distribution. Its density distribution is governed by a parabolic equation called the Fokker-
Planck equation (→3.5.3). Under the overdamping condition we may ignore the velocity
and obtain the Smoluchowski equation (→3.5.5). We have studied its relaxational property
to equilibrium (→3.5.9) and the relation to the second law (→3.5.10).

X1.1.2 Separation of time scales
As has already been discussed in 3.4.1, the motion of a Brownian particle is characterized
by the existence of two time scales that are well separated. They are the time scale tM
we observe the particle and the time scale tm of microscopic noise correlation. If these two
time scales are not separated, the Brownian particle behaves just as an ordinary mass point
governed by a Newton’s equation of motion. Thus, the most crucial property of a Brownian
particle is the mesoscopic time scale ]tau such that tM � τ � tm.

Mathematically, the simultaneous limits tm/τ → 0 and τ/tM → 0 are the idealizations
describing the situation, but then, the noise becomes discontinuous (→ Exercise 1 of 3.7.6),
and dx/dt in the Langevin equation must be interpreted properly, because x becomes ev-
erywhere non-differentiable. This is the topic of the Wiener process (→Section X1.4) and
stochastic calculus (→Section X1.5).

X1.1.3 Onsager’s principle
Suppose dx/dt is the true derivative (in the sense used in mechanics). Then, it fluctuates
violently. However, if we average it for τ ,

ẋ(t) ≡ 1

τ

∫ τ

0
ds
dx(t+ s)

dt
=
x(t+ τ)− x(t)

τ
(X1.1.2)

fluctuates much less violently. Its ensemble expectation value14 is, however, not constant
at the scale of tM , and obeys a certain macroscopic law of evolution (regression principle
→4.1.2) asymptotically15

ẋ = f(x) in the mean. (X1.1.3)

Notice that for us macroscopic observers the mesoscopic time scale τ may be interpreted as
infinitesimal time, dt.

We assume that the large deviation principle (→1.6.2) holds for the short time average
introduced just above:

P (ẋ|x(t)) ' e−τI(ẋ), (X1.1.4)

where x(t) is written after | to denote explicitly that the noise is studied for a given macro-
scopic state of the system specified by the hydrodynamic variable (→5.1.4) x(t) from time
t, and I is the rate function, whose form we will discuss later. Let us call this Onsager’s
principle.16 Roughly, we may say:

14Notice that ẋ still fluctuates. The ensemble expectation value here means the average of this over many
samples

15This is in the τ →∞ limit. Physically, it means that τ is much larger than the correlation time of the
fluctuations (noise). To formulate this mathematically, we must introduce the ratio tM/τ and take the limit
of this ratio to go to infinity first, and then take the τ →∞ limit.

16Needless to say, the naming is anachronistic, because large deviation theory being used in these lecture
notes is much newer than Onsager. Hashitsume named the Onsager’s original proposal the Onsager’s prin-
ciple after correcting it (→X1.1.8); the large deviation theoretical form given here is due to the lecturer,
because he believes that if Onsager knew large deviation theory, he should have written down this form as
his fundamental proposal.
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Onsager’s Principle: Large deviation principle holds for the time average over
the noise time scale around the phenomenological relation.

This already incorporates the regression principle (→4.1.2), and we conclude that the rate
function is written in terms of macroobservables.

X1.1.4 Intuitive picture of Onsager’s principle.
The basic idea of Onsager’s principle (interpreted in the large deviation principle sense) has
a clear intuitive meaning.

If we wish to study a macroscopic evolution law, take statistics of a macroscopically
short time changes: their average provides the most probable time derivative = the macro-
scopic evolution law. The distribution of the fluctuation around the most probable evolution
law is governed by the rate function that dictates the kinetic level (= mesoscopic) stochastic
behavior of the system.

As noted in 1.6.3 some sort of variational principle is also expected for the mesoscopic
dynamics (→X1.1.11).

X1.1.5 Onsager-Hashitsume path integral
Since ẋ(t)τ = x(t + τ) − x(t), P (ẋ(t)|x(t)) = P (x(t + τ)|x(t)). Therefore, (X1.1.4) may be
interpreted as the transition probability of a Markov process:17

P (x(t+ τ)|x(t)) ' e−τI(ẋ(t)|x(t)). (X1.1.5)

Here, the x(t) dependence of the rate function I is explicitly denoted with the added x(t)
after the vertical line; the rate function is under the condition that the initial condition is
x(t). Therefore,

P (x(t+ 2τ)|x(t)) '
∑

x(t+τ)

e−τ [I(ẋ(t+τ)|x(t+τ))+I(ẋ(t)|x(t))], (X1.1.6)

where the summation (that may be an integration) over x(t+ τ) means the summation for
all the values of x at the intermediate time step t+ τ between t and t+ 2τ .

Repeating this procedure, we can bridge the macroscopic time span [t0, t1] as

P (x(t1)|x(t0)) '
∑

x1,x2,···,xn−1

e−τ
∑n−1

i=1
I(ẋi|xi), (X1.1.7)

where xi = x(t0 + iτ) and we assume t1 = t0 + nτ . Since τ is macroscopically very small
(in the mathematical idealization, infinitesimal and may be regarded macroscopically as dt),
(X1.1.7) is understood as a path integral, and may be formally rewritten as (→X1.10.5)

P (xF , t1|xI , t0) '
∫ x(t1)=xF

x(t0)=xI

D[{x(t)}] exp
[
−
∫ t1

t0
ds I(ẋ(s)|x(s))

]
, (X1.1.8)

This is often called the Onsager-Machlup path integral, but should better be called the
Onsager-Hashitsume path integral.18

17See 6.2.1; we will discuss this in a much more detailed fashion in Chapter 8.
18The transition probability (X1.1.5) was essentially proposed by Onsager. Hashitsume introduced the

path integral in 1951; Onsager introduced the same path integral with his student Machlup in 1953. Thus,
it is fair to call this path integral the Onsager-Hashitsume path integral. We will learn its relation to the
Feynman-Kac formula later (→X1.10.5).
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Thus, Onsager’s principle may be restated as follows:
The Lagrangian is a rate function: the Lagrangian for the path integral representation of
the time evolution of probability of observing a macroscopic state is given by the rate func-
tion for the microscopic time scale average of the time derivative of macroscopic quantities
specifying the state.

X1.1.6 Gaussian approximation and Langevin equation
The rate function I is convex and vanishes for the most probable value (expectation value)
(→1.6.2). Therefore, I must vanish if and only if the phenomenological law

ẋ = f(x) (X1.1.9)

holds. I is usually differentiable, so we may assume that near the origin I has a quadratic
form:19

I(ẋ(t)|x(t)) =
Γ

4
(ẋ− f(x))2. (X1.1.10)

This rate function is compatible with

ẋ = f(x) + w (X1.1.11)

where w is a Gaussian noise such that 〈w〉 = 0 and

〈w(t)w(s)〉 =
2

Γ
δ(t− s), (X1.1.12)

where 〈 〉 is the ensemble average (= average over the stochastic parameter →1.4.1). That
is, the Langevin equation (X1.1.11) is another expression of Onsager’s principle in the Gaus-
sian approximation.

The numerical factor Γ may be related to the variance of ẋ. Let us compute it. Obvi-
ously,

2/Γ = τ〈ẋ2〉 − τ〈ẋ〉2. (X1.1.13)

Notice that the first term on RHS is of order 1 and the second term of order τ .20 Therefore,
we may write for tM � τ

1

Γ
=

1

2
τ〈ẋ2〉 =

1

2τ

∫ τ

0
ds
∫ τ

0
ds′

〈
dx

dt
(s)

dx

dt
(s′)

〉
'
∫ ∞

0
ds

〈
dx

dt
(s)

dx

dt
(0)

〉
. (X1.1.14)

Here, dx/dt denotes the true mechanical time derivative, and we have assumed that the noise
correlation decays sufficiently fast in the time scale of tM , so we have replaced the upper
limits of the integrals with infinity.

X1.1.7 Onsager’s principle near equilibrium and fluctuation dissipation relation
The original Onsager principle was proposed for the linear nonequilibrium regime. Here, the
phenomenological law reads (→4.1.7)

ẋ = L
∂S

∂x
, (X1.1.15)

19Of course, more generally, I is a general quadratic functional of ẋ−f(x). This is equivalent to assuming
a noise with memory as in X1.2.6.

20Roughly speaking, 〈ẋ〉 = O[1], and 〈ẋ2〉 = O[1/τ ].
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so that the Langevin equation is

ẋ = L
∂S

∂x
+ w, (X1.1.16)

where the correlation function of the noise is given in (X1.1.12). The steady distribution of
this Langevin equation may be obtained as

P (x) ∝ eLΓS (X1.1.17)

as can be seen from the result in 3.5.5 (a good exercise).
The equilibrium distribution of x is given by ∝ eS/kB (→2.8.5), so

Γ = 1/kBL. (X1.1.18)

Combining this and (X1.1.14), we obtain the Green-Kubo relation (→4.1.12):

L =
1

kB

∫ ∞

0
ds

〈
dx

dt
(s)

dx

dt
(0)

〉
. (X1.1.19)

X1.1.8 Original Onsager’s principle
The transition probability in X1.1.3 close to equilibrium reads with the aid of X1.1.7

P (x(t+ τ)|x(t)) ' exp

− τ

4LkB

(
ẋ− L∂S

∂x

)2
 , (X1.1.20)

so the joint probability at two different times reads (see thermodynamic fluctuation theory
2.8.5)

P (x(t+ τ), x(t)) ∝ P (x(t+ τ)|x(t))eS(t)/kB . (X1.1.21)

To study its structure further, let us consider the exponents of (X1.1.21):

1

kB

S(t)− τ

4L

(
ẋ− L∂S

∂x

)2
 =

S(t)

kB
− τ

2kB

1

2
L−1ẋ2 +

1

2
L

(
∂S

∂x

)2
+

τ

2kB

dS

dt
. (X1.1.22)

Now, τdS/dt = S(t+ τ)− S(t), so we arrive at

P (x(t+ τ), x(t)) ' exp
1

2kB

[S(t+ τ) + S(t)]− τ

1

2
L−1ẋ2 +

1

2
L

(
∂S

∂x

)2
 . (X1.1.23)

This is the original Onsager’s principle (with Hashitsume’s correction).
The transition probability reads

P (x(t+ τ)|x(t)) ' exp
1

2kB

[S(t+ τ)− S(t)]− τ

1

2
L−1ẋ2 +

1

2
L

(
∂S

∂x

)2
 . (X1.1.24)

In these formulas the overall factor 1/2kB instead of 1/kB is due to Hashitsume.

207



X1.1.9 Onsager principle for many variables near equilibrium
Let us summarize what we have learned, while generalizing the formulas to the many variable
case.

The phenomenological law is (corresponding to (X1.1.15))

ẋi =
∑
j

Lij
∂S

∂xj
, (X1.1.25)

where Lij are Onsager coefficients (a good occasion to review 4.1.12). The rate function for
ẋi is (corresponding to (X1.1.10))

I({ẋi(t)}|{xi(t)}) =
1

4

∑
ij

Γij

(
ẋi(t)−

∑
i′
Lii′

∂S(t)

∂xi′(t)

)ẋj(t)−∑
j′
Ljj′

∂S(t)

∂xj′(t)

 , (X1.1.26)

where
kBΓij = (L−1)ij (X1.1.27)

is the fluctuation dissipation relation with an explicit form corresponding to (X1.1.19):

Lij =
1

kB

∫ ∞

0
ds

〈
dxi
dt

(s)
dxj
dt

(0)

〉
. (X1.1.28)

The Langevin equation is (corresponding to (X1.1.16))

ẋi =
∑
j

Lij
∂S

∂xj
+ wi. (X1.1.29)

with the noise satisfying 〈wi〉 = 0 and

〈wi(t)wj(s)〉 = 2LijkBδ(t− s). (X1.1.30)

The transition probability reads (corresponding to (X1.1.24))

P ({xi(t+ τ)}|{xi(t)})

' exp
1

2kB

[S(t+ τ)− S(t)]− τ

1

2

∑
ij

(L−1)ijẋiẋj +
1

2

∑
ij

Lij

(
∂S

∂xi

)(
∂S

∂xj

) .
(X1.1.31)

This is the original Onsager’s principle.
These formulas can easily be guessed from the single variable case (X1.1.24) discussed

in detail above.

X1.1.10 Variational principles near equilibrium
A large deviation principle implies a variational principle (→1.6.3). In our case, the varia-
tional principle implies that what we actually observe phenomenologically is the most prob-
able behavior of the system. The most probably behavior corresponds to the path from
x(t) to x(t + τ) that maximizes the transition probability. Therefore, x(s) that maximizes
the formula inside the curly brackets in (X1.1.31) should correspond to the phenomenology.
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This is a tautology for us.
The term inside the curly brackets in (X1.1.31) may be rewritten as follows:

τ {σ(t)− [Φ({ẋi}) + Ψ({Fi})]} , (X1.1.32)

where σ is the entropy production rate, and

Φ({ẋi}) ≡
1

2

∑
ij

(L−1)ijẋiẋj, (X1.1.33)

Ψ({Fi}) ≡
1

2

∑
ij

LijFiFj (X1.1.34)

with ∂S/∂xi = Fi (the conjugate driving force for xi). Φ is called the dissipation function.21

X1.1.11 Onsager’s principle of minimum energy dissipation
If the thermodynamic forces Fi are given (i.e., xi are fixed), ẋi are determined by the condition
of maximizing (X1.1.32), or equivalently, by the minimization of

Φ({ẋi})− σ(t). (X1.1.35)

This is called Onsager’s principle of minimum energy dissipation. Differentiating the above
formula with respect to ẋi, we obtain

∑
i

(L−1)ijẋj =
∂σ

∂ẋi
. (X1.1.36)

The entropy production rate can be written as

σ(t) =
dS

dt
=
∑
i

∂S

∂xi
ẋi =

∑
i

Fiẋi. (X1.1.37)

Therefore, (X1.1.36) indeed implies the phenomenological law ẋi =
∑
j LijFj (→4.1.7).

X1.1.12 Derivation of Fokker-Planck equation via Chapman-Kolmogorov rela-
tion
We can write the Chapman-Kolmogorov equation (→3.1.10, 6.2.2) in terms of the (density)
distribution ψ of the increment as

P (x, t+ dt) =
∫
d∆xψ(∆x|x−∆x)P (x−∆x, t), (X1.1.38)

where
ψ(∆x|x−∆x) ' e−dtI(x|x−∆x) (X1.1.39)

21One thing we must be careful about is that in the above formalization F is a function of {xi(t)} that
are given as the state from which the transition occurs. However, F evaluated at {xi(t+ τ)} (the outcome
of the transition) and the original F differs by a quantity only of order some positive power of τ (likely to
be O[τ1/2]), so we may interpret all the variables in (X1.1.32) are after the transition.
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with

I(x|x−∆x) =
1

4L
[∆x/dt− f(x−∆x)]2. (X1.1.40)

Let us expand (X1.1.38) as

P (x, t) +
∂P

∂t
dt+ · · ·

=
∫
d∆x

[
ψ(∆x|x)P (x, t)− ∂

∂x
ψ(∆x|x)P (x, t)∆x+

1

2

∂2

∂x2
ψ(∆x|x)P (x, t)∆x2 + · · ·

]
.

(X1.1.41)

We know (ignoring higher order terms)∫
d∆xψ(∆x|x)∆x = f(x)dt,

∫
d∆xψ(∆x|x)∆x2 = 2Ldt, (X1.1.42)

Therefore, calculating the averages, we obtain to order dt (be careful about the ordering of
derivatives and averaging; here we assume L to be constant)

∂P

∂t
dt+ · · · = − ∂

∂x
f(x)dtP (x, t) + Ldt

∂2

∂x2
P (x, t) + · · · , (X1.1.43)

or we have obtained the Fokker-Planck (or Smoluchowski) equation

∂P

∂t
=

∂

∂x

(
−f(x) + L

∂

∂x

)
P. (X1.1.44)

We have already encountered this equation (→3.5.3).

X1.2 Projection and Generalized Langevin Equation

X1.2.1 Idea of projection
We have learned that the essence of the Brownian motion is the possibility of separating two
time scales, microscopic and macroscopic, clearly (→X1.1.2). Therefore, if we can remove
rapid fluctuating motions from the true microscopic mechanical equation of motion of the
system consisting of the Brownian particle and the surrounding water molecules, then the
remaining dynamics would describe the systematic part (long time and large length scale
motion) of the Brownian particle.

A natural idea is to project out the noise part of dynamics to obtain the systematic
long time global dynamic. The idea of projection was introduced by Nakajima and (later)
by Zwanzig and was utilized by Zwanzig (→X1.3) and Mori (→X1.2.6) to derive meso-
scopic dynamic equations.

X1.2.2 Projection
A projection P is a linear operator acting on a linear space of functions or vectors such that
(the property is called the idempotency of projections)

PP = P. (X1.2.1)
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If P is a projection, then Q ≡ 1− P is also a projection. Of course, PQ = 0. If P1 and P2

are projections and if they commute, then P1P2 is a projection.
If the domain of P is a vector space, we can introduce the concept of orthogonal projec-

tion: If P is a projection, and is Hermitian P ∗ = P , then it is called an orthogonal projection.
In this case PX and QX are orthogonal vectors, so an orthogonal projection defines an or-
thogonal decomposition of the vector space.

Suppose V is an n-dimensional vector space with an orthonormal basis e1, e2, · · · , en.
Then,22

Pi ≡ eie
†
i (X1.2.2)

is an orthogonal projection, and all the Pi’s commute. For example, P1 +P3 is an orthogonal
projection, and its range is the subspace spanned by e1 and e3.

X1.2.3 Separation of unity
Let an n-dimensional vector space V have an orthonormal basis e1, e2, · · · , en. If we define
the orthogonal projection (→X1.2.2) Pi ≡ eie

†
i , we have the separation of unity:

n∑
i=1

Pi = I. (X1.2.3)

Notice that X =
∑
i(eie

†
i )X is a coordinate representation of X.

If we use Dirac’s bra-ket notation and write the orthonormal basis of V as {|1〉, · · · , |n〉},
then

Pi = |i〉〈i|, (X1.2.4)

and (X1.2.3) is the famous separation of unity:

n∑
i=1

|i〉〈i| = 1. (X1.2.5)

X1.2.4 Projective separation of time evolution equation
We wish to ‘derive’ the Langevin equation from mechanics. The Langevin equation we know
is the equation for an observable. Therefore, the starting equation of motion must be the
equation of motion for an observable (Heisenberg’s equation or Hamilton’s equation→2.7.1,
2.7.12). The equation is a linear equation of the following form

dA

dt
= iLA, (X1.2.6)

where LA = [H,A]/h̄ for Heisenberg’s equation, and iLA = [H,A]PB for Hamilton’s equation
with [ , ]PB the Poisson bracket. L is sometimes called the Liouville operator or Liouvillian.

We consider this equation as an equation of motion in the space of observables. Thus,
the projection we wish to apply on the equation must act on this space.

Let Q = 1− P and assume that the projection is time independent. We have

d

dt
QA(t) = QiLPA(t) +QiLQA(t) = QiLP [PA(t)] +QiLQ[QA(t)]. (X1.2.7)

22† implies the Hermitian conjugate. That is, transposition + complex conjugation a† = aT .
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If we wish to make PA (the systematic part of A), Q should be the projection extracting
the erratic noisy component of dynamics. Therefore, the above equation is regarded to be
the equation governing the Langevin noise. We assume that the initial condition for the
equation (X1.2.6) is given macroscopically (i.e., QA(0) = 0). Solving (X1.2.7), we obtain

QA(t) =
∫ t

0
e(t−s)QiLQQiL[PA(s)]ds =

∫ t

0
esQiLQQiL[PA(t− s)]ds. (X1.2.8)

The term whose time evolution is governed by QiLQ is the best candidate of noise in
the Langevin equation. Therefore, let us try to extract such a term from (X1.2.6).

Differentiating A = PA+QA with respect to time, we obtain with the aid of (X1.2.8)
(note that PA(0) = A(0))

dA

dt
=
dPA

dt
+
∫ t

0
eisQLQQiL

d

dt
[PA(t− s)]ds+ eitQLQQiLA(0). (X1.2.9)

To cook this further, we need a more explicit specification of the projection P .

X1.2.5 Mori theory: choice of projection
The above separation holds for any choice of time-independent projection P . We must choose
a physically useful one. Let us look closely the simplest Langevin equation in 3.2.4. The
friction term is related to the correlation function of the noise. Therefore, the scalar product
we need to define the orthogonal projection in X1.2.4 should be the correlation. We know
that the correlation occurs naturally in the formula describing the response (e.g., 2.8.1).

To have a quantum counterpart, we should have the quantum version of the cross suscep-
tibility in 2.8.1. The difference from the classical case is due to the fact that e−β(H−xjXj) 6=
e−βHeβxjXj (here, Xj is a number)

e−β(H−xjXj) = e−βH
[
1 +

∫ β

0
ds esHxje

−sHXj + · · ·
]
. (X1.2.10)

Therefore,

〈δxi〉 =

〈∫ β

0
ds esHδxje

−sHδxi

〉
Xj. (X1.2.11)

Exercise 1. Derive the above formula. (Notice that if all the quantities commute, the result
agrees with the one in 2.8.1.)23ut

Let us introduce the following ‘scalar product’ symbol (called the canonical correlation)24

〈A;B〉 = β−1
∫ β

0
ds Tr(ρee

sHAe−sHB). (X1.2.12)

Here, ρe is the equilibrium distribution (density operator).
Using this correlation, we may introduce the projection P as

PB = A〈A;B〉/〈A;A〉. (X1.2.13)

This may be expressed more conveniently as

P |B〉 = |A〉〈A|B〉/〈A|A〉 (X1.2.14)

with the interpretation of the bracket product as the canonical correlation.
23Actually, a detailed explanation is given in 4.3.5.
24That this correlation defines a scalar product may be seen from the general properties summarized in

X2.5.7.
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X1.2.6 Mori’s generalized Langevin equation
Using the projection introduced in X1.2.5, (X1.2.9) reads (for simplicity, let us assume
〈A;A〉 = 1; we can always recover this multiplicative factor easily)

d

dt
|A(t)〉 = |A〉 d

dt
〈A|A(t)〉+

∫ s

0
eisQLQQiL|A〉 d

dt
〈A|A(t− s)〉ds+ eitQLQQiL|A〉. (X1.2.15)

Let us introduce
|f(t)〉 = eitQLQQiL|A〉, (X1.2.16)

which is supposedly the noise.
(X1.2.8) reads

Q|A(t)〉 =
∫ t

0
ds |f(s)〉〈A|A(t− s)〉, (X1.2.17)

so we may write

|A(t)〉 = |A〉〈A|A(t)〉+
∫ t

0
ds |f(s)〉〈A|A(t− s)〉. (X1.2.18)

(X1.2.15) reads

d

dt
|A(t)〉 = |A〉 d

dt
〈A|A(t)〉+

∫ s

0
ds |f(s)〉 d

dt
〈A|A(t− s)〉+ |f(t)〉. (X1.2.19)

The strategy beyond this point is to derive the equation of motion for the time correlation
〈A|A(t)〉, and convert (X1.2.19) to an equation for |A(t)〉 (→X1.2.8).

The result is Mori’s generalized Langevin equation

d

dt
|A(t)〉 = iΩ|A(t)〉+

∫ t

0
dsKAA(t− s)|A(t)〉+ |f(t)〉, (X1.2.20)

where (if we recover 〈A|A〉)

KAA(t) = 〈f(0)|f(t)〉/〈A|A〉, iΩ = 〈A|iL|A〉/〈A|A〉. (X1.2.21)

The first relation is the fluctuation dissipation relation of the second kind (→3.2.5) general-
ized to the case with memory.

X1.2.7 Memory function equation
If we apply 〈A| to (X1.2.20), we obtain

d

dt
CAA(t) = iΩCAA(t)−

∫ t

0
dsKAA(t− s)CAA(s), (X1.2.22)

where
CAA(t) = 〈A;A(t)〉 (X1.2.23)

is the canonical correlation function for A (→X1.2.5). The above equation is called the
memory function equation.
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X1.2.8 Demonstration of Mori’s generalized Langevin equation
If the reader is familiar with Laplace transformation, go immediately to Exercise 1 below.
To study the time derivative of the correlation function apply 〈A| to the original equation of motion

d|A(t)〉
dt

= iLP |A(t)〉+ iLQ|A(t)〉 (X1.2.24)

and use (X1.2.8). We obtain

d

dt
〈A|A(t)〉 = iΩ〈A|A(t)〉+ 〈A|iL

∫ s

0

ds eisQLQQiL|A〉〈A|A(t− s)〉. (X1.2.25)

where iΩ = 〈A|iL|A〉. This must be a pure imaginary number. Notice that the second term reads

〈A|iL
∫ s

0

ds eisQLQQiLP |A(t− s)〉 = −
∫ s

0

ds 〈f(0)|f(s)〉〈A|A(t− s)〉, (X1.2.26)

Here, 〈A|iL · · · = −〈iLA| · · · is used (integration by parts, essentially). Therefore, (X1.2.25) becomes

d

dt
〈A|A(t)〉 = iΩ〈A|A(t)〉 −

∫ s

0

ds 〈f(0)|f(s)〉〈A|A(t− s)〉. (X1.2.27)

Let us put this into (X1.2.19) to obtain

d

dt
|A(t)〉 = |A〉

(
iΩ〈A|A(t)〉 −

∫ s

0

〈f(0)|f(s)〉〈A|A(t− s)〉ds
)

(X1.2.28)

+
∫ t

0

ds |f(s)〉
(
iΩ〈A|A(t− s)〉 −

∫ t−s

0

〈f(0)|f(s′)〉〈A|A(t− s− s′)〉ds′
)

+ |f(t)〉.
(X1.2.29)

We can rearrange this as

d

dt
|A(t)〉 = iΩ

(
|A〉〈A|A(t)〉 −

∫ t

0

ds |f(s)〉〈A|A(t)〉
)

−
∫ t

0

ds 〈f(0)|f(s)〉
(
|A〉〈A|A(t− s)〉+

∫ t−s

0

|f(s′)〉〈A|A(t− s− s′)〉ds′
)

+ |f(t)〉.
(X1.2.30)

Therefore, with the aid of (X1.2.18) we finally obtain Mori’s generalized Langevin equation (X1.2.20).
Exercise 1. If the reader is familiar with Laplace transformation, the above derivation
becomes considerably transparent. Define the Laplace transform of f as∫ ∞

0
e−stf(t)dt = f [s]. (X1.2.31)

Then, with
C(t) = 〈A|A(t)〉, (X1.2.32)

(X1.2.18) reads
|A[s]〉 = (|A〉+ |f [s]〉)C[s], (X1.2.33)

(X1.2.15) reads (this can be obtained directly from the time derivative of (X1.2.18))

s|A[s]〉 − |A〉 = iL(|A〉+ |f [s]〉)C[s], (X1.2.34)

214



and (X1.2.27) reads (this can be obtained directly from (X1.2.34) by multiplying 〈A|)

sC[s]− 1 = (iΩ−K[s])C[s]. (X1.2.35)

(The RHS must be divided with 〈A|A〉, if |A〉 is not normalized.) We can easily obtain the
Laplace-transformed (X1.2.20) from these. If you have still trouble, read the original: H.
Mori, Prog. Theor. Phys. 33, 423 (1965). ut

X1.2.9 Kawasaki identity
Let us streamline the projection method with the aid of the following Kawasaki identity:25

d

dt
eiLt = eiLtPiL+

∫ t

0
ds eiL(t−s)PiLeQiLsQiL+ eQiLtQiL. (X1.2.36)

The equation of motion for the evolution operator (propagator) is

d

dt
eiLt = eiLtPiL+ eiLtQiL. (X1.2.37)

We wish to separate the ‘noise’ part eQiLtQiL:

d

dt
eiLt = eiLtPiL+ (eiLt − eQiLt)QiL+ eQiLtQiL (X1.2.38)

Now, we use the identity:

eiLt − eQiLt =
∫ t

0
ds eiL(t−s)PiLeQiLs, (X1.2.39)

and we get (X1.2.36).
The easiest way to demonstrate (X1.2.39) is to use Laplace transformation: LeiLt =

(s− iL)−1. Then, (X1.2.39) is nothing but the so-called resolvent identity:

(s− A)−1 − (s−B)−1 = (s− A)−1(A−B)(s−B)−1. (X1.2.40)

Exercise 1. Demonstrate the above identity (note that A and B may not commute). ut
Exercise 2. Using the Kawasaki identity, derive Mori’s Langevin equation (X1.2.20) with
P = |A〉〈A| (for the definition of the bra-ket notation in this context, see X1.2.5). ut

X1.2.10 Structure of generalized Langevin equation
Let us look at Mori’s generalized Langevin equation (X1.2.20):

d

dt
|A(t)〉 = iΩ|A(t)〉 −

∫ t

0
dsKAA(t− s)|A(t)〉+ |f(t)〉, (X1.2.41)

where
KAA(t) = 〈f(0)|f(t)〉. (X1.2.42)

25K Kawasaki, J Phys A 6, 1289 (1973).
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The term with iΩ is an explicitly reversible term (→4.1.5).26

Since the original equation is a microscopic equation of motion, and since the derivation
of the above equation uses identities only, the result (X1.2.41) must also be time reversal
symmetric. We know, however, that the Langevin equation is not time reversal symmetric
(→4.1.5 or 4.1.6), so to derive the Langevin equation we must introduce some further ap-
proximations (= some more physics) into (X1.2.41).27

Whether we can utilize this equation to obtain a physical insight or not depends on how
to choose the projection P . If |f(t)〉 still contains some systematic motion or correlations
that do not decay quickly, (X1.2.41) is very different from the usual Langevin equation we
are already familiar with (→??).

If we could find the projection P that gives the noise |f(t)〉 with a short time correlation,
then we could replace the noise with a stochastic process with no correlation (white noise).
With this approximation (X1.2.41) reduces to the usual Langevin equation. However, the
reader may well say that this is not a derivation of a Langevin equation from microscopic
mechanics. She is right. Discarding the microscopic mechanical correlation in f(t) makes
the system irreversible.
Exercise. If the reader wishes to justify a stochastic equation microscopically, what does
she have to demonstrate (or what properties do you wish to demand)? (Cf. X1.3.10) ut

X1.2.11 Brownian particle suspended in fluid
Consider a box of size L (with a periodic boundary condition) containing a single Brownian particle of mass
M whose canonical coordinates are Q and P (3-vectors) and N fluid particles of mass m whose canonical
coordinates are qi and pi. The Hamiltonian of the system reads

H = P 2/2M +
∑

i

V (Q− qi) +
∑

i

p2
i /2m+ Φ({qi}), (X1.2.43)

where V is the potential of the force between each fluid particle and the Brownian particle, and Φ is the
potential energy of the fluid molecular interactions. The equation of motion for the Brownian particle reads

dQ

dt
=

P

M
, (X1.2.44)

dP

dt
= −

∑
i

∇QV (Q− qi). (X1.2.45)

26The time reversal operator I that acts on an operator in the Heisenberg picture is defined as Â(t) =
IA(t)I−1 = A(−t), where · · · is complex conjugate (not Hermitian conjugate). This complex conjugation
is required, because we wish to keep the canonical commutation relation intact (i.e., if [A,B] = C, then we
demand [Â, B̂] = Ĉ). Note that, in particular, IiI−1 = −i. That is, I is antilinear: I

∑
ciAi =

∑
ciIAi.

We wish to keep 〈ψ|ψ〉 = Tr|ψ〉〈ψ| intact under time reversal, so Tr(I|ψ〉〈ψ|I†) = 〈ψ|I†I|ψ〉 = 〈ψ|ψ〉.
Therefore, we may demand I†I = II† = 1. That is, the time reversal I may be defined as an antiunitary
operator (= a linear operator that is unitary but antilinear).

For example, as we know well the time reversal parity of the momentum is −1:

IpI = I(−ih̄∇)I = ih̄∇ = −p

The time reversal of the Heisenberg equation of motion is, if H is time-reversal symmetric as is often the
case,

ih̄
dA

dt
= [A,H] → ih̄

dÂ

dt
= [Â,H].

According to our definition IiLI = −iL, so under time reversal iΩ must change its sign, and behaves as
dA/dt. That is, this term is a reversible term (→4.1.5).

27Mori once told me that a theory without approximation is not a theory in physics.
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The coordinates we wish to pay particular attention are Q and P , so the projection operator we choose
must project the dynamics onto the space spanned by these two coordinates. Therefore, the projection we
use is formally

Pf = Q〈Qf〉/〈Q2〉+ P 〈Pf〉/〈P 2〉. (X1.2.46)

Here, 〈 〉 implies the equilibrium average. 〈P 2〉 = 3kBT/M . 〈Q2〉 is a big quantity.
Let us compute the reversible part (i.e., iΩ in (X1.2.20); here, the dot implies the true time derivative

in mechanics).

PQ̇ = P 〈PQ̇〉/〈P 2〉 = P/M, (X1.2.47)
PṖ = = Q〈QṖ 〉/〈Q2〉 = 0. (X1.2.48)

Next, let us compute the fluctuation force at t = 0 (i.e., |f(0)〉). For Q, the random force at t = 0 is
given by

(1− P)Q̇ = Q̇− P/M = 0. (X1.2.49)

This must be obvious without any work, because the equation for Q is purely mechanical:

dQ

dt
=

P

M
. (X1.2.50)

The random force fP for P at time t = 0 is

fP (0) = (1− P)Ṗ = Ṗ −Q〈QṖ 〉/〈Q2〉 = Ṗ = −
∑

i

∇V (Q− qi). (X1.2.51)

To compute fP (t) defined by (X1.2.16), we must apply et(1−P)iL(1−P) to fP (0). We Taylor-expand the
exponetiated operator in t and perform the calculation order by order. The first order term reads

t(1− P)iL(1− P)fP (0) = t(1− P)iLfP (0) = t(1− P)
d

dt
[−
∑

i

∇QV (Q− qi)]

= t(1− P)[−
∑

i

∇2
QV (Q− qi)(Q̇− q̇i)]. (X1.2.52)

We assume that Q and the velocities are uncorrelated. Then, we may replace 1− P with 1− P 〈P · 〉/〈P 2〉.
This implies that the term containing Q̇ disappears. Thus,

t(1− P)iL(1− P)fP (0) = t
∑

i

∇2V (Q− qi)q̇i. (X1.2.53)

The second order is obtained by applying (t/2)(1−P)iL to this result. The result becomes quickly compli-
cated, but notice that the term containing Q̇ disappears. Therefore, under this projected time evolution Q
is being fixed, and only qi evolves in time:

fP (t) = et(1−P)iL(1−P)fP (0) = −
∑

i

∇V (Q− qi(t)). (X1.2.54)

We need the time correlation function of fP (t). Notice that fP is the force due to the fluid particles
on the Brownian particle with Q being fixed at the initial position. Therefore,

dQ

dt
=

P

M
, (X1.2.55)

dP

dt
= −

∫ t

0

dsKff (t− s)P (s) + fP (t). (X1.2.56)

If the force correlation is very short lived, we may write Kff (t) = 2ζδ(t), and the second equation above
reads

dP

dt
= − ζ

M
P + fP , with 〈fP (t)fP (0)〉 = 2ζkBTδ(t). (X1.2.57)
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Here,

ζ/M =
∫ ∞

0

Kff (s)ds (X1.2.58)

which is the fluctuation-dissipation relation of the second kind.28 If we assume further that the noise is
Gaussian, this Langevin equation defines the Ornstein-Uhlenbeck process (→X1.8.9).

We know, however, that the above reduction is not quite right, because it does not exhibit the long
time tail (→5.2.6). What is wrong? Up to (X1.2.56), nothing is wrong. The assumption that the correlation
Kff is short-lived and/or that P , Q are the only slow variables must be wrong. Which or both?

X1.2.12 Further dissection of noise
In the Mori generalized Langevin equation (X1.2.20), the noise may still contain a systematic
motion that should not be treated as noise. In such a case, we should extract systematic
parts further from |f(t)〉. One possible method is to apply Mori’s theory X1.2.6 again to
this “noise.”

Let P1 = |f(0)〉〈f(0)|. Now, the time evolution operator of the system is (1−P )iL ≡ iL1,
the natural Liouvillian governing the evolution of f . Then,

d

dt
|f(t)〉 = iΩ1|f(t)〉 −

∫ t

0
K2(t− s)|f(t)〉+ |f2(t)〉, (X1.2.59)

where
|f2(t)〉 = et(1−P1)iL1(1−P1)(1− P1)iL1|f(0)〉, (X1.2.60)

and
K2(t) = 〈f2(t)|f2(0)〉. (X1.2.61)

This should easily be guessed (and derived) from the result in X1.2.6.
Now, it is clear that we can repeat this procedure recursively:

d

dt
|fn(t)〉 = iΩn|fn(t)〉 −

∫ t

0
dsKn+1(t− s)|fn(t)〉+ |fn+1(t)〉 (X1.2.62)

with |f0(t)〉 = |A(t)〉, |f1(t)〉 = |f(t)〉 in X1.2.6. Here, (we assume that vectors are not
normalized)

Pn = |fn〉〈fn|/〈fn|fn〉, (X1.2.63)

Ln = (1− Pn−1)Ln−1, (X1.2.64)

iΩn = 〈fn|iLn|fn〉/〈fn|fn〉, (X1.2.65)

Kn(t) = 〈fn|fn(t)〉/〈fn−1|fn−1〉, (X1.2.66)

|fn(t)〉 = eiLn+1tiLn+1|fn〉. (X1.2.67)

The reader may say that there are two questions remaining:
(i) Can we make the noise really short-time correlated without any trace of systematic mo-
tion after a finite number of iterations of the above procedure?
(ii) If we cannot remove systematic parts with a finite number of the above recursive proce-
dure, is the infinite procedure meaningful?

There is actually a much more important question not yet asked: does the original
equation for A properly capture the systematic motion? (→X1.2.11, X1.3.1)

28The relation between Kff and fP is Kff (t) = 〈fp(0)fP (t)〉/〈P 2〉 = β〈fP (t)fP (0)〉/M (calculated com-
ponentwisely).
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X1.2.13 Continued fraction expansion of correlation function
If we apply 〈fn| to (X1.2.62), we obtain the memory function equations (→X1.2.7)

d

dt
Kn(t) = iΩnKn(t)−

∫ t

0
dsKn+1(t− s)Kn(s). (X1.2.68)

If we Laplace transform this with respect to time, we get

sKn[s]−Kn(0) = iΩnKn[s]−Kn+1[s]Kn[s], (X1.2.69)

or
Kn[s] = Kn(0)/(s− iΩn +Kn+1[s]). (X1.2.70)

For n = 0 this is
〈A|A[s]〉 = 〈A|A〉/(s− iΩ + 〈f |f [s]〉). (X1.2.71)

Therefore, combining this and the n = 1 result, we obtain

〈A|A[s]〉 =
〈A|A〉

s− iΩ +
〈f |f〉

s− iΩ2 − 〈f2|f2[s]〉

. (X1.2.72)

That is, more generally,

〈A|A[s]〉 =
〈A|A〉

s− iΩ1 +
〈f1|f1〉

s− iΩ2 +
〈f2|f2〉

s− iΩ3 +
〈f3|f3〉

s− iΩ4 +
〈f4|f4〉
· · ·

. (X1.2.73)

This is called the continued fraction expansion of the correlation function by Mori. The
beauty of this result is that all the quantities in this formula are computed with equilibrium
statistical mechanics.

Needless to say, this formal result has exactly the same problems mentioned at the end
of X1.2.12.

X1.2.14 Finite pole approximation
In (X1.2.56) suppose the correlation function of the noise decays exponentially:

〈f1(0)|f1(t)〉 = e−γt. (X1.2.74)

Then, we know that we can model f1 as

df1

dt
= −γf1 + f2 (X1.2.75)

with 〈f2(0)f2(t)〉 = 2γkBTδ(t).

〈vx|vx[s]〉 =
〈v2
x〉

s+
K1(0)

s+K2[s]

=
〈v2
x〉

s+
K1(0)

s+ γ

(X1.2.76)

219



This implies that depending on K1(0) and γ, the damping can become oscillatory. Notice
that the poles of the correlation function governs the general behavior.

If the power spectrum of the velocity has three peaks as in the case of classical liquids
(the central peak + Stokes and anti-Stokes lines), then we may model its dynamics with
three poles:

〈vx|vx[s]〉 =
〈v2
x〉

s+
K1(0)

s+
K2(0)

s+ γ

(X1.2.77)

X1.2.15 How reliable is the stochastic approximation?
We have already learned that there could be lots of complications due to long-lived corre-
lations, but even in the ideal case in which noise correlation is short-lived, how good is the
replacement of the microscopic erratic fast motions that are still deterministic with a noise
= stochastic process? This question will be discussed briefly in X1.3.10.

X1.3 Zwanzig’s Nonlinear Langevin Equation

X1.3.1 Limitations of Mori’s Langevin equation
Mori’s Langevin equation projects the motion onto the space spanned by |A〉 (i.e., by an
observable A). Therefore, e.g., A2, which is not expressible as a constant multiple of A, is
treated as nonsystematic noise. However, A2 surely contains a systematic part that does not
average out even if A averages out. Therefore, Mori’s Langevin equation (X1.2.20) is reliable
only when |A| � A2.

The continued fraction expansion can certainly remove systematic parts or not fast
decaying parts from the putative noise term. However, the method does not extract the
systematic contribution of, e.g., A2 that is independent of A. Therefore, the time evolution
of an arbitrary function of A cannot be studied. This statement is consistent with the con-
dition for the Mori theory to be applicable: the magnitude of |A| � A2.

X1.3.2 Projection onto space spanned by gross variables
If we really wish to study a nonlinear system with noise, we must project the dynamics onto
the space spanned by all the functions of macrovariables = gross variables A. Let us discuss
the classical cases only.

For the linear case the projection operator should reduce to Mori’s choice (its classical
version). Therefore, as its natural extension we introduce the set of (real) orthonormal
polynomials φn(A) of gross variables A (they are multivariate polynomials) such that∫

dΓρe(Γ)φn(A(Γ))φm(A(Γ)) = δnm, (X1.3.1)

where ρe is the equilibrium distribution function on the phase space. The gross variables are
considered as functions of microscopic variables Γ in the calculation of projection; A without
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explicit specification of Γ-dependence means gross variables as macroscopic variables. The
projection operator P is defined as

PX =
∑
n

φn(A)
∫
dΓρe(Γ)φn(A(Γ))X =

∑
n

φn(A)〈φn(A(Γ))X〉, (X1.3.2)

where 〈 〉 is the equilibrium average. Notice that (separation of unity →X1.2.3)∑
n

φn(A)φn(A
′) = δ(A−A′)/Pe(A), (X1.3.3)

where Pe(A) is the equilibrium distribution function of the gross variables collectively de-
noted as a vector A

Pe(A) =
∫
dΓδ(A−A(Γ))ρe(Γ). (X1.3.4)

X1.3.3 Zwanzig’s nonlinear Langevin equation29

We use the projection introduced in X1.3.2 in the Kawasaki identity X1.2.9. The result,
called Zwanzig’s nonlinear Langevin equation, reads (for a derivation, see X1.3.5)

d

dt
Aj = vj(A(t)) +

∫ t

0
ds

1

Pe(A(t− s))
∑
k

∂

∂Ak(t− s)
[Kkj(s; A(t− s))Pe(A(t− s))] + fj(t),

(X1.3.5)
where

vj(A) = 〈iLAj|A〉, (X1.3.6)

Kij(t; A) = 〈fifj(t)|A〉, (X1.3.7)

and the conditional average is defined as

〈B|A〉 = Pe(A)−1
∫
δ(A−A(Γ))B(Γ)ρedΓ. (X1.3.8)

vj is called the streaming term and Kij is called the memory kernel. (X1.3.7) is the
fluctuation dissipation relation of the second kind (for a prototype see 3.2.5). Very short
time dynamics is governed by the streaming term, and is the instantaneous time-reversal
part of dynamics. The streaming term has an important property that it does not affect the
equilibrium distribution (→X1.3.6, cf. X1.11.6).

X1.3.4 Markov approximation of Zwanzig’s nonlinear Langevin equation
If the noise is close to the white noise, we may use the ‘Markov approximation’30 (see
cautionary remarks in X1.3.9):

Kij(t; A) = 2kBTLij(A)δ(t). (X1.3.9)

29R Zwanzig, Memory effects in irreversible thermodynamics, Phys. Rev. 124, 983-992 (1961).
30dA/dt is governed by the state of the system at time t; the effect of the past is only through the state

at time t. There is no memory.
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Lij is called the bare Onsager coefficient. Then, (X1.3.5) reads

d

dt
Aj = vj(A(t)) + Pe(A(t))−1

∑
k

∂

∂Ak(t)
[kBTLkj(A(t))Pe(A(t))] + fj(t), (X1.3.10)

where the fluctuation dissipation relation of the second kind reads

〈fi(0)fj(t)|A(t)〉 = 2kBTLij(A(t))δ(t). (X1.3.11)

If we write the equilibrium distribution as Pe(A) ∝ e−βF , where F is the free energy,
the nonlinear Langevin equation reads

d

dt
Ai = vi(A) + kBT

∑
j

∂Lij(A)

∂Aj
−
∑
j

Lij(A)
∂F (A)

∂Aj
+ fi, (X1.3.12)

〈fi(0)fj(t)|A〉 = 2kBTLij(A)δ(t). (X1.3.13)

Often, we ignore the explicit A-dependence of the Onsager coefficients. Then, (X1.3.12)
reads

d

dt
Ai = vi(A)−

∑
j

Lij
∂F

∂Aj
+ fi, (X1.3.14)

〈fi(0)fj(t)〉 = 2LijkBTδ(t). (X1.3.15)

This is the starting point of the study of critical dynamics (→X1.3.8).
Exercise. In (X1.3.12) assume that A = x is the position of a Brownian particle in a box
and its equilibrium distribution is uniform in the box (i.e., Pe(A) = constant). Assume that
there is no streaming term. The equation reads

d

dt
x(t) = kBTL

′(x(t)) + f(t). (X1.3.16)

This describes a system with the noise intensity dependent on the position, but still its
equilibrium distribution is uniform in space. Explain why we need the force term which
is proportional to the derivative of L. [Hint. Think of a nonuniformly vertically vibrating
horizontal tray with sand grains on it.] Can you think of some relation of this to the ratchet
problem (→??)? ut

X1.3.5 Derivation of Zwanzig’s nonlinear Langevin equation
The streaming term is obtained from

vj(A) ≡ PiLAj, (X1.3.17)

=
∑
n

φn(A)〈φn(A(Γ))iLAj〉, (X1.3.18)

= 〈iLAj|A〉. (X1.3.19)

The noise is given by fj(t) = ei(1−P)Lti(1−P)LAj, and iPLei(1−P)Lsi(1−P)LAj = iPLfj(t),
where

iPLfj(t) =
∑
n

φn(A)〈φn(A(Γ))iLfj(s)〉, (X1.3.20)
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= −
∑
n

φn(A)〈{iLφn(A(Γ))}fj(s)〉, (X1.3.21)

= −
∑
n

φn(A)
∑
k

〈{iLAk(Γ)} ∂φ

∂Ak(Γ)
fj(s)〉, (X1.3.22)

= −
∫
dΓ
∑
k

{iLAk(Γ)} ∂

∂Ak(Γ)
δ(A−A(Γ))Pe(A)−1fj(s)ρe(Γ),

(X1.3.23)

= −
∫
dΓ
∑
k

{iLAk(Γ)}fj(s)
∂

∂Ak(Γ)
δ(A−A(Γ))ρe(Γ)/Pe(A),

(X1.3.24)

= Pe(A)−1
∑
k

∂

∂Ak

∫
dΓ{iLAk(Γ)}fj(s)δ(A−A(Γ))ρe(Γ),

(X1.3.25)

= Pe(A)−1
∑
k

∂

∂Ak
{〈fkfj(s)|A〉Pe(A)}. (X1.3.26)

Combining all of these results, we obtain (X1.3.5).

X1.3.6 Streaming term does not affect equilibrium
The streaming term (X1.3.6) may be calculated further as

vj(A) = Pe(A)−1
∫
dΓδ(A−A(Γ))[Aj(Γ), H]PBρe(Γ), (X1.3.27)

= kBTPe(A)−1
∫
dΓδ(A−A(Γ))[Aj(Γ), ρe(Γ)]PB, (X1.3.28)

= kBTPe(A)−1
∫
dΓδ(A−A(Γ))

∑
k

[Aj(Γ), Ak(Γ)]PB
∂

∂Ak(Γ)
ρe(Γ),

(X1.3.29)

= kBTPe(A)−1
∑
k

∂

∂Ak
(〈[Aj(Γ), Ak(Γ)]PBA〉Pe(A)) . (X1.3.30)

Here, the conditional average in the last line is defined in (X1.3.8). To go from line 3 to 4,
we have used integration by parts.

This term should not affect the equilibrium distribution function given by e−βF . That
is, (→X1.7.1 or ??) ∑

j

∂

∂Aj
vj(A)Pe(A) = 0. (X1.3.31)

This is immediate from the antisymmetry of the Poisson bracket in (X1.3.30).

X1.3.7 Mode coupling terms
If we use the expression of the projection in terms of the orthonormal polynomials, we have

vj(A) =
∑
n

φn(A)
∫
dΓφn(A(Γ))[Aj(Γ), H]ρe(Γ), (X1.3.32)
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= −
∑
n

φn(A)
∫
dΓ kBTφn(A(Γ))[Aj(Γ), ρe(Γ)]PB, (X1.3.33)

=
∑
n

φn(A)
∫
dΓ kBT [Aj(Γ), φn(A(Γ))]PBρe(Γ). (X1.3.34)

That is,

vj(A) = kBT
∑
n

〈[φn(A(Γ)), Aj(Γ)]PB〉eφn(A) ≡
∑
n

v(n)
v φn(A), (X1.3.35)

where 〈 〉e is the equilibrium average. In many applications we truncate this expansion at
n = 2. The n = 2 terms are called mode-coupling terms.

X1.3.8 Mode-coupling equation for critical dynamics
If we wish to study nonlinear dynamics of fluctuations, Pe is given by the thermodynamic
theory of fluctuation (→2.8.5) as

Pe(A) ∝ exp(−
∑
j

A2
j/2χj), (X1.3.36)

where χj is the susceptibility (→2.8.1). Since this is Gaussian, the multidimensional Her-
mite polynomials are the most suitable orthonormal polynomials to construct projections
(→X1.3.2):

φ
(1)
i = Ai/

√
χi, (X1.3.37)

φ
(2)
ij = (AiAj − 〈AiAj〉e)/

√
χiχj. (X1.3.38)

Here, 〈 〉e is the equilibrium average. From this it is easy to compute v
(1)
j and v

(2)
j . Thus, we

obtain

vj(A) =
∑
k

iωjkAk +
i

2

∑
kl

Vjkl[AkAl − 〈AkAl〉e] (X1.3.39)

with

ωjk = −ikBT 〈[Aj, Ak]〉e/χk, (X1.3.40)

Vjkl = −ikBT 〈[Aj, AkAl]〉e/χkχl. (X1.3.41)

(X1.3.31) implies
ωjk/χj = ωkj/χk (X1.3.42)

and
Vjkl/χj + Vklj/χk + Vljk/χl = 0. (X1.3.43)

The Langevin equation

dAj
dt

=
∑
k

iωjkAk +
i

2

∑
kl

Vjkl[AkAl − 〈AkAl〉e]−
∑
k

Ljk
Ak
χk

+ fj (X1.3.44)

with 〈fifj(t)〉 = 2kBTLijδ(t) is the starting point of the mode coupling theory for critical
dynamics.31

31K. Kawasaki, Ann. Phys. 61, 1 (1970). The author told me that if he had known beforehand that this
paper was to be quoted so often, he should have written a better paper, but still this is a readable paper.
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X1.3.9 Warning about white noise approximation
It has repeatedly been stressed that the essence of Brownian motion is that there are two
disparate time scales, macroscopic tM and mesoscopic τ 32 such that τ/tM � 1 (e.g., X1.1.2).
Also we have discussed that τ/tM → 0 is the limit to idealize this situation mathematically.
However, we already know that in this limit the noise loses its continuity as a function of time
(→3.7.6), so in (X1.3.12) A changes very rapidly, and deciding clearly whether a certain
change in A(t) (A at time t) is ‘before the delta function peak in (X1.3.13), after it, or with
a more delicate relation to it’ becomes an important issue.

For physicists, the most sensible attitude is the following: Nothing is discontinuous
dynamically: the fundamental equation of motion is a differential equation, so the coordi-
nates q and p are at least once differentiable. Therefore, the idealization τ/tM → 0 must
be performed after solving the differential equations (or after finishing all the integrations).
Even quantum mechanically the basic equation of motion is a differential equation, so all
the natural changes of expectation values must be smooth.

However, it is also true that if we take this idealization limit and can assume that the
rapid increment of the noise term is always statistically independent of the A at the moment
(this is equivalent to assuming the noise increment is independent; ‘after the delta function
peak in (X1.3.13),’ so to speak), many calculations become simple.

In this idealization, the result of the calculation must agree with the physicists’ way of
calculation: the idealization limit is taken after everything is over. To this end, we must
invent a different calculus (Itô calculus) as already explained briefly in 3.4.4). This is the
topic of Section X1.5.

X1.3.10 Reliability of nonlinear reduction: Khas’minskii’s theorem
Consider the following equation with two time scales

ẋ(t) = f(x(t), ξ(t/ε)), (X1.3.45)

where f is a function, and ξ is a fast motion that does not depend on x. The reader may
imagine this is an external noise. Let the following limit exist:

lim
T→∞

1

T

∫ T

0
dtf(u, ξ(t/ε)) = F (u), (X1.3.46)

where the time average is for fixed u. Modulo technical assumptions, Khas’minskii33 demon-
strated the following:
Up to the time scale of 1/ε2 xε(t) defined by the following set of equations (→X1.5.7 for a
precise definition) with the same initial condition as x(t) deviates at most of order ε from
x(t):

dxε(t) = F (xε(t)) +
√
εdη(t), (X1.3.47)

dη(t) = F ′(xε(t))η(t)dt+
√
D(xε(t))dB(t), (X1.3.48)

where B is the Wiener process (→X1.4.4), and

D(x) = lim
T→∞

1

T

∫ T

0
dt
∫ T

0
ds (f(x, ξ(t/ε))− F (x))(f(x, ξ(s/ε))− F (x)). (X1.3.49)

32Often it is called the microscopic timescale.
33R. Z. Khas’minskii, “A limit theorem for the solutions of differential equations with random right-hand

sides,” Theor. Prob. Appl. 11, 390-406 (1966).
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That is, the effect of a rapidly changing perturbation may be mimicked by a system
with a noise that is an Ornstein-Uhlenbeck process (→X1.8.9). The reader would say this
is not quite the assertion we wish to have, because in our case ξ depends on x(t).

In this case we wish to have an assertion like the following:
Consider

ẋ(t) = f(x(t), y(t)), ẏ(t) =
1

ε
g(x(t), y(t)). (X1.3.50)

In the ε → 0 limit, y is the fast variable. If the second member of the equation for each x
describes a sufficiently chaotic dynamics,34 (X1.3.47) holds with F being defined as

F (x) = lim
T→∞

1

T

∫ T

0
f(x, y(t))dt (X1.3.51)

and with the noise governed by (X1.3.48) with an appropriate replacement of D that can
easily be guessed. This type of theorems are now being proved by Kifer.35

Notice that these theorems are up to the time scale of 1/ε2. Beyond this scale we do
not have any control. Hopefully, with the whole dynamics being sufficiently ergodic at least
on the average the solution to the reduced equation mimics the original system.

X1.4 Idealization of Brownian Motion: Wiener Pro-

cess

X1.4.1 Idealization of Brownian motion
Now, we wish to idealize the Brownian motion, taking the time scale ratio τ/tM → 0 (fast
noise limit), where tM is the macroscopic time scale (the time scale of our observation; this
may perhaps be 1µs) and τ the mesoscopic time scale (this may be 10ps,36 so the ratio is
10−5).

The simplest model of the Brownian motion in 1-space is

dx

dt
= w(t), (X1.4.1)

where x is the position vector of the center of mass of a Brownian particle, and w describes
the effect of random noise; this equation describes an overdamped Brownian particle bom-
barded by molecular collisions in a uniform space (ignoring the hydrodynamic effect).

Its idealization in the fast noise limit is, intuitively at least, to interpret w as a white
noise. However, if we carefully think over the problem, we realize that ‘white noise’ has not
been defined; we assert 〈w(t)w(s)〉 ∝ δ(t − s) (→3.2.4), so the equal-time correlation is
unthinkable. This implies that w(t) is not a stochastic process in the usual sense = a map
from a probability space to a set of functions of time (→1.4.2).

34A precise characterization of this requirement is, for example, that for each x, the second member has
a unique SRB measure.

35Cf. Y. Kifer, “Averaging and climate models” in Progress in Probability, vol. 49 (P. Imkeller editor,
Birkhäuser, Basel, 2000).

36The oscillation of the CH bond stretching is of the order of 1fs = 1 ×10−15s.
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X1.4.2 Heuristic construction of white noise
Let us try to construct a white noise ŵ(t, ω). Here, the stochastic parameter ω is explicitly
written. What we wish to require are:
(i) ‘Whiteness’: all the frequency components have the same amplitudes.37

(ii) ‘Randomness’: all the frequency components are statistically independent.
Let us make such a noise on the time span [0, 1].

If ŵ(t, ω) is expanded in a Fourier series

ŵ(t, ω) =
∞∑

k=−∞
ak(ω)ei2πkt, (X1.4.2)

(i) and (ii) imply that {ak(ω)}∞k=−∞ must be modeled as a set of iid (identically and inde-
pendently distributed, cf. ??) stochastic variables. We choose they are Gaussian variables38

〈a†k(ω)aj(ω)〉 = δkj, 〈ak(ω)〉 = 0. (X1.4.3)

ŵ(t, ω) is real, so a†−k = ak must be demanded.39

The convergence of the sum in (X1.4.2) is a non-trivial question, so we proceed intu-
itively: the average must vanish

〈ŵ(t, ω)〉 = 0. (X1.4.4)

The time correlation function reads40

〈ŵ(s, ω)ŵ(t, ω)〉 =
∞∑

k=−∞
e2πk(t−s) = δ(t− s). (X1.4.5)

X1.4.3 Construction of idealized Brownian motion = Wiener process
Let us formally solve (X1.4.1) with the initial condition x(0, ω) = 0:41

x(t, ω) =
∫ t

0
ŵ(s, ω)ds =

∞∑
k=−∞

ak(ω)

2πik
(ei2πkt − 1). (X1.4.6)

Here, the adverb ‘formally’ means that the summation and any operation are treated as
commutative.42 We see, then

〈x(t, ω)〉 = 0. (X1.4.7)

37This implies that all the harmonic modes have the same energy, so the total energy of a white noise
diverges; that is why white noise is unthinkable as an ordinary stochastic process.

38If the simultaneous distribution of any finite subset of {ak(ω)}∞k=−∞ is Gaussian, we say the original
infinite set is Gaussian-distributed.

39Then, how can we claim that {ai(ω)}∞k=−∞ is iid? In this case the interpretation is that the real and the
imaginary parts of {ak}∞k=0 are iid stochastic variables (note that 〈ak(ω)2〉 = 0; what should 〈(Re ak(ω))2〉
be?).

40Recall the Poisson summation formula.
41For t = 1 x(1, ω) = a0(ω).
42The reader who is familiar with the theory of Fourier series may suggest that we should use the Cesaro

sum, following the idea of Fejér. A similar idea indeed works (a theorem by Paley and Wiener; see Ito-
McKean p21-2).
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The correlation function reads

〈x(s, ω)x(t, ω)〉 = min(t, s). (X1.4.8)

We have constructed x with the aid of linear operations (summation and integration), so we
may intuitively expect that it is a Gaussian stochastic process.

The constructed process is in conformity with our intuitive picture of diffusing particles
(cf. 3.1.8):

〈[x(t, ω)− x(s, ω)]2〉 = |t− s|. (X1.4.9)

That is, the displacement during time t behaves as
√
t.

A Gaussian process43 x(t, ω) satisfying (X1.4.7) and (X1.4.8) is called the Wiener pro-
cess.

From the mathematician’s point of view that such a Gaussian process is indeed well-
defined is a major triumph. Our construction can be fully justified with the aid of a stochas-
tic process in the distribution sense, but a more traditional approach is outlined below in
X1.4.5.

X1.4.4 Wiener process: definition
Through our heuristic construction of the dynamics of a particle driven by a white noise,
we have clearly grasped what sort of stochastic process we should study mathematically.
Although we have only studied the process on [0, 1], it should not be hard to extend this for
all nonnegative time.

An official definition of the Wiener process (mathematicians often call this Brownian
motion) is:
Definition: Wiener process
The Wiener process B is a stochastic process {B(t, ω) : t ∈ [0,∞), ω ∈ Ω}44 satisfying the
following conditions:
(A) B(0, ω) = 0 with probability one.
(B) for any positive integer n and 0 < t1 < · · · < tn the increments

B(t1), B(t2)−B(t1), · · · , B(tn)−B(tn−1) (X1.4.10)

are independently and normally distributed (i.e., Gaussian) with mean 0 and variance

t1, t2 − t1, · · · , tn − tn−1 (X1.4.11)

(C) B(t, ω) is continuous with probability 1.
The conditions are not minimal: the reader can say that if a process satisfies (A) and

(B), then it is possible to construct a model with (C). Or, for physicists it should be appeal-
ing that (A) + (C) + independent increments (the first part of (B)) implies the second part
of (B) (that is, if we assume continuity and independent increments, then the central limit
theorem (→1.7.1) forces us to swallow Gaussianness).45

Giving a definition is one thing, and demonstrating the existence is another; we could

43A stochastic process whose any finite dimensional marginal distribution is Gaussian is called a Gaussian
process.

44on a probability space {Ω,F , P}.
45See Durrett, p334.
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define a unicorn! The existence was first shown by Wiener in 1923.46 An argument probably
most appealing to physicists (except for the renormalization group approach →X1.4.10) is
outlined in X1.4.5.47

X1.4.5 Outline of mathematical construction of Wiener process.
This is essentially a rigorization of our intuitive construction: X1.4.3 suggests

Bn(t, ω) =
n∑
j=0

ηj(ω)Φj(t) (X1.4.12)

converges to B in the n→∞ limit, where ηi are iid stochastic variables obeying N(0, 1) and

Φj(t) =
∫ t

0
ds φj(t) (X1.4.13)

with {φj(t)} being a complete orthonormal function set on [0,∞). We can show that Bn(t, ω)
almost surely converges to B(t, ω)48 with the aid of Lévy’s three series convergence theorem:
Theorem [Lévy] Let {Xn} be independently distributed. Then, for the sum

∑
Xn, its con-

vergence in probability, almost sure convergence, and convergence in law are equivalent.49 ut
Therefore, we have only to show the convergence in the mean (that implies convergence in
probability) of Bn, but this is a mere exercise.
Exercise. Demonstrate that E[Bn(t, ω)2] ≤ t. ut

X1.4.6 Important properties of Wiener process
We are interested in the properties of sample paths: the properties of B(t, ω) for a fixed ω.

By construction, it is almost surely50 continuous. However,
Non-differentiability: B(t, ω) is nowhere differentiable with probability one.51

This is exactly what Perrin asserted (→3.1.5, 3.4.1).
Stationarity (or translational symmetry): for any positive number a {B(t+a, ω)−B(a, ω), t ≥
0} is again the Wiener process.
This is easy to check. This means that if we can show that some statement holds with
probability one at one time, we may claim the same statement at any other time.
Scaling invariance (or self-similarity): for any positive number λ {λ−1B(λ2t, ω), t ≥ 0} is
again the Wiener process.
This is also easy to check.
Conformal invariance: {tB(1/t, ω), t ≥ 0} is again the Wiener process.
This is easy to check. The very short time behavior magnified appropriately looks like a long
time behavior.

46This year: France occupied the Ruhr, München Putsch; Hubble discovered extragalactic spiral galaxies;
the first issue of Time magazine.

47Perhaps the easiest proof may be found in D. Freedman, Brownian Motion and Diffusion (Springer,
1983). As always, a smart proof is in Durrett, p335.

48It is known that the convergence is actually uniform in t.
49Convergence in law may be understood as the convergence of characteristic functions.
50This is a statement equivalent to “with probability 1.”
51Not Lipschitz at any point. However, it is Hölder continuous with exponent less than 1/2 with probability

one. The Hausdorff dimension of a sample path is 2 with probability 1.
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X1.4.7 Increments are roughly of order
√
t

The translational and scaling invariance (→X1.4.6) imply that statistically B(t + δt, ω) −
B(t, ω) and

√
δtB(1, ω) are indistinguishable. Therefore, short time increment behaves like√

t. This is of course what Einstein pointed out (→3.1.5).
There are two related statements:

2n∑
m=1

[
B
(
mt

2n

)
−B

(
(m− 1)t

2n

)]2

→ t (X1.4.14)

with probability one as n→∞. However,

lim sup
t→0

B(t, ω)/
√
t =∞. (X1.4.15)

That is, the amplitude ‘overshoots’
√
t.

A more precise statement about this overshoot is the law of iterated logarithm:

sup |B(t+ h)−B(t)| ∼
√

2h log log(1/h) (X1.4.16)

in the h→ 0 limit. Or, using the conformal invariance (→X1.4.6), almost surely

lim sup
t→∞

B(t, ω)/
√

2t log log t = 1. (X1.4.17)

This is Khintchine’s celebrated law of iterated logarithm.52

X1.4.8 Markov property of Wiener process
By definition (→X1.4.4) the Wiener process has independent increments, so the conditional
probability of B(t, ω) under the condition that we know ‘everything’ about it up to time s
must be identical to the conditional probability under the condition that we know only
B(s, ω). This is mathematically expressed as

P (B(t, ω)|Fs) = P (B(t, ω)|B(s, ω)), (X1.4.18)

where Fs is the set of all the events up to time s.53

X1.4.9 n-dimensional Wiener process
Prepare n statistically independent Wiener processesB1(t, ω), · · · , Bn(t, ω). B(t, ω) = (B1(t, ω), · · · , Bn(t, ω))T

is called the n-dimensional Wiener process.

〈B(t, ω) ·B(t, ω)〉 = nt. (X1.4.19)

52This is a refinement of the central limit theorem. For a proof see Durrett p392.
53Here, ‘all’ implies, as usual, all the probabilistically meaningful events. See 1.A.20. The Markov process

will be discussed later in Chapter 9.
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X1.4.10 From random walk to Wiener process: idea
Consider an isotropic random walk (→3.1.8) on a line. At time k (k = 0, 1, 2, 3, · · ·) a
walker at a lattice point moves to its left or right nearest neighbor lattice point with equal
probability 1/2. Let x(n) be the walker’s position at time n, and ak be the k-th step (i.e.,
the step between time k − 1 and k). Then,

x(n) =
n∑
k=1

ak. (X1.4.20)

This exactly has the form of the empirical sum Sn in the central limit theorem (→1.7.1).
What does the walk look like if seen from distance, when the duration of the random

walk is sufficiently long (that is, n� 1)? To answer this question, we mimic the observation
by an observer with a limited eyesight. To mimic a limited resolution, we define a coarse-
grained ‘block step’ Sn by connecting n consecutive steps. To mimic an observation from
distance we scale it with

√
n, because the span of the random walk is of order

√
n (→3.1.8).

Finally, we take the n → ∞ limit. The limit should be what we wish to have. This idea is
followed in X1.4.11.

X1.4.11 Construction of coarse-grained and scaled random walk
We introduce a piecewise linear continuous time version of a discrete time random walk
through linear interpolation:

S(nt) = a1 + · · ·+ a[nt] + (nt− [nt])a[nt]+1, (X1.4.21)

where the i-th step ai is ±1, and t ∈ [0, 1]. These steps are identically and independently
distributed. Now, we scale this to define

Bn(t) =
1√
n
S(nt). (X1.4.22)

We may say this is a renormalized random walk.
Thanks to the central limit theorem (→1.7.1), for any fixed t, it is easy to show that

the distribution of Bn(t) converges to N(0, t). To check this we have only to compute the
variance. Obviously,

E(S([nt])2) = [nt]. (X1.4.23)

Due to the construction, for any finite time points t1, t2, · · · , tN ∈ [0, 1], the simultaneous
distribution of {Bn(t1), · · · , Bn(tN)} converges weakly to that of {B(t1), · · · , B(tN)}, where
B is the Wiener process (→X1.4.4). This is almost trivial. Thus, we expect Bn converges
to B in a certain sense.

X1.4.12 Donsker’s invariance principle (continuation of X1.4.11)
Theorem [Donsker (1951)] Bn converges to the Wiener process B in distribution (i.e., the
weak convergence of the corresponding measure). ut
This is called Donsker’s invariance principle. Here, ‘invariance’ implies that “many different
random walks converge invariably to the Wiener process.” The procedure in X1.4.11 is a
renormalization-group procedure, so a better name may be ‘Donsker’s universality principle’
and for physicists Donsker’s theorem should be remembered as:
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Theorem [Donsker restated] The fixed point of the renormalization transformation RBn =
B2n (defined according to X1.4.11) is the Wiener Process (i.e., RB = B). ut

In X1.4.11 the convergence of the any finite-dimensional marginal distribution is men-
tioned, but this does not necessarily imply the convergence in the function space, because
simple counter examples can be found.54 Therefore, the nontrivial part is to show the con-
vergence in distribution of {Bn(t)} to {B(t)}.

X1.4.13 Idea for demonstrating Donsker’s theorem.
We need ‘stochastic compactness’, so to speak, to be able to choose a convergent sequence. In essence we
need a probabilistic version of the Arzelà-Azcoli theorem called Prohorov’s theorem:
Theorem [Prohorov] Let Π be a set of probability measures on a probability space. The set is relatively
compact iff it is tight. ut
Here, the technical terms are:
Relative compactness: every sequence has a weakly convergent subsequence.
Tightness: For any ε > 0 there is a compact set K such that for any element µ in Π µ(K) > 1− ε.

The tightness of Π is characterized as follows:
(i) Probabilistic boundedness: For any η there is a such that µn({|x(0)| ≥ a}) < η.
(ii) Probabilistic equicontinuity: For any ε and η, there is δ ∈ (0, 1) such that µn({sup|s−t|<δ |x(s)− x(t)| ≥
ε}) ≤ η.
This is, so to speak, ‘a probabilistic version of the Arzelà-Azcoli theorem.’

Note the following theorem:
Theorem A necessary and sufficient condition for Pn to converge to P weakly is that each subsequence
{Pni} contains a further subsequence converging weakly to P . ut
Necessity is obvious. The other direction is also easy; if not, there must be a subsequence not converging to
P , and this subsequence cannot have a further subsequence with the required property.

Therefore, if we accept Prohorov, we have
Theorem Let Pn and P be probability measures.55 Suppose all the finite dimensional marginal distributions
of Pn converge to those of P , and {Pn} is tight, then Pn converges to P weakly. ut

Since we know the existence of B, we have only to check the tightness of {Bn}.

X1.4.14 Global properties of random walks survive RG
If we compare the starting point (lattice random walk) and the final product (the Wiener
process) of the ‘renormalization-group (RG) construction’ in X1.4.11, we clearly understand
what RG does: it washes away details, and only the features we can observe from distance
survive.

Look at the following table in which d is the spatial dimensionality.

Lattice Random Walk Wiener Process
d = 2 recurrent d = 2 recurrent
d > 2 transient d > 2 transient
〈R2〉 ∝ N 〈R2〉 ∝ t
∃ double points in any d ∃ double points only for d ≤ 3
For all d the numbers of n(≥ 3)-tuple ∃ n(≥ 3)-tuple
points are proportional to N points only in d = 2.†

54Recall that the joint set of countably many finite sets is a countable set, so most points in R are always
excluded.

55on C([0, 1]) with the uniform topology and with the usual construction of the Borel family.
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Here, ‘recurrent’ implies that the walker returns to its starting point within a finite time with
probability one,56 and ‘transient’ implies that this does not happen (the returning probabil-
ity is less than 1). An n-tuple point is a point where the walker visits n times.57

From the table we see that the global features such as the overall size of the walk 〈R2〉
and recurrence are not altered by renormalization; this should be so: the properties common
to the lattice walk and the Wiener process must be global features of the lattice random
walk, so they are independent from details of the lattice structure. In 3-space we see only oc-
currence of double points is global. In other words we can have macroscopic loops. However,
we do not have any higher order multiple points. This implies that higher order multiple
points in 3-space are all due to microscopic tiny loops that cannot be observed from distance.
In higher than 4-space, even double points are not global because the space is so big.
Exercise. Let us consider a d-dimensional Wiener process.
(1) Find the probability density function for its position at time t.
(2) Write down the Chapman-Kolmogorov equation and demonstrate that it holds for the
d-dimensional Wiener process.
(3) Study the recurrence for d-dimensional Wiener process (i.e., check the table above).
[
∫
dtp(0, t) < ∞ is necessary and sufficient for transience to the origin. Use this fact. This

is discussed in 6.1.14.] ut

X1.4.15 How reliable is the asymptotic estimates?
As we have seen above the property around the fixed point of RG in our example corresponds
to the global properties of an extremely long random walk. Therefore, you may well claim
that such an asymptotic result is useful only to study very long random walks, and not useful
for a walk with a few tens of steps. The next table gives the probability of finding a 1d 10
step random walk to come to an even lattice point (between −10 and 10). The corresponding
asymptotic approximation is the normal distribution with N(0, 10)

r Exact Asymptotic
0 0.246 0.252
2 0.205 0.207
4 0.117 0.113
6 0.044 0.042
8 0.010 0.010
10 0.001 0.002

That is, if the number of steps is about 10, then the asymptotic result may be reliable. We
see that RG fixed points could be useful even practically. 58

56However, do not jump to the conclusion that the average recurrence time is finite; indeed for d = 2 this
average is not finite.

57∗ was proved in: A. Dvoretsky, P. Erdös, and S. Kakutani, Double points of Brownian motion in n-
space, Acta Scientarum Matematicarum (Szeged) 12, 75-81 (1950); A. Dvoretsky, P. Erdös, and S. Kakutani,
Multiple points of paths of Brownian motion in the plane, Bull. Res. Council Israel, 3, 364-371 (1954); A.
Dvoretsky, P. Erdös, S. Kakutani, and S. J. Taylor, Triple points of Brownian paths in 3-space, Proc. Camb.
Phil. Soc. 53, 856-862 (1957).

58However, how easily the asymptopia is reached depends strongly on the problems. If we view the RG
procedure as a dynamical system, then the reliability of the fixed point result is closely related to the strength
of the fixed point as a global attractor. Therefore, to answer the question how useful the RG is is much
harder than finding the fixed points themselves.
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X1.5 Stochastic Calculus

This section is an informal introduction to stochastic calculus now famous thanks to the
Black-Scholes equation. Motivations of needed ideas are explained rather slowly, so those
who are impatient can read the summary X1.5.1 and the quoted final results.

X1.5.1 Stochastic calculus: practical summary of this section
A nonlinear Langevin equation

dx

dt
= a(x, t) + σ(x, t)w, (X1.5.1)

where w is the normalized white noise is mathematically the stochastic differential equation

dx = a(x, t) + σ(x, t)dB, (X1.5.2)

which is defined as a shorthand notation of the following integral equation (→X1.5.7):

x(t)− x(0) =
∫ t

0
ds a(x(s), s) +

∫ t

0
σ(x(s), s)dB(s). (X1.5.3)

Here, the last term is defined as an Itô integral X1.5.6.
The difficulty is due to dB ∼

√
dt (→X1.4.7). To use the above machinery first

we must properly interpret the Langevin equation (→X1.5.8, X1.5.13). With stochastic
calculus, we can have the most straightforward derivation of the Fokker-Planck equation
(→X1.5.14). Stochastic calculus is a prerequisite for easy access to the Feynman-Kac for-
mulas (→X1.10.1) and path integrals (→X1.10.2).

X1.5.2 How to rationalize idealized Langevin equation
We have rationalized the Wiener process (→X1.4.4) that is supposedly a solution to (X1.4.1),
so the white noise in this equation is the ‘derivative’ of the Wiener process. However, we
have seen that it is not differentiable anywhere with probability one (→X1.4.6). Therefore,
for example,

dx

dt
= −ηx+ ‘

dB

dt
’ (X1.5.4)

does not make sense yet. Its formal solution can be written as

x(t) = e−ηtx(0) +B(t)− η
∫ t

0
dse−η(t−s)B(s)ds, (X1.5.5)

if we use the following formal integration by parts:∫ t

0
f(s)dB(s) = f(t)B(t)−

∫ t

0
f ′(s)B(s)ds. (X1.5.6)

Its right-hand-side is mathematically well-defined, because B is continuous, so we wish to
define the Riemann-Stieltjes integral (→X1.5.4) on the left-hand-side in terms of the right-
hand side.
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The solution (X1.5.5) agrees with the result obtained by the following ‘non-ideal’ calcu-

lation. Assuming that w = dB̂/dt with B̂ being a noise that is differentiable (its correlation
function is an ordinary continuous function at worst). Our familiar ordinary calculus can be
used freely, and we obtain

x(t) = e−ηtx(0) + B̂(t)− η
∫ t

0
dse−η(t−s)B̂(s)ds. (X1.5.7)

Now, we take the white noise limit. The result is consistent with (X1.5.5).
Thus, when the noise amplitude does not depend on x (may depend on t), we interpret

dx

dt
= a(x) + σ(t)‘

dB

dt
’ (X1.5.8)

as
dx(t) = a(x(t))dt+ σ(t)dB(t), (X1.5.9)

which is interpreted as a short-hand notation of the following integral equation

x(t)− x(0) =
∫ t

0
ds a(x(s)) +

∫ t

0
σ(s)dB(s). (X1.5.10)

The last term is interpreted as (X1.5.6).
That is, we define (X1.5.9) as a short hand notation of the integral equation (X1.5.10).

X1.5.3 How to rationalize nonlinear Langevin equation
We are tempted to interpret (define) the general nonlinear Langevin equation, e.g., Zwanzig’s
nonlinear Langevin equation (→X1.3.3), with the normalized white noise w

dx

dt
= a(x, t) + σ(x, t)w (X1.5.11)

as the following integral equation:

x(t)− x(0) =
∫ t

0
ds a(x(s), s) +

∫ t

0
σ(x(s), s)dB(s), (X1.5.12)

interpreting the last integral as a Riemann-Stieltjes integral (→X1.5.4).
As we will see later (→X1.5.7), this idea works eventually, but there are obstacles.

The difficulty is essentially the one we have already pointed out: it is not clear whether the
noise-increment could affect x(s) or not. If dB(t) = B(t + dt) − B(t) were of order dt, we
did not have to worry about such details at all; the difference is at worst dt2. However, in
our case this quantity is roughly of order

√
dt (→X1.4.7), so its square cannot be ignored.

In short, rapid change of noise causes a headache; if a system is sufficiently nonlinear, the
noise effect does not simply average out.

Therefore, if we wish to invent a method of calculation that allows taking the white
noise limit before any calculation, we must scrutinize the last term in (X1.5.12).

X1.5.4 Riemann-Stieltjes integration
The Riemann-Stieltjes integral is defined as the following limit∫ b

a
f(x)dg(x) = lim

‖∆‖→0

∑
∆

f(xi)[g(bi)− g(ai)], (X1.5.13)
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where xi ∈ ∆i ≡ [ai, bi] and ‖∆‖ = max{bi−ai}.59 It is known that a necessary and sufficient
condition60 for this limit to exist is that g is of bounded-variation:

v(g) ≡ sup
∆

∑
i

|g(bi)− g(ai)| <∞. (X1.5.14)

Here, v(g) is called the total variation of g on [a, b]. Here, sup is taken over all possible finite
partition (chopping up) of [a, b].

If g is not of bounded variation, the sum in (X1.5.13) depends on the position of the
sampling points xi on each ∆i.

If the function g is Lipschitz continuous,61 this is finite. However, mere continuity does
not guarantee the boundedness of its total variation v(g).

What happens in the case of the Wiener process B (→X1.4.4)? We can easily guess
that B(t, ω) on [0, 1] is not of bounded variation: Let us chop up [0, 1] into small intervals

of width ∆t. Then, we have 1/∆t intervals on each of which B varies of order
√

∆t, so

v(B) ∼ 1/
√

∆t.
Therefore, the integral

∫ t
0 σ(x(s))dB(s) must be defined more carefully. Indeed, as we

seen in X1.5.5 the integral depends on the sampling method of the representative values.

X1.5.5 Backward and forward integrals
Let us take a smooth function f and consider the following sums:

SF (n) =
n∑
k=1

f

(
B

(
(k − 1)t

n

))[
B

(
kt

n

)
−B

(
(k − 1)t

n

)]
, (X1.5.15)

SB(n) =
n∑
k=1

f

(
B

(
kt

n

))[
B

(
kt

n

)
−B

(
(k − 1)t

n

)]
, (X1.5.16)

where B is the Wiener process (→X1.4.4). SF is called the forward sum, because the noise
increment goes ahead of the sampling time; SB is called the backward sum.

It is easy to see that they give different values even if convergent: the expectation value
of SF vanishes because of the independence of the increment (→X1.4.4), but SB is generally
nonzero. We can easily guess that the difference is

lim
n→∞

(SB(n)− SF (n)) =
∫ t

0
dsf ′(B(s)). (X1.5.17)

It is clear that if we can define the ‘stochastic integral’ by the limit of the forward sum,
then calculation of expectation values should be easy. The integral defined in this forward
way is called Itô integral.

59Precisely speaking, if the limit exists for any choice of the partition sequence and the sampling points
{xi}.

60See, for example, P. Protter, Stochastic Integration and Differential Equations (Springer, 1990) Section
1.7.

61A function is Lipshitz continuous at x, if we can find a positive constant L such that

|f(x)− f(y)| < L|x− y|

for any y in the domain of f . For example, |x| is Lipshitz continuous everywhere, but
√
|x| is not so at

x = 0.
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X1.5.6 Definition of Itô integral
We define the stochastic integral (Itô integral) as the limit of the regular forward Riemann-
Stieltjes sum (for a motivation →X1.5.5):

∫ t

0
f(s)dB(s) ≡ lim

n→∞

n∑
k=1

f

(
B

(
(k − 1)t

n

))[
B

(
kt

n

)
−B

(
(k − 1)t

n

)]
. (X1.5.18)

The convergence (that must be demonstrated for continuous functions f) is in the almost
sure sense.

X1.5.7 Definition of stochastic differential equation
We interpret the nonlinear Langevin equation (X1.5.11) as a shorthand notation of (X1.5.12)
with the last integral interpreted in Itô’s sense. That is:
The differential relation (called a stochastic differential equation):

dx = a(x, t) + σ(x, t)dB (X1.5.19)

is defined as a shorthand notation of the following integral equation:

x(t)− x(0) =
∫ t

0
ds a(x(s), s) +

∫ t

0
σ(x(s), s)dB(s), (X1.5.20)

where the last term is defined as an Itô integral X1.5.6.
Notice that Zwanzig’s Langevin equation must, by derivation (→X1.3.5),62 be inter-

preted in Itô’s sense.

X1.5.8 Physical equations with noise vs stochastic differential equations
For physicists physical noises are all of bounded variation (→X1.5.4), so Itô’s specification
is often unphysical. That is, the ideal white noise limit of the solution to the following
‘physical’ Langevin equation

dx

dt
= a(x, t) + σ(x, t)

dB̂

dt
(X1.5.21)

and the solution to the stochastic differential equation

dx(t) = a(x, t)dt+ σ(x, t)dB(t) (X1.5.22)

generally do not agree.
Since mathematically and even from the practical computational point of view, Itô’s

interpretation is far more superior than other interpretations, and since for physicists this
interpretation is not necessarily natural, we should have a way to translate different inter-
pretations (→X1.5.13; X1.5.9 is a preparation).
Warning: However, if a stochastic differential equation is derived through projection, you
must scrutinize the derivation before deciding the interpretation. ut

62Notice that the noise f(t) is always computed with the condition A(t) and then evolving in time, so the
increment df is not affecting A(t).
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X1.5.9 Itô’s lemma: heuristic consideration
Let u be a function of t and the Wiener process B(t) (→X1.4.4). Taylor-expanding u, we
have

u(t+ ∆t, B(t+ ∆t))− u(t, B(t))

= ∆t
∂u

∂t
+ ∆B(t)

∂u

∂B
+

1

2
(∆t)2∂

2u

∂t2
+ ∆t∆B

∂2u

∂t∂B
+

1

2
(∆B)2 ∂

2u

∂B2
+ · · · ,

(X1.5.23)

where ∆B(t) = B(t + ∆t) − B(t). Among the formally second order terms, the dangerous

term is only the last term, because ∆B ∼
√

∆t (→X1.4.7).
Summing this from t = 0 to T , we can express u(T,B(T )) as an integral of the following

form

u(T,B(T ))− u(0, 0) =
∫ T

0

∂u

∂t
ds+

∫ T

0

∂u

∂B
dB(s) +

1

2

∫ T

0

∂2u

∂B2
dt. (X1.5.24)

Here, the stochastic integral (the second term on the right hand side) is in Itô’s sense
(→X1.5.6). That is, almost surely

du(t, B) =

(
∂u

∂t
+

1

2

∂2u

∂B2

)
dt+

∂u

∂B
dB. (X1.5.25)

To demonstrate (X1.5.24), the nontrivial part is to show that almost surely

∑ 1

2
(∆B)2 ∂

2u

∂B2
→ 1

2

∫ T

0

∂2u

∂B2
dt. (X1.5.26)

The first step is to show this is true in the mean (in the L2-sense), and then we use the fact
that we can choose a subsequence that almost surely converges.

X1.5.10 Itô’s lemma: general case
If dx = adt+ σdB, it is easy to generalize (X1.5.25) as63

du(t, x) =

(
∂u

∂t
+
σ2

2

∂2u

∂x2

)
dt+

∂u

∂x
dx. (X1.5.27)

This is called Itô’s lemma. An easy way to memorize it is

du =
∂u

∂t
dt+

∂u

∂x
dx+

1

2

∂2u

∂x2
dx2 (X1.5.28)

with the rule dB2 = dt (so dx2 = σ2dt; other cross terms are of higher order).
Exercise.
(1) Compute d sinB(t). Then, check that d〈sinB(t)〉 = −〈sinB〉dt/2.
(2) Compute d sin(ωt+ εB(t)). Demonstrate that its average decays eventually to zero. (We
already did this calculation!).
(3) Compute d exp(B(t)− t/2), and then find the general solution to df = fdB(t) for f .
(4) Suppose dx = −xdt+

√
2xdB. Compute dx2. Then, study the time-dependence of 〈x2〉.64

ut
63A fairly readable (but you must be patient when you read math books) proof can be found in Z. Brzeźniak

and T. Zastawniak, Basic Stochastic Processes (Springer, 1998).
64This is a very pathological example. Think how pathological it is. Is there any stationary distribution?
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X1.5.11 Itô integral: examples
Let us first compute the forward sum SF (→X1.5.5) in the n → ∞ limit for an integrable
function f . According to Itô’s lemma65 (→X1.5.10)

d
[∫ x

0
f(x′)dx′

]
x=B(t)

= f(B(t))dB(t) +
1

2
f ′(B(t))dt. (X1.5.29)

Here, the integral on the left-hand side is an ordinary integral. Thus, we have obtained

lim
n→∞

SF (n) =
∫ t

0
f(B(s))dB(s) =

∫ B(t)

0
f(x)dx− 1

2

∫ t

0
dsf ′(B(s)). (X1.5.30)

Notice that the average must be zero. Therefore,〈∫ B(t)

0
f(x)dx

〉
=

1

2

∫ t

0
ds〈f ′(B(s))〉. (X1.5.31)

More concrete examples follow:∫ t

0
B(s)dB(s) =

1

2
(B(t)2 − t). (X1.5.32)

Indeed, its average vanishes by definition of the Winer process: 〈B(t)2〉 = t.∫ t

0
eBdB =

∫ B

0
exdx− 1

2

∫ t

0
eB(s)ds. (X1.5.33)

Since B(t) is Gaussian 〈eB〉 = e〈B
2〉/2 = et/2, we can explicitly check that this is correct.

Exercise.
(1) Compute

∫
e3BdB and demonstrate that its expectation value vanishes.

(2) Let dp = −(ζ/m)pdt+
√

2kBTζdB. Compute dp2, and then study the time dependence
of its average 〈p2〉.ut

X1.5.12 Wong-Zakai’s theorem: motivation
For physicists all the noises are of bounded variation (→X1.5.4), so

I =
∫ t

0
f(B̂(s))dB̂(s) =

∫ B̂(s)

0
f(x)dx. (X1.5.34)

Therefore, taking the ideal white noise limit of this integral, we must have

I →
∫ B(t)

0
f(x)dx =

∫ t

0
f(B(s))dB(s) +

1

2

∫ t

0
f ′(B(s))ds. (X1.5.35)

This follows from the usual Ito’s lemma (→X1.5.10):

d
∫ B(t)

0
f(x)dx = f(B(t))dB(t) +

1

2
f ′(B(t))dt, (X1.5.36)

65Warning: If the integral inside the square brackets is understood as Itô’s integral, by definition
(→X1.5.7) d

∫
f(x)dx = f(x)dx. No extra term appears. Here, it is an ordinary integral; after finish-

ing the integral we put B in the integral result (in the primitive function of f).
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The short-hand notation for this integral relation is

f(B) ◦ dB = f(B)dB +
1

2
f ′(B)(dB)2, (X1.5.37)

where ◦ implies that we take the white noise limit after performing the integral, assuming
that the noise of B is of bounded variation (→X1.5.4).

More, generally, if dx = adt+ σdB, then the idealization limit should read

f(x) ◦ dB = f(x)dB +
1

2
f ′(x)dxdB = f(x)dB +

1

2
f ′(x)σdt. (X1.5.38)

X1.5.13 Wong-Zakai’s theorem
Suppose we write down a stochastic differential equation (Langevin equation) physically,
assuming that the noise is of bounded variation (→X1.5.4) as (→X1.5.12 for ◦)

dx = a(x, t)dt+ σ(x, t) ◦ dB. (X1.5.39)

Here, ◦ is used to denote clearly that the term is NOT interpreted in Itô’s sense, but in the
usual calculus sense.66 If we wish to use the Itô calculus, we must rewrite this as (→(X1.5.38))

dx =

(
a(x, t) +

1

2
σ
∂σ

∂x

)
dt+ σ(x, t)dB. (X1.5.40)

That is, we must augment the extra term in (X1.5.38). The relation between (X1.5.39) and
(X1.5.40) is called Wong-Zakai’s theorem.
Exercise 1. Suppose a variable is described by the following stochastic differential equation
(in the standard sense)

dx =
√
f(x)dB. (X1.5.41)

We know the average of x is time independent. That is, the noise cannot drive the particle
on the average. Suppose we wish to model this with a physical noise. If we study

dx

dt
=
√
f(x)w, (X1.5.42)

where w is a random noise (not quite white), then we see that x is time dependent on the
average.
(1) Find the equation for the average 〈x(t)〉.
(2) Therefore, the reader realizes that to model (X1.5.41) she must add a systematic drive.
Find a physical model that mimics (X1.5.41). [This is a trivial question if the reader has
answered (1).] ut

X1.5.14 Derivation of Fokker-Planck equation: a smart way
Let dx = adt+σdB. We know the density distribution function of x at time t reads (→1.4.5)

P (y, t) = 〈δ(y − x(t))〉. (X1.5.43)

66Often we say in Stratonovich’s sense.
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Let us derive the Fokker-Planck equation with the aid of Itô calculus (→X1.5.10):

dδ(y − x(t)) = − ∂

∂y
δ(y − x(t))dx(t) +

1

2

∂2

∂y2
δ(y − x(t))σ2(x(t), t)dt (X1.5.44)

= − ∂

∂y
δ(y − x(t))[a(x(t), t)dt+ σ(x(t), t)dB(t)] +

1

2

∂2

∂y2
δ(y − x(t))σ2(x(t), t)dt.

(X1.5.45)

Let us take the average over the stochastic parameter:

dP (y, t) = − ∂

∂y
a(y, t)P (y, t)dt+

1

2

∂2

∂y2
σ(y, t)2P (y, t)dt. (X1.5.46)

Thus, we have arrived at

∂

∂t
P (y, t) = − ∂

∂y
a(y, t)P (y, t) +

1

2

∂2

∂y2
σ(y, t)2P (y, t). (X1.5.47)

This is the stochastic Liouville approach (→??) combined with the Itô’s lemma (→X1.5.10);
perhaps this is the easiest derivation of the Fokker-Planck (or Smoluchowski) equation.
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X1.6 Stochastic Energetics

This section is largely dependent on Ken Sekimoto’s lecture notes in 1999 for a graduate
course at Kyoto University (but perhaps uses stochastic calculus more extensively).

X1.6.1 How good is Langevin equation?
We have ‘derived’ the Langevin equation through separating slow and fast variables with the
aid of projection (→X1.2.4), and then approximating the fast variable with a white noise
(→Section 6.2, 6.3). By this last step, the time reversal symmetry of the original mechanics
is lost.

Consider
dp

dt
= −ζ p

m
+
√

2ζkBTw(t), (X1.6.1)

where w is the normalized white noise constructed in X1.4.2 (intuitively, the ‘derivative’ of
the Wiener process, dB/dt; 〈w〉 = 0, 〈w(s)w(t)〉 = δ(t − s)). Its coefficient is due to the
fluctuation dissipation relation (→3.2.5).67 If we average this over the stochastic parameters
(i.e., the ensemble average), we obtain

∂〈p〉
∂t

= −η 〈p〉
m
, (X1.6.2)

so indeed the average decays irreversibly.
However, this irreversibility is caused by the choice of the ‘unnatural’ initial ensemble

that is away from equilibrium. For an ensemble with 〈p〉 = 0 there is no explicit irreversibil-
ity. Actually, the stationary correlation function of p is given by the Langevin equation
realistically except for a very short time (cf. 3.2.7) and is time reversal symmetric.
Exercise. Confirm the above assertion. Solve (X1.6.1) for p(t) for very large t (sufficient to
forget the initial condition) and then compute the correlation function 〈p(t)p(s)〉 (the answer
can be read off from 3.2.4). ut

How natural is the motion described by the Langevin equation? From the large deviation
approach explained in X1.1.6, we see that the Langevin equation describes the ‘semimacro-
scopic’ fluctuations faithfully. Therefore, we can expect that reversible fluctuations around
the equilibrium state can be described accurately.

Sekimoto68 has realized that even energetically the Langevin equation is a good descrip-
tion of mesoscopic scale dynamics.

X1.6.2 Langevin equation is a force-balance equation
Consider

dx

dt
=

p

m
, (X1.6.3)

dp

dt
= −ζ p

m
+
√

2ζkBTw −
∂U(x, λ)

∂x
, (X1.6.4)

67Mathematically, the equation is (→X1.5.7)

dp = −ζ p
m
dt+

√
2ζkBTdB(t).

68K. Sekimoto, J. Phys. Soc. Jpn. 66, 1234 (1997).
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where w is the normalized white noise (→X1.6.1, X1.4.2), and λ is the control parameter
just as in Einstein’s statistical mechanics (→2.5.3). The second equation above is the
equation of motion, so the right-hand side describes the total force acting on the particle.

What is the interaction with the heat bath? The damping term produces heat and
is returned to the heat bath, so it is an interaction with the bath. The thermal noise is
certainly the interaction with the heat bath. The potential term appearing in the Langevin
equation is already the systematic part alone, because it is a function of the systematic gross
variable(s) and the control parameter λ. Therefore,

fHB = −ζ p
m

+
√

2ζkBTw (X1.6.5)

is the force exerted on the particle by the heat bath.
In the overdamped case (corresponding to the Smoluchowski equation 3.5.5)

0 = −ζ dx
dt

+
√

2kBTζw −
∂U(x, λ)

∂x
, (X1.6.6)

where w is the normalized white noise. The first two terms on the right-hand side must be
fHB in agreement with (X1.6.5) in form.

X1.6.3 Heat: with inertia
The work done by the force f when the displacement due to the force is dx is fdx in the
usual mechanics. If we wish to take the white noise idealization limit, it must be interpreted
as f ◦ dx (→X1.5.13).69Therefore, the work done by the heat bath on the particle must be
written as

∆Q̂ =
∫ t

0
fHB ◦ dx(t), (X1.6.7)

and is interpreted as the heat imported to the system. That is, we must interpret the
stochastic integral in the Stratonovich sense irrespective of the interpretation of the Langevin
equation being used to describe the stochastic motion.

For the case of (X1.6.4)

∆Q̂ =
∫ t

0

(
−ζ p

m
+ w

)
◦ dx (X1.6.8)

Let us compute dQ̂:

dQ̂ =
(
−ζ p

m
+
√

2ζkBTŵ
)
◦ dx, (X1.6.9)

= −ζ p
m
dx+

√
2ζkBT

p

m
◦ dB, (X1.6.10)

= −ζ
(
p

m

)2

dt+
√

2ζkBT
(
p

m
dB +

1

2m
dpdB

)
, (X1.6.11)

= −2ζ

m

(
p2

2m
− kBT

2

)
dt+

√
2ζkBT

m
pdB. (X1.6.12)

69Whether we choose fdx in the Itô sense or in the Stratonovich sense depends on the order of calculation
and idealization. Since fdx is a formula of mechanics, the white-noise idealization must be done after all
the calculations are finished. Therefore, f ◦ dx is the proper interpretation. An intuitive explanation might
be give as follows as well. Mechanics assumes that the increment dx and f are simultaneous; the change in
x and that in f are simultaneous and actually neither one is the cause of the other. Also mechanics is time
reversal symmetric, so f ◦ dx must be the most natural interpretation.
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We have used Wong-Zakai’s theorem X1.5.13:

f(x, t) ◦ dxk = f(x, t)dxk +
1

2

∑
j

∂

∂xj
f(x, t)dxjdxk (X1.6.13)

with an appropriate interpretation of the formally second order terms (see Itô’s lemma
X1.5.10); in (X1.6.11) dpdB =

√
2ζkBTdt.

The ensemble average gives

d〈Q̂〉
dt

= −2ζ

m

(
〈p2〉
2m
− kBT

2

)
. (X1.6.14)

That is, if the kinetic energy is excessive, it is discarded to the heat bath (recall that our
sign convention is: import > 0; export < 0).

X1.6.4 Energy balance: with inertia
The energy balance equation can be written in a thermodynamically familiar form for each
sample (the following argument is NOT ensemble-averaged).

∆Q̂ =
∫ t

0

(
dp

dt
+
∂U

∂x

)
◦ dx(t) =

[
p2

2m
+ U

]t
0

−
∫ t

0

∂U

∂λ
dλ(t). (X1.6.15)

We have thus obtained

∆E ≡
[
p2

2m
+ U

]t
0

= ∆Q̂+
∫ t

0

∂U

∂λ
dλ(t). (X1.6.16)

Therefore, we must conclude that the work given to the system ∆W must be

∆W =
∫ t

0

∂U

∂λ
dλ(t) (X1.6.17)

as Einstein did (→2.5.3).

X1.6.5 Energy balance: overdamped case
In the overdamped case we must use (X1.6.6), and

∆Q̂ =
∫ t

0

(
−ζ dx

dt
+
√

2kBTζŵ

)
◦ dx(t). (X1.6.18)

With the aid of (X1.6.6) this implies

∆E = U(t)− U(0) = ∆Q̂+
∫ t

0

∂U

∂λ
dλ(t). (X1.6.19)

Since we assume that the velocity is totally damped, there is no kinetic energy. Again, this
energy balance equation is not an averaged equation, but holds for each sample (for each
choice of the stochastic parameter).
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X1.6.6 Heat: overdamped case
Let us compute the ensemble average as well.

dQ =
∂U

∂x
◦ dx, (X1.6.20)

=
∂U

∂x
dx+

1

2

∂2U

∂x2
(dx)2 (X1.6.21)

= −1

ζ

(dU
dx

)2

− kBT
∂2U

∂x2

 dt+

√
2kBT

ζ

∂U

∂x
dB. (X1.6.22)

Therefore, the ensemble average gives us

d〈Q̂〉
dt

= −1

ζ

〈(
dU

dx

)2

− kBT
∂2U

∂x2

〉
. (X1.6.23)

For example, if the potential is harmonic U = αx2/2,

d〈Q̂〉
dt

= −2α

ζ

[
1

2
α〈x2〉 − 1

2
kBT

]
. (X1.6.24)

That is, the deviation from the equipartition of energy is adjusted as heat.
Exercise. Using the fact that in equilibrium 〈x2〉 must be constant, compute 〈x∂U/∂x〉.
(First, compute d(x2).) ut

X1.6.7 Passivity revisited
We have discussed the passivity of the Smoluchowski equation in 3.5.10. We can hope
we will have a more direct understanding of passivity = the second law with stochastic
energetics.

The Langevin equation we are interested in is

ζ
dx

dt
=
√

2ζkBTŵ −
∂U

∂x
+ F (t). (X1.6.25)

Here, F (t) is the external force we can change freely (that is why it is explicitly time-
dependent), but is uncorrelated with noise (controllable only macroscopically)

dQ =

[
∂U

∂x
− F

]
◦ dx, (X1.6.26)

=

[
∂U

∂x
− F

]
dx+

1

2

∂2U

∂x2
(dx)2, (X1.6.27)

= −1

ζ

[
∂U

∂x
− F

]2

dt+

[
∂U

∂x
− F

]√
2kBT

ζ
dB +

kBT

ζ

∂2U

∂x2
dt. (X1.6.28)

Now, we must consider the long time average of this. If the long time average may be
equated as the ensemble average, then it is easy to show that the second law holds (→3.5.10;
we obtain −W ): We can obtain

dQ =
∫
dx

(
∂U

∂x
J

)
dt, (X1.6.29)
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where J is the probability flux introduced in 3.5.7. This is just −Wdt in 3.5.10, so we are
done. Or, more precisely,

dQ = −
∫
dx
J2

P
dt+ TdS, (X1.6.30)

where S is the entropy defined by S = −kB
∫
dxP logP . That is, heat is on the average

going out of the system; no perpetual motion of the second kind is possible.

X1.6.8 Passivity of Fokker-Planck equation
We have obtained (X1.6.14):

dQ

dt
= −2ζ

m

(
〈p2〉
2m
− kBT

2

)
. (X1.6.31)

This may be rewritten as

dQ

dt
=
∫
dxdp

[
− ζ

m
p− kBTζ

∂

∂p
logP

]
· Jx. (X1.6.32)

Here, Jx = vP (the x-component of the probability flux). Similarly, Jp appearing below is
the p-component and is given by

Jp = (−ζp/m+ F − kBTζ∇p logP )P. (X1.6.33)

Exercise. Check the above equality. ut
We may rewrite the above equation further into

dQ

dt
=

∫
dxdp

[Jp − FP ] · [Jp − FP + kBT∇pP ]

P
, (X1.6.34)

=
∫
dxdp

{
[Jp − FP ]2

P
+ kBT∇p logP · (Jp − FP )]

}
, (X1.6.35)

=
∫
dxdp

[Jp − FP ]2

P
− kBT

∫
dxdp [logP∇p · Jp + F · ∇pP ].

(X1.6.36)

The last term with F vanishes, so

dQ

dt
=

∫
dxdp

[Jp − FP ]2

P
− kBT

∫
dxdp logP∇p · Jp, (X1.6.37)

=
∫
dxdp

[Jp − FP ]2

P
− kBT

∫
dxdp logP

[
∂P

∂t
+∇x · Jx

]
. (X1.6.38)

The contribution of the second term in the last integral vanishes, and using the definition of
entropy S = −kB

∫
dxdpP logP , we have

dQ

dt
= T

dS

dt
−
∫
dxdp

[Jp − FP ]2

P
. (X1.6.39)

That is, on the average the heat must be discarded.
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X1.6.9 Contact with heat baths at different temperatures
Consider a system in contact with n heat baths at different temperatures Ti (i = 1, · · · , n).

dxi = − 1

ζi

∂

∂xi
U +

∑
i

√
2kBTi
ζ

dBi. (X1.6.40)

The heat exchange with the i-th bath may be written as

dQi =
∂U

∂xi
◦ dxi (X1.6.41)

Following the calculation in X1.6.7, it is easy to show

dS =
∑
i

dQi

Ti
+
∑
i

1

Ti

∫
dxi

J2
i

P
dt, (X1.6.42)

where Ji = −(∂U/∂xi)P − (kBTi/ζi)∂P/∂xi. The net entropy production is dS/dt −∑
i(dQi/dt)/Ti, and is nonnegative.

As a concrete example, let us consider the conduction of heat from a high temperature
bath to the low temperature one. We have two baths 1 and 2. Using the above model with
U(x1, x2) = U(x1 − x2), and introducing X = (x1 + x2)/2, x = x1 − x2, we obtain

dQ1 = U ′(x) ◦ dx1 =
1

2
dU + U ′ ◦ dX =

1

2
dU + U ′dX +

1

2
U ′′dxdX (X1.6.43)

dQ2 = −U ′(x) ◦ dx2 =
1

2
dU − U ′ ◦ dX =

1

2
dU − U ′dX − 1

2
U ′′dxdX.

(X1.6.44)

Immediately, we can confirm the conservation of energy:

dQ1 + dQ2 = dU. (X1.6.45)

Taking the ensemble average, we obtain

d〈Q1〉 =
1

2
d〈U〉 − 1

2
〈U ′2〉

(
1

ζ1
− 1

ζ2

)
dt+

1

2
kB〈U ′′(x)〉

(
T1

ζ1
− T2

ζ2

)
dt. (X1.6.46)

Therefore,

J =
1

2ζ1

[
kBT1〈U ′′〉 − 〈U ′2〉

]
− 1

2ζ2

[
kBT2〈U ′′〉 − 〈U ′2〉

]
. (X1.6.47)

To compute the entropy production in a steady state, we need the steady P .
Exercise 1. Assuming that U is harmonic, explicitly check that J > 0, if T1 − T2 > 0.
Remember that heat coming into the system is +.
(1) Show that there is no heat flow when T1 = T2 (that is, the system is in equilibrium as
should be).
(2) Assume that the temperature of the spring is at the mean temperature (T1 + T2)/2 (if
ζ1 is close to ζ2, it is reasonable). Check Clausius is correct.
(3) The reader should have realized that she can generally check Clausius’ principle. Do it.
(4) If we wish to be quantitative, how should we proceed? ut
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The flux itself must fluctuate. This must be obtained by the fluctuating part of dQ1 +
dQ2. That is,

U ′dX = U ′
(
kBT1

ζ1
+
kBT2

ζ2

)1/2

dB. (X1.6.48)

Exercise 2. Calculate the fluctuation of the heat flux when U = αx2/2. ut

X1.7 Fokker-Planck Equations

X1.7.1 From stochastic differential equation to Fokker-Planck equation70

We have already demonstrated in X1.5.14 the following (here, the result is generalized for
the case of vectors): Consider the following vector stochastic differential equation71

dx = a(x, t)dt+ σ(x, t)dB(t), (X1.7.1)

where B is the d-dimensional Wiener process (→X1.4.9). In components this reads

dxi = ai(x, t)dt+
∑
k

σik(x, t)dBk. (X1.7.2)

The density distribution function P (x, t) of x is governed by the equation (symbolically; in
terms of components see the next equation)

∂P

∂t
= − ∂

∂x
a(x, t)P (x, t) +

1

2

∂2

∂x2
σ(x, t)σ(x, t)TP (x, t). (X1.7.3)

Its meaning may be easier to understand in a componentwise expression:

∂P (x, t)

∂t
= −

∑
i

∂

∂xi
[ai(x, t)P (x, t)] +

1

2

∑
ij

∂

∂xi

∂

∂xj

[(∑
k

σik(x, t)σjk(x, t)

)
P (x, t)

]
(X1.7.4)

Let the solution to this equation with the initial condition P (x, t0) = δ(x − x0) be
written as P (x, t|x0, t0). It is clear that P (x, t|x0, t0)dx gives the transition probability: the
probability of finding the sample process to be in the volume element dx at time t under
the condition that at time t0 it is at x0. Thus, we may understand that the Fokker-Planck
equation governs the transition probabilities.
Exercise 1. Derive the above equation, following X1.5.14. It is convenient to use the
summation convention of repeated indices. ut
Exercise 2. Derive the Fokker-Planck equation corresponding to (X1.3.12):

dP

dt
=
∑
i

∂

∂Ai

−vi +∑
j

Lij
∂F
∂Aj

+
∑
j

kBTLij
∂

∂Aj

P. (X1.7.5)

ut
70A. D. Fokker, “Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld,” Ann. Phys. 43,

810-820 (1914); later more generally by M. Planck, “Über einen Satz der statistischen Dynamik und seine
Erweiterung in der Quantentheorie,” Sitz. der preuss. Akad. p324-341 (1917). A mathematically respectable
derivation was first given by A. N. Kolmogorov, “Über die analytischen Methoden in der Wahrscheinlichkeit-
srechnung,” Math. Ann. 104, 415-458 (1931).

71When we say a stochastic differential equation (SDE), it implies the SDE in Itô’s sense (→X1.5.7).
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X1.7.2 Physical stochastic differential equation vs stochastic differential equa-
tion
In many cases, especially when we simply write down an equation with the aid of physical
intuition, we assume the noise is of bounded variation (→X1.5.4), so when we write

dx

dt
= a(x, t) + σ(x, t)w(t) (X1.7.6)

it should be interpreted as (→X1.5.13)

dx(t) = a(x, t)dt+ σ(x, t) ◦ dB(t). (X1.7.7)

The Wong-Zakai’s theorem X1.5.13 tells us that this must be read as

dxi =

αi(x, t) +
1

2

∑
jk

∂σij
∂xk

σkj

 dt+
∑
j

σij(x, t)dBj(t), (X1.7.8)

if we wish to use stochastic calculus (→X1.5.7) .
However, as warned before (→X1.5.8), not all the stochastic differential equations de-

rived in physics are interpretable as physical (or Stratonovich) stochastic differential equa-
tions. Equations derived by the projection technique must be scrutinized before deciding
its interpretation. A rule of thumb is: if the stochastic increment is treated as independent
from the current state, then the obtained equation is in the standard (i.e., Itô) sense. A
typical example is Zwanzig’s Langevin equation (→X1.3.3) in the white noise limit.

X1.7.3 Kramers equation and Smoluchowski equation
We call the equation governing the density distribution function of the solution to a stochastic
differential equation generally a Fokker-Planck equation.72 For a Brownian particle, there
seems to be a tradition to call the equation with the inertial effect the Kramers equation and
the one without it the Smoluchowski equation. We have studied their properties relevant
to physics in 3.5.9, 3.5.10, X1.6.7, X1.6.8, etc. The relation to detailed balance will be
discussed in 6.11.

As an exercise let us derive the Kramers and the Smoluchowski equations according to
X1.7.1.

The stochastic differential equation describing a Brownian particle under a force F (that
may depend on time, the particle position, and external control parameters) reads (cf. 3.5.2,
??)

dx = (p/m)dt, (X1.7.9)

dp = [−(ζ/m)p + F (x, t)]dt+
√

2kBTζdB, (X1.7.10)

where B is the d-dimensional Wiener process. In this case, the noise term is with a constant
coefficient, so this physical stochastic differential equation may be interpreted as a stochastic
differential equation. Therefore, (X1.7.4) immediately gives us

∂P (x,p, t)

∂t
= −(∂x, ∂p)T (p/m,−ζ/m)p + F )P + kBTζ

∂2

∂p2
P, (X1.7.11)

72Mathematicians sometimes call it a Kolmogorov’s forward equation. For the backward equation, see
X1.9.2.
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= − ∂

∂x

p

m
P − ∂

∂p

[
− ζ

m
p + F − kBTζ

∂

∂p

]
P, (X1.7.12)

= −
∑
i

∂

∂xi

pi
m
P −

∑
i

∂

∂pi

[
− ζ

m
pi + Fi − kBTζ

∂

∂pi

]
P. (X1.7.13)

This is in agreement with (3.5.14). This is sometimes called the Kramers equation.
Without inertia, the starting point is (→3.5.5)

dx = (F /ζ)dt+
√

2kBT/ζdB(t). (X1.7.14)

Again, we may interpret this as a proper stochastic differential equation, so the corresponding
Fokker-Planck equation reads, as we already know,

∂P (x, t)

∂t
=

∂

∂x

[
−F (x)

ζ
+
kBT

ζ

∂

∂x

]
P. (X1.7.15)

This is often called the Smoluchowski equation.

X1.7.4 From Kramers to Smoluchowski equation: directly from Langevin equa-
tion
We simply reduced (6.3.7) to (6.3.11), saying that if the friction is large, then inertia should
be ignorable (→3.5.5). We should be able to do this reduction more systematically.

To perform the reduction directly from the Langevin equation, we stretch the time as
τ = ζt = t/ε; Let us write a small quantity 1/ζ = ε. In terms of this new time (6.3.7) reads

dr = ε(p/m)dτ, (X1.7.16)

dp = (−p/m+ F /ζ)dτ +
√

2kBT/ζdB(τ), (X1.7.17)

where the time-scaled Wiener process dB(τ) is defined as 〈dB(τ)dB(τ)〉 = dτ ; since this is
ζdt, the multiplicative factor is scaled with ζ. We expand the solution as r = r0 + εr1 + · · ·,
p = p0 + εp1 + · · ·.

To the zeroth order we have

dr0 = 0, (X1.7.18)

dp0 = −(p0/m)dτ +
√

2kBT/ζdB(τ). (X1.7.19)

Notice that the second equation is a closed equation for the momentum. In the ζ →∞ limit,
p0 relaxes to its equilibrium distribution extremely rapidly. This is what we can intuitively
expect: the velocity field equilibrates very quickly around the Brownian particle.

Simple order-by-order calculation to the second order gives

dr = ε(p0(t)/m)dτ + ε2(1− e−τ/m)F dτ, (X1.7.20)

= (p0(t)/m)dt+ (F /ζ)dt. (X1.7.21)

In the last line we have discarded the transcendentally small term e−ζt/m. The first term is
a noise: its correlation function reads (let us consider only its x-component) (assuming that
ζ � 1) 〈

p0(t)

m

p0(s)

m

〉
=
kBT

m
e−ζ|t−s|/m. (X1.7.22)
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In the ζ → ∞ limit, this becomes proportional to the delta function, because (1/2τ)e−|t|/τ

becomes very sharp in the τ → 0 limit, but its area below the graph is always unity. Thus,
we know

kBT

m
e−ζ|t−s|/m ' 2kBT

ζ
δ(t− s). (X1.7.23)

We have arrived at

dx =
F

ζ
+

√
2kBT

ζ
dB(t). (X1.7.24)

X1.7.5 From Kramers to Smoluchowski equation: using Fokker-Planck equation
Let us reduce (6.3.10) to (6.3.12). We can easily guess to the lowest order approximation

P (x,p, t) ' Pe(p)ρ(x, t), (X1.7.25)

where Pe is the Maxwell distribution (→2.3.2). This is easy to guess, but we should get this approximation
systematically.

Our starting point is the Fokker-Planck equation (Kramers equation, →X1.7.3)

∂P (x, p, t)
∂t

= − ∂

∂x

p

m
P − ∂

∂p

[
− ζ

m
p+ F − kBTζ

∂

∂p

]
P. (X1.7.26)

That is, in terms of the stretched time,

∂

∂τ
P =

∂

∂p

[
1
m
p+ kBT

∂

∂p

]
P + ε

[
− ∂

∂x

p

m
− ∂

∂p
F

]
P. (X1.7.27)

Expanding naively as P = P0 + εP1 + ε2P2+, we can solve the equation order by order. P0 has the struc-
ture P0 = f(x)p0(p, t) We immediately realize that P1 and P2 have secular terms proportional to τ . After
renormalizing f(x) and absorbing the secular terms, we obtain, as the renormalization group equation, the
Smoluchowski equation after integrating the momentum out.73

X1.8 Elementary methods to solve Fokker-Planck equa-

tions

This section briefly discusses how to solve the Fokker-Planck equation. It is a parabolic
equation, so the general approaches for parabolic equations work. The relation to the (Wick
rotated) Schrödinger equation (→6.3.12) is useful, because the latter is much better studied
than the Fokker-Planck equation.

X1.8.1 Auxiliary conditions for Fokker-Planck equation
Let us consider the following general Fokker-Planck equation. The Fokker-Planck equation
is a linear parabolic partial differential equation:

∂P (x, t)

∂t
= −∇ · [a−D∇]P (x, t), (X1.8.1)

73This renormalization group approach is the best; see an introductory review “Renormalization and
Asymptotics,” Int. J. Mod. Phys. B 14, 1327-1361 (2000).
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where D is a symmetric positive semidefinite matrix. We consider it in a spatial domain D
for t ≥ 0. To solve (X1.8.1) we need auxiliary conditions: initial and boundary conditions.

We know that (X1.8.1) may be interpreted as the conservation law of probability and
the probability flux J is given by (→3.5.7)

J = aP −D∇P. (X1.8.2)

It is a first order differential equation in time, so the initial value of P on D is needed.
On the boundary ∂D of the domain D, we need a boundary condition. An intuitive

and practical way to understand what sort of boundary conditions we can impose is to dis-
cretize (X1.8.1) on a space-time lattice and ask whether we can uniquely obtain P (x, t).
Typical boundary conditions are the no flux condition (→X1.8.2), the absorbing boundary
condition (→X1.8.3), and the periodic boundary condition (→X1.8.4):74 If the domain is
not bounded, we need some condition to check the possible wild growth of the solution
(→X1.8.5).

X1.8.2 No flux condition
That is, at the boundary, the outward normal component of the flux J = [a −D∇]P van-
ishes. The physical meaning of the flux tells us that this condition implies that the particles
cannot get out of the domain: the particles are reflected by the boundary. Therefore, this
condition is also called the reflecting boundary condition.75

X1.8.3 Absorbing boundary condition
P = 0 at the boundary implies that there is no particle at the boundary (infinitesimally
close inside the boundary). This implies that the particle is killed there (i.e., the boundary
absorbs the coming particle). This condition destroys the conservation of probability, so if
(X1.8.1) is interpreted as the equation governing the probability density, we cannot impose
this condition.76 However, if (X1.8.1) is interpreted as the equation governing the concen-
tration (particle number density) of noninteracting particles (as in the ideal gas or solution)
(particle interpretation), we may impose this condition.77

The crucial point is that the flux must be continuous where there is no annihilation or
creation of particles in the particle interpretation of (X1.8.1) or the conservation of proba-
bility must not be violated in the probability interpretation.

X1.8.4 Periodic boundary condition
We must impose the continuity of the flux across the boundary (i.e., the normal component
of J is continuous across the boundary). To have the continuity of the flux, we must also
impose the continuity of P itself. These two conditions are the periodic boundary condition.
Exercise. Consider the 1D Fokker-Planck equation, and discretize it using the simplest
Euler scheme.

74If the diffusion matrix D becomes singular at the boundary, the problem becomes complicated, so here
we ignore such cases, and assume that D is positive definite.

75This is a special case of the so-called Robin condition. Neumann conditions are usually not discussed
in our context. However, the no flux condition is nothing but a mere homogeneous Neumann condition,
if the Fokker-Planck equation is conveniently rewritten as an equation for Q = eβV P (try to rewrite the
Fokker-Planck equation as an equation for Q).

76except for the escape problem or the first passage problems. See, e.g., X1.9.5.
77This is a homogeneous Dirichlet condition. We may impose inhomogeneous conditions as well.
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(1) Check that the above conditions imposed at time t = 0 indeed allows us to compute the
solution at the next time step uniquely.
(2) Suppose the diffusion constant is discontinuous at x = 0 (e.g., D = 1 for x < 0 and
D = 2 for x > 0). What kind of extra condition should we impose at this singular point? ut

X1.8.5 Unbounded domain
If the domain D is not bounded, we must require that the solution is bounded.78

Exercise. The diffusion equation may be regarded as the simplest Fokker-Planck equation.
Consider the equation in a semiinfinite domain x ≥ 0 with the condition P (0, t) = 0 and
P (x, 0) = 0. There is a solution P (x, t) 6= 0 apparently violating the conservation law. That
is why at least some condition must be imposed on an unbounded domain. Can you explain
why such a bizarre thing is ever possible? ut

X1.8.6 Change of spatial coordinates
Sometimes it is convenient to change the independent variables of the Fokker-Planck equation

∂P (x, t)

∂t
=

−∑
i

∂

∂xi
ai +

∑
ij

∂2

∂xi∂xj
Dij

P (X1.8.3)

from x to y. Through this coordinate change, the density distribution function P must also
be transformed to P ′: P (x, t)dx = P ′(y, t)dy, that is

P (x, t) = JP ′(y, t), (X1.8.4)

where J is the Jacobian: J ≡ det(dy/dx). The Fokker-Planck equation (X1.8.5) must be
transformed to another Fokker-Planck equation:

∂P ′(y, t)

∂t
=

−∑
i

∂

∂yi
a′i +

∑
ij

∂2

∂yi∂yj
D′
ij

P ′. (X1.8.5)

To relate the coefficients in these two equations, the technically the smartest way is to
go back to the corresponding stochastic differential equations. The stochastic differential
equation corresponding to (X1.8.3) is (→X1.7.1)

dxi = aidt+
∑
k

σikdBk (X1.8.6)

with Dij =
∑
k σikσjk. From this, with the aid of Itô’s lemma (→X1.5.10)

dyi =
∑
j

∂yi
∂xj

dxj +
1

2

∑
jk

∂2yi
∂xj∂xk

dxjdxk (X1.8.7)

=
∑
j

∂yi
∂xj

[ajdt+
∑
k

σjkdBk] +
1

2

∑
jk

∂2yi
∂xj∂xk

σjkdt (X1.8.8)

78Physically, it is sensible to require that P vanishes at infinity, but this follows if we require the bound-
edness of the solution. Actually, if the solution is required not to grow faster than some power of time, then
the solution must be bounded. That is, a weaker condition may be imposed instead of the boundedness
condition.
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Therefore, we may conclude

a′i =
∑
j

∂yi
∂xj

aj +
1

2

∑
jk

∂2yi
∂xj∂xk

σjk, D
′
ij =

∑
nm

∂yi
∂xn

∂yj
∂xm

Dnm. (X1.8.9)

The last line is obtained from
σ′ij =

∑
k

(∂yi/∂xk)σkj. (X1.8.10)

X1.8.7 Reduction to constant diffusion coefficient equation
If we look at (X1.8.10), sometimes we could make σ′ constant by choosing y appropriately.
Therefore, it is useful to consider a method to solve the Fokker-Planck equation with constant
Dij. For simplicity, let us consider a 1D Fokker-Planck equation:

∂P

∂t
= − ∂

∂x
a(x)P +

∂2

∂x2
D(x)P. (X1.8.11)

Let us introduce a new spatial coordinate y so that (see (X1.8.10))

dy/dx =
√
D/D(x). (X1.8.12)

Then, the result of X1.8.6 tells us that

∂P ′(y, t)

∂t
= − ∂

∂x
a′(y)P ′ +D

∂2

∂y2
P ′ (X1.8.13)

with

a′(y) =

√
D

D(x)

[
a(x)− 1

2

dD(x)

dx

]
. (X1.8.14)

The Jacobian J reads J =
√
D(x)/D.

X1.8.8 Equilibrium solution
If the diffusion matrix is a constant matrix D(x) = DI and if a is a gradient field a = −∇U ,
then the time independent solution must satisfy[

∂

∂y
U

]
P +D

∂

∂y
P = const. (X1.8.15)

If the problem is considered in the whole space, P and its derivatives must vanish at infinity,
so the constant in the equation must vanish. Therefore,

Peq ∝ e−U/D (X1.8.16)

is the time independent (supposedly equilibrium) solution.
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X1.8.9 Ornstein-Uhlenbeck process
There are not many examples of Fokker-Planck equations whose time-dependent solutions
can be obtained analytically. One rare example is the Fokker-Planck equation corresponding
to the Ornstein-Uhlenbeck process defined by

dp = −(ζ/m)p +
√

2kBTζdB. (X1.8.17)

The corresponding Fokker-Planck equation is

∂P

∂t
=

[
∂

∂p

ζ

m
p + ζkBT

∂2

∂p2

]
P. (X1.8.18)

Let us impose the initial condition P (p, 0) = δ(p − p0) (That is, we wish to solve the
transition probability (density) P (p, t|p0, 0).).

Perhaps the easiest method to solve the problem (without the use of the Langevin
equation) is to use the Fourier transformation. We have the following correspondence

∂/∂p↔ ik, p↔ −i∂/∂k. (X1.8.19)

Therefore, we obtain
∂P̂

∂t
=

ζ

m
k
∂

∂k
P̂ − ζkBTk2P̂ . (X1.8.20)

This is a quasilinear first order partial differential equation, so it can be solved by the method
of characteristics.

The characteristic equation reads

dt

1
=

dki
ζki/m

=
dP

ζkBTk2P
. (X1.8.21)

Therefore, the solution with the initial condition above reads

P̂ = exp{−ik · p0e
−ζt/m − ζkBTk2(1− e−2ζt/m)/2(ζ/m)}. (X1.8.22)

That is,

P (p, t|p0, 0) =

(
1

2πmkBT (1− e−2ζt/m)

)3/2

exp

[
− (p− e−ζt/mp0)

2

2mkBT (1− e−2ζt/m)

]
. (X1.8.23)

However, in this case, there is a much simpler method to obtain the solution as seen in
X1.8.10.

X1.8.10 Ornstein-Uhlenbeck process: direct approach from stochastic differen-
tial equation
It would be illuminating to obtain this result without the use of partial differential equation.
The stochastic differential equation (6.3.26) describing the Ornstein-Uhlenbeck process is
a linear equation, so the process must be a Gaussian process. Therefore, we have only to
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compute the mean and the covariance.
From (6.3.26) we obtain

d〈p〉 = −(ζ/m)〈p〉 ⇒ 〈p(t)〉 = p0e
−ζt/m. (X1.8.24)

Also for each component, say for the x-component, we can obtain

d〈(px − px0e−ζt/m)2〉 = −2(ζ/m)〈(px − px0e−ζt/m)2〉dt+ ζkBTdt. (X1.8.25)

From this we can almost immediately read off the needed variance.

X1.8.11 Relation of Smoluchowski equation to Schrödinger equation
If a Smoluchowski equation can be mapped to a Schrödinger equation, then all the (well-
developed) standard methods to solve the Schrödinger equation may be applied. They
include eigenfunction expansion, variational methods, and WKB methods. These are very
standard topics, so we will not discuss them here.

The Smoluchowski equation

∂P/∂t = ∇ · [(∇U)P ] +D∆P (X1.8.26)

may be mapped to the following Schrödinger equation (with imaginary time) (→X1.10.4,
X1.10.5)

∂ψ/∂t = D∆ψ + V ψ (X1.8.27)

with

ψ(x, t) = P (x, t|x0)e
[U(x)−U(x0)]/2D, V = −1

2

[
1

2D
∇U · ∇U −∆U

]
. (X1.8.28)

Notice that the potential condition for the streaming term of the Smoluchowski equation is
needed for this rewriting.

Although the above relation is discussed in conjunction to path integrals later (→X1.10.5),
it is easy to check it directly by putting (6.3.33) into the Schrödinger equation.

X1.9 Backward Equations

X1.9.1 Transition probability and Fokker-Planck equation
Let us consider the stochastic process defined by the following Langevin equation:

dx

dt
= a(x, t) + σ(x, t)w, (X1.9.1)

where w is a normalized Gaussian white noise (say, d-dimensional vector). Mathematically,
we interpret this as (→X1.5.7)

dx = a(x, t)dt+ σ(x, t)dB, (X1.9.2)
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where B is the d-dimensional Wiener process (→X1.4.9). The corresponding Fokker-Planck
equation is, with the definition of D = σσT , (→X1.7.1)

∂P

∂t
= − ∂

∂x

[
a− 1

2

∂

∂x
D

]
P. (X1.9.3)

If the interpretation of the formula seems ambiguous, refer to its detailed expression (X1.7.4).
Let the initial condition given at time t0 be P (x, t0) = δ(x − x0), and the solution to

(X1.9.3) with an appropriate boundary conditions be written as P (x, t|x0, t0). It is clear
that P (x, t|x0, t0)dx is the probability of finding the sample process to be in the volume
element dx at time t under the condition that at time t0 it started from x0. Thus, we may
understand that the Fokker-Planck equation governs the transition probabilities as discussed
already in X1.7.1.

X1.9.2 Kolmogorov’s backward equation
Let f(x) be a well-behaved function of x. We wish to study its expectation value (average)
Ex0 [f ](t) at time t, when the initial value of x is x0:

Ex0 [f ](t) ≡
∫
dx f(x)P (x, t|x0, 0). (X1.9.4)

To obtain the equation governing Ex0 [f ](t), it is convenient to find an equation that
governs P (x, t|x0, 0) as a function of t and x0. We can use the Chapman-Kolmogorov
equation (→3.1.10);

P (x, t|x0, t0) =
∫
d∆xP (x, t|x0 + ∆x, t0 + ∆t)P (x0 + ∆x, t0 + ∆t|x0, t0). (X1.9.5)

Here, P (x0 + ∆x, t0 + ∆t|x0, t0) corresponds to the probability density φ(∆x|x0) for the
transition step ∆x we have encountered in ?? (Exercise 1):

P (x, t|x0, t0) =
∫
d∆xP (x, t|x0 + ∆x, t0 + ∆t)φ(∆x|x0). (X1.9.6)

Taylor expanding P (x, t|x0 + ∆x, t0 + ∆t) in the above equation, we obtain

0 =
∫
d∆xφ(∆x|x0)

∂P
∂t0

+
∑
i

∆xi
∂P

∂x0i

+
1

2

∑
ij

∆xi∆xj
∂2P

∂x0ix0j


=

∂P

∂t0
+
∑
i

ai(x0)
∂P

∂x0i

+
1

2

∑
ij

Dij(x0)
∂2P

∂x0i∂x0j

. (X1.9.7)

Therefore,
∂P (x, t|x0, t0)

∂t0
= −

∑
i

ai
∂P

∂x0i

− 1

2

∑
ij

Dij
∂2P

∂x0i∂x0j

. (X1.9.8)

This is the backward equation.79 Note that all the independent variables are the variables
describing the initial condition (so are the variables in ai and Dij).

Given a Fokker-Planck equation, it is easy to write down the corresponding backward
equation: identifying the coefficient functions, the drift term a and the diffusion term D,
immediately we can write down (X1.9.8) with switching the variables to the initial variables.

79(X1.9.8) is sometimes called Kolmogorov’s backward equation, but more often (6.4.13) is called so.
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X1.9.3 Equation for expectation values for time homogeneous process
Let f(x) be a well-behaved function of x and

Ex0 [f ](t) ≡
∫
dx f(x)P (x, t|x0, 0). (X1.9.9)

Its time derivative is
∂

∂t
Ex0 [f ](t) =

∫
dx f(x)

∂

∂t
P (x, t|x0, 0). (X1.9.10)

Let us assume that the stochastic process governed by (X1.9.2) is time homogeneous (that
is, the coefficients do not depend on time explicitly, and the system is independent of the
absolute time). Notice that P is homogeneous in t and is a function of t− t0, so

∂

∂t
P (x, t|x0, t0) = − ∂

∂t0
P (x, t|x0, t0). (X1.9.11)

Therefore, (6.4.11) reads with the aid of the backward equation in X1.9.2

∂

∂t
Ex0 [f ](t) =

∫
dx f(x)

∑
i

ai
∂

∂x0i

+
1

2

∑
ij

Dij
∂2

∂x0i∂x0j

P (x, t|x0, 0). (X1.9.12)

That is, the solution to the following equation called Kolmogorov’s backward equation:

∂

∂t
u(x, t) =

∑
i

ai(x)
∂

∂xi
+

1

2

∑
ij

Dij(x)
∂2

∂xi∂xj

u(x, t). (X1.9.13)

with the initial condition u(x, 0) = f(x) is given by

u(x, t) = Ex[f ](t) = Ex[f(x(t))]. (X1.9.14)

Here, t is the time to observe the expectation value (that is, now), and x is the starting
position of all the paths at t = 0. This is the most important use of the backward equation.
This is also a special case of the Feynman-Kac formula (→X1.10.1).
Exercise. Write down the backward equation for the Ornstein-Uhlenbeck process (→X1.8.9).
ut

X1.9.4 Streamlined demonstration of (6.4.13)
Let u(x, t) be the solution to the backward equation (→X1.9.3)

∂u

∂t
=
∑
i

ai
∂

∂xi
u+

1

2

∑
ij

Dij
∂2

∂xi∂xj
u (X1.9.15)

with the initial condition u(x, 0) = f(x) (and with appropriate boundary conditions).80

Then, for any fixed time T > 0 it is ‘easy’81 to demonstrate that the expectation value of

80Actually, if u grows only algebraically with |x|, any solution with the initial condition u(x, 0) = f(x)
may be used.

81Formally, straightforward as seen here. Mathematically, some care is needed, but essentially the formal
calculation is justified.
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g(t) ≡ u(T − t,x(t)) is not t-dependent with the aid of Itô’s lemma (→X1.5.10). Here, x(t)
obeys the stochastic differential equation associated with the above backward equation (i.e.,
(X1.9.2)) with the initial condition x(0) = x.

Using Itô’s lemma (→X1.5.10), we can differentiate g as follows.

dg(t) = − ∂u(s, x(t))

∂s

∣∣∣∣∣
s=T−t

dt+
∑
i

∂u

∂xi
dxi +

1

2

∑
i,j

∂2u

∂xi∂xj
dxidxj, (X1.9.16)

= −

∑
i

ai
∂

∂xi
u+

1

2

∑
ij

Dij
∂2

∂xi∂xj
u

 dt
+
∑
i

∂u

∂xi
(aidt+

∑
k

σikdBk) +
1

2

∑
i,j

Dij
∂2u

∂xi∂xj
,

(X1.9.17)

=
∑
i,j

∂u

∂xi
σijdBj. (X1.9.18)

We have used Dij =
∑
k σikσjk. Therefore, its average vanishes and Ex[u(T − t,x(t))] is time

independent.
Setting t = 0, we have

Ex[u(T − t,x(t))] = u(T,x). (X1.9.19)

On the other hand, from the initial condition for u

Ex[u(0,x(T ))] = Ex[f(x(T ))]. (X1.9.20)

Therefore, indeed,
u(x, t) = Ex[f(x(t))] (X1.9.21)

is the solution to the initial value problem of (6.5.1) as asserted in X1.9.3.

X1.9.5 First passage or exit time
Let U be a set in the domain of the stochastic process {x(t)} defined by the stochastic
differential equation (X1.9.2). Let P (y, t|x, 0) be the solution to the corresponding Fokker-
Planck equation (the forward equation associated with (X1.9.8)) with the initial condition
P (y, 0|x, 0) = δ(y − x) and the absorbing boundary condition (= homogeneous Dirichlet
condition, →X1.8.1) at ∂U . Let x ∈ U and

G(x, t) ≡
∫
U
dyP (y, t|x, 0). (X1.9.22)

This is the probability of finding x(t) that started at time t = 0 from x in U without ever
getting out of U because of the absorbing boundary condition (→X1.9.2). Therefore, this
is the probability for the exit time T from U not to be smaller than t:

P (T > t|x(0) = x) = G(x, t). (X1.9.23)

From the backward equation, we see that

∂

∂t
G(x, t) =

∑
i

ai
∂

∂xi
+

1

2

∑
ij

Dij
∂2

∂xi∂xj

G(x, t) (X1.9.24)
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with the initial condition G(x, 0) = 1U(x) which is the indicator (→??) of U , and the
boundary condition G = 0 at ∂U .
Exercise 1. Let f(T ) be a smooth function of the exit time for a particle starting from x
in U as above. Show that its expectation value for U is given by

〈f(T )〉x = −
∫ ∞

0
dt f(t)

∂

∂t
G(x, t). (X1.9.25)

In particular, the mean exit time 〈T 〉x for x(t) starting from x in U is given by

〈T 〉x =
∫ ∞

0
G(x, t)dt. (X1.9.26)

ut
Exercise 2. Derive the differential equation that governs 〈T 〉x in Exercise 1 (note that
G(x, 0) = 1 and G(x,∞) = 0):∑

i

ai
∂

∂xi
+

1

2

∑
ij

Dij
∂2

∂xi∂xj

 〈T 〉x = −1. (X1.9.27)

The boundary condition is a homogeneous Dirichlet condition on ∂U . ut
Exercise 3. Let us consider the simplest case: the 1d Wiener process (but starting from
some point x at time t = 0).
(1) Find the mean exit time from [−1, 2] of the Wiener process starting from x (x ∈ [−1, 2]).
(2) Consider an interval [−L, 0]. In the L→∞ limit, however close the starting point is to
the origin, the mean exit time seems to diverge. Is this intuitively plausible?
(3) Now, let us add a drift term, so that the Langevin equation reads dx = vdt+ dB. Find
the mean exit time from [−1, 1], assuming the starting point x is in this interval. ut
Exercise 4. For the following overdamped Brownian particle on the x-axis

dx = −(U ′(x)/ζ)dt+
√

2kBT/ζdB(t) (X1.9.28)

find the mean exit time from [−1, 1], assuming that the particle is initially at the origin. ut

X1.9.6 Potential barrier crossing: Kramers formula revisited
We studied this problem already in 3.6.2. Let us compute the mean exit time from a
potential well. Our system is described by

dx = −(U ′(x)/ζ)dt+
√

2kBT/ζdB(t), (X1.9.29)

so a = −U ′/ζ and D = kBT/ζ in (X1.9.2).
Let us assume that the potential U has two wells around A and C with the separating

barrier around B. We are interested in the exit time from the left well A into the right one
C. Therefore, we consider the exit time from (−∞, X), where X is some point between B
and C. Solving (6.4.21), we have

〈T 〉A = βζ
∫ X

A
dx′

∫ x′

−∞
dye−βU(y)eβU(x′). (X1.9.30)

We must introduce some approximations under the condition that the barrier crossing
is not easy (the peak at B is high). We may use the same approximation as in 3.6.2, and it
is an exercise to recover Kramers’ result there.
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X1.10 Feynman-Kac formula

X1.10.1 Feynman-Kac formula
Let us try to extend X1.9.4. Instead of (X1.9.15), consider

∂u

∂t
=
∑
i

ai
∂

∂xi
u+

1

2

∑
ij

Dij
∂2

∂xi∂xj
u+ V (x)u (X1.10.1)

Here, V is a well-behaved function, Dij =
∑
k σikσjk, and we consider the following stochastic

differential equation:
dxi = aidt+

∑
j

σijdBj. (X1.10.2)

This stochastic differential equation is compatible with the backward equation (→X1.9.3)
given by V = 0 in (X1.10.1). Let x(t) be the solution to this equation with the initial
condition x(0) = x. Let u be a solution to (X1.10.1) with the initial condition u(0,x) = f(x).

Consider82 (similar to X1.9.4)

d
[
u(T − t,x(t)) exp

(∫ t

0
V (x(s))ds

)]
=

[
− ∂

∂t
u+

∑
i

ai
∂

∂xi
u+

1

2
Dij

∂2

∂xi∂xj
u+ V u

]
exp

(∫ t

0
V (x(s))ds

)
dt+Q,

(X1.10.3)

where Q is the term proportional to dB. Therefore,

dEx

[
u(T − t,x(t)) exp

(∫ t

0
V (x(s))ds

)]
= 0. (X1.10.4)

That is, this average is time independent. Therefore,

Ex

[
u(0,x(T )) exp

(∫ T

0
V (x(s))ds

)]
= Ex[u(T,x(0))], (X1.10.5)

that is,

u(t,x) = Ex

[
f(x(t)) exp

(∫ t

0
V (x(s))ds

)]
. (X1.10.6)

This is the celebrated Feynman-Kac formula.83

The implication of the formula is this: prepare a sample path x(t, ω) obeying the stochas-
tic equation (X1.10.2) starting from x. Compute for each path (here ω is the stochastic
parameter specifying each sample)

f(x(t, ω)) exp
(∫ t

0
V (x(s, ω)ds

)
(X1.10.7)

and then make the ensemble average of this quantity. This procedure solves (X1.10.1) with
the initial condition u = f at t = 0.84

82Again, the following formal calculation as it is cannot be justified (why?), but ‘essentially correct.’
83Mathematicians often call this the Kac formula. What Feynman suggested is not this formula but the

one in X1.10.3. Kac realized the relation to the backward equation. Feynman discussed only the forward
equations.

84If the boundary conditions are imposed, they must be interpreted in terms of the path.
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X1.10.2 Feynman-Kac path integral: general case
The formula in X1.10.1 is not so familiar to physicists. The idea of the backward equation
is not popular in any case.

Let us consider the following differential with x(t) as in X1.10.1:

d

[
δ(x(t)− y) exp

(∫ t

0

V (x(s))ds
)]

= −
∑

i

∂

∂yi
δ(x(t)− y)dxie

∫
V ds

+
1
2

∑
ij

∂2

∂yi∂yj
δ(x(t)− y)dxidxje

∫
V ds + V (x)δ(x(t)− y)dxie

∫
V dsdt. (X1.10.8)

Let us define

φ(y, t|x) ≡ Ex

[
δ(x(t)− y) exp

(∫ t

0
V (x(s))ds

)]
. (X1.10.9)

Then, averaging (X1.10.8) over the stochastic process, we get

∂

∂t
φ(y, t|x) =

∑
i

∂

∂yi
(−ai) +

1

2

∑
ij

∂2

∂yi∂yj
Dij + V

φ(y, t|x) (X1.10.10)

with the initial condition φ(y, 0|x) = δ(y − x). That is, the solution to (X1.10.10) under
the initial condition φ(y, 0|x) = δ(y−x) may be expressed as (X1.10.9), or more pictorially

φ(y, t|x) =
∫ x(t)=y

x(0)=x
DFP [x(t)] exp

[∫ t

0
ds V (x(s))

]
. (X1.10.11)

This is called the Feynman-Kac path integral over the stochastic process compatible with
the Fokker-Planck equation that is (X1.10.10) without V . In this formula

∫ x(t)=y

x(0)=x
DFP [x(t)] (X1.10.12)

symbolically expresses that we average the integrand with respect to all the sample paths of
the stochastic process starting from x and ending up at y whose density distribution obeys
the Fokker-Planck equation.

X1.10.3 Feynman-Kac path integral: diffusion case
The most basic Feynman-Kac path integral is: the solution to

∂ψ

∂t
= D∆ψ + V ψ (X1.10.13)

with the initial condition ψ(x, 0) = δ(x− x0) is given by

ψ(x, t) =
∫ x(t)=x

x(0)=x0

DW [x(t)] exp
[∫ t

0
ds V (x(s))

]
, (X1.10.14)

where x(t) is the solution to

dx =
√

2DdB (X1.10.15)
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with the initial condition x(0) = x0.
DW is called the Wiener measure and is a measure defined on a set of continuous

functions: ∫ x(t)=y

x(0)=x
DW [x(t)] (X1.10.16)

symbolically expresses that we average the integrand with respect to all the sample paths
of the (d-dimensional) Wiener process (→X1.4.4) (scaled with

√
2D) starting from x85 and

ending up at y.

X1.10.4 Feynman-Kac path integral for Smoluchowski equation
Then, how can we devise a similar formula for the Smoluchowski equation (→X1.7.3, 3.5.5)

∂φ

∂t
= D∆φ+∇ · [(∇U)φ] (X1.10.17)

?
The most elementary way to answer this question is to note the following relation: If

we identify

V = −1

2

[
1

2D
(∇U)2 −∆U

]
. (X1.10.18)

Then,
ψ(x, t) = e[U(x)−U(x0)]/2Dφ(x, t), (X1.10.19)

where ψ is the solution to (X1.10.13) with the same initial condition. That is, the solution
to (X1.10.17) with the initial condition φ(x, 0) = δ(x− x0) is given by

φ(x, t) = e[U(x)−U(x0)]/4D
∫ x(t)=x

x(0)=x0

DW [x(t)] exp
[∫ t

0
ds V (x(s))

]
(X1.10.20)

with V given by (X1.10.18).
Notice that, with the aid of Itô’s lemma (→X1.5.10),

1

2D
[U(x)− U(x0)] =

1

2D

∫ t

0
ds∇U(x(s)) ◦ dx(s), (X1.10.21)

=
1

2D

[∫ t

0
∇U(x(s)) · dx(s) +D

∫ t

0
∆U(x(s)ds

]
.

(X1.10.22)

Here, the integral in the second line is interpreted as the Itô integral. That is,

φ(x, t) =
∫ x(t)=x

x(0)=x0

DW [x(t)] exp
[
− 1

4D

∫ t

0
ds [∇U(x(s))]2 − 1

2D

∫ t

0
∇U · dx(s))

]
.

(X1.10.23)
In X1.10.5 we see this is naturally related to the Onsager-Hashitsume path integral.

Thus, if the reader traces the logic backward, it gives a derivation of the relation between
the Schrödinger equation and the Smoluchowski equation.

85The standard Wiener process is defined as starting from x = 0, but here we generalize its definition
slightly by allowing the starting point to be any point.
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X1.10.5 Onsager-Machlup-Hashitsume path integral
We know that Onsager’s principle allows us to write down the solution to the Smoluchowski
equation more directly in a path integral form (→4.1.16, X1.1.8). That is the Onsager-
Machlup-Hashitsume path integral: For

dx = −∇Udt+
√

2DdB (X1.10.24)

formally we have

φ(x, t) =
∫ x(t)=x

x(0)=x0

δ[x(t)] exp
[
− 1

4D

∫ t

0
ds(ẋ(s) +∇U(x(s))2

]
, (X1.10.25)

where δ[x(t)] denotes the ‘uniform measure’ (even weighting) on the path space.86 This
result must be equal to (X1.10.23).

Let us formally compute the integral as the stochastic integral:

− 1

4D

∫ t

0
ds [ẋ(s) +∇U(x(s)]2,

= − 1

4D

[∫ t

0
ẋ(s)2ds+

∫ t

0
ds [∇U(x(s))]2 + 2

∫ t

0
∇U · dx(s)

]
. (X1.10.26)

Therefore, if we identify (→X1.10.3)

DW [x(t)] = δ[x(t)] exp
[
− 1

4D

∫ t

0
ẋ(s)2ds

]
(X1.10.27)

and interpret
∫
∇U · ẋdt =

∫
∇U · dx(s) as the Itô integral, we can mathematically properly

interpret the path integral in the white noise idealization.
The result may, with the aid of (X1.10.23), be interpreted as a derivation of (X1.10.19)

with (X1.10.18) with the aid of the Feynman-Kac path integral (→X1.10.3), which is math-
ematically defined without any ambiguity.

X1.11 Detailed Balance and Fokker-Planck Operator

X1.11.1 Detailed balance revisited
We have discussed that in equilibrium the most important property of the transition prob-
ability between macroscopic states (that are invariant under time-reversal) is the detailed
balance condition (→2.7.6).

A slightly more general version of detailed balance does not require the macroscopic
states to be invariant under time-reversal operation. Let a tilde imply the time reversed
state (e.g., classically, Ã is obtained from A by flipping the sign of momenta; this corre-
sponds to the movie played backward). Consider two states A and B and identify them
as sets consisting of microscopic states. Tt be the evolution operator of the system and
AB = A ∩ T−1

t B (as before, →2.7.6). Let Tt(AB) = C. Then, this is a subset of B.

86The reader who studied Appendix to Chapter 2 immediately see that this concept is very tricky, if not
outright nonsense.
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Now, we play the movie describing the above transition backward. Then, due to the
reversibility of mechanics, all the states in C̃ return to Ã; no other points in B̃ can go back
to Ã. Therefore, C̃ = B̃Ã. This implies that for an invariant measure µ (= time independent
distribution →2.7.4) that is time reversal symmetric

µ(AB) = µ(B̃Ã). (X1.11.1)

This is true for equilibrium distribution. Since the equilibrium distribution is symmetric
under time reversal, we have

P (A, t;B) = P (B̃, t; Ã) ⇒ P (A, t|B)Peq(B) = P (B̃, t|Ã)Peq(A). (X1.11.2)

This is the most general form of the detailed balance condition.
The detailed balance condition may be expressed as∫

dxdy f(x)P (x, t|y)Peq(y)g(y) =
∫
dxdy f(x)P (ỹ, t|x̃)Peq(y)g(y), (X1.11.3)

where f and g are arbitrary well-behaved functions (test functions; they must satisfy some
general boundary conditions, e.g., fPeq must vanish at infinity or at the boundary of the
domain).

X1.11.2 Detailed balance condition for Fokker-Planck equation: abstract form
Even after coarse-graining the dynamics in equilibrium should satisfy the detailed balance
condition (→X1.11.1). Therefore, the Fokker-Planck equation describing the equilibrium
dynamics must satisfy the detailed balance condition.

Let us consider the general Fokker-Planck equation (→X1.7.1, X1.8.6) and write it in
the operator equation form as

dP

dt
= LP, (X1.11.4)

where L in the position representation reads

L = −
∑
i

∂

∂xi
ai +

∑
ij

∂2

∂xi∂xj
Dij. (X1.11.5)

The transition probability can be formally written as (→X1.9.1)

P (x, t|y) = etLxδ(x− y). (X1.11.6)

Here, the variables on which L operates are explicitly shown as the subscript of the operator
as Lx.

We can write the detailed balance condition (X1.11.3) as∫
dxdy f(x)etLxδ(x− y)Peq(y)g(y) =

∫
dxdy f(x)e

tL̃ỹδ(x− y)Peq(x)g(y). (X1.11.7)

Here, we have used the invariance of the delta function under time reversal (because x = y
is equivalent to x̃ = ỹ).

Let us perform the integration. The left-hand side reads

LHS =
∫
dx f(x)etLPeq(x)g(x). (X1.11.8)
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This can be checked order by order in t. Here, we have used the fact that∫
dyLxδ(x− y)f(y) = Lf(x). (X1.11.9)

We have analogously

RHS =
∫
dy g(y)

[∫
dx e

tL̃ỹδ(x− y)Peq(x)f(x)
]

=
∫
dx g(x)etL̃Peq(x)f(x). (X1.11.10)

Therefore, (X1.11.7) implies∫
dx f(x)etLPeq(x)g(x) =

∫
dx g(x)etL̃Peq(x)f(x). (X1.11.11)

(Note that operators act on everything on their right sides.)
If we introduce the adjoint of L by∫

dxf(x)Lg(x) =
∫
dxg(x)L†f(x), (X1.11.12)

(X1.11.13) implies∫
dx f(x)etLPeq(x)g(x) =

∫
dx f(x)Peq(x)etL̃

†
g(x). (X1.11.13)

Therefore, the detailed balance condition may be written as87

LPeq = PeqL̃†. (X1.11.14)

X1.11.3 Detailed balance condition in terms of coefficients
Let

L = −
∑
i

∂

∂xi
ai(x) +

∑
ij

∂

∂xi

∂

∂xj
Dij(x). (X1.11.15)

Its adjoint reads

L† =
∑
i

ai(x)
∂

∂xi
+
∑
ij

Dij(x)
∂

∂xi

∂

∂xj
. (X1.11.16)

Notice that the backward equation (→X1.9.2) is just ∂tu = L†u.
Let us compute (X1.11.14) in terms of these explicit expressions. For simplicity, let

us assume that all the variables have definite parity under time reversal: x̃i = εixi, where
εi = ±1. Applying the LHS of (X1.11.14) to a test function f , we have−∑

i

∂

∂xi
ai(x) +

∑
ij

∂

∂xi

∂

∂xj
Dij(x)

Peqf
= −

∑
i

aiPeq
∂

∂xi
f +

∑
ij

[
2
∂

∂xj
DijPeq

]
∂

∂xi
f +

∑
ij

DijPeq
∂

∂xi

∂

∂xj
f.

(X1.11.17)

87If we do not assume that the equilibrium state is not time reversal symmetric, e.g., due to the presence
of the magnetic field, then this should read LPeq = P̃eqL̃†.
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Here, the symmetry of Dij and LPeq = 0 have been used.
Similarly, the RHS operated on f reads

∑
i

εiãiPeq
∂

∂xi
f +

∑
ij

εiεjD̃ij
∂

∂xi

∂

∂xj
f. (X1.11.18)

Here, ãi, etc., imply that the variables are time-reversed. Therefore, comparing the coeffi-
cients of corresponding differential operators, we conclude that the detailed balance condition
is equivalent to

−aiPeq + 2
∑
j

∂

∂xj
DijPeq = εiãiPeq, (X1.11.19)

Dij = εiεjD̃ij. (X1.11.20)

If the variables are all of even parity εi = +1, then the above condition reduces to

−aiPeq +
∑
j

∂

∂xj
DijPeq = 0. (X1.11.21)

This is exactly the condition that the probability flux vanishes in equilibrium (→3.5.8).

X1.11.4 Symmetric operator associated with L
(X1.11.14) may be rewritten as

Ls ≡ P−1/2
eq LP 1/2

eq = P 1/2
eq L̃†P−1/2

eq . (X1.11.22)

That is,
Ls = L̃†s. (X1.11.23)

Therefore, if all the variables are time-reversal symmetric as is often the case, then Ls is a
symmetric operator under the condition of detailed balance (cf. ??).88

X1.11.5 Detailed balance condition for Zwanzig’s nonlinear Langevin equation
To be concrete let us consider Zwanzig’s Langevin equation (simplified version in X1.3.3)
or rather the corresponding Fokker-Planck equation;

∂P

∂t
= −

∑
i

∂

∂Ai

vi −∑
j

Lij

(
∂F

∂Aj

)P +
∑
ij

∂

∂Ai
kBTLij

∂

∂Aj
P. (X1.11.24)

Here, we assume that the equilibrium distribution of the system is ∝ e−βF .
The symmetric operator associated with this Ls defined in (X1.11.22) reads

Ls =
∑
i

(
∂

∂Ai
− 1

2

∂βF

∂Ai

)
vi +

∑
ij

(
∂

∂Ai
− 1

2

∂βF

∂Ai

)
kBTLij

(
∂

∂Aj
+

1

2

∂βF

∂Aj

)
. (X1.11.25)

88It may not be self-adjoint; to show the self-adjointness we must demonstrate that the domains agree.

267



Notice that the combination
∂

∂Ai

∂

∂Aj
Lij (X1.11.26)

is time-reversal symmetric (→4.1.10), and so is F . Therefore, the second term of Ls satisfies
the detailed-balance condition (X1.11.23).

For the first term to satisfy the detailed balance condition, we must require (this is an
operator identity, so do not forget that it operates on a test function)(

∂

∂Ai
− 1

2

∂βF

∂Ai

)
vi = −εiṽi

(
∂

∂Ai
+

1

2

∂βF

∂Ai

)
. (X1.11.27)

This relation must hold for any choice of F (because perturbed system must also have the
equilibrium state), so

vi = −εiṽi, (X1.11.28)

∂vi
∂Ai
− 1

2
vj
∂βF

∂Ai
= −1

2
εi
∂βF

∂Ai
ṽi (X1.11.29)

are required. Therefore, the second condition implies

∑
i

∂

∂Ai
(viPeq) = 0. (X1.11.30)

This is exactly what we have shown in X1.3.6.

X1.11.6 Relaxation to equilibrium
We expect that due to irreversibility the system governed by the Fokker-Planck equation
satisfying the detailed balance condition starting from any initial distribution P0 should
relax to the equilibrium state. Formally, the solution has the form etLP0, so L should be a
negative semidefinite operator. Indeed, this is the case. We can show∫

dA fLsf ≤ 0. (X1.11.31)

Ls consists of two different types of terms: the first term and the second term in (X1.11.25).
The second law implies that the contribution to the second term is negative semidefinite. It
is easy to show that the contribution of the first term vanishes under the detailed balance
condition (→X1.11.2).

X1.11.7 H-theorem for Fokker-Planck equation: detailed study
X1.11.6 tells us that the Fokker-Planck equation drives any initial condition to the subspace
where the equilibrium distribution function resides. However, without a further detailed
study of the operator L we cannot assert that the destination (normalized) is definitely
Peq. The best way to demonstrate this is to construct a Lyapunov function whose unique
minimum is the equilibrium distribution function. This is the basic spirit of the H-theorem
due to Boltzmann (→2.4.2).

Let us study the time derivative of the following Kullback-Leibler entropy (→1.6.9).

K(P, Peq) =
∫
dAP (A, t) log

P (A, t)

Peq
. (X1.11.32)
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As we already know (→1.6.9), this is nonnegative and is zero if and only if P = Peq.
Therefore, if we can show that dK/dt < 0 for P 6= Peq, we are done.

Let us again stick to Zwanzig’s nonlinear Langevin equation (→X1.3.3). Its Fokker-
Planck equation (X1.11.24) has the following structure: the streaming terms + diffusion
terms

∂P

∂t
=

(
∂P

∂t

)
str

+

(
∂P

∂t

)
dif

, (X1.11.33)

where (
∂P

∂t

)
str

≡ −
∑
i

∂

∂Ai
viP, (X1.11.34)(

∂P

∂t

)
dif

≡
∑
ij

∂

∂Ai

[
Lij

∂F

∂Aj
+ kBTLij

∂

∂Aj

]
P. (X1.11.35)

We know that the streaming terms do not affect the equilibrium distribution (→X1.3.6),
and its origin is an instantaneous reversible dynamics (→X1.3.5). Therefore, we expect this
term should not produce any entropy:(

∂P

∂t

)
str

K(P, Peq) = 0. (X1.11.36)

This is indeed the case. The diffusion term represents irreversibility, so we expect(
∂P

∂t

)
dif

K(P, Peq) < 0. (X1.11.37)

This is also the case.
Therefore, under the detailed balance condition, we have demonstrated that the solution

to the Fokker-Planck equation eventually settles down to the unique equilibrium distribu-
tion.

The case without detailed balance will be discussed in 8.4.
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Chapter X2

Response to Perturbation

Linear response theory (LRT) is perhaps the most cultivated subfield of nonequilibrium
statistical physics. Some people even claim that LRT is the main pillar of nonequilibrium
statistical mechanics. However, linear response functions are straightforward generalization
of static susceptibilities (→2.8.1) to time dependent perturbations, and, needless to say, cal-
culation of susceptibility is not a central problem of statistical mechanics at all. The central
problem of statistical mechanics is to compute the partition function; there is no counter
part (at least so far) in nonequilibrium statistical mechanics. This is the reason why such a
peripheral question as LRT looks central.

Still, it is true that LRT is a major part of the current nonequilibrium statistical me-
chanics, so we wish to pay a reasonable respect. In this chapter LRT is discussed critically,
and typical examples (Kubo-Tomita’s spectral line shape of NMR X2.6, and Nakano’s elec-
tric conductivity formula X2.7) will be outlined.

The structure of this chapter is as follows:
Kinematics of linear systems. In X2.2 a general kinematics of linear systems is summa-
rized (consequences of causality and passivity). This is a prerequisite and important.
Elementary approaches to LRT. Pure microscopic mechanical approaches to LRT are im-
possible (→X2.4.4), so to construct LRT mechanics and phenomenology (macroscopic laws)
are skillfully (or nonchalantly) knit into a single texture. This makes the theory opaque (or
erroneously transparent as if ‘theorems’ could be proved purely mechanically as in Kubo’s
famous paper89). Therefore, in this chapter, several routes to LRT are shown. In X2.3 in
the classical case it is shown that the basic theoretical framework of LRT (fluctuation dis-
sipation relations and Green-Kubo relations) may be derived from the pure phenomenology
+ linear kinematics of X2.2. No microscopic input is used in this derivation, so there is a
very strong reason to believe that LRT is rigorous. In the quantum case discussed in X2.4,
unfortunately, this seems impossible, so the loss part of the admittance is computed with
the aid of the Fermi golden rule. Then, with the aid of kinematics everything is derived.90

Computation of nonequilibrium distribution. There are two ways to perturb a system,
mechanically and thermally. In the former case, we can easily describe the perturbation with
a perturbative Hamiltonian added to the system Hamiltonian. Mechanical perturbations can
at least formally be treated within the framework of the ordinary perturbation theory. In
contrast, for thermal perturbations (e.g., temperature modification), there is no simple nat-
ural perturbative Hamiltonian, so LRT cannot be derived purely mechanically.91 Therefore,
in X2.5 a unified approach is given that computes the evolution of the density operator
(called the nonequilibrium statistical operator) in the spirit of statistical thermodynamics.

89R Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
90A more phenomenological, i.e., a more reliable, derivation of quantum mechanical cases is possible, if we

admit the KMS condition (→X2.4.12) as given. Since the KMS is regarded fundamental, also for quantum
cases LRT is expected to be rigorous.

91With some contrivance, this is possible as can be seen in J. M. Luttinger, “Theory of Thermal Transport
Coefficients,” Phys. Rev. 135, A1505-A1514 (1964). This is a very nice paper worth reading.
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The reader can skip X2.3 and X2.4 to understand the general framework of LRT;
from X2.2 she may directly go to X2.5.

Those who are impatient should first go to X2.1.3.

Recommended References:
R. Kubo, Rep. Prog. Phys. 29, 255 (1966),
H. Nakano, Int. J. Mod. Phys. B 7, 2397 (1993).92

R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II (Springer, 1985) is perhaps a
kinder introduction, although it is not critical. The book covers the materials in Chapters
X1 and X2 of these notes.

X2.1 Linear Response — Introduction

X2.1.1 Fluctuation and Response: what we already know
We have already seen in the static case that the response of the system is governed by the
fluctuation (→2.8.1)

〈δxi〉 = β〈δxjδxi〉Xj (X2.1.1)

or in the quantum case (→X1.2.5)

〈δxi〉 =

〈∫ β

0
dλ eλHδxje

−λHδxi

〉
Xj = β〈δxj; δxi〉Xj, (X2.1.2)

where we have used the canonical correlation (→X1.2.5; summary in 4.3.5). This suggests
that if the perturbation Xj is time-dependent, then

〈xi(t)〉 = β
∫ t

0
ds 〈δẋj(s); δxi(t)〉Xj(s). (X2.1.3)

This is true as we will see later (→X2.3.3, X2.5.3).93 Also we have learned that the re-
sponse function is given by the fluctuation-dissipation relation of the first kind (→3.2.8).
This has just the form guessed above.

More generally, we have learned that the Onsager coefficients can be calculated in terms
of the time correlation of fluctuations (→4.1.12). Transport coefficients can be written in
terms of the correlation function of fluxes (the Green-Kubo relation→4.1.14). Also we have
learned that the Green-Kubo relation can be obtained directly from the Onsager principle
(→X1.1.7).

The reader will see that all the important key concepts and results have already been
discussed at least in their simplest forms in Chapter 3.

X2.1.2 Hydrodynamics and response
We have outlined the derivation of hydrodynamic equations from the study of fluctuation

92This contains an episode of Feynman on electric conductivity.
93The dot is the time derivative; its necessity is easily guessed from the dimensional reason.
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dynamics (→5.2.5). Green-Kubo relations are derived almost phenomenologically with On-
sager’s regression hypothesis (→4.1.2; its more complete version is Onsager’s principle ??).
Study of the hydrodynamic behavior of the system with the analysis of its fluctuation dy-
namics must allow us to understand almost everything about nonequilibrium properties of
the system close to equilibrium. This is the approach summarized in X2.3 and X2.4.

Even when we wish to start from microscopic mechanics, we need a selection principle of
the distribution (measure) just as in the case of equilibrium statistical mechanics (→2.7.4).
Thus, our guiding principle is always the same. Even in nonequilibrium, statistical mechan-
ics is a framework to try to understand the effect of microscopic degrees of freedom with the
theoretical framework compatible with phenomenology and mechanics. This is the approach
in X2.6.

Without a reliable phenomenological framework, we cannot construct a reliable statis-
tical framework.

X2.1.3 User’s guide: practical summary
If the reader wishes a clean outline of the framework of linear response theory, read X2.6.
All the important basic results already outline in Chapter 3 are derived quantum mechan-
ically within the statistical thermodynamic framework. All the theoretical summaries are
also there.

It is, however, important to understand the general kinematics of linear systems sum-
marized in X2.2.

The consequence of the second law constrains the imaginary part (skew-Hermitian part)
of admittance (→X2.2.5, X2.2.8). The relation between causality and analytic properties
of admittance X2.2.9 and its consequence (the Kramers-Kronig relation, dispersion relation
X2.2.10) must clearly be understood.

Classical applications of the general framework are illustrated in X2.7 and X2.8.

X2.2 Linear Irreversible Process — General Frame-

work

Before going into dynamics, we wish to summarize the kinematics of small perturbations
and responses to them. Clearly recognize the consequences of the second law (→X2.2.7)
and causality (→X2.2.9).

X2.2.1 Response function.
We believe that if the external perturbation of the system parameter or the change of the
thermodynamic force X(r, t),94 which may depend on space and time coordinates, is small,
the system response described by the change G(r, t) of thermodynamic densities (= the

94In these notes, X is used for the thermodynamic intensive parameter appearing in the ordinary Gibbs
relation. The intensive variable in the entropy formula will be denoted by F . That is dE = · · ·+Xdx+ · · ·,
and dS = · · ·+ Fdx+ · · ·.
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extensive variables per volume)95 should also be small, and G is linearly related to X:

G(r, t) = L({X(r, t)}). (X2.2.1)

Here, G(r, t) could depend on the values ofX at the point away from r at a different time t (in
the past only; this is causality→X2.2.9). In these notes, we assumeX is the thermodynamic
force (defined with respect to energy) and G is the conjugate density (extensive quantities
conjugate to X per unit volume). They may be vectors or tensors.

According to the Riesz representation theorem,96 such a linear functional can always be
written in the following form

G(r, t) =
∫
dr′

∫ t

−∞
dt′ φ(r − r′, t− t′)X(r′, t′). (X2.2.2)

Here, we have assumed that the system is space-time uniform (no absolute position in time
and space matters) for simplicity. The function φ is called the response function in general
(see for a prototype 3.2.8).

X2.2.2 Admittance
The space-time Fourier transform of the response function (→3.2.8, X2.2.1, X2.5.3) is
called the admittance.

To define this unambiguously we must specify the convention of space-time Fourier
transformation. We adopt the following definition (consistent with the previous sections):

f(k, ω) =
∫
dr
∫
dt e−i(ωt−k·r)f(r, t). (X2.2.3)

The corresponding inverse transformation reads

f(r, t) =
1

(2π)4

∫
dk
∫
dω ei(ωt−k·r)f(k, ω). (X2.2.4)

Notice that each harmonic component behaves as a plane wave97

ei(ωt−k·r) (X2.2.5)

with the velocity ω/|k| in the direction of k.
Thus, the admittance χ is defined as

χ(k, ω) =
∫
dr
∫
dt e−i(ωt−k·r)φ(r, t). (X2.2.6)

Therefore,
G(k, ω) = χ(k, ω)X(k, ω). (X2.2.7)

95Here, we define thermodynamic densities as the conjugate of X with respect to energy.
96e.g., K Yosida, Functional Analysis (Springer, Berlin, 1965; Sixth edition 1980), p90. Here, it is a

theorem on the continuous (= bounded) linear map on the Hilbert space.
97We choose our convention so that the plane wave can be written as eixjkj

in terms of 4-vectors and the
relativistic scalar product with the usual indefinite metric (+,−,−,−).
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X2.2.3 Real and imaginary parts of admittance
Since X and G in our case are observable quantities, they must be real, and so must be the
response function. Therefore,

χ(k, ω) =
∫
dr
∫
dt ei(ωt−k·r)φ(r, t) = χ(−k,−ω). (X2.2.8)

We introduce the real and imaginary parts of the admittance as (the names will become
clear in X2.2.5)

χ′(k, ω) = Reχ(k, ω) called dispersive or storage part, (X2.2.9)

χ′′(k, ω) = −Imχ(k, ω) called dissipative or loss part, (X2.2.10)

or
χ(k, ω) = χ′(k, ω)− iχ′′(k, ω). (X2.2.11)

Here, do not forget the inclusion of − in the definition of χ′′. This negative sign is needed
to make this quantity positive definite as we will see later (→X2.2.5).

We may write

χ′(k, ω) =
∫
dr
∫
dt cos(ωt− k · r)φ(r, t), (X2.2.12)

χ′′(k, ω) =
∫
dr
∫
dt sin(ωt− k · r)φ(r, t). (X2.2.13)

(X2.2.8) now reads in terms of χ′ and χ′′ as

χ′(k, ω) = χ′(−k,−ω), (X2.2.14)

χ′′(k, ω) = −χ′′(−k,−ω). (X2.2.15)

That is, the real part of the admittance is an even function, and the imaginary part an odd
function.

X2.2.4 Warning about conventions
If the definition of the space-time Fourier transformation is different, then the signs may be
flipped. If

f(k, ω) =
∫
dr
∫
dt ei(ωt−k·r)f(r, t), (X2.2.16)

then, χ = χ′ + iχ′′ is the definition of χ′ and χ′′ (but (X2.2.9) and (X2.2.10) are intact; that
is, their definitions are consistent in different conventions). For example, the convention
of D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions
(Benjamin, 1975) and L. P. Kadanoff and P. C. Martin, “Hydrodynamic Equations and Cor-
relation Functions,” Ann. Phys. 24, 419-469 (1963) is different from ours.

X2.2.5 Dissipation and admittance
The power p(r, t)dr supplied by the force X to the volume element dr around r of the
system is the product of X and the rate of change of the conjugate density G. Here, for
simplicity, let us assume that X is a scalar (for many-variable cases →X2.2.8). Therefore,

p(r, t) = X(r, t)
∂

∂t
G(r, t). (X2.2.17)
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Let us compute the time average of the power for the following special ‘monochromatic’
perturbation

X(r, t) = Re
(
ei(ωt−k·r)X̃

)
. (X2.2.18)

Here, X̃ is called the phasor representation of the monochromatic force X (the definition is
the same as in the AC circuit theory). X̃ may be a complex number due to the phase.

The time average per unit volume 〈p〉 of the power p(r, t) is, as shown in X2.2.6, given
by

〈p〉 =
1

2
ωχ′′(k, ω)|X̃|2. (X2.2.19)

In the steady state, the power supplied by the perturbation of X must be dissipated as heat
to the heat bath. Therefore, 〈p〉 must be the energy dissipation rate by the system per unit
volume. Therefore, the second law implies that χ′′ must be nonnegative definite, or more
generally,

ωχ′′ ≥ 0. (X2.2.20)

X2.2.6 Computation of average power loss
Postponing a smart derivation to X2.2.7, let us compute p(t) according to its definition
(X2.2.17). Since

G(r, t) =
1

2

[
χ(k, ω)ei(ωt−k·r)X̃ + χ(−k,−ω)e−i(ωt−k·r)X̃∗

]
(X2.2.21)

according to (X2.2.2), we can obtain its time derivative easily. The time averaged power per
unit volume 〈p〉 may be computed as

〈p〉 =
1

V

ω

2π

∫ 2π/ω

0
dt
∫
V
dr p(r, t). (X2.2.22)

Here, V is the system volume.98

Putting (X2.2.21) and the formula for X into (X2.2.22), we obtain

〈p〉 =
1

4
[iωχ(k, ω)− iωχ(−k,−ω)] |X̃|2. (X2.2.23)

This is what we wished to demonstrate (do not forget χ′′ is defined with the negative sign
in (X2.2.11)).

X2.2.7 Phasor representation and dissipation
Let the plane wave be given as

A(t) = Re
(
eiωtÃ

)
. (X2.2.24)

We call the complex number Ã the phasor representation of A. We have introduced the
phasor representation of the thermodynamic force X̃ in X2.2.5. The time average of the

98We take the V →∞ limit after all the calculations are over.
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product of two plane waves in the form of (X2.2.24) is given by (the overline implies time
average)

AB =
1

2
Re Ã∗B̃. (X2.2.25)

The space-time average is just a simple generalization of the above result.
The perturbation result G has the following phasor representation as clearly seen from

(X2.2.21):
G̃ = χ(k, ω)X̃. (X2.2.26)

Therefore, (the overline implies time and space average; not complex conjugate)

〈p〉 = X
∂G

∂t
=

1

2
Re X̃∗(iωG̃) =

1

2
Re

(
iωχ(k, ω)|X̃|2

)
. (X2.2.27)

This is exactly (X2.2.19).

X2.2.8 Dissipation and admittance in many-variable case.
Now, let us generalize what we have accomplished in X2.2.5 to the case with many simul-
taneous perturbations. X is regarded as a vector, and so is G in X2.2.5. Therefore, the
response function or the admittance must be a matrix.

The power p(r, t)dr supplied by the force X to the volume element dr around r of the
system now reads

p(r, t) = X(r, t)T
∂

∂t
G(r, t). (X2.2.28)

Therefore, If we introduce the phasor representation (→X2.2.7) of the perturbation:

X(r, t) = Re ei(ωt−k·r)X̃, (X2.2.29)

we have

〈p〉 =
1

2
Re

(
X̃†iωχ(k, ω)X̃

)
. (X2.2.30)

Here, † is the Hermitian conjugate (transposition + complex conjugation). This should easily
be guessed from (X2.2.27).

Since iX̃X̃† is a skew-Hermitian matrix, only the skew-Hermitian part χ− of the admit-
tance matrix χ

χ− ≡
1

2
(χ− χ†) (X2.2.31)

contributes 〈p〉. Therefore,

〈p〉 =
1

2
ωReTr

(
iχ−X̃X̃

†
)
. (X2.2.32)

This must be non-negative definite due to the second law, but the constraints cannot be
written in a compact fashion.
Exercise. Suppose we have a circularly polarized magnetic field. Its phasor representation
can be (H,−iH, 0)T . Show that the power absorption rate is given by (we assume a spatially
uniform system)

p =
1

2
(χ′xy − χ′yx + χ′′xx + χ′′yy)ωH

2. (X2.2.33)

ut
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X2.2.9 Causality and analyticity of admittance
Although the perturbation result G(r, t) may depend on X(r, s) at time s different from t,
it cannot depend on X for s > t. This is causality.

Therefore, in terms of the response function φ(r, t) (→X2.2.1), the causality can be
written as

φ(r, t) = 0 if t < 0. (X2.2.34)

This may be written in terms of the admittance as

0 =
∫
dk
∫
dω ei(ωt−k·r)χ(k, ω), (X2.2.35)

if t < 0.
For t < 0 eiωt decays exponentially for |ω| → ∞ if Imω < 0 (that is, on the lower half

complex ω-plane). Therefore, (X2.2.35) implies that∮
C
dω ei(ωt−k·r)χ(k, ω) = 0. (X2.2.36)

Since the exponential factor is analytic99 in the lower half plane, this implies that χ must be
analytic in the lower half complex ω plane.100 Conversely, if χ is analytic on the lower half
complex ω-plane, then the causality holds.

In short:
Causality ⇐⇒ Analyticity of admittance on the lower half complex ω-plane.101

X2.2.10 Kramers-Kronig relation — dispersion relation
Since the admittance is analytic on the lower half ω-plane, Cauchy’s theorem tells us

0 =
∮
C

χ(k, z)

z − ω
dz, (X2.2.37)

where the integration contour C is the infinite semicircle on the lower half plane with the
straight line portion coinciding with the real axis. If ω is real, then there is a simple pole on
the contour, so we may use the Plemelij formula (→X2.2.11) to obtain

P
∫ ∞

−∞

χ(k, z)

z − ω
dz + iπχ(k, ω) = 0. (X2.2.38)

That is,

χ(k, ω) =
i

π
P
∫ ∞

−∞

χ(k, z)

z − ω
dz. (X2.2.39)

Now, we split this into real and imaginary parts of χ.

χ′(k, ω) =
1

π
P
∫ ∞

−∞

χ′′(k, x)

x− ω
dx, (X2.2.40)

χ′′(k, ω) = − 1

π
P
∫ ∞

−∞

χ′(k, x)

x− ω
dx. (X2.2.41)

99More precisely, we should use the term, holomorphic.
100This is not a trivial statement. This depends on the definition of the Fourier transformation. It is the

lower half plane with our convention.
101This was first recognized by H. Takahashi (1942).
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Here, P denotes the Cauchy principal value. These relations are know as the Kramers-Kronig
relation (dispersion relation) to physicists.102 As we will see soon, the dissipative part of χ
is experimentally easier to access (that is, χ′′ is easier to observe), so these relations may be
of practical importance to obtain χ experimentally.103

X2.2.11 Plemelij formula
The following formula is called the Plemelij formula

1

x± iε
= P

1

x
∓ δ(x), (X2.2.42)

where ε is an infinitesimal positive number. The equality holds inside the integral with re-
spect to x.104

There are several ways to demonstrate this. Perhaps the most elementary one is to use
the complex function theory. A simple pole on the integral path contributes one half of its
residue to the integral, and the remaining integral becomes the Cauchy principal value.

X2.2.12 Spectral representation
Let us reconstruct χ from its imaginary part χ′′ with the aid of the Kramers-Kronig relation
X2.2.10:

χ(k, ω) =
1

π
P
∫ ∞

−∞
dx

χ′′(k, x)

x− ω
− iχ′′(k, ω). (X2.2.43)

With the aid of the Plemelij formula (→X2.2.11), this can be rewritten as

χ(k, ω) = lim
ε→+0

1

π

∫ ∞

−∞

χ′′(k, x)

x− (ω − iε)
. (X2.2.44)

Let us define the analytical continuation of χ′′ that is analytic on the lower half ω-plane
to the upper half ω-plane as

χ̂(k, z) =
1

π

∫ ∞

−∞
dx
χ′′(k, x)

x− z
. (X2.2.45)

This has no singularity if Im z 6= 0. That is, the real axis is a branch cut. (X2.2.46) implies
that

χ(k, ω) = lim
ε→+0

= χ̂(k, ω − iε). (X2.2.46)

That is, the continuation from the lower half ω-plane gives the physically meaningful value.
Therefore, we call the lower half ω-plane as the physical sheet. Its analytical continuation
beyond the real axis gives the Riemann surface that contains the physically observable values
for real z.

The representation of χ in terms of χ′′ is called the spectral representation.

102Well known formulas for the Hilbert transformation.
103However, to use these formulas the frequency range must be sufficiently widely observed.
104so, the limit ε→ +0 is the weak limit.
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X2.3 Hydrodynamics and Response — Classical case

X2.3.1 What do we know?
If we understand the dynamics of the fluctuation of a density ψ, we can understand the
relaxation dynamics of ψ when it is displaced from the equilibrium value (0). The idea is
formulated by Onsager as the regression hypothesis (→4.1.2). We have seen that the equa-
tions of hydrodynamics can be constructed from this point of view (→5.2.5).

On the other hand, then, if we know (e.g., from experiments) the hydrodynamic behav-
ior of small deviations, we should be able to know the fluctuation dynamics (with the aid of
general kinematics in X2.2).

X2.3.2 Simple conservation law and correlation function
Let ψ be a thermodynamic density (say, the particle number density). The hydrodynamic
behavior after linearization (for small fluctuations) reads105

∂ψ

∂t
= −Lψ (X2.3.1)

with a linear operator L. The space-time correlation function S(r, t):

S(r, t) = 〈ψ(0, 0)ψ(r, t)〉 (X2.3.2)

obeys
∂

∂t
S(r, t) = −LS(r, t). (X2.3.3)

This is obtained from (X2.3.1) by multiplying ψ(0, 0) and averaging over repeated experi-
ments (sample average).106

Notice that (X2.3.3) can be used only for t > 0, but

〈ψ(0, 0)ψ(r, t)〉 = 〈ψ(−r,−t)ψ(0, 0)〉, (X2.3.4)

so
S(r, t) = S(−r,−t) (X2.3.5)

classically.107 To obtain the Fourier transform of the space-time correlation function (if ψ is
the particle number density, we are computing the dynamical form factor as we have seen in
3.7.10), we must study the analytical properties of the Laplace and the Fourier transforms
of the correlation function.

X2.3.3 Fourier and Laplace transformations of correlation functions: convention
The space-time Fourier transform of S(r, t) has been introduced as

S(k, ω) =
∫
dr
∫ ∞

−∞
dt e−i(ωt−k·r)S(r, t). (X2.3.6)

105To be faithful to Onsager’s program (→??), there must be a noise. For the time being we do not need
it. We will discuss the fluctuation-dissipation relation of the second kind later (→X2.3.15).

106There is a fluctuation due to thermal noise, but that does not contribute the averaged result.
107As we will see later (→X2.4.5), in quantum cases, ψ at different space-time points may not commute,

so this symmetry is not generally correct.
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The Fourier-Laplace transform of S(r, t) is defined as (spatially it is just the Fourier trans-
form as above, and s = iz in the usual convention of the Laplace transformation)

S[k, z] =
∫
dr
∫ ∞

0
dt e−i(zt−k·r)S(r, t). (X2.3.7)

X2.3.4 Fourier-Laplace transform of correlation function
From (X2.3.3) we obtain

izS[k, z]− S(k, t = 0) = −LkS[k, z], (X2.3.8)

or

S[k, z] =
S(k, t = 0)

iz + Lk
, (X2.3.9)

where Lk is the Fourier transform of L, and S(k, t = 0) is

S(k, t = 0) =
∫
drS(r, 0)eik·r. (X2.3.10)

S(k, t = 0) is related to the static susceptibility χ(k) as we see in X2.3.5. Therefore,
in terms of the k-dependent (static) susceptibility, we have

S[k, z] =
kBTχ(k)

iz + Lk
. (X2.3.11)

X2.3.5 k-dependent static susceptibility
By definition,

S(k, t = 0) =
∫
dr 〈ψ(0)ψ(r)〉eik·r (X2.3.12)

where 〈 〉 is the equilibrium average. If we introduce the spatial Fourier transformation of
ψ, we have

〈ψkψ−k〉 =
∫
dr
∫
dr′〈ψ(r′)ψ(r)〉eik·(r−r′) (X2.3.13)

= V
∫
dr〈ψ(0)ψ(r)〉eik·r. (X2.3.14)

Here, V is the system volume. That is,

S(k) ≡ S(k, t = 0) =
1

V
〈ψkψ−k〉. (X2.3.15)

If k = 0 (uniform perturbation), then we have

S(0) =
1

V
〈ΨΨ〉 = kBTχ, (X2.3.16)

280



where Ψ = ψk=0, which is the space integral of ψ(r) = the total amount. The susceptibility
χ here is defined per volume. Therefore, it is sensible to define the wave vector dependent
susceptibility χ(k) according to108

S(k) = kBTχ(k) =
1

V
〈ψkψ−k〉. (X2.3.17)

Note that χ(k) is real positive.

X2.3.6 Fourier transform of space-time correlation function
Let us relate the Fourier transform and the Fourier-Laplace transform.

S(k, ω) =
∫
dr
∫ ∞

−∞
dte−i(ωt−k·r)S(r, t), (X2.3.18)

= S[k, ω] +
∫
dr
∫ 0

−∞
dte−i(ωt−k·r)S(r, t), (X2.3.19)

= S[k, ω] +
∫
dr
∫ ∞

0
dtei(ωt−k·r)S(−r,−t). (X2.3.20)

If we assume that the system is space-inversion symmetric, then S(r, t) is an even function
of r and t (→(X2.3.5)), so the above result implies

S(k, ω) = S[k, ω] + S[−k,−ω]. (X2.3.21)

We know the complex conjugate of S[k, ω] is S[−k,−ω], because S(r, t) is real. There-
fore,

S(k, ω) = 2ReS[k, ω]. (X2.3.22)

This should be valid for sufficiently small ω and k. Theoretically, as we have seen, it is easier
to compute S[k, z] than S(k, ω), but experimentally, as we have already seen in 3.7.10, the
latter is more direct.

X2.3.7 Macroscopic limit is delicate
However, notice that the macroscopic limit (k, ω)→ (0, 0) is a limit to a genuine singularity:

lim
|k|→0

lim
ω→0

S(k, ω) = +∞, (X2.3.23)

lim
ω→0

lim
|k|→0

S(k, ω) = 0. (X2.3.24)

This implies that really infinitely large nonequilibrium systems are very delicate.

X2.3.8 Adiabatic turning on of perturbation
The relaxation of ψ may be studied by the linearized hydrodynamic equation (X2.3.1). The
relaxation process is started by removing the external intensive field h(r) at t = 0. Therefore,
the starting state is the equilibrium state with the external field h(r). In our setting of
the problem, we cannot obtain this state with the aid of equilibrium statistical mechanics,

108For small fluctuations, we may assume that the distribution is Gaussian: ∝ exp[−β
∑

k ψkψ−k/2V χ(k)].
This agrees with our definition of χ(k). See X2.3.12.
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because we do not know the system Hamiltonian. However, the hydrodynamic equation
must be compatible with the equilibrium statistical mechanics. Therefore, we should be able
to make the equilibrium starting state with the aid of the hydrodynamic equation.

The starting point of this relaxation process is prepared by the following “adiabatic
switching on” of the conjugate force h:

h(r, t) =

{
0 t > 0,
h(r)eεt t < 0.

(X2.3.25)

Here, ε > 0 is an infinitesimal positive number describing the very slow turning-on of the
perturbation (adiabatic turning-on).

The result of this perturbation may be written with the aid of the response function as

〈ψ(r, t)〉R =
∫
dr′

∫ 0

−∞
dt′ φ(r − r′, t− t′)h(r′)eεt′ . (X2.3.26)

From now on, let us write the suffix R to indicate that the calculated quantity is for the
relaxational experiment. Beyond t = 0 this formula describes the relaxation of the system
from the initial condition

〈ψ(r, 0)〉R =
∫
dr′

∫ ∞

0
dt′ h(r′)φ(r − r′, t′). (X2.3.27)

This value must be identical to the equilibrium response to the static field h(r). There-
fore,

〈ψ(k, t = 0)〉R = χ(k)h(k). (X2.3.28)

Exercise. Check that the above statement is consistent with (X2.3.17). ut

X2.3.9 Admittance from hydrodynamics
From (X2.3.26) we obtain

∂

∂t
〈ψ(r, t)〉R = −

∫
dr′ φ(r − r′, t)h(r′). (X2.3.29)

From this
iω〈ψ[k, ω]〉R − 〈ψ(k, t = 0)〉R = −χ(k, ω)h(k). (X2.3.30)

Here, we have used a consequence of causality (→X2.2.9): χ[k, ω] = χ(k, ω). The initial
condition is obtained from (X2.3.27) as

〈ψ(k, t = 0)〉R = χ(k)h(k). (X2.3.31)

Therefore, (X2.3.30) reads

〈ψ[k, ω]〉R =
χ(k)− χ(k, ω)

iω
h(k). (X2.3.32)

We can also compute the relaxation of ψ with the initial condition (X2.3.27) with the
aid of the hydrodynamic equation (X2.3.1) as

iω〈ψ[k, ω]〉R − χ(k)h(k) = −Lk〈ψ[k, ω]〉R. (X2.3.33)
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That is,

〈ψ[k, ω]〉R =
χ(k)

iω + Lk
h(k). (X2.3.34)

Equating (X2.3.32) and (X2.3.34), we obtain

χ(k, ω) =
Lkχ(k)

iω + Lk
. (X2.3.35)

X2.3.10 Relaxation in terms of the loss part of admittance
If we use the Kramers-Kronig relation (→X2.2.10), we have

χ(k) =
1

π
P
∫ χ′′(k, z)

z
dz, (X2.3.36)

χ(k, ω) =
1

π
P
∫ χ′′(k, z)

z − (ω − iε)
dz. (X2.3.37)

Using these relations in (X2.3.32), we obtain

〈ψ[k, z]〉R =
1

iπ
P
∫
dz

χ′′(k, z)

z(z − (ω − iε))
h(k). (X2.3.38)

X2.3.11 Fluctuation dissipation relation of the first kind
Comparing (X2.3.35) with the correlation function obtained from hydrodynamics (X2.3.22),
and noting that χ(k) is real, we may conclude that

χ′′(k, ω)

ω
=
β

2
S(k, ω). (X2.3.39)

This is called the fluctuation-dissipation relation of the first kind.
Exercise. This is easy to see if Lk is real, but this need not be assumed. Demonstrate
(X2.3.39). ut.

Clearly recognize that this general relation is based on (i) the existence of linear phe-
nomenological law (X2.3.1), (ii) space-time reversal symmetry (X2.3.5), and (iii) causality.
The statistical assumption is hidden in deriving the equation for the correlation function
from (i). That is, we have used Onsager’s regression principle (→4.1.2). Then, no micro-
scopic consideration is needed.

X2.3.12 Green-Kubo relation from hydrodynamics
Let us write the hydrodynamic equation with noise

∂ψ

∂t
= −Lψ + w. (X2.3.40)

Fourier-transforming this with space, we can regard this as a set of ordinary Langevin equa-
tions:

dψk

dt
= −Lkψk + wk. (X2.3.41)
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Then, the fluctuation dissipation relation of the first kind (→X1.1.7) should give us Lk. To
use this we must rewrite (X2.3.41) in the following form:

dψk

dt
= −Λk

∂S

∂ψ−k
+ wk. (X2.3.42)

Here, (recall the fluctuation theory, →2.8.1, 2.8.5)

S = S0 −
∑
k

ψ−kψk

2V kBTχ(k)
, (X2.3.43)

and from (X1.1.19)

Λk =
∫ ∞

0
ds

〈
dψ−k(0)

dt

dψk(s)

dt

〉
. (X2.3.44)

Therefore, Λk/V kBTχ(k) = Lk:

χ(k)Lk = β
1

V

∫ ∞

0
ds

〈
dψ−k(0)

dt

dψk(s)

dt

〉
. (X2.3.45)

This can be rewritten in terms of the flux, if ψ is conserved, as we see in X2.3.13.

X2.3.13 Generalized diffusion constant from hydrodynamics
From (X2.3.35) we obtain

lim
ω→0

lim
k→0

ω

k2
χ′′(k, ω) = Dχ, (X2.3.46)

where χ = χ(0) and
D ≡ lim

k→0
Lk/k

2. (X2.3.47)

With the aid of the fluctuation-dissipation relation (X2.3.39), this implies109

Dχ = lim
ω→0

lim
k→0

βω2

2k2
S(k, ω), (X2.3.48)

= lim
ω→0

lim
k→0

βω2

2k2

∫
dr
∫ ∞

−∞
dt e−i(ωt−k·r)〈ψ(0, 0)ψ(r, t)〉, (X2.3.49)

= lim
ω→0

lim
k→0

β

2k2

∫
dr
∫ ∞

−∞
dt e−i(ωt−k·r)

〈
∂

∂t
ψ(0, 0)

∂

∂t
ψ(r, t)

〉
. (X2.3.50)

Now, we assume that the hydrodynamic equation has the following conservation law form:

∂

∂t
ψ(r, t) = −div j(r, t). (X2.3.51)

109Detail:

ω2

∫
dt e−iωt〈ψ(0)ψ(t)〉 = −

∫
dt

(
d2

dt2
e−iωt

)
〈ψ(0)ψ(t)〉 =

∫
dt

(
d

dt
e−iωt

)
〈ψ(0)

d

dt
ψ(t)〉,

=
∫
dt

(
d

dt
e−iωt

)
〈ψ(−t) d

dt
ψ(0)〉 = −

∫
dt e−iωt

〈
d

dt
ψ(−t) d

dt
ψ(0)

〉
=
∫
dt e−iωt

〈
d

dt
ψ(0)

d

dt
ψ(t)

〉
.

The last equality is the same as the calculation in 4.1.12.
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Then, (X2.3.50) reads110

Dχ = lim
ω→0

lim
k→0

β

2k2

∫
dr
∫ ∞

−∞
dt e−i(ωt−k·r) 〈∇ · j(0, 0)∇ · j(r, t)〉 , (X2.3.52)

= lim
ω→0

lim
k→0

β

2

∫
dr
∫ ∞

−∞
dt e−i(ωt−k·r) 1

k2
〈k · j(0, 0) k · j(r, t)〉 . (X2.3.53)

That is,111

Dχ = lim
ω→0

β

2d

∫
dr
∫
dt e−iωt〈j(0, 0) · j(r, t)〉. (X2.3.54)

This is the Green-Kubo relation for D. The time integration may be from 0 to ∞ in this
formula (but without 2 in the prefactor), so for an isotropic system, we have

Dχ =
β

d

∫ ∞

0
dt
∫
dr 〈j(0, 0) · j(r, t)〉. (X2.3.55)

As is noted in X2.3.12, again this relation has been derived almost without microscopic
consideration, so it should be a reliable result.

X2.3.14 Example: particle flux and diffusion constant
Consider the solute particle number density ρ that obeys the diffusion equation:

∂ρ

∂t
= D∆ρ = −div j, (X2.3.56)

where j = −D∇ρ. Then, D in this equation is exactly the D we computed in X2.3.13, and
χ must be β〈δρδρ〉. If we may assume that solute particles are all independent, then

〈j j(t)〉 =
∑
i

〈vi vi(t)〉 = ρ〈v v(t)〉. (X2.3.57)

Also, β〈δρδρ〉 may be computed by assuming the ideal gas law, and we recover the equation
for D obtained in 3.2.9.

X2.3.15 Fluctuation-dissipation relation of the second kind
We have learned that there are two kinds of fluctuation dissipation relations. Up to this
point we have been studying the first kind. The second kind relates the noise w in the
equation in (X2.3.1) + noise (cf. 3.2.5, X1.2.6):

∂

∂t
ψ = −Lψ + w (X2.3.58)

110We assume the spatial translational symmetry. We need the same trick as used in (X2.3.50) or see
4.1.14.

111We assume the isotropy of the system:

〈kijikljl〉 = kiki〈j · j〉/d

with the summation convention.
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with L.
Let us study the same time average 〈ψ−k(t)ψk(t)〉 for a sufficiently large t. Let us write

1

V
〈w−kwk(t)〉 = 2σ(k)δ(t). (X2.3.59)

From the solution to (X2.3.58) (we may ignore the initial condition)

〈ψ−k(t)ψk(t)〉 = L−1
k σ(k). (X2.3.60)

Here, we can relate 〈ψ−k(t)ψk(t)〉 to the susceptibility in (X2.3.17), so

σ(k) = kBTLkχ(k). (X2.3.61)

This is an expression of the fluctuation-dissipation relation of the second kind, but it
can be rewritten in a more appealing form. Also notice that this is a generalization of the
Einstein relation (→3.1.3)

X2.3.16 Random current and systematic current
We have rewritten the hydrodynamic equation in the conservation form (X2.3.51). We must
also take into account the noise contribution:

∂ψ

∂t
= −div(j + j ′), (X2.3.62)

where j is the systematic flux that can be written as

−divj = −Lψ (X2.3.63)

or
ik · jk = −Lkψk = (Dk2 + o[k2])ψk. (X2.3.64)

For the long wave length limit, if we introduce the diffusion constant D as above, consistent
with the D calculated in X2.3.13,

j = −D∇ψ. (X2.3.65)

Therefore, the fluctuation dissipation relation of the second kind should relate the random
flux j ′ with D.

X2.3.17 Diffusion constant in terms of random current
Since

d

dt
ψk = −Dk2ψk + ik · j ′k, (X2.3.66)

(X2.3.61) may be written in terms of the random current as

Dk2χ(k) =
β

V

∫ ∞

0
〈k · j ′k k · j ′−k〉. (X2.3.67)

That is,

Dχ = lim
k→0

β

dV

∫ ∞

0
〈j ′k · j

′
−k〉. (X2.3.68)

Thus, we have arrived at a different expression ofD, but must be equal to the result (X2.3.55).
Note that in our case time decay is fast enough. In such cases, this equality is a general result.
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X2.4 Hydrodynamics and Response — Quantum case

The correlation function S(r, t) for a classical case is an even function of time (→X2.3.2)
thanks to the commutativity of observables. However, in the quantum case, this is not
generally true, so the Fourier-Laplace transform of the correlation function and its Fourier
transform are not related simply as in X2.3.6. If we admit the following manifestly quantum
mechanical relation (→X2.4.5)

S(k, ω) = e−βh̄ωS(−k,−ω), (X2.4.1)

where h̄ is the Dirac constant, as a macroscopic relation, then we can almost mimic what
we have done for the classical case.112

However, this may not be very intuitive. Therefore, our strategy is to derive the above
relation from the calculation of the loss part of the admittance χ′′ (→X2.2.3).

X2.4.1 Quantum transition rate due to external force
Let us apply a monochromatic stimulus (in phasor representation →X2.2.7)

h(r, t) = Reh(k, ω)ei(ωt−k·r). (X2.4.2)

Then, the space-time-averaged power loss reads (→X2.2.7)

〈p〉 =
1

2
ωV χ′′(k, ω)|h(k, ω)|2, (X2.4.3)

where V is the system volume.
The power absorbed by the system is lost as heat, so the power loss can be computed,

if we can compute the transition probability due to the perturbation (X2.4.2).
If we assume that h to be the (energetic) conjugate variable of the thermodynamic

density ψ, the perturbation Hamiltonian (in the Schrödinger picture; the observable ψ is not
time-dependent) reads113

h = −
∫
dr h(r, t)ψ(r) = −Reh(k, ω)ψ(−k)eiωt. (X2.4.4)

The golden rule tells us that the transition probability rate (probability per unit time) is
given by114

Wi→f =
π

2h̄2 |〈i|h(k, ω)ψ(−k)|f〉|2δ(ωf − ωi − ω), (X2.4.5)

where ωf = Efinal/h̄ and ωi = Einitial/h̄.

112This is essentially the Callen and Welton theory generalizing Nyquist’s theorem: H. B. Callen and T.
A. Welton, “Irreversibility and generalized noise,” Phys. Rev. 83, 34-40 (1951).

113Why is there a minus sign such as −HM , even though in the Gibbs relation dE = · · · + HdM + · · ·?
Here, H is given, and we do not pay any attention to the energy required to change the field. Therefore,
we must consider the energy change of the system under the given H; if due to H M changes by dM , the
energy of the magnetic system actually decreases by HdM .

114Spontaneous emission is negligible.
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X2.4.2 Transition rate in terms of equilibrium average
With the transition rate given by (X2.4.5), the absorption rate p(k, ω) of the energy quantum
h̄ω from the monochromatic perturbation (X2.4.2) is given by

p(k, ω) =
∑
i,f

ρiWi→f , (X2.4.6)

where ρi is the initial distribution ρi ∝ e−βEinitial = e−βh̄ωi (ρi = 〈i|ρe|i〉, where |i〉 is the
initial eigenstate; there are many different initial states). Introducing (X2.4.5) into this, we
obtain (cf., calculation in 3.7.10)

p(k, ω) =
∑
i,f

ρi
1

4h̄2 |〈i|h(k, ω)ψ(−k)|f〉|2
∫ ∞

−∞
dt eit(ωf−ωi−ω), (X2.4.7)

=
1

4h̄2 |h(k, ω)|2
∑
if

∫ ∞

−∞
dt 〈i|ρeψ(−k)|f〉〈f |eiHt/h̄ψ(k)e−iHt/h̄|i〉e−iωt,

(X2.4.8)

=
1

4h̄2 |h(k, ω)|2
∫ ∞

−∞
dt e−iωtTr(ρeψ(−k)ψ(k, t)), (X2.4.9)

=
1

4h̄2 |h(k, ω)|2
∫ ∞

−∞
dt e−iωt〈ψ(−k)ψ(k, t)〉. (X2.4.10)

Here, ψ(k, t) is the Heisenberg representation

ψ(k, t) = eiHt/h̄ψ(k)e−iHt/h̄. (X2.4.11)

Thus, the final result reads

p(k, ω) =
V

4h̄2S(k, ω)|h(k, ω)|2. (X2.4.12)

Since ψ is real, notice ψ(k)∗ = ψ(−k). If the reader recalls the spectral analysis of noise
(→3.7.4), she should have seen that the last term in p(k, ω) is related to the space-time
correlation function of ψ (→(X2.3.15)).

X2.4.3 Relation between transition rate and correlation function
We have

〈ψ(−k)ψ(k, t)〉 =
∫
dr1

∫
dr2 〈e−ik·r1ψ(r1, 0)eik·r2ψ(r2, t)〉, (X2.4.13)

=
∫
dρ
∫
dr1 e

ik·ρ〈ψ(r1, 0)ψ(r1 + ρ, t)〉, (X2.4.14)

= V S(k, t), (X2.4.15)

which is the spatial Fourier transform of the space-time correlation function

C(r, t) = 〈ψ(0, 0)ψ(r, t)〉, (X2.4.16)

S(k, ω) =
∫
dr
∫
dtC(r, t)e−i(ωt−k·r). (X2.4.17)
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This is essentially the Wiener-Khinchine theorem (→3.7.5).
Combining (X2.4.10) and (X2.4.15), we obtain

p(k, ω) =
V

4h̄2S(k, ω)|h(k, ω)|2. (X2.4.18)

X2.4.4 Power absorption or energy dissipation rate
p(k, ω) given by (X2.4.18) is the transition rate of the system in equilibrium by absorbing the
energy quantum h̄ω. The same perturbation (X2.4.2) also induces the opposite transition:
the emission h̄ω. This rate is given by

p(−k,−ω) =
V

4h̄2S(−k,−ω)|h(k, ω)|2. (X2.4.19)

Therefore, the net power absorption (loss) by the system is given by

〈p〉 = h̄ω[p(k, ω)− p(−k,−ω)]. (X2.4.20)

With the aid of (X2.4.18) and (X2.4.3), we arrive at

χ′′(k, ω) =
1

2h̄
[S(k, ω)− S(−k,−ω)]. (X2.4.21)

As seen from h̄ in the denominator, this is purely quantum mechanical. That is why this
formula cannot be derived without mechanical considerations.

However, never regard the above derivation of (X2.4.21) a respectable first principle
calculation. We have assumed that the system is in equilibrium despite the steady energy
input due to the perturbation (X2.4.2). Our system Hamiltonian H is the Hamiltonian of
an isolated system, so with this perturbation the system, honestly computed as a quan-
tum mechanical system, must eventually be hot, but the dissipated energy is assumed to be
harmlessly discarded.115

X2.4.5 Relation between S(k, ω) and S(−k,−ω)
To obtain the relation corresponding to (X2.3.39), we need a relation between S(k, ω) and
S(−k,−ω). In the classical case this is easy (→X2.3.6), and everything could be done
without detailed mechanics, so we could totally avoid the serious difficulty inherent in its
purely mechanical derivation mentioned at the end of X2.4.4.

Notice that
S(k, ω)

S(−k,−ω)
=

p(k, ω)

p(−k,−ω)
=

∑
i,f ρiWi→f∑
i,f ρfWf→i

(X2.4.22)

thanks to (X2.4.18) and (X2.4.6).
For all the pairs (i, f) there is a one to one correspondence between the terms i→ f on

the denominator and f → i on the numerator. Wi→f = Wf→i due to the Hermitian nature of

115If there is no dissipation, then the mechanical derivation can even be regorized. This is the case of the
Hall conductance. In this case the electrical current and the driving electric field are orthogonal, so there is
no dissipation due to the Hall effect.
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the perturbative Hamiltonian.116 For each pair (i, f) for which Wi→f 6= 0 Efinal − Einitial =
h̄ω. Hence,

ρf = e−βh̄ωρi. (X2.4.23)

Thus we have arrived at the following fundamental relation (an example of the KMS condition
X2.4.11):

S(−k,−ω) = e−βh̄ωS(k, ω). (X2.4.24)

X2.4.6 Fluctuation dissipation relation for quantum case
With the aid of (X2.4.24) (X2.4.21) reads

χ′′(k, ω) =
1

2h̄
(1− e−βh̄ω)S(k, ω). (X2.4.25)

This is the fluctuation dissipation relation of the first kind.
Notice that the classical limit h̄→ 0 of the above formula indeed reduces to the classical

result (X2.3.39).

X2.4.7 Relation between χ′′ and commutator
Let us rewrite (X2.4.21) with the aid of (X2.4.17) as

χ′′(k, ω) =
1

2h̄

∫
dr
∫
dt 〈ψ(0, 0)ψ(r, t)〉

[
e−i(ωt−k·r) − e−i(−ωt+k·r)

]
, (X2.4.26)

=
1

2h̄

∫
dr
∫
dt [〈ψ(0, 0)ψ(r, t)〉 − 〈ψ(r, t)ψ(0, 0)〉] e−i(ωt−k·r).

(X2.4.27)

Therefore,

χ′′(k, ω) =
1

2h̄

∫
dr
∫
dt 〈[ψ(0, 0), ψ(r, t)]〉e−i(ωt−k·r). (X2.4.28)

Here, we have assumed that the system is translationally symmetric in space and time.

X2.4.8 Response function is essentially a commutator
We know we can reconstruct the whole admittance from its loss part with the aid of the
Kramers-Kronig relation (the spectral representation →X2.2.12).

We make (X2.2.45):

χ̃(k, z) =
1

2h̄π

∫
dr
∫
dt
∫ ∞

−∞
dω

e−i(ωt−k·r)

ω − z
〈[ψ(0, 0), ψ(r, t)]〉, (X2.4.29)

= − i
h̄

∫
dr
∫
dt〈[ψ(0, 0), ψ(r, t)]〉Θ(t)e−i(ωt−k·r), (X2.4.30)

where Θ(t) is the Heaviside step function. Therefore, (X2.2.46) tells us

χ(k, ω) =
i

h̄

∫
dt
∫
dr〈[ψ(0, 0), ψ(r, t)]〉e−i(ωt−k·r)Θ(t). (X2.4.31)

That is,

φ(r, t) =
i

h̄
〈[ψ(0, 0), ψ(r, t)]〉Θ(t). (X2.4.32)

116This is a perturbative version of the detailed balance (→2.7.6) of mechanics.
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X2.4.9 Green-Kubo relation: quantum version
We have derived the Green-Kubo relation for the classical case (→X2.3.12, X2.3.13).
There, the diffusion constant is related to the correlation function.

Quantum mechanically, let us consider the symmetrized correlation first:∫
dr
∫
dt 〈[ψ(0, 0), ψ(r, t)]+〉e−i(ωt−k·r) = S(k, ω) + S(−k,−ω). (X2.4.33)

Here, [A,B]+ = AB+BA is the anticommutator. Thanks to the following relations obtained
from (X2.4.25), we have

1

2h̄
S(k, ω) =

χ′′(k, ω)

1− e−βh̄ω
, (X2.4.34)

1

2h̄
S(−k,−ω) =

χ′′(k, ω)

eβh̄ω − 1
. (X2.4.35)

(X2.4.33) now reads

1

2h̄

∫
dr
∫
dt 〈[ψ(0, 0), ψ(r, t)]+〉e−i(ωt−k·r) = χ′′(k, ω) coth

βh̄ω

2
. (X2.4.36)

Since the relation (X2.3.46) comes from the phenomenological equation that defines D,
we compute this with the aid of (X2.4.36):

Dχ = lim
ω→0

lim
k→0

1

2h̄
tanh

βh̄ω

2

ω

k2

∫
dr
∫
dt 〈[ψ(0, 0), ψ(r, t)]+〉e−i(ωt−k·r),

(X2.4.37)

= lim
ω→0

β

4d

∫
dr
∫
dt e−iωt〈[j(0, 0), j(r, t)]+〉. (X2.4.38)

This is the quantum version of the Green-Kubo relation for D.

X2.4.10 Relation between S(k, ω) and S(−k,−ω) revisited
In X2.4.5 we have related S(k, ω) and S(−k,−ω) with the aid of physical reasoning. Here,
let us reconsider the relation from the symmetry point of view.

S(−k,−ω) =
∫
dr
∫
dt ei(ωt−k·r)〈ψ(0, 0)ψ(r, t)〉, (X2.4.39)

=
∫
dr
∫
dt e−i(ωt−k·r)〈ψ(0, 0)ψ(−r,−t)〉. (X2.4.40)

Here, we have changed the integration variables as t→ −t and r → −r. Explicitly writing
the equilibrium average in terms of the canonical density operator, we have

S(−k,−ω) =
1

Z

∫
dr
∫
dt e−i(ωt−k·r)Tr

(
e−βHψ(r, t)ψ(0, 0)

)
, (X2.4.41)

=
1

Z

∫
dr
∫
dt e−i(ωt−k·r)Tr

(
ψ(0, 0)e−βHψ(r, t)

)
. (X2.4.42)
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Here, in the first line we have translated the coordinates, and then cyclic permutation of
operators has been done in the trace.

Now, we wish to explicitly write ψ(r, t) as an operator in the Heisenberg picture:

S(−k,−ω) =
1

Z

∫
dr
∫
dt e−i(ωt−k·r)Tr

(
ψ(0, 0)e−βHψ(r, t)eβHe−βH

)
, (X2.4.43)

=
1

Z

∫
dr
∫
dt e−i(ωt−k·r)Tr

(
e−βHψ(0, 0)e(i/h̄)H(t+iβh̄)ψ(r, 0)e−(i/h̄)H(t+iβh̄)

)
.

(X2.4.44)

That is,

S(−k,−ω) =
∫
dr
∫
dt e−i(ωt−k·r)

〈
ψ(0, 0)e(i/h̄)H(t+iβh̄)ψ(r, 0)e−(i/h̄)H(t+iβh̄)

〉
. (X2.4.45)

Introducing the new variable τ = t+ iβh̄, and noting that A(τ) = eiHτ/h̄Ae−iHτ/h̄, the above
relation reads

S(−k,−ω) = e−βh̄ω
∫
dr
∫ ∞+iβh̄

−∞+iβh̄
dτ e−i(ωτ−k·r)〈ψ(0, 0)ψ(r, τ)〉, (X2.4.46)

This is close to what we wish to have:

S(−k,−ω) = e−βh̄ωS(k, ω). (X2.4.47)

We need an extra condition, the KMS condition X2.4.11, to reach it.

X2.4.11 Kubo-Martin-Schwinger condition If S(r, t) is analytic as a function of t on
the strip Im z ∈ (0, βh̄), we may move the integration path for τ in (X2.4.47) to the real
axis, so, we obtain

S(−k,−ω) = e−βh̄ωS(k, ω). (X2.4.48)

This equality is what we have used in the derivation of the fluctuation dissipation relation
(→(X2.4.24)).

The analyticity condition on the strip Im t ∈ (0, βh̄) of the correlation function is called
the Kubo-Martin-Schwinger condition (KMS condition).

X2.4.12 Importance of KMS condition
The KMS condition may be summarized as follows:
KMS condition. Let Tt be the time evolution operator of a system and A and B be
arbitrary observables of the system (e.g., TtA(s) = A(s+ t)). The density operator ρ (often
called a state) is said to satisfy the KMS condition for a positive number β and for Tt, if

FAB(t) = TrρATtB = 〈AB(t)〉 (X2.4.49)

is analytic on the strip Im t ∈ (0, βh̄). ut
Notice that

FBA(t) = 〈BA(t)〉 = FAB(t+ iβh̄). (X2.4.50)

The KMS condition characterizes the equilibrium Gibbs state. A remarkable thing is
that Gibbs state dictates the time evolution operator conversely:
Roughly speaking,
(1) Tt = eiHt/h̄ and ρ satisfies the KMS condition for some β and for Tt, then ρ ∝ e−βH .117

(2) ρ ∝ e−βH satisfies the KMS condition for some β and for Tt, then Tt = eiHt/h̄.118ut

117Cf. R B Israel, Convexity in the Theory of Lattice Gases (Princeton UP).
118The Tomita-Takesaki theory, there is no good introduction.
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X2.5 Linear Response — General Theory

X2.5.1 Time evolution of entropy operator in open system119,
LetHu be the Hamiltonian of an isolated system that consists of a system under consideration
+ its surrounding reservoirs

Hu = H +Hr + U, (X2.5.1)

where H is the system’s intrinsic Hamiltonian, Hr the Hamiltonian of the reservoirs, and U
the system-reservoir interaction Hamiltonian. The equation of motion for the full density
operator ρu is

ih̄
dρu
dt

= [Hu, ρu] (X2.5.2)

The system density operator ρ is obtained as ρ = Trrρu, where Trr traces out the bath
states. Therefore,120

ih̄
dρ

dt
= [H, ρ] + Trr[U, ρu]. (X2.5.3)

The last term is the effect of the baths. If we could write

Trr[U, ρu] = [h, ρ] (X2.5.4)

with the aid of a certain operator h, then the system virtually behaves just as an isolated
system. Therefore, such a rewriting should not be possible. Since the equation must be a
linear equation, (X2.5.3) should have the following form

ih̄
dρ

dt
= [H ′, ρ] + ih̄qρ, (X2.5.5)

where the operator q describes the effects of baths that cannot be absorbed in an effective
Hamiltonian H ′ and will be specified later with the aid of phenomenology.

Let us introduce
η ≡ log ρ, (X2.5.6)

which is called the entropy operator of the system. It is easy to check

ih̄
d

dt
η = [H ′, η] + ih̄q. (X2.5.7)

We must express q with the aid of phenomenological considerations. (X2.5.7) suggests
that q must be related to the surface term in the entropy balance equation expressed in terms
of the fluxes corresponding to thermodynamic densities. Therefore, q is the divergence of
the entropy flux.

q = −div
(
k−1
B

∑
i

·Fiji
)
. (X2.5.8)

119The exposition here is based on J. A. McLennan, Introduction to Nno-Equilibrium Statistical Mechanics,
(Prentice Hall, 1989), but there may be sign mistakes.

120Only an honest calcualtion is needed: for example, Trr(Hρu) = Hρ and Trr[Hr, ρ] = 0, because the
system variables not traced out are just mere parameters.
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Here, ji are understood as functions of the dynamical variables of the system. Let the time
evolution operator corresponding to H ′ be T (t). Then, starting from the local equilibrium

distribution specified by Ai as ρ0 ∝ exp
(

1
kB

∑
i Fi(r)Ai(r)

)
, we obtain

η(t) = φ(t) +
1

kB

∑
i

∫
dr Fi(r)T (−t)Ai(r)− 1

kB

∑
i

∫ t

0
ds
∫
∂S
dS · Fi(r, s)T (s− t)ji(r, s),

(X2.5.9)
where φ is determined by the normalization condition, ∂S is the boundary of the system,
and S is the surface element.

Now, note the following relations (we have only to compute (X2.5.9) for each i) :

F (r)T (−t)A(r) = F (r)A(r,−t) = −
∫ t

0
ds

∂

∂s
[F (r, s)A(r, s− t)] + F (r, t)A(r),

= F (r, t)A(r)−
∫ t

0
ds
∂F (r, s)

∂s
A(r, s− t)−

∫ t

0
dsF (r, s)

∂A(r, s− t)
∂s

,

(X2.5.10)

and∫ t

0
ds
∫
∂S
dS · F (r, s)T (s− t)j(r, s) =

∫ t

0
ds
∫
dr div [F (r, s)T (s− t)j(r, s)] . (X2.5.11)

Therefore,∫
dr F (r)T (−t)A(r)−

∫ t

0

∫
∂S
dS · F (r, s)T (s− t)j(r, s)

=
∫
dr F (r, t)A(r)−

∫ t

0
ds
∫
dr

∂F (r, s)

∂s
A(r, s− t)−

∫ t

0
ds
∫
dr F (r, s)

∂A(r, s− t)
∂s

−
∫ t

0

∫
dr div [F (r, s)T (s− t)j(r, s)] ds,

(X2.5.12)

=
∫
dr F (r, t)A(r)−

∫ t

0
ds
∫
dr

(
∂F (r, s)

∂s
A(r, s− t) +∇F (r, s) · j(r, s− t)

)
(X2.5.13)

=
∫
dr F (r, t)A(r)−

∫ 0

−t
ds
∫
dr

(
∂F (r, t+ s)

∂s
A(r, s) +∇F (r, t+ s) · j(r, s)

)
.

(X2.5.14)

Here, we have used the conservation law:

∂A

∂t
= −divj. (X2.5.15)

Taking into account the time scales as Mori’s original approaches, the above result can be
molded into the final form:

η(t) = φ(t)+
1

kB

∫
dr F (r, t)A(r)− 1

kB

∫ 0

−t
ds
∫
dr

(
∂F (r, t+ s)

∂s
A(r, s) +∇F (r, t+ s) · j(r, s)

)
.

(X2.5.16)
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X2.5.2 Nonequilibrium statistical operator121

Now, to obtain the nonequilibrium statistical operator = density operator for nonequilibrium
states we exponentiate η as ρ = eη. To use it for the first order calculation, we must expand
it in terms of δη. This can be done with the aid of (4.3.9). Thus,

ρ(t) = ρL(t)

1− T
∫ 0

−∞
du
∫
dr

∑
j

eεu
∫ β

0
dλ

[
∇Fj(r, t+ u) · jj(r, u+ iλh̄)

+
∂

∂u
Fj(r, t+ u)Âj(r, u+ iλh̄)

]}
. (X2.5.17)

For the case without spatial dependence this reads

ρ(t) = ρe

1− T ∫ 0

−∞
du

∑
j

eεuFj(t+ u)
∫ β

0
dλ ˆ̇Aj(u+ iλh̄)

 . (X2.5.18)

X2.5.3 Response function
Let us consider a system under a perturbation that perturb Â directly. For simplicity, we
assume that the system is spatially uniform. Let us assume the perturbative Hamiltonian
to be

h = −X(t)Â. (X2.5.19)

The effect may be expressed in terms of the nonequilibrium statistical operator (→(X2.5.18))
as follows122

ρ(t) = ρe

[
1 +

∫ 0

−∞
duX(t+ u)

∫ β

0
dλ

˙̂
A(u− iλh̄)

]
. (X2.5.20)

Here, we set −TF = X. The average of another observable B is given by (let us assume, for
simplicity, that its average is zero in equilibrium (without the perturbation))

〈B〉(t) =
∫ 0

−∞
duX(t+ u)

∫ β

0
dλ 〈 ˙̂A(u− iλh̄)B〉e, (X2.5.21)

=
∫ t

−∞
duX(s)β〈 ˙̂A(s− t);B〉e. (X2.5.22)

Therefore, the response function φBA reads

φBA(t) = β〈 ˙̂A;B(t)〉e. (X2.5.23)

This can be further transformed to our familiar form in terms of the commutator (→X2.4.8)
with the aid of Kubo’s identity (→X2.5.4).

121This form was obtained by Nakajima (1957) and Zubarev (1961-5). D. N. Zubarev, Nonequilibrium
Statistical Mechanics (Consultants Bureau, New York, 1974).

122The mismatch of the normalization constants due to perturbation does not contribute the final result,
so long as we use the operator to compute the expectation values of the obaservables whose equilibrium
averages vanish.

295



X2.5.4 Kubo identity
To show (X2.5.27) we start with

d

dβ
[Â, ρe] = −ih̄ ˙̂

Aρe −H[Â, ρe]. (X2.5.24)

Now, let us write
[Â, ρe] = ρeC(β). (X2.5.25)

Put this into (X2.5.24), and we obtain

Ċ(β) = −ih̄ ˆ̇A(−iβh̄). (X2.5.26)

This is

[ρe, Â] = ih̄
∫ β

0
dλ ρe

˙̂
A(−iλh̄) (X2.5.27)

This is called Kubo’s identity.

X2.5.5 Response function in terms of commutator
Let us use Kubo’s identity (X2.5.27) to rewrite (X2.5.23) as

φBA(t) =
1

ih̄
T r

(
[ρe, Â(−t)]B

)
, (X2.5.28)

=
1

ih̄

∫ β

0
dλTr(ρe[Â(−t), B]). (X2.5.29)

Therefore, we have arrived at the formula we already know:

φBÂ(t) =
i

h̄
T rρe[B(t), Â]. (X2.5.30)

This is essentially the form we already know (→X2.4.8).

X2.5.6 Response function: spatially nonuniform case
It should be almost obvious that

φBÂ(r, t) =
i

h̄
T rρe[B(r, t), Â(0, 0)]. (X2.5.31)

X2.5.7 Canonical correlation function: summary
We have already introduced the canonical correlation function (→4.3.5)123

〈X;Y 〉 = kBT
∫ β

0
dλTr(ρeX(−iλh̄)Y ). (X2.5.32)

123Here, for simplicity, we discuss only the cases with X and Y being self-adjoint.
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In terms of this the response function may be written, as we know well by now (→X2.5.3)

φBÂ(t) = β〈 ˆ̇A(0);B(t)〉 = −β〈Â; Ḃ(t)〉. (X2.5.33)

We have already seen how natural the canonical correlation function is in various contexts.124

Let us summarize its properties.
[A] 〈X;Y 〉 is a scalar product. That is,

(i) 〈X;Y 〉 = 〈Y ;X〉,
(ii) bilinear,
(iii) 〈X;X〉 ≥ 0 and X = 0 iff 〈X;X〉 = 0.

[B] Stationarity: 〈X(t);Y (t+ s)〉 = 〈X;Y (s)〉.
[C] 〈X;Y 〉 is real.125

[D] Symmetry: 〈X;Y 〉 = 〈Y ;X〉.
[E] Let L be the Liouvillian (→X1.2.4) of the natural motion. Then

〈LX;Y 〉 = 〈X;LY 〉. (X2.5.34)

[F] Reciprocity:
〈X;Y (t)〉H ,ω = εXεY 〈Y ;X(t)〉−H ,−ω. (X2.5.35)

Here, H is the magnetic field and ω is the rotation angular velocity.
Using [F] and (X2.5.33), we conclude

φBA(t)H ,ω = εAεBφAB(t)−H ,−ω. (X2.5.36)

It is a good exercise to demonstrate [A] - [F].

X2.5.8 Symmetrized correlation functions
We know that replacing the correlation function with the canonical correlation function, we
can generalize the classical results to their quantum counterparts. However, initially it was
thought that symmetrization of correlations 〈AB〉 → 〈AB+BA〉/2 was the right procedure
for this generalization. Let us define the symmetrized correlation function

C(X;Y ) ≡ 1

2
Trρe[XY + Y X]. (X2.5.37)

Its salient features may be summarized as follows:
[A] C(X;Y ) is a scalar product:

(i) C(X;Y ) = C(Y ;X),
(ii) bilinear,
(iii) C(X;X) ≥ 0 and X = 0 iff C(X;X) = 0.

[B] Stationarity: C(X(t);Y (t+ s)) = C(X;Y (s)).
[C] C(X;Y ) is real.126

[D] Symmetry: C(X;Y ) = C(Y ;X).
[E] Let L be the Liouvillian (→) of the natural motion. Then

C(LX;Y ) = C(X;LY ). (X2.5.38)

124It is the retarded two time Green’s function in the field theoretical approach to many body theory.
125if X and Y are self-adjoint, but here we assume this.
126if X and Y are self-adjoint, but throughout this section we assume dynamical operators are all self-

adjoint.
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[F] Reciprocity:
C(X;Y (t))H ,ω = εXεYC(Y ;X(t))−H ,−ω. (X2.5.39)

Here, H is the magnetic field and ω is the rotation angular velocity.
Thus, there is a very good parallelism between the canonical and symmetrized cor-

relation functions. Their precise relation is the fluctuation dissipation relation originally
obtained by Callen and Welton.127

X2.5.9 Relation between canonical and symmetrized correlations
The canonical correlation is closely related to responses, and (symmetrized) correlations are
more directly related to observable quantities such as scattering functions and power spectra.
Therefore, it should be very convenient, if we have a direct relation between them. Actually,
this direct relation is the essence of fluctuation dissipation relations.

The relation we seek is

βh̄ω

2
coth

βh̄ω

2

∫
dt 〈X−k(0);Yk(t)〉e−iωt =

∫
dtC(X−k;Yk(t))e−iωt. (X2.5.40)

Let us start from the canonical correlation: Since Y ρe = ρeY (−iβ) (→(4.3.10))∫
dt e−iωtTr(ρeX−k(0)Yk(t)) =

∫
dt e−iωtTr(X−k(0)ρeYk(t− βih̄)), (X2.5.41)

=
∫
dt e−iωtTr(ρeYk(t− iβh̄)X−k(0)). (X2.5.42)

Now, we assume the KMS condition (→X2.4.12):

=
∫
dt e−iω(t+iβh̄)Tr[ρeYk(t)X−k(0)), (X2.5.43)

= eβh̄ω

∫
dt e−iωt〈Yk(t)X−k(0)〉e. (X2.5.44)

Therefore, with the aid of symmetry, from this we obtain∫
dt e−iωtC(X−k;Yk(t)) =

1
2
(1 + eβh̄ω)

∫
dt e−iωt〈X−kYk(t)〉e. (X2.5.45)

On the other hand, we have∫
dt e−iωtTr(ρe[X−k, Yk(t)]) = (1− eβh̄ω)

∫
dt e−iωt〈X−kYk(t)〉e. (X2.5.46)

Now, we use the two expressions of the response function (→(X2.5.30), (X2.5.33))

i

h̄
T r(ρe[X−k, Yk(t)]) = −β〈X−k; Ẏk(t)〉. (X2.5.47)

Therefore, (X2.5.46) reads∫
dt e−iωt〈X−k; Ẏk(t)〉 =

i

βh̄
(1− eβh̄ω)

∫
dt e−iωt〈X−kYk(t)〉e. (X2.5.48)

Combining this and (X2.5.45), we obtain the desired relation (X2.5.40).

127H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
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X2.6 NMR Spectrum

Here is a highly simplified exposition of the Kubo-Tomita theory128 of magnetic resonance
spectrum.

This is the first systematic and general statistical mechanical study of phenomena in-
volving dissipation. However, spins do not flow under the external perturbation, so there
is a considerable difference between the spectrum problem and the electrical conductivity
discussed in the next section.

X2.6.1 Magnetic resonance spectrum
Magnetic resonance spectrum observes the energy absorption by a sample from the magnetic
field. Therefore, the driving force is H , and the conjugate displacement is the system
magnetization M . The response function describing the response of the magnetization due
to the perturbative magnetic field is φMM (→X2.5.3):

φMM (t) = β〈Ṁ ; M(t)〉. (X2.6.1)

The absorption spectrum is determined by the loss part of the admittance, the Fourier
transform of the response function. We know the power absorption is (→X2.2.8)

p =
1

2
Re

(
iωχMM (ω)ĤĤ

†
)
. (X2.6.2)

X2.6.2 Circularly and linearly polarized magnetic fields
The phasor representation of the magnetic field is Ĥ = (H,−iH, 0)T . Therefore, (→X2.2.8)

p =
1

2
(χ′xy − χ′yx + χ′′xx + χ′′yy)ωH

2. (X2.6.3)

Here, ′ implies the real part, and ′′ implies the imaginary part.
For linearly polarized magnetic field,

p =
1

2
ωχ′′xxH

2. (X2.6.4)

X2.6.3 Admittance in terms of canonical correlation
Due to causality (→X2.2.9), the Fourier transformation is given by

χMM (ω) =
∫ ∞

0
dt e−iωtφMM (t). (X2.6.5)

In particular, 〈Mx;Mx(t)〉 is real from [E] of X2.5.7, so we obtain

χ′′xx(ω) = ω
∫ ∞

0
dt cosωt β〈Mx;Mx(t)〉. (X2.6.6)

128R. Kubo and K. Tomita, “A general theory of magnetic resonance absorption, ”J. Phys. Soc. Jpn. 9,
888-919 (1954).
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X2.6.4 Calculation of canonical correlation function: strategy
To compute the canonical correlation function, we need M(t). To compute this we need its
equation of motion. To this end we write down the Hamiltonian H:

H = H1 +H2 +H ′ = H0 +H ′, (X2.6.7)

where H1 is the Hamiltonian of the spin system (the system that absorbs the energy from the
magnetic field), H2 is the so-called lattice system (the Hamiltonian governing the degrees
of freedom of the system other than spins), and H ′ is the interaction between these two
subsystems. We assume

[H1, H2] = 0, [H2,M ] = 0. (X2.6.8)

Therefore, the equation of motion for the total magnetization in the Heisenberg picture reads

ih̄
dM

dt
= [M,H1 +H ′]. (X2.6.9)

Here, deliberately M lacks any suffix. Any component or linear combination of them obeys
this equation.

We solve this equation (at least formally), and then compute the canonical correlation
function. Since we do not honestly study the motion of the whole system, the perturbative
Hamiltonian H ′ must be appropriately modeled. Usually, we assume that this interaction
fluctuates stochastically.

X2.6.5 Approximate expression of the canonical correlation
Let the time evolution operator for the system be T :

ih̄
dT

dt
= (H0 +H ′)T. (X2.6.10)

Let T0 be the time evolution operator of the unperturbed (non-interacting) system:

T0 = e−iH0t/h̄. (X2.6.11)

and define τ as T = T0τ . Then,

T0ih̄
dτ

dT 0
= H ′T0τ, (X2.6.12)

Introducing the Dirac representation of H ′:

H̃ ′ = T−1
0 H ′T0 = eiH0t/h̄H ′e−iH0t/h̄, (X2.6.13)

we obtain the equation of motion for τ :

ih̄
d

dt
τ = H̃ ′(t)τ. (X2.6.14)

Here, the time dependence of the interaction Hamiltonian is explicitly denoted. Its formal
solution reads

τ = T exp
[
i

h̄

∫ t

0
H̃ ′(t)dt

]
, (X2.6.15)
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where T is the chronological operator that rearranges everything on its right hand side in the
increasing order of time t.129 The Heisenberg representation of M can be written formally
as130

M(t) = τ−1M̃τ = T exp
[
i

h̄

∫ t

0
H̃ ′×(t)dt

]
M̃(0) = T exp

[
i

h̄

∫ t

0
H̃ ′×(t)dt

]
M(0). (X2.6.16)

Therefore,

Φ(t) ≡ 〈M(0);M(t)〉

= β−1
∫ β

0
dλTr

{
ρ0e

λH0/h̄Me−λH0/h̄e−iH0t/h̄T exp
[
i

h̄

∫ t

0
H̃ ′×(t)dt

]
MeiH0t/h̄

}
(X2.6.17)

= β−1
∫ β

0
dλTr

{
ρ0e

i(−iλ+t)H0/h̄Me−i(−iλ+t)H0/h̄T exp
[
i

h̄

∫ t

0
H̃ ′×(t)dt

]
M
}
.

(X2.6.18)

Here, ρ0 ∝ e−βH0 . Kubo and Tomita computed this with the high temperature approxima-
tion:

Φ(t) = Trρ0M exp
[
i

h̄

∫ t

0
H ′×(t)dt

]
M. (X2.6.19)

X2.6.6 Stochastic approximation of the canonical correlation
Now we assume that H ′ is fluctuating stochastically, and apply the second cumulant approx-
imation to Φ:131

Φ(t) = exp
[
− 1

h̄2

∫ t

0
dt1

∫ t1

0
dt2 Tr

{
ρ0MH̃ ′×(t1)H̃

′×(t2)M
}]
. (X2.6.20)

To go further we write the interaction Hamiltonian as132

H̃ ′(t) =
∑
α

eiωαtH ′
α(t). (X2.6.21)

Notice that H ′∗
α (t) = H ′

−α(t) due to the Hermitian property of the Hamiltonian.
We must compute

Tr
(
ρ0MH ′×

α (t1)H
′×
β (t2)M

)
= Tr

(
MH ′×

α (t1)H
′×
β (t2)Mρ0

)
, (X2.6.22)

= Tr
(
[M,H ′

α(t1)] [H
′
β(t2),Mρ0]

)
, (X2.6.23)

= Tr
(
[M,H ′

α(t1)] ([H
′
β(t2),M ]ρ0] +M [H ′

β, ρ0])
)
. (X2.6.24)

129This is the usual starting point of the Dyson expansion.
130Thanks to T, H ′ and τ commutes, so it is easy to see that for any fixed s

ih̄τ−1Ã(s)τ = [τ−1Ã(s)τ,H ′],

so

τ−1Ã(s)τ = Texp
[
i

h̄

∫ t

0

H̃ ′×(t)dt
]
Ã(s).

Then, set s = t.
131The average is assumed to be zero; if not, it causes shifts in spectral lines through the first order

perturbation effect, but the line shape is not affected. Therefore, we can safely subtract the average, if it is
not zero.

132That is, into the eigenstates of H1 the interaction representation is decomposed.
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Now, we ignore the last factor:
[H ′

β, ρ0] ∼ h̄ωβH ′
βρ0, (X2.6.25)

assuming that there is no contribution from the high frequency components. Thus, we have

Tr
(
ρ0MH ′×

α (t1)H
′×
β (t2)M

)
' Tr

(
ρ0[M,H ′

α(t1)][H
′
β(t2),M ]

)
. (X2.6.26)

Defining

fα,β(t) =
Tr

(
[M,H ′

α(t)] [H
′
β,M ]ρ0

)
Tr

(
[M,H ′

α] [H
′
β,M ]ρ0

) , (X2.6.27)

∆2
αβ =

Tr
(
[M,H ′

α] [H
′
β,M ]ρ0

)
h̄2〈M2〉

, (X2.6.28)

we have
Tr

(
ρ0MH ′×

α (t1)H
′×
β (t2)M

)
' ∆2

αβfαβ(t1 − t2)h̄2〈M2〉. (X2.6.29)

Thus,

Φ(t) = 〈M2〉 exp

− ∫ t

0
dt1

∫ t1

0
dt2

∑
α,β

eitωαeitωβ∆2
αβfαβ(t1 − t2)

 . (X2.6.30)

If fαβ decays quickly, then ωα + ωβ ' 0 would survive, so

Φ(t) = 〈M2〉 exp

[
−
∫ t

0
dτ(t− τ)

∑
α

eiτωα∆2
αfα(τ)

]
, (X2.6.31)

where fα ≡ fα−α and ∆α ≡ ∆α−α. Here, the term with ωα = 0 describes the adiabatic effect
(secular effect), and the rest nonadiabatic.

X2.6.7 Spectral line shape
The spectral line shape is given by the Fourier transform of (normalized) Φ:

I(ω) ∝ 1

2π

∫
dt e−iωtΦ(t). (X2.6.32)

To compute this we need fα in X2.6.6, which is a time correlation function of M driven
by the spin-lattice interaction; due to this interaction dephasing of the spin motion occurs.
Therefore, we wish to study the effect of this dephasing on the spectrum.

Although we need a further detailed modeling of the system to compute fα, the generic
behavior may be captured by

fα(t) = e−|t|/τc , (X2.6.33)

which is a very familiar form since the simple model of Brownian motion (→3.2.7). This
gives (normalized)

I(ω) =
1

2π

∫
dt e−iωt exp

[
−
∑
α

∆2
α(τc + iτ 2

c ωα)t/(1 + ω2
aτ

2
c )

]
. (X2.6.34)
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Therefore, the line shape is Lorentzian

I(ω) =
1

π

T2

1 + (ω − δ)2T 2
2

(X2.6.35)

with
1

T2

=
∑
α

∆2
α

τc
1 + ω2

ατ
2
c

, δ = −
∑
α

∆2
α

τ 2
c ωα

1 + ω2
ατ

2
c

. (X2.6.36)

Here, T2 is called the transverse relaxation time representing the time scale of the spin de-
phasing.133 Notice that the dephasing causes a Lorentzian line shape (cf. 3.7.6).

X2.6.8 Motional narrowing
If the dephasing of spins occurs rapidly (i.e., if τc is small⇒ T2 large), the line shape becomes
narrow as can be seen from (X2.6.35). This is called the motional narrowing, because often
the dephasing is due to the random motion of nuclei on which spins ride.

The line shape is a very important topic, but truly microscopic studies are often pro-
hibitively hard, so there are many model studies based of Markov chains and processes
(→6.5.10∼) that are very reasonable and highly useful.

X2.6.9 Infrared spectra and corresponding correlation functions134

NMR and EPR spectra study the response of magnetic moments to the perturbing magnetic
field, so the perturbation Hamiltonian reads, as we have seen,

h = −M ·H(t). (X2.6.37)

As we know from this we can read off what correlation function we observe: 〈M ;M(t)〉.
A direct analogue is the infrared absorption (or generally VL and UV photon absorption)

spectrum in which the electrical dipole moment P is studied. Therefore, the perturbative
Hamiltonian is

h = −P ·E, (X2.6.38)

so that we observe the correlation 〈P ; P (t)〉. Its analogy with NMR is straightforward.

X2.7 Electrical Conductivity

Although the Kubo-Tomita theory outlined in X2.6 was the first systematic study of sys-
tems with dissipation, the spin system does not dissipate energy when the magnetic field
is time independent.135 Therefore, this theory was not regarded as a real breakthrough in
nonequilibrium statistical mechanics.

133The longitudinal relaxation time T1 is the relaxation time of the energy of the spin system that is lost
to the lattice system.

134B. J. Berne, “Time-dependent properties of condensed media,” Chapter 9 of Physical Chemistry, an
advanced treatise Vol VIIIB (Academic Press, New York, 1971) is an excellent intermediate level exposition.

135Since there is no monopole, it is absolutely impossible to have a DC current.
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Then, stimulated by the formalism of Kubo and Tomita, Nakano gave the general for-
mula for conductivity in 1955.136 This was the real breakthrough in nonequilibrium statistical
mechanics, and many papers followed this including Kubo’s supposedly purely mechanical
general framework of linear response theory. However, as we have clearly seen up to this
point, and as Nakano stresses very explicitly in his review quoted at the beginning of this
Chapter, the linear response theory is an eclectic theory.

X2.7.1 Nakano’s approach137

If the reader wishes to apply a static electric field to the system, the perturbative Hamiltonian
must contain infinitely large electric potential. Therefore, Nakano avoided this, and used
the vector potential A. Thus, the perturbation Hamiltonian reads

h = −ĵ ·A(t), (X2.7.1)

where ĵ is the (microscopic expression of) electrical current. Then, at least formally, this
becomes very similar to the spin system we have discussed in X2.6. Beyond this point he
followed roughly the calculation outlined in X2.6 and obtained the perturbative solution to
the von Neumann equation:

ρ(t) = ρe

[
1−

∫ t

−∞
ds
∫ β

0
dλeλH

˙̂
j(s− t) ·A(s)e−λH + · · ·

]
. (X2.7.2)

Integrating this by parts, we obtain

ρ(t) = ρe

[
1−A(t)

∫ β

0
dλeλH ĵ(0)e−λH +

∫ t

−∞
ds
∫ β

0
dλeλH ĵ(s− t) · ∂

∂s
A(s)e−λH + · · ·

]
.

(X2.7.3)
Now, we assume

A(t) = E(t0)Θ(t0 − t)eεt. (X2.7.4)

That is, we assume a pulse-like electric field.138 Putting this into (X2.7.3), we obtain
(→X2.5.1)

ρ(t, t0) = ρe

[
1−

∫ β

0
dλeλH ĵ(t0 − t) ·E(t0)e

−λH + · · ·
]
. (X2.7.5)

The current can be computed as

j(t) = Trρ(t, t0)ĵ =
∫ β

0
dλ
〈
eλH ĵ(0) ·E(t0)e

−λH ĵ(t− t0)
〉
e
. (X2.7.6)

Thus, the ‘Green’s function’ (the pulse response) of the current is given by

jµ(t) = β
∑
ν

〈jν ; jµ(t− t0)〉Eν(t0). (X2.7.7)

The corresponding admittance is the (frequency-dependent) conductivity.
136The first-hand record of this development may be found in: H. Nakano, “Linear response theory: a

historical perspective,” Int. J. Mod. Phys. B 7, 2397-2467 (1993). This also contains the way to compute the
conductivity using the Boltzmann equation, and a detailed calculation of some of the conductivity formulas
(with, e.g., impurity, phonon scattering) from the pedagogical point as well.

137If the reader is interested only in the modern approach, begin at X2.7.2.
138Notice that E = −∂A/∂t.
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X2.7.2 Electrical conductivity from the standard formula
We have already developed a general theoretical framework. The electrical current is the
flux of charge, and the conjugate variable is the electrical potential V . Since

j = −σ∇V, (X2.7.8)

the general theory tells us that the conductivity tensor reads

σ =
∫ ∞

0
β〈j; j(t)〉dt. (X2.7.9)

This is the most famous Green-Kubo relation called somehow the Kubo formula, but it is
derived in the way explained in X2.7.1 by Nakano, so should be called the Nakano formula
of electrical conductivity.

X2.7.3 High temperature approximation for conductivity
Under high temperature, we may identify the canonical and ordinary correlation functions,
so (X2.7.9) can be symmetrized as

σ =
1

kBT

∫ ∞

0
Γ(t)dt, (X2.7.10)

Γ(t) =
1

2
〈jµ(t)jµ + jµ(−t)jµ〉. (X2.7.11)

To compute this we need jµ(t). Let H ′ be the interaction Hamiltonian, e.g., between the
electrons and phonons, and we can almost follow the calculation we have done in the NMR
spectrum shape, and we get

Γ(t) = 〈j2
µ〉 exp

[
−
∫ t

0
(t− τ)F (τ)dτ

]
, (X2.7.12)

where

F (t) =
1

h̄2〈j2
µ〉
∑
ω

〈[H ′
ω, jµ] [jµ, H

′
−ω]〉 cosωt. (X2.7.13)

This is essentially the correlation function of microscopic dynamics, so we may assume
that it decays very quickly. Therefore, we may approximate this further as

Γ(t) = 〈j2
µ〉e−γt (X2.7.14)

with

γ =
∫ ∞

0
F (τ)dτ =

π

h̄2〈j2
µ〉
∑
ω

〈[H ′
ω, jµ] [jµ, H

′
−ω]〉δ(ω). (X2.7.15)

Thus, finally we have obtained the following formula

σ =
〈j2
µ〉

γkBT
=

h̄2〈j2
µ〉2

πkBT
∑
ω〈[H ′

ω, jµ] [jµ, H
′
−ω]〉δ(ω)

. (X2.7.16)
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X2.7.4 Resistance due to electron-phonon interactions
Let us take the electron-phonon interaction Hamiltonian to be

H ′ =
∑
k,q

Cqa
+
k+qak(bq + b+−q), (X2.7.17)

where a+, a are creation and annihilation operators for conduction electrons, and b+, b are
creation and annihilation operators for phonons. Cq is the coupling constant:

Cq = αq1/2, α =

(
2h̄

9NMs

)1/2

C (X2.7.18)

with N being the number of lattice ions of mass M per unit volume, C the phonon heat
capacity, and s the sound velocity. The current operator reads

ĵ =
∑
k

j(k)a+
kak. (X2.7.19)

From this

〈j2
µ〉 = −

(
eh̄

m

)
kBT

∑
k

k2
µ

∂f0(εk)

∂εk
=
nkBTe

2

m
, (X2.7.20)

where n is the conduction electron number density, and m is the electron (effective) mass.
Here, the summation over k can be computed as∑

k

→ 1

4π3

∫ ∞

0
k2dk

∫ +1

−1
d cos θ

∫ 2π

0
dφ. (X2.7.21)

Next, we compute the commutators139

[H ′
ω, jµ] =

h̄eα

m

∑
k,svq

√
qqµ(a

+
k+qakbq − a+

kak+qb
+
q ), (X2.7.22)

Using this, we obtain∑
ω

〈[H ′
ω, jµ] [jµ, H

′
−ω]〉δ(ω)

=

(
h̄eα

m

)2∑
k,q

qq2
µ {f ′0(1− f0)(n0 + 1) + f0(1− f ′0)n0} h̄δ(εk+q − εk − ωq),

(X2.7.23)

= 2

(
h̄eα

m

)2∑
k,q

qq2
µ(f0 − f ′0)n0(n0 + 1)h̄δ(εk+q − εk − ωq). (X2.7.24)

Here, f0 = f0(εk) and f ′0 = f0(εk+q). Next, this sum is computed as integrals as in (X2.7.21).

The result reads140

∑
ω

〈[H ′
ω, jµ] [jµ, H

′
−ω]〉δ(ω) =

4πC2Ne2T 6

3MΘ6
J5(T/Θ), (X2.7.25)

139In the original paper
√
qqµ reads

√
qkµ. This is a typo.

140Slightly more details can be seen in Nakano’s review article already quoted.
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where

J5(x) =
∫ x

0
dy

y5

(ey − 1)(1− e−y)
(X2.7.26)

is one of the Debye functions, and Θ is the Debye temperature.
Thus we arrive at Grüneisen’s formula, which was derived with the aid of the Boltzmann

equation:

σ =
nh̄e2k3

FMkBΘ

4π3NC2m2

(
Θ

T

)5 1

J5(Θ/T )
. (X2.7.27)
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Chapter 7

Dynamical Systems Theoretical
Approaches

Note:
This chapter should contain many figures, but they have not been included here yet. In the
lectures many concepts will be maximally visualized.

The theory of dynamical systems is another theoretical subject every physicists should
know its rudiments. Introductory textbooks are

D. Ruelle: Elements of Differentiable Dynamics and Bifurcation Theory (Academic Press,
1989),1

A. Katok and B. Hasselblatt Introduction to the Modern Theory of Dynamical Systems (Cam-
bridge UP, 1995).2

This will be quoted as Katok-Hasselblatt.

An authoritative reference series is
Dynamical Systems I- (Encyclopaedia of Mathematical Sciences, Springer)

There is no readable, thin, and serious-error-free introductory textbooks.3

1An Amazon review says, “An undergrad nightmare as a text, a graduate student’s dread as a course
text but a postgraduate student’s delight...” Therefore, this is a good book for serious students.

2This is an 800 page textbook containing most important topics.
3E. A. Jackson, “Perspectives of Nonlinear Dynamics,” two volumes (Cambridge UP 1989) is a readable

and enjoyable introductory survey, but very thick (but much more humane than this chapter and with
excellent illustrations). It contains many topics such as solitons, but the level is far short of that we need
here.
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7.1 Dynamical Systems, Introduction

7.1.1 What is dynamical system?
Let T be a set on which addition + is defined. This is the set of time. If there is a one
parameter family of maps φt (t ∈ T ) from a set M (phase space) into itself (endomorphism),
satisfying

φ0 = 1 ( identity on M ), (7.1.1)

φs+t = φtφs (∀t, s ∈ T ), (7.1.2)

that is, {φt}t∈T is a group or semigroup acting on M , then (M,φt) is called a dynamical sys-
tem. If the time set T is continuous (discrete), then (M,φt) is called a continuous (discrete)
dynamical system.4

Let x ∈M . Then, φt(x) (t ∈ T ) defines an orbit in M that passes x at t = 0 (that is, x
is an initial condition).

The time one map φ1 represents the property of the dynamical system (M,φt) very well.
For example, if φ1 is ‘chaotic,’ then the original dynamical system is ‘chaotic.’ Therefore,
the study of discrete dynamical systems is essentially the study of dynamical systems.

7.1.2 Vector field
If (M,φt) is a continuous time dynamical system, and if it is differentiable with respect to
time, then

d

dt
φt(x) = X(x) (7.1.3)

is called the vector field (on M). If a vector field on a manifold M is given, then constructing
φt is a problem of ordinary differential equation. The theory of dynamical systems origi-
nated from the qualitative theory of ordinary differential equations, so sound knowledge of
ordinary differential equations is advantageous.5

For discrete dynamical systems, the time one map φ = φ1 generates all φt as φt = φt.

7.1.3 Limit sets
The ultimate destination of the orbit stating from x is called the ω-limit set for x. To make
this concept precise, we need the concept of ω-limit point: y is an ω-limit point for x, if there
is an infinite sequence {φti(x)} (t1 < t2 < · · · → ∞) converging to y. The totality of the
ω-limit points for x is called the ω-limit set for x, and is denoted by ω(x). The ω-limit set
Ω of a dynamical system (M,φt) is Ω = ∪x∈Mω(x).

Similarly, we can introduce the α-limit set α(x) for x. α(x) is the totality of α-limit
points; y is an α-limit point for x, if there is an infinite sequence {φti(x)} (t1 > t2 > · · · →
−∞) converging to y.

If the trajectory starting from a point x eventually goes away from this point, x is called
a wandering point. That is, x is a wandering point, if there is a neighborhood U of x such
that for some τ > 0

(∪t>τφt(U)) ∩ U = ∅. (7.1.4)

4A Cr-class invertible dynamical system is a Cr-class Lie group isomorphic to R or Z acting on M .
5M. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra (Academic Press,

1974) is an excellent introduction.
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if x is not a wandering point, it is called a non-wandering point. That is, x is a non-wandering
point, if for any neighborhood U of x and for any τ > 0 there is t > τ such that

φt(U) ∩ U 6= ∅. (7.1.5)

A set consisting of nonwandering points is called a nonwandering set.
N ⊂M is called an invariant set, if

φt(N) = N (7.1.6)

for all t ∈ T .
(1) ω-limit and α-limit sets are nonwandering closed sets.
(2) The totality of nonwandering points is an invariant set.
(3) Let A be a non-empty compact invariant set. Then, A contains an ω-limit set.

7.1.4 Attracting set and attractor
A closed invariant set A is called an attracting set of a dynamical system (M,φt), if within
its any neighborhood is a set B (called a trapping region) such that

∩t>0φt(B) = A. (7.1.7)

Notice that this set need not be connected.
The concept “attractor” is more restricted. There are different definitions, but in essence

we wish to call an attracting set an attractor if the restriction of the original dynamics on
it defines a nice dynamics that can capture typical long time asymptotic behaviors of the
original system. Therefore, inseparability as a set and lack of any genuinely smaller attract-
ing set in it are often required. Thus, one possibility is to say that an invariant set is an
attractor of (M,φt) , if it is an attracting set containing a dense orbit.

A sink and a stable limit cycle are typical attractors. There are other types of attrac-
tors, and they are vaguely called strange attractors.

7.1.5 Fixed point, periodic point
If φt(x) = x for some t ∈ T , x is called a periodic point. In this case, if φs(x) 6= x for
0 < s < t, then t is called the period of x. If φt(x) = x for all t ∈ T , x is called a fixed point.
A fixed point is called a hyperbolic fixed point, if the linearization of the map φt at x is
hyperbolic for any t, that is, the eigenvalues of dφt(x)/dx are not on the unit circle.

The hyperbolicity of dynamics near a fixed point x implies that the dynamical system
is essentially described by the linearized approximation near x. This is guaranteed by the
following theorem:
Theorem [Hartman].6 Near a hyperbolic fixed point, the structure of φ1

7 is determined
by its linear approximation. More precisely, let L = Dxφ1 be the linear approximation of φ1

around the fixed point x. Then, there is a homeomorphism8 h such that h(x) = x and

φ1 = hLh−1. (7.1.8)

ut
Between two maps φ and ψ, if we have a homeomorphisms h such that hφ = ψh, we

6For a proof, see, e.g., Katok-Hasselbratt p260. There, it is called the Hartman-Grobman theorem.
7It should be clear that for any t ∈ T φt is also determined.
8One to one map that is continuous in both ways.
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say φ and ψ are conjugate. Thus, if x is a hyperbolic fixed point of φ, then the dynamical
systems defined by φ and Dxφ are conjugate in an appropriate neighborhood of x.
Remark 1. This is the theorem justifying the linear stability analysis around a fixed point
of an ordinary differential equation. This implies that the reliability of linear stability anal-
ysis of a fixed point of an ordinary differential equation is guaranteed only when the fixed
point is hyperbolic.ut
Remark 2. h is not unique, because the theorem is only local.ut
Remark 3. h may not be differentiable (that is, it cannot generally be a diffeomorphism9

). ut

7.1.6 Poincaré map
Let x be a periodic point of a continuous dynamical system (M,φt). Furthermore, let us
assume that dφt(x)/dt (the velocity along the orbit going through x) is not zero. Then, we
can imagine a hyperplane10 perpendicular to this orbit passing through x. All the nearby
orbits (the orbits going through the points in a sufficiently small neighborhood of x) must
also be nearly orthogonal to this plane.11 If the neighborhood is taken small enough, after
almost one period all the trajectories return to this hyperplane. Therefore, we can define
a map in a neighborhood of x from a transversal hyperplane into itself. This is called the
Poincaré map or the first-return map. The periodic point x becomes a fixed point of this
map.

If x is a hyperbolic fixed point of the Poincaré map, the periodic orbit is called a hyper-
bolic periodic orbit, and x is called a hyperbolic periodic point.

In a certain sense, for a generic differentiable dynamical system all the periodic orbits
are hyperbolic.12

7.1.7 How can we tell two dynamical systems are similar or not?
There are many occasions where we wish to judge how close two dynamical systems (M,φ)
and (M,ψ) are. They may be the original system and its perturbed counterpart. In this
case, we wish to know how stable the original dynamical system is against structural pertur-
bations.

To answer this question, we must introduce a metric in the set of all the dynamical sys-
tems defined on M . Or, if we wish to be more specific, we must study the totality Cr(M,M)
of Cr endomorphisms of M with its natural metric given by the Whitney norm.

We assume M is a compact manifold.13 On each chart, we can introduce the usual

9A homeomorphism that is differentiable both ways is called a diffeomorphism.
10= codimension one manifold
11more precisely, transversal, that is not tangential.
12Theorem [Kupka-Smale]. For diffeomorphisms from M into itself, it is generic that all the periodic

orbits are hyperbolic. ut
(I. Kupka, Contrib. Diff. Eqs. 2, 457-84 (1963); 3, 411-420 (1964); S. Smale, Ann. Scuola Normale Superiore
Pisa 17, 97-116 (1963); M. M. Peixoto, J. Diff. Eq., 3, 214-227 (1966).)

Here, generic is a Baire categorical terminology. A property holds generically for (or the property is a
generic property of) a set A, if the subset on which the property does not hold can be written as at most
countably many join of totally sparse sets; a set is totally sparse, if its closure does not have any internal
point. Genericity is a much stronger concept than being dense, but much weaker than being open dense.

13For such differential topological concepts, I. M. Singer and J. A. Thorpe, “Lecture notes on elemen-
tary topology and geometry,” (Scott, Foresman and Co., 1967) is strongly recommended. M. Spivak, “A
comprehensive introduction to differential geometry,” Vol. 1 (Publish or Perish 1979) is also readable.
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Cs-norm.14 Then, take the supremum of Cs-norms for all the charts in the atlas for M . This
supremum value is called the Whitney norm W s.

The metric is, as usual, defined by the norm. IfM is a compact manifold, then Cr(M,M)
becomes a complete metric space with the Whitney metric.

We say two Cr-dynamical systems (M,φt) and (M,ψt) are close if ‖φt − ψt‖r is small
for all t.

7.1.8 Dynamical systems can be approximated by smoother counterparts
Suppose M is a compact manifold. A Cs-dynamical system may be approximated as much
as one wishes with a smoother dynamical system (i.e., with a Cr-dynamical system with
r > s).

More precisely, Cr(M,M) is dense in Cs(M,M) with the Whitney norm ‖ · ‖s for s < r.

7.2 Stable and Unstable Manifolds

As was already noted in 7.1.1, a dynamical system (M,φt) may be studied through a map
φ = φ1 defined on M irrespective of the nature of the time set T . Therefore, in this section,
we mainly concentrate our attention to a discrete dynamical system (M,φ).

7.2.1 Local stable manifold and stable manifold
Let x be a fixed point: φ(x) = x and Bε be the ball of radius ε centered at x.

W s
ε (x) = {y ∈ Bε |φn(y) ∈ Bε,∀n ∈N} (7.2.1)

is called the local stable manifold of size ε of x. If φ is replaced by φ−1, we obtain the local
unstable manifold:

W u
ε (x) = {y ∈ Bε |φ−n(y) ∈ Bε,∀n ∈N} (7.2.2)

We can extend the local manifold into global stable and unstable manifolds:

W s(x) = ∪∞n=0φ
−n(W s

ε (x)) (7.2.3)

is called the stable manifold of x. Analogously, the unstable manifold can be defined as

W u(x) = ∪∞n=0φ
n(W u

ε (x)). (7.2.4)

That is, (for diffeomorphic systems) the stable manifold of φ−1 is the unstable manifold of
φ.
Remark 1. Unstable and stable manifolds need not be submanifolds of M (look, e.g., at
the horseshoe system in 7.3.5). However, if there are only a finite number of fixed points,
then these manifolds are submanifolds. ut

14For example, we can write ‖f‖s =
∑s

k=0 ‖f (k)‖, where ‖f‖ is the usual sup norm: ‖f‖ = supx∈D |f(x)|
with D being the domain.
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7.2.2 Stable manifold theorem15

Let φ be a r-times continuously differentiable diffeomorphism on M (i.e., Dr-dynamical
system), and x be a hyperbolic fixed point (→7.1.5) of φ. Let Es be the stable subspace of
Dφ at x.16 Then,
(1) W s(x) is a Cr-manifold injectively immersed in M .
(2) Es is the tangent space of W s(x) at x.
(3) Let J be the immersion map17 of W s(x) into M . Then, there is a contraction map
g : W s(x)→ W s(x) such that

Jg = fJ. (7.2.5)

7.2.3 Homoclinic and heteroclinic points
Stable manifolds and unstable manifolds need not be disjoint. A point y belonging to W s(x)
and W u(x) (i.e., y ∈ W s(x) ∩W u(x)) is called a homoclinic point.

If y belongs simultaneously to an unstable manifold of a fixed point x and to a stable
manifold of another fixed point x′ (i.e., y ∈ W s(x) ∩W u(x′)), then y is called a heteroclinic
point.

The orbit going through a homoclinic point consists of homoclinic points only.
There are infinitely many periodic points in any neighborhood of a homoclinic point.
Roughly speaking, for a generic diffeomorphism stable and unstable manifolds cross

transversally.18,19

7.3 Structural Stability

7.3.1 Various stabilities
If a dynamical system is given, there are many ways to study its stability = robustness in
a certain sense against certain perturbations.20 We can perturb an orbit and then ask what
happens to the orbit. This is a standard method to analyze the stability of a solution.

There are other kinds of perturbations we can impose to the system. Now, the system
itself (the dynamical law, map, or the vector field) can be modified, and we can ask what
happens to the general behavior of its orbits. In this case the structure of the dynamical
system is modified, so such a perturbation is called a structural perturbation. If the behavior
of the system does not change by this perturbation, we call the system to be structurally
stable.

15See, e.g., Katok-Hasselblatt, Section 6.2.; S. Smale, Bull. Amer. Math. Soc., 73, 747-817 (1967). The
latter is a famous article worth reading.

16That is, the subspace of TxM corresponding to the eigenvalues inside the unit disk.
17If DxJ is injective, we say J is an immersion.
18That two manifolds A and B cross transversally at x means that TxA ∩ TxB = {0}.
19Theorem [Kupka-Smale]. For a generic diffeomorphism, for any fixed points x and y W s(x) and

Wu(y) cross transversally, if they cross at all. ut
(The reference for this theorem is the same as the previous Kupka-Smale theorem.)

20Incidentally, the ‘stability’ question of an ecosystem includes an interesting conceptual problems.
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7.3.2 Structural stability, Ω-stability
Let φ be a diffeomorphism. We say φ is structurally stable, if there is a neighborhood U of φ
(with respect to the Whitney norm →7.1.7) such that ∀ψ ∈ U is homeomorphic to φ (that
is, there is a homeomorphism h such that hψ = φh), we say φ is structurally stable.

If φ is structurally stable when restricted to the ω-limit set Ω, φ is said to be Ω-stable.

7.3.3 Peixoto’s theorem21

The following Peixoto’s theorem was one of the break throughs that initiated the modern
study of dynamical systems.

A vector field X is structurally stable if it has a neighborhood whose elements are all
homeomorphic to X.
Theorem [Peixoto]. A necessary and sufficient condition for a vector field X on a compact
2-manifold to be structurally stable is that X satisfies the following four conditions:
(1) There are only finitely many singular points22 and they are all hyperbolic.
(2) All the ω- and α-limit sets are singular points or periodic orbits.
(3) There is no orbit connecting saddles.
(4) There are only finitely many periodic orbits and they are all hyperbolic. ut
Theorem [Peixoto]. Structural stable vector fields on a compact 2-manifold are open-
dense with respect to the W 1-norm.23 ut

Can we generalize this to higher dimensional manifolds? This was a major driving force
to study dynamical systems. The answer is, unfortunately, no.

7.3.4 Morse-Smale dynamical system
Abstracting the Peixoto conditions (1)-(4) in 7.3.3 Smale introduced the Morse-Smale sys-
tem defined as a diffeomorphism satisfying the following three conditions:
(MS-1) The Ω-limit set (the totality of the ω-limit sets) consists of periodic points only.
(MS-2) All the periodic orbits are hyperbolic.
(MS-3) For any x, y ∈ Ω, W s(x) and W u(y) are transversal.
Theorem [Palis-Smale].24 Let M be a compact C∞- manifold without boundary. Then,
the totality of Morse-Smale systems on M is structurally stable in C∞(M.M). ut

However, not all the structurally stable systems are Morse-Smale. Actually, it is known
that the Morse-Smale systems are not even dense if the dimension of M is not smaller than
3.
Theorem [Shub].25 In the set Dr(M) of Cr-diffeomorphisms structurally stable dynamical
systems are C0-dense. ut

Even if a set A is open dense in B, it does not mean that most elements of B are in
A.26 Thus, the reader should clearly recognize that Shub’s theorem is a very week result.

7.3.5 Smale’s horseshoe dynamical system
Smale constructed an apparently simple dynamical system to understand a complicated

21M. M. Peixoto, Topology 1, 101-120 (1962); however, a large part is in M. C. Peixoto and M. M. Peixoto,
Ann. Acad. Brasil. Sci., 31, 135-160 (1959) as far as I remember.

22the points where X vanishes
23This is the Whitney norm made of local C1-norm.
24S. Smale, Bull. Amer. Math. Soc., 66, 43 (1960); J. Palis, Topology 8, 385 (1969). It is also explained

in Smale’s review article that introduced the horseshoe system.
25M. Shub, Am. J. Math., 91, 175-199 (1969).
26For example, there is an open dense set whose total length is indefinitely close to zero in [0, 1]. See, e.g.,

B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in analysis (Dover version, 2003). Incidentally, this
is a book recommended to every careful thinker.
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dynamics a periodically perturbed nonlinear oscillator exhibits.27,28 It is constructed by su-
perposing a square on itself after stretching and bending as shown in the figure.

Notice that a complicated kneading occurs in the horseshoe as seen in the following figure.
We can embed this structure into a diffeomorphism on S2.The resultant diffeomorphism is
called the Smale horseshoe dynamical system.

Theorem [Smale] The horseshoe dynamical system is structurally stable. ut
Theorem [Smale] The ω-limit set of the horseshoe system consists of a source, a sink, and
a Cantor set29 Ω0 . If the system is restricted to Ω0, it is isomorphic to the full shift on

{0, 1}Z .30 Therefore, there are infinitely many periodic orbits with arbitrary periods. ut
However, Ω0 is not an attracting set, so we can see complicated dynamical behavior

only transiently.

27N. Levinson, “A second order differential equation with singular solutions,” Ann. Math., 50, 127-153
(1949) [See also, M. Levi, “Quantitative analysis of the periodically forced relaxation oscillators,” Mem.
Amer. Math. Soc., 244 (1981)]. This paper wanted to understand what was found by Cartwright and
Littlewood.

28S. Smale, “Differentiable dynamical systems,” Bull. Amer. Math. Soc. 73, 747-817 (1967). This is a
readable review article every serious student interested in dynamical systems should read.

29= a nowhere dense perfect set; perfect set = set without any isolated point
30For a shift dynamical system see 7.4.7.
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7.3.6 Anosov system31

The Morse-Smale system has only finitely many periodic orbits, but we already know that
homoclinicity implies infinitely many periodic orbits (see 7.2.3). Furthermore, as we have
seen in 7.3.5, there are definitely non-Morse-Smale systems that are structurally stable.
Anosov introduced the following dynamical systems motivated by the example below:

A diffeomorphism on a manifold M such that the closure of its Ω (the ω-limit set) is M
(i.e., Ω is dense in M) and hyperbolic.

Such a system is called an Anosov system.
Example 1 [Thom diffeomorphism or Arnol’d cat map]. Let f : T 2 → T 2 such that
it is described by the application of the following linear map(

1 2
1 1

)
(7.3.1)

on the universal covering space of T 2 (i.e., R2). W s(0) and W u(0) transversally cross each
other, and the homoclinic points are dense in T 2. Consequently, periodic orbits are dense
on T 2. That is, this is an Anosov system. ut
Theorem [Anosov]. Anosov systems are structurally stable. If there is a Riemann volume
defined on M , then it is an invariant measure and the system is ergodic.32 ut

7.3.7 Axiom A dynamical system33

All the systems we have so far discussed satisfy the following two conditions called Axiom
A:34

(a) The Ω-limit set is hyperbolic.
(b) Periodic orbits are dense in Ω.
Theorem [Spectral decomposition theorem]. Let (M,φ) be an axiom A system. Then,
its Ω-limit set can be decomposed into disjoint sets Ωi such that Ωi is invariant, closed, and
φΩi

is topologically transitive.35 ut
It is known that Axiom A systems are not dense among diffeomorphisms.36

7.4 Measure Theoretical Dynamical Systems

An excellent introductory textbook for this section is:

P. Walters, An Introduction to Ergodic Theory (Springer, 1982).

31An excellent reference is R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms,
Lect. Notes Math. 490 (Springer, 1975).

32Actually, it is much more ‘chaotic’ than mixing.
33Bowen quoted already is excellent.
34Axiom B is not popular in these days. It requires, roughly speaking, if a stable and unstable manifolds

of periodic orbits cross, there must be a transversal crossing point.
35A dynamical system (M,φ) is topologically transitive if there is an orbit that can go through in any

neighborhood of any point of M ,
36However, Pugh demonstrated that (b) is generic.
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Up to this point in this Chapter we have discussed dynamical systems without measure.
Since the main topic of statistical mechanics is the distribution = measure, we must discuss
measure theoretical dynamical systems.

7.4.1 Measure theoretical dynamical systems
If a dynamical system (M,φt) has an invariant measure µ (→2.7.4)

φ−1
t µ = µ (7.4.1)

we can construct a measure theoretical dynamical system (M,φt, µ).37

For a given dynamical system (M,φ) there is at least one invariant measure (Theorem
due to Krylov and Bogoliubov). Generally speaking, for a given dynamical system there are
many (often uncountably many) distinct invariant measures. Consequently, many distinct
measure theoretical dynamical systems can be constructed for a given dynamical system. For
physicists, thus, a major question is which is natural (which can describe the phenomenon
at hand). As we have seen, a lot of difficulty arises from this question. A dynamical system
has no intrinsic preference of a particular invariant measure. Thus, the choice of a measure
theoretical dynamical system is always extrinsic from the dynamical system’s point of view.
That is why we need an extra input to do statistical physics.

7.4.2 Ergodicity and transitivity
Let (M,φt, µ) be a measure-theoretical dynamics. It is called ergodic if for any integrable
function

lim
T→∞

1

T

∫ T

0
ds f(φs(x)) =

∫
M
dµ(x) f(x). (7.4.2)

The following theorem was mentioned before, but is reproduced here:
Theorem [Birkhoff].38 For any φt-invariant measure µ and for any µ-integrable functionf
(1) There is a time average function f such that

f(x) = lim
T→∞

1

T

∫ T

0
ds f(φs(x)) (7.4.3)

for µ-almost all x ∈M . This average is invariant under φt.
(2) For any invariant set A ∫

A
dµ(x) f(x) =

∫
A
dµ(x) f(x). (7.4.4)

(3) If φ−1
t = φ−t, then we can define a backward time average f(x)

f(x) = lim
T→∞

1

T

∫ T

0
ds f(φ−s(x)) (7.4.5)

and for µ-almost all x f = f .
If any invariant set A satisfies µ(A)(1 − µ(A)) = 0, then the dynamical system is said

to be metrically transitive. Metrical transitivity and ergodicity are equivalent for measure
theoretical dynamical systems.

37(7.4.1) implies for ‘any’ set A µ(A) = µ(φ−1
t (A)). Precisely speaking, we must set up a measurable space

with a σ-field F of measurable sets, and for any A ∈ F (7.4.1) holds. As usual, we ignore such details just
as we ignored it when we discussed probability.

38See Walters for a proof.
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7.4.3 Mixing and decay of correlation
Let A and B be arbitrary sets in M . Then, if

lim
n→∞

µ(A ∩ φ−1
t (B)) = µ(A)µ(B), (7.4.6)

we say the dynamical system is (strongly) mixing.
It is known that the time correlation function decays to zero for mixing systems, so we

definitely have irreversible behaviors (or relaxational behaviors). We cannot, however, say
anything about the decay rate.

7.4.4 Partition and entropy of partition
Let (M,µ) be a measurable space. A family ξ = {Xλ |λ ∈ Λ} of subsets of M is called a
measurable partition of M , if Xλ ∩Xλ′ = ∅ for λ 6= λ′, and M = ∪Xλ.

39

If we have two measurable partitions of M ξ = {Xi}i∈Λ and η = {Yj}j∈K , their join
ξ ∨ η (the smallest partition compatible with both) is defined as

ξ ∨ η = {Xi ∩ Yj | i ∈ Λ, j ∈ K}. (7.4.7)

The entropy H(ξ) of a partition ξ is defined as

H(ξ) = −
∑
i∈Λ

µ(Xi) log µ(Xi). (7.4.8)

A motivation to introduce a partition of a phase spaceM is to introduce a coarse-grained
observable. That is, a partition A = {Ai} corresponds to a macro observable, and each ele-
ment Ai corresponds to a particular outcome of a macroscopic observation of A. Observing
A∨B corresponds to a simultaneous observation of two observables corresponding toA and B.

7.4.5 Kolmogorov-Sinai entropy
Let φ be the map (unit-time map in the case of the continuous dynamical system) from M
onto itself and has an invariant measure µ. Let A be a measurable partition of M . Then,

h(µ,A) = lim
n→∞

1

n
H(A ∨ φ−1A ∨ · · · ∨ φ−n+1(A)) (7.4.9)

is well defined.
The supremum with respect to the partition is called the Kolmogorov-Sinai entropy:

h(µ) = sup
A
h(µ,A). (7.4.10)

The Kolmogorov-Sinai entropy for φt is proportional to t, so we can compute it from h
above.

If there is a partition G such that h(µ,G) = h(µ), G is called a generator.
The most important property of the Kolmogorov-Sinai entropy is its invariance under

isomorphisms. That is, h is isomorphism invariant. Two dynamical systems (M,φ, µ),
(M ′, φ′, µ′) are isomorphic (we also say two dynamical systems are conjugate), if there is a

39Of course these subsets must be µ-measurable, but such conditions are not explicitly stated in these
notes. Each element of a partition can be any so long as it is measurable, It need not be connected nor
singly connected,
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one-to-one map q : M → N such that µ′(q(A)) = µ(A) and φ′ ◦ q = q ◦ φ. The Kolmogorov-
Sinai entropy is invariant under q.

Let x ∈M and G be a generator. Let gn(x) be the member of G ∨· · ·∨φ−n+1(G). Then,
Theorem [Shannon-McMillan-Breiman].

− lim
n→∞

1

n
log µ(gn(x)) = hµ (7.4.11)

for µ-almost all x ∈M . ut

7.4.6 Small tube and Brin-Katok’s theorem.40

The Kolmogorov-Sinai entropy tells us how complicated (on the average) the dynamics is.
This complication is due to the sensitivity of each trajectory to small change of the initial
condition. If we can measure the ‘volume’ (probability) of the initial conditions that give
orbits staying close to the orbit stating from x, then we could quantitatively study the extent
of sensitivity of the orbit to the initial condition.

For x ∈M consider

BT (x, ε) = {y ∈M | d(φtx, φty) ≤ ε, t ∈ [0, T )}. (7.4.12)

This is the volume of the initial conditions that give orbits that are within distance ε of the
orbit starting at x for time span of T .
Theorem [Brin-Katok]. Suppose (M,φ, µ) is an ergodic dynamical system. Then, for
µ-almost all x ∈M

h(µ) = − lim
ε→0

lim
T→∞

1

T
log µ(BT (x, ε)). (7.4.13)

ut
The theorem is sometimes called the local entropy theorem. This should not be a sur-

prise, if one knows the Shannon-McMillan-Breiman theorem (→7.4.5).

7.4.7 Bernoulli shift, Bernoulli system and Ornstein’s theorem41

Let M be the totality of both-side infinite sequences {qn}∞n=−∞, where qn ∈ {a1, · · · , ap}.
The shift σ is an operation to shift the sequence as

σ{xi} = {yi}, (7.4.14)

where yi = xi−1. If we introduce an invariant measure through the following probability of
cylinder sets,

µ
(
{xi}βi=α

)
=

β∏
i=α

p(xi), (7.4.15)

where p(xi) = ps if xi = as with
∑p
s=1 ps = 1 and ps > 0. The dynamical system (M,σ, µ) is

called the Bernoulli shift B(p1, · · · , pp).
A dynamical system conjugate (i,.e., isomorphic) to a Bernoulli shift is called a Bernoulli

dynamical system (Bernoulli automorphism).
Theorem [Ornstein]. The Kolmogorov-Sinai entropy is a perfect invariant of Bernoulli
automorphisms. ut

40M. Brin and A. Katok, On local entropy Lect. Notes Math.,
41D. Ornstein, Ergodic theory, randomness, and dynamical systems, (Tale UP, 1974).
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That is, if the Kolmogorov-Sinai entropy is identical, then two Bernoulli automorphisms
are isomorphic. Actually, the Kolmogorov-Sinai entropy was initially introduced to classify
Bernoulli systems.
Example 1 [Baker’s transformation]. Let M = [0, 1)2 and µ be the Lebesgue measure
µ. Let φ be defined as

φ(x, y)) =

{
(2x, y/2) x ∈ [0, 1/2)
(2x− 1, y/2 + 1/2) x ∈ [1/2, 1).

(7.4.16)

The dynamical system (M,µ, φ) is called the baker’s transformation. This is a Bernoulli
system conjugate to B(1/2, 1/2).ut

7.4.8 Chaos
Let (M,φ, µ) be a measure-theoretical dynamical system. If there is an invariant set A with
a positive measure of φn for some n > 0 such that (A, φn, µ) is isomorphic to a Bernoulli
system,42 we say the dynamical system exhibits chaos.43

Let φ : I → I be a continuous map from an interval I into itself. This is called an
interval C0-endomorphism.
Theorem [Oono-Osikawa].44 The following conditions are necessary and sufficient condi-
tions for a C0-endomorphism of an interval to exhibit chaos:
(1) There is an orbit with period 6= 2n.
(2) The Kolmogorov-Sinai entropy is positive.
(3) There is a positive integer n such that φn has a mixing invariant measure.
These can be proved from the equivalence to
(4) There are two intervals A,B ∈ I sharing at most one point such that for some positive
integers n and m, φn(A) ∩ φm(B) ⊃ A ∪B. ut

This implies that positivity of the Kolmogorov-Sinai entropy is a good characteristics of a
chaotic system. Later, Ornstein simply defined that the system with a positive Kolmogorov-
Sinai entropy as a chaotic system.45

Li and Yorke introduced the following definition of chaos and wrote the famous paper,
“Period 3 implies chaos.”46 They use the scrambled set: S is a scramble set if
(1) ∀x, y ∈ S

lim sup
n→∞

d(φn(x), φn(y)) > 0, lim inf
n→∞

d(φn(x), φn(y)) = 0, (7.4.17)

(2) For any periodic point p ∈M and for any x ∈ S

lim sup
n→∞

d(φn(x), φn(p)) > 0, lim inf
n→∞

d(φn(x), φn(p)) = 0, (7.4.18)

42Or to a Bernoulli endomorphism, when the system is not invertible.
43due to Y. Oono “Period 6= 2n implies chaos,” Prog. Theor. Phys. 59, 1029-30 (1978). The equivalence

of this definition and the currently popular Devaney’s definition proposed much later is shown in S.-H Li,
“ω-chaos and topological entropy,” Trans. Amer. Math. Soc. 339, 243-249 (1993).

44Y. Oono and M. Osikawa, “Chaos in nonlinear difference equations I qualitative study of (formal) chaos,”
Pror. Theor. Phys., 64, 54-67 (1980); M. Osikawa and Y. Oono, “Chaos in C0-endomorphisms of intervals,”
Publ. RIMS 17, 165-77 (1981).

45D. S. Ornstein, “In what sense can a deterministic system be random?” Chaos, Solitons & Fractals 5,
139 (1995),

46T.-Y. Li and J. A. Yorke, “Period three implies chaos,” Am. Math. Month. 82, 985-992 (1975). Although
this is very similar to “Period 6= 2n implies chaos,” the definition of chaos in these statements are distinct.
Li and Yorke’s chaos does not imply the positivity of the Kolmogorov-Sinai entropy.
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Theorem [Li-Yorke]. If the system has a periodic orbit of period 3, then there is a scram-
bled set. ut
Li-Yorke’s chaos implies chaos, but the converse is not true. Thus, the Li-Yorke chaos lacks
nice equivalent characterizations. Furthermore, for typical chaos S is, if measurable, it is
measure zero:
Theorem [Baba-Kubo-Takahashi].47 If φ is piecewise C1 with an absolutely continuous
invariant measure with a positive Kolmogorov-Sinai entropy, S is, if measurable, measure
zero. ut

7.4.9 Shift and random number
The definition of chaos given in 7.4.8 and random sequences are intimately connected, be-
cause we may interpret Bernoulli dynamical systems as a model of coin-tossing or some other
gambling games. It is not an easy task to characterize randomness, but intuitively chaos
is something like a deterministic mechanism to ‘produce’ randomness. Thus, the definition
7.4.8 achieves to capture this intuition without explicitly characterizing randomness.

To be more direct, we must mathematically clarify the concept of randomness to char-
acterize chaos. Perhaps currently the most popular definition of random sequences is due to
Solomonov, Kolmogorov and Chaitin.48 The idea is roughly as follows:
Let x = {xn} be an infinite sequence, and qn is the shortest program required by a universal
Turing machine49 to print out the first n symbol sequence [x]n of x. If the length of the
program `n of pn grows linearly with n (i.e., `n/n > 0 for all n), we say x is an algorithmi-
cally random sequence. That is, if we cannot compress the sequencex efficiently (because we
cannot find any regularity in x), we say x is a random sequence.

There is a theorem (Brudno’s theorem50) asserting that `n/n converges to the Kolmogorov-
Sinai entropy of the dynamical system for µ-almost all initial condition x

7.4.10 Lyapunov exponent and Oseledec’s theorem
Let x ∈ M and v ∈ TxM (that is, v is a vector in the tangent space of M at x). The
Lyapunov exponent of v at x is defined by

λ(x, v) = lim sup
n→∞

1

n
log ‖Dφn(x)v‖. (7.4.19)

For each x, λ(x, ·) can take only finitely many distinct values:

λ(1)(x) > · · · > λ(q)(x), (7.4.20)

where q depends on x (but no more than the dimension of M). If the dynamical system is
ergodic, there is no x-dependence for µ-almost all x.

Oseledec’s theorem asserts not only the existence of these exponents for µ-almost all x,

47Y. Baba, I. Kubo and Y. Takahashi, “Li-Yorke’s scrambled sets have measure 0” Nonlinear Analysis 26,
1611-3 (1996).

48Perhaps the best introductory textbook is: M. Li and P. Vitányi, An introduction to Kolmogorov com-
plexity and its applications (Springer 1993). An outline may be found in my lecture notes for Applicable
Analysis (the last section).

49Roughly, it is an ordinary digital computer with infinite memory.
50A. A. Brudno, “Entropy and the complexity of trajectories of a dynamical system,” Trans. Mosc. Math.

Soc., 44, 127-151 (1983); a readable paper.
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but also asserts that Tx ' Rn (n = dimM) is decomposed into the direct sum of eigenspaces:
Theorem [Oseledec].51 At each x ∈M TxM (' Rn) is decomposed as

TxM =
q(x)⊕
i=1

Hi(x) (7.4.21)

and if v ∈ Hj(x)

lim sup
n→∞

1

n
log ‖Dφn(x)v‖ = λj(x). (7.4.22)

ut
If the dynamical system (M,φt, µ) is continuous, and the support of µ is not a single

point, then there must be at least one exponent that vanishes (whose eigendirection is tan-
gent to the orbits).

The Lyapunov exponents of the time reversed system are the same with opposite sign.
Since Hamiltonian systems are time reversal symmetric, if λ is a Lyapunov exponent, so is
−λ. That the total sum of all the Lyapunov exponents vanishes is nothing but Liouville’s
theorem.

The directions of the eigenspaces corresponding to the positive exponents may be under-
stood as sensitive directions to perturbation. Therefore, if a dynamical system has invariants
(e.g., conserved quantities), then some exponents must be zero. This implies that a closed
Hamiltonian system must have at least two vanishing Lyapunov exponents.

7.4.11 Ruelle inequality
Let

λ+(x) =
∑

i:λi(x)>0

λi(x). (7.4.23)

Here, the summation is calculated with the multiplicity of these eigenvalues taken into ac-
count. Then,

hµ(φ) ≤
∫
λ+(x)dµ. (7.4.24)

This is called the Ruelle inequality.52 If a system is ergodic, then, the Kolmogorov-Sinai
entropy is bounded from above by the sum of positive Lyapunov exponents.

Notice that the exponential growth rate of the volume element dx1 ∧ · · · ∧ dxk in the
local unstable manifold W u(x) is given by the exponent λ+(x).

For ‘typical chaotic systems’ (e.g., axiom A systems) the above inequality becomes
equality (Pesin’s equality). More precisely, if a system is chaotic, then there is an invariant
measure that is observable (→7.5.2) experimentally that satisfies Pesin’s equality as we will
see later (→7.5.3).

Just as the relation between the tube volume around the orbit and the Kolmogorov-Sinai
entropy (→7.4.6), we can have the following theorem as a version of Oseledec’s theorem:
Theorem. BT (x, ε) is defined as in 7.4.6. Then,

λ+ = − lim
ε→0

lim
T→∞

1

T
log vol(BT (x, ε)) (7.4.25)

for µ-almost all x. ut

51For a proof, see Katok-Hasselblatt p665. The original Oseledec’s theorem is about the general cocycle
of a dynamical system, and is called Oseledec’s multiplicative ergodic theorem, but here we confine ourselves
to Dφ.

52D. Ruelle, “An inequality for the entropy of differentiable maps,” Bol. Soc. Brasil. Mat., 9, 83-87 (1978).
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7.5 Thermodynamic Formalism

Standard references are
R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes
Math. 490 (Springer, 1975).
This is a real classic.
D. Ruelle, Thermodynamic Formalism (Addison-Wesley, 1978).

There are (usually) uncountably many invariant measures for a given dynamical system
(M,φ), so a serious question arises about the ‘natural’ measure-theoretical dynamical system
(M,φ, µ). What is the best choice of µ? The question is answered by the large deviation
theoretical principle. The large-deviation theoretical framework for dynamical systems is
called the thermodynamic formalism for dynamical systems.

In this section, the thermodynamical formalism is explained from the large deviation
point of view in the style of theoretical physics as much as possible (i.e., demonstrations are
through formal manipulation of formulas as much as possible).53

7.5.1 Probability of observing an invariant measure
Let us estimate the probability to observe an invariant measure µ of a diffeomorphism φ. If
this is positive, then it is fair to say that such a statistical behavior of a given dynamical
system can be actually observed experimentally or computationally. Needless to say, we
must choose an appropriated sampling measure m of the initial condition. We choose this
to be the ordinary Lebesgue measure.54

We need essentially the level-2 large deviation problem to estimate:55

P

(
1

T

T−1∑
k=0

δφk(x) ∼ µ

)
(7.5.1)

However, for a diffeomorphism, it is better to use a time-symmetric quantity:

P

 1

2T + 1

T∑
k=−T

δφk(x) ∼ µ

 (7.5.2)

We use the generating function (partition function) to compute this:56

ZT (U) =
∫
dm(x) exp

 T∑
k=−T

U(φk(x))

 . (7.5.3)

53The exposition freely uses unpublished lecture notes of and private communications with Y. Takahashi
(RIMS, Kyoto University).

54the reason why we choose this transcends physics as we have already discussed in conjunction to the
principle of equal probability.

55Introducing symbolic dynamics and discuss this problem from the level-3 point of view may be more
transparent, but here we minimize our tools. See, e.g., Y Oono, “Large deviation and Statistical Mechanics,”
Prog. Theor. Phys. Supple 99, 165 (1989)

56The reader might wonder what happens if we introduce a temperature parameter β. This parameter
controls the Hausdorff dimension of the support of the invariant measure.
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Here, m is the sampling measure of the initial condition (the Lebesgue measure in this
section).

If we introduce the ‘free energy density’ (or it is often called in the present context as
topological pressure):57

p(U) = lim
T→∞

1

2T + 1
logZT (U), (7.5.4)

then, the probability we wish can be written (formally) as the following functional integral
(our exposition is informal = theoretical physics level, so T → ∞ is not always explicitly
written; if T is sufficiently large, these formulas should be accurate):

P

 1

2T + 1

T∑
k=−T

δφk(x) ∼ µ

 =
∫
D(U) exp

(
(2T + 1)

∫
U(x)dµ(x)− (2T + 1)p(U)

)
.

(7.5.5)
The calculation above is quite parallel to the formal calculation explained in the demonstra-
tion of Sanov’s theorem (→1.6.8). Thus, if we introduce the rate function Im(µ) as58

P

 1

2T + 1

T∑
k=−T

δφk(x) ∼ µ

 ∼ e−(2T+1)I(µ), (7.5.6)

we obtain

I(µ) = sup
U

[∫
dµ(x)U(x)− p(U)

]
. (7.5.7)

7.5.2 Observable measure
Following the formal calculation we did long ago (→1.6.8), the functional derivative of the
RHS of (7.5.7) wrt U gives

µ(δx) = lim
T→∞

1

2T + 1

∫
dm(y)

∑
j

δ(x− φj(y))e
∑T

k=−T
U(φky)

/m
(
e
∑T

k=−T
U(φky)

)
,

(7.5.8)
where δx is an atomic measure concentrated at a, so formally µ(δx)dx = dµ(x). This equation
determines U that gives I(µ).

Consider

µ̃(x) = lim
T→∞

∫
dm(y)δ(x− y)e

∑
k
U(φky)/m

(
e
∑

k
U(φky)

)
. (7.5.9)

Then,

µ̃(φ(x)) = lim
T→∞

∫
dm(y)δ(φ(x)− y)e

∑
k
U(φky)/m

(
e
∑

k
U(φky)

)
, (7.5.10)

57The existence of the thermodynamic limit is assumed. The correspondence between the dynamical
systems and the 1D equilibrium lattice system was first realized by Sinai. The Gibbs measure in equilibrium
statistical mechanics corresponds to the invariant measure with potential U given in (7.5.13). A good
exposition is Bowen quoted at the beginning of this section; this also explains a lot about axiom A systems.

58Mathematically speaking, we must show that the rate function exists. However, the existence is essen-
tially the ‘extensivity condition.’ We assume this or equivalently we assume the large deviation principle for
µ just as physicists always assume that the thermodynamic limit exists.
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Now, let y = φ(z). Then,

µ̃(φ(x)) = lim
T→∞

∫
dm(z) |φ′(z)| δ(φ(x)− φ(z))e

∑
k
U(φk+1z)/m

(
e
∑

k
U(φky)

)
,(7.5.11)

= lim
T→∞

∫
dm(z)δ(x− z)e

∑
k
U(φk+1z)/m

(
e
∑

k
U(φky)

)
. (7.5.12)

If the convergence in the T →∞ is assumed, then this must be the same as µ̃(x). Therefore,
µ = µ̃.

This implies
dµ

dm
(x) = lim

T→∞
e
∑

k
U(φkx)/m

(
e
∑

k
U(φkx)

)
, (7.5.13)

Notice that this has the form of the canonical distribution function. If we know U , we can
have an ‘explicit’ expression of an observable invariant measure.

Using this formula, we obtain a counterpart of Sanov’s theorem as follows. Taking the
logarithm of (7.5.13), we obtain

1

2T + 1
log

dµ

dm
(x) =

1

2T + 1

∑
k

U(φkx)− p(U). (7.5.14)

Integrating this with respect to µ as

1

2T + 1

∫
dµ(x) log

dµ

dm
(x) =

∫
dµ(x)U(x)− p(U), (7.5.15)

we obtain the rate function:

I(µ) =
1

2T + 1

∫
dµ(x) log

dµ

dm
(x). (7.5.16)

This formula is a strange formula, because the integrand does not seem to have T -dependence.
However, we must carefully look at the approximate formula for dµ/dm. The problem is
in µ(δx) already, We need a slightly more careful formulation. For finite T , we should
also coarse-grain the space appropriately so that the volume ∆x containing x satisfies the
condition that φi(∆x) for each i ∈ {−T, · · · , T} is in a ball of radius ε (a small positive
number; this automatically goes to zero as T →∞). Now, (7.5.13) reads

µ(∆x)

m(∆x)
= e

∑
k
U(φk∆xx)/m

(
e
∑

k
U(φk∆x)

)
. (7.5.17)

Thus, (7.5.16) reads, more precisely,

I(µ) = lim
T→∞

1

2T + 1

∫
dµ(x) log

µ(∆x)

m(∆x)
. (7.5.18)

Remember that ∆x shrinks to zero as T →∞.
(7.5.13) tells us that it is convenient to have an explicit formula for U that realizes the

infimum. To this end, we must study the structure of I(µ).
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7.5.3 Expression of rate function for ergodic systems
The Radon-Nikodym derivative in (7.5.16) can be computed as

dµ

dm
(x) = lim

T→∞

µ(∆x)

m(∆x)
. (7.5.19)

log
µ(∆x)

m(∆x)
=
∑(

log
µ(φ−j∆x)

µ(φ−j+1∆x)
− log

m(φ−j∆x)

m(φ−j+1∆x)

)
. (7.5.20)

so (recall that m is the Lebesgue measure)

I(µ) = lim
ε→0

lim
T→∞

1

T
log

µ(BT (x, ε))

m(BT (x, ε))
= λ+ − h(µ). (7.5.21)

The above formula can be proved for compact M .
Since the rate function cannot be negative, (7.5.21) implies Ruelle’s inequality. For µ

to be observable, P > 0, so I(µ) must vanish. This implies Pesin’s equality.

7.5.4 The relation between equilibrium lattice system and dynamical system
If we could identify U = Uµ that gives the equality (7.5.21) from

I(µ) =
∫
Uµdµ− p(Uµ), (7.5.22)

we can identify the observable measure. However, an oversimplified exposition up to this
point59 seems to prevent an easy identification.

Therefore, a new ingredient, actually the original form of the thermodynamic formalism
due to Sinai is briefly outlined here.60

The basic idea is that a discrete dynamical system may be mapped to a shift dynamical
system by a suitable coding (→7.4.7).61 If an orbit containing x ∈ M is coded as {an},
then we can interpret this as a spin configuration on a 1D lattice. A bunch of orbits sharing
n symbols a1, · · · , an is called a cylinder set of length n and is denoted as [an · · · , an].

The partition function for the lattice system reads62

Ẑ(U) ' Ẑn(U) =
∑

[a1,···,an]

exp

(
n−1∑
k=0

U(φkx)

)
, (7.5.23)

where the sum is take over all the cylinder sets of length n, x ∈ [an · · · , an] is a representative
point in the cylinder set, and U is, as before, a function (potential function). Here, ' implies
that we must take the thermodynamic limit (n→∞) appropriately.

The entropy per spin in this correspondence just becomes the Kolmogorov-Sinai entropy
of the dynamical system.63 Therefore, if we introduce ‘free energy’ (this is called topological

59In essence, the oversimplification corresponds to a level-3 large deviation theory told as if it were a level-2
theory (→3.2.1 for levels); since the system is deterministic, a single point (i.e., the level-2 specification) on
an orbit completely determines the orbit (= the elementary object of the level-3 theory). Perhaps I should
have started with this entry and reorganized this chapter more statistical mechanically, but for now the
revision is kept to a minimum.

60For details, see Bowen Chapters 1 and 2.
61To be concrete a lot of devices such as Markov partition etc., are needed.
62This is with a hat, because this partition function is distinct from Z considered up to this point.
63This may be intuitively obvious, but more formally, we can show this relation by going back to the

definitions of the both quantities.
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pressure, because mathematicians regard the sum as the grand canonical partition function)
P (U) as64

P (U) = lim
1

n
log Ẑn(U) (7.5.24)

Then, the Gibbs variational principle reads

P (U) = sup
µ

{
h(µ) +

∫
Udµ

}
. (7.5.25)

The equilibrium distribution function (that is, µ maximizing (7.5.25)) is given by (7.5.13)
or, more precisely, by (7.5.17). It is just the canonical distribution.

7.5.5 Characterization of observable measure
We must choose an appropriate U to make the canonical distribution (7.5.13) as the observ-
able measure, which is characterized by I(µ) = λ+ − h(µ) = 0 according to 7.5.3.

Let U = −λ+(x) (→7.4.11). Then, P (−λ+) ≤ 0: in this case the partition function
can be written as

Ẑn =
∑

e−
∑

λ+(φkx) ≤ m(∪xBn(ε, x)), (7.5.26)

where Bn(ε, x) is defined in (7.4.12). We have used the relation between λ+ and the volume

of the small tube according to Oseledec (→7.4.10). Thus, Ẑ(−λ+) ≤ 1, so P ≤ 0.
We already know (→7.5.3) that for the observable measure Pesin’s equality holds, so

P (−λ+) = 0. That is, if we choose U = −λ+(x) the resultant canonical distribution is the
observable measure.

7.5.6 Sinai-Ruelle-Bowen measure
If we apply the thermodynamic formalism to Axiom A systems, the observable measure is
called the SRB measure (Sinai-Ruelle-Bowen measure).

Axiom A systems are characterized by the hyperbolic Ω-set in which periodic orbits are
dense. Consider the set of points starting from a small ball. The ball will be pushed toward
W u and then be spread along W u. λ+ is the spreading rate of the volume along the unstable
manifold. As is already clear from this explanation, the support of the SRB measure is the
unstable manifold in the Ω-limit set.65 U = −λ+ implies that the weight is inversely propor-
tional to the spreading rate along the unstable manifold. This is a natural weight, because
the weight is proportional to the sojourn time of the point along the unstable manifold.

The support of a SRB measure is generally locally isomorphic to the direct product of a
Cantor set and an interval. Notice that the actual volume of the support of the SRB measure
is usually zero. That is, the ball discussed above spreads along the unstable manifold, but
also it is compressed toward Wu and loses its volume.

64Throughout this chapter if the limit does not exist, replace it with lim sup,
65For an axiom A system, its Ω-limit sets are decomposed into disjoint sets Ωi (the spectral decomposition

theorem for axiom A system →7.3.7). Therefore, invariant measures must be considered for individual
spectral components.
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7.6 Chaotic Hypothesis and Fluctuation Theorem

7.6.1 Chaotic hypothesis
The hypothesis reads, according to its proposer66

A many-particle system in a stationary state can be regarded, for the purpose of
computing macroscopic properties, as a smooth dynamical system with a transi-
tive axiom A global attractor. In the reversible case it can be regarded, for the
same purpose, as a smooth transitive Anosov system.

No one knows whether this can be a reliable principle.
There are at least two motivations for this hypothesis. One is that any open system

cannot be modeled by a Hamiltonian system (cf., X2.5.1), and often (computationally)
modeled by a dissipative (i.e., phase volume non-conserving) dynamical system.67 The other
is that for highly chaotic system, as we will see, the fluctuation theorem (→4.1.3) becomes
a theorem.

7.6.2 Phase contraction and entropy production
Consider a dynamical system whose equation of motion is given by

d

dt
x = f(x). (7.6.1)

The density distribution function ρ obeys the following conservation law (→3.5.1):

∂

∂t
ρ = −div(fρ). (7.6.2)

Now, let us compute the time derivative of the Gibbs-Shannon entropy:

dS

dt
= − d

dt

∫
dx ρ log ρ = −

∫
dx (1 + log ρ)

∂ρ

∂t
, (7.6.3)

=
∫
dx (1 + log ρ)div(fρ) = −

∫
dx f · grad f, (7.6.4)

=
∫
dx ρ divf (7.6.5)

Thus, in the steady state
dS

dt
= 〈divf〉. (7.6.6)

Notice that divf is the growing rate of the phase volume.
If the system is a finite system, then S must be bounded from above. Therefore, 〈divf〉

cannot be positive. Recall that this is indeed negative for axiom A systems.68 If we

66G. Gallavotti, “Chaotic hypothesis: Onsager reciprocity and fluctuation-dissipation theorem,” J. Stat.
Phys., 84, 899 (1996).

67A typical example is the Nosé-Hoover algorithm. See, for example, D. J. Evans and G. P. Morriss,
Statistical Mechanics of Nonequilibrium Liquids (Academic Press, 1990).

68A rigorous proof of this is found in D. Ruelle, “Positivity of entropy production in nonequilibrium
statistical mechanics,” J. Stat. Phys., 85, 1 (1996).
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may interpret S as entropy,69 then this decrease should be due to the escape of dissipated
energy into the bath. Therefore, we interpret

〈σ〉 = −〈divf〉 (7.6.7)

as the entropy production rate.
Remark 1. In reality, there must be an interaction with the heat bath of the system that is
not explicitly described in (7.6.1). With such a term added the effect of the phase contrac-
tion is compensated by the interaction. Thus, the situation is just as the ordinal Langevin
equation. ut
Remark 2. For a Hamiltonian system with a stochastic term (+ dissipation), the absolute
continuity of the stationary measure with respect to the phase volume is believed to be pre-
served. Thus, the steady distribution purported by Chaotic Hypothesis is unrealistic. There
must be a macro observable that denies this hypothesis.

7.6.3 Entropy production and fluctuation theorem
Let us consider the level-1 large deviation theory for entropy production rate:

P
(

1

T

∫
σdt ∼ s

)
∼ e−Tζ(s). (7.6.8)

Here, ζ is the rate function. The needed probability for an axiom A system may be written
as

P
(

1

T

∫
σdt ∼ s

)
∝
∑
σ=s

T/2∏
k=−T/2

exp
(
−λ+(φkx)

)
. (7.6.9)

Here, we have adopted the observable measure (the SRB measure) constructed in the previous

section, and the summation is over all x satisfying σ = s with σ = (1/T )
∫ T/2
−T/2 σdt. On the

other hand

P
(

1

T

∫
σdt ∼ −s

)
∝

∑
σ=−s

T/2∏
k=−T/2

exp
(
−λ+(φkx)

)
. (7.6.10)

We wish to study its time-reversed version. Let I be the time reversal operator. IW u
x = W s

Ix,
and Iσ(x) = −σ(Ix). Therefore,

P
(

1

T

∫
σdt ∼ −s

)
∝
∑
σ=s

T/2∏
k=−T/2

exp
(
λ−(φkx)

)
. (7.6.11)

Here, λ− is the sum of negative Lyapunov exponents. From this we can compute the ratio

P
(

1
T

∫
σdt ∼ s

)
P
(

1
T

∫
σdt ∼ −s

) =

∑
σ=s

∏T/2
k=−T/2 exp

(
−λ+(φkx)

)
∑
σ=s

∏T/2
k=−T/2 exp (λ−(φkx))

. (7.6.12)

69This is actually a big if. We do not know how to measure nonequilibrium entropy, so no operational
definition of S is available. That is, there is no physically respectable characterization of nonequilibrium
entropy.
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Notice that the terms in the numerator and those in the denominator are one to one corre-
spondent. Consider the following ratio:

∏T/2
k=−T/2 exp

(
−λ+(φkx)

)
∏T/2
k=−T/2 exp (λ−(φkx))

=
T/2∏

k=−T/2
exp

(
−λ+(φkx)− λ−(φkx)

)
. (7.6.13)

Because
exp

(
−λ+(φkx)− λ−(φkx)

)
(7.6.14)

is the reciprocal of the volume ratio at time T/2 and −T/2, (7.6.13) is the volume contraction
ratio in time T . Therefore (→(7.6.7)),

exp(−T [ζ(s)− ζ(−s)]) = exp(−Ts) (7.6.15)

or
ζ(s) = ζ(−s) + s (7.6.16)

This is the fluctuation theorem.
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