Physics 102 (F16)

Name: \qquad Section:

1. On the horizontal plane is a pair of parallel metal rails 2.5 m apart whose left ends are connected to a resistor of resistance $R=2 \Omega$ as depicted in the figure. Sliding frictionlessly on the rails is a conducting bar. The resistances of the rails and the bar are negligible. A uniform magnetic field of a certain intensity B into the page is applied as illustrated in the figure.

(a) When you pull the bar with force 1.2 N horizontally, you realize a motion of the metal bar with a constant speed and simultaneously observe a current 12 A flowing in the direction of the arrow through the resistor. Find the intensity of the magnetic field B. [5]

We should try the force and the power balance: $\mathrm{F}=\mathrm{ILB}$, power balance: $\mathrm{vF}=\mathrm{I}^{\wedge} 2 \mathrm{R}$. Obviously, the force relation is enough.

```
B = F/IL = 1.2/12\times2.5 = 0.04 T.
```

(b) Determine the velocity (magnitude and direction!) of the bar. [5]

```
You could use the power balance. Or motional emf, since you know B now:
    LvB = RI
```

```
power: v = I^2R/F = 12^2x2/1.2 = 240 m/s.
motional emf: v = RI/LB = 2 x 12/2.5x0.04 = 240 m/s, of course.
```

2. Unpolarized light of intensity I_{0} is incident on a linear polarizer at P from left as depicted in the figure.

