Name: \qquad Section: \qquad Score: \qquad

1. On the horizontal plane (the surface of this page) is a pair of parallel metal rails 3 m apart. Sliding frictionlessly on the rails at a constant speed $v=25 \mathrm{~m} / \mathrm{s}$ is a conducting bar as illustrated below. A uniform magnetic field of intensity $B=4 \mathrm{~T}$ out of the page is applied as in the figure.

$$
\mathrm{emf}=\mathrm{vBL}
$$

If S is closed, the area here increases -> upward magnetic flux increases -> Lenz tells us that the circuit hates this and make the magnetic flux in the opposite direction
Initially, the rails are not connected (switch S is open). Under this condition answer the following questions (a1) and (a2).
(a1) What is the voltage difference between rails A and B ? Which is at a higher voltage, A or B? [3]

```
emf = vBL = 25 x 4 x 3 = 300 V
To determine the sense of the emf, we could use
(1) magnetic force: plus charge is pushed up, so from outside A is PLUS.
(2) Lenz's law: if the circuit is closed, the current flow clockwisely,
so A is higher.
```

(a2) To maintain this speed $v=25 \mathrm{~m} / \mathrm{s}$ of the metal bar what force is required? [2]

```
Of course, ZERO. Since there is no current, there is no dissipation,
```

so you need not do any work!
(b) Now, we close the switch. The mounted metal bar still moves at $v=25 \mathrm{~m} / \mathrm{s}$ as shown. The resistance of the metal bar is $R=25 \Omega$. What is the needed force to maintain this speed? Ignore the residual resistances of the rails. [5]

The power is dissipated as $V^{\wedge} 2 / R$ or $\|^{\wedge} 2 R$ at the resistro. This must be supplied by you as F x v.

```
F = V^2/vR = 300^2/25x5 = 144 N.
```

You can use the force balance as well.
$F=I L B=(V / R) L B$
$F=(300 / 25) 3 \times 4=144 \mathrm{~N}$,

2 A plane electromagnetic wave with electric field amplitude $\left(=E_{\max }\right) 3.3 \mathrm{~V} / \mathrm{m}$ is incident on a polarizer as depicted in the figure. The 'plane of electric field' indicates the plane in which the electric field of the wave along the x-axis lies. It makes an angle of 50° with the transmission axis of the polarizer at P . The whole system is in a vacuum.

(1) What is the amplitude of the electric fleld immediately after passing through the first linear polarizer at P ? [5]

E projected on the transmission axis

Intensity is prop to E^{\wedge} 2
(2) What is the intersity I of the light beyond the second polarizer at Q in terms of the intensity I_{0} of the incident light? [5]

Here the intensity is J_0 $\cos ^{\wedge} 250$.
The plane of polarization here and the transmission axis of the polarizer at Q make 50 deg again.
I final - I0 $(\cos 50)^{\wedge} 4=0.17$ IO.

