Name: \qquad Section: Score: \qquad

1. Three charges of $+Q,+Q$ and $-Q(Q>0)$ are placed at the three vertices of equilateral triangle of edge length 0.3 m as shown below. The total work you have to do lito construct this charge configuration from three charges apart far away from each other is -3.0 J .
superposition
pairwise potential energy kQQ'/r
Total potential energy (according to our energy convention $\mathrm{kQ} \mathrm{A}^{\wedge} 2 / \mathrm{r}+\mathrm{kQ}(-\mathrm{Q}) / \mathrm{r}+\mathrm{kQ}(-\mathrm{Q}) / \mathrm{r}=-\mathrm{kQ} \mathrm{Q}^{\wedge} 2 / \mathrm{r}=-3 \mathrm{~J}$.

(1) What is the magnitude of Q ? [5] $Q=\operatorname{sqrt}\{3 r / k\}=\operatorname{sqrt}\left\{0.9 / 9 \times 10^{\wedge} 9\right\}=\operatorname{sqrt}\left\{10^{\wedge}\{-10\}\right\}=10^{\wedge}\{-5\}=10 \operatorname{microC}$.
(2) Now, you wish to remove charge B (move it far away from other charges). How much work do you have to do? [5]
```
Obviously 0, since AB and BC pairs store +3 and -3 J.
```

2. There are four charges on the plane. The equipotential curves are described in the following figure.

Figure 1:
(1) One charge has a different sign fromthe other three. What is this charge? [4]

B, because the other three are connected by a mountain ridge.
(2) Assume A is positive. Indicate the direction of the electric field at Q. You must justify your answer briefly. [2]?

+ is higher and E must be downhill, perpendicular to the contour at the point.
(3) If you move a charge of +1 C from P to Q , how much work W do you have to supply, if the contour spacing is 20 V ? [W need not be positive.] [4] $\mathrm{W}=\mathrm{q} \times$ delta V P has a higher voltage than Q by 20 V , so it is downhill, two spacings $=40 \mathrm{~V}$ down. $\mathrm{W}=1 \times(-40)=-40 \mathrm{~J}$.

