Name: \qquad Section: \qquad Score: \qquad /20

1. Initially, three identical charges of Q are at the vertices of an equilateral triangle ABC of edge length 0.2 m as illustrated below. To construct this charge configuration from three chrages Q mutally far away apart you have to do 36 J .
superposition
pairwise potential kQQ'/r
```
Therefore,
    3kQ^2/r = 36 J.
```


(1) What work do you have to do to squish the tiriangle to an equilateral triangle of edge length 0.1 m (that is, to make the edge sizes half)? [5]

```
Now, r -> r', so the final energy must be doubled to 72 J.
You must supply the difference: W = 36 J.
```

(2) Now, all the charges are gently released, and they fly apart. What is their speed v far away from the triangle ABC , if all the charges have the same mass m ? Assume the stored potential energy is E (i.e., you may identify the answer to (1) with E.) [5]

$$
\begin{array}{|l|}
\hline \text { Energy conservation } \\
(1 / 2) m v^{\wedge} 2+E_{-} f=E_{-} i
\end{array}
$$

```
The initial potential energy = 72 J = E.
The final potential energy is 0.
We may assume all the particles have the same speed.
    E/3=(1/2) mv^2 -> v = sqre{2E/3m}.
```

2. There are four charges A - D on the plane. The equipotential curves are described in the following figure.

(1) One charge has a different sign from the other three. What is this charge? [3].

A, because B, C, are connected via cols.
(2) Assume A is positive. Indicate the direction of the electric field at P. You must justify your answer very briefly. [3]

```
E is + to -, and perpendicular to the contour.
```

(3) If a charge of 0.3 C is moved from P to Q along the dashed curve, what is the work you must do, if the contour spacing is 20 V ? [4]

```
W = q delta V
Notice that Q has a lower voltage than P (by 40 V), so two spacing=
delta V = Vf - Vi = -40 (downhill).
W = -0.3 x 40= -12 J.
```

