Name: \qquad Section: \qquad Score: \qquad

1. Initially, two identical charges of Q are at A and B of an equilateral triangle ABC of edge length 0.3 m as illustrated below.
(1) You bring the thid charge Q to the corner C from infinity. You have to do a work of 12.0 J. What is the magnitude of the charge $|Q|$? [5]

(2) Now, charge at vertex A is allowed to move freely. What is its speed far away from the triangle ABC , if the mass of the moving charge is 2.0 g ? [5]
```
Energy conservation
(1/2) mv^2 + E_f = E_i
Notice that (1) and (2) are basically the identical question.
(1/2) mv^2 = 12 -> v^2 = 24/m = 24/2 <10^{-3} = 12 
That is,
    v = \sqrt{1.2} x 10^2 = 1.1\times10^2 = 110 m/s
```

2. There are four charges $\mathrm{A}-\mathrm{D}$ on the plane. The equipotential curves are described in the following figure.

(1) One charge has a different sign from other three. What is this unique charge? [3]

D, because the gradient arrows directly go to A or B from D.
(2) Assume charge A is positive. Indicate the direction of the electric field at P in the figure. You must explain your choice succinctly.[3]

E arrow must be + to - , and perpendicular to the contour there.
(3) Assume charge A is positive as above. If the contours are equally spaced by 2 V , how much work do you have to do, if you wish to bring -2.0 C charge from P to Q along the dashed curve in the figure above? [4]

```
VQ - VP = 2 V, because Q is on the higher voltage side.
Thus the energy difference of the charge is delta V x charge = - 4 J.
(That is, you would be dragged.)
```

