Name: \qquad Section: \qquad Score: \qquad

1. As shown in Figure 1 multiple point charges are fixed in space, making an electric field \boldsymbol{E}. At the origin O the electric field is given by $\boldsymbol{E}=(3.2,0.5) \times 10^{3} \mathrm{~N} / \mathrm{C}$.

Figure 1:
(a) A charge $q=-4.3 \mu \mathrm{C}$ is placed at the origin. What is the force vector (its x and y components) acting on this charge q ? [5]

$$
F=q E
$$

$F=-4.3 \times 10^{\wedge}\{-6\} \times(3.2,0.5) \times 10^{\wedge}\{3\}=-(13.76,2.15) \times 10^{\wedge}[-3\} \mathrm{N}$
(b) Now, the charge q in (a) is moved to location P whose coordinate vector is given by $(0,3)$ m . What is the electric field vector at the origin due to all the charges? [5]

```
superposition
E due to a single charge, E = KQ/R^2
E at the origin due to q at P is +y direction and with magnitude
    kq/r^2 = 9x10^9 x 4.3x10^{-6}/3^2 = 4.3x10^{3} N/C. That is, (0, 4.3) x10^3 N/C.
Therefore, the total field is
    (3.2, 0.5)x10^{3} + (0, 4.3) x10^3 = (3.2, 4.8) x10^3 N/C
```

2. Electric field lines due to more than 7 charges on a plane are depicted in Fig. 2.

Figure 2:
(a) Suppose charge B is negative. Give all the positive charges in the figure [5]
D, E, G.
(b) There are locations where the electric field is zero. Mark at least four of them with X in the figure. [3]
(c) Draw the direction of the electric field at P. You must give a brief justification of your arrow, [2]

```
+ to - tangent to the force line
```

