Name: \qquad Section: \qquad Score: \qquad

1. As shown in the figure below multiple point charges are fixed in space, making an electric field \boldsymbol{E}. At P is an electric charge of $q=2.6 \mu \mathrm{C}$.

(a) The electric field at the origin is now $\boldsymbol{E}=(1.0,1.0) \times 10^{3} \mathrm{~N} / \mathrm{C}$. What was the electric field (vector) at the origin before putting charge q at P ? [5]
superposition
E by a single charge
```
E at the origin due to q at P is in the -y direction with magnitude
kq/r^^2 = 9x10^9 x 2. 6x10^{-6}/3^2 = 2. 6x10^3 N/C. That is, the field due to q at the
origin is (0, -2.6)x10^3 N/C.
    This + the original E is (1.0,1.0)x10^{3} N/c, so the original E must be
        (1.0,1.0) x10^ {-3} - (0, -2.6) x10{-3}
    =(1.0, 3.6) x10^{3} N/C.
```

(b) Now, the charge q is moved from P to the origin. What is the force (vector) on charge q ? [5]

Now, q interact with the original field $E=(1.0,3.6) x 10^{\wedge}\{3\} N / C$, so $F=2.6 \times 10^{\wedge}\{-6\} \times(1.0,3.6) \times 10^{\wedge}\{3\}=(2.6,9.36) \times 10^{\wedge}\{-3\} N$.

Therefore, the magnitude is sqrt (9.36^2+2. $6^{\wedge} 2$) $x 10^{\wedge}\{-3\}=9.74 \times 10^{\wedge}\{-3\} N$.
2. Electric field lines due to multiple charges on a plane are depicted in the figure below.

(a) Suppose charge D is positive. Tell all the negative charges in the figure [5]

B, E, F.
(b) Mark at least three (3) points with \times where the electric field vanishes [3]
(c) Draw an arrow describing the direction of the electric field vector at P. You must briefly justify your choice. [2]

```
+ to - tangent to the force line.
```

