Name: \qquad Section: \qquad Score: \qquad /20

1. As shown in Figure 1 multiple point charges are fixed in space, making an electric field \boldsymbol{E}. At the origin O the electric field is given by $\boldsymbol{E}=(-1.2,3.2) \times 10^{3} \mathrm{~N} / \mathrm{C}$.

Figure 1:
(a) Now, a charge $q=6.5 \mu \mathrm{C}$ is placed at $\mathrm{P}=(2.0,0) \mathrm{m}$ anew. What is the electric field (vector!) at the origin now? [5]
Superposition

E by a single charge, magnitude $=k Q / r^{\wedge} 2$

The electric field at the origin due to the charge q at P is, pushing outward from P and with magnitude $\mathrm{kq} / \mathrm{r}^{\wedge} 2=9 \times 10^{\wedge} 9 \mathrm{x} 6.5 \times 10^{\wedge}\{-6\} / 2^{\wedge} 2=14.625 \mathrm{x} 10^{\wedge}\{9-6\}=14.625 \mathrm{x}=0^{\wedge} 3 \mathrm{~N} / \mathrm{C}$.
Thus, $(-14.625,0) \times 10^{\wedge} 3 \mathrm{~N} / \mathrm{C}$ is the field at O due to q at P.
Now, the total field at O is $(-14.625,0) \times 10^{\wedge} 3+(-1.2,3.2) \times 10^{\wedge} 3=(-15.825$, 3.2$) \times 10^{\wedge} 3$
N/C.
Its magnitude is sqrt (15.825^2+3.2^2) x10^3 = $16.15 \times 10^{\wedge} 3 \mathrm{~N} / \mathrm{C}$.
(b) Now, the charge q in (a) is moved from P to the origin. What is the force (vector) acting on q ? [5]
$F=q E$

There is no self interaction, so the field acting on the charge at the origin is the original $\mathrm{E}=(-1.2,3.2) \times 10^{\wedge} 3$.
Therefore, $F=6.5 \times 10^{\wedge}\{-6\} \times(-1.2,3.2) \times 10^{\wedge} 3=(-7.8,20.8) \times 10^{\wedge}\{-3\} \mathrm{N}$
2. Electric field lines due to multiple charges (and other charges outside the figure window) on a plane are depicted in Fig. 2.

$$
A, C, D
$$

(b) There are locations where the electric field is zero. Mark at least four (4) such locations with X. [3]
(c) Indicate the direction of the electric field at point P. You must briefly justify your choice. [2]

```
E is + to -, tangential to the force lines.
```

