Name: \qquad Section: \qquad Score: \qquad
1 Very small identical metal spheres A and B are on glass stands placed as in the figure below (i). Initially, A has net charge $n Q$ and $\mathrm{B} Q$. The Coulomb force acting on charge A is \boldsymbol{F}. Then, A and B are connected by an uncharged (and insulated) metal wire as (ii) in the figure. After the wire is removed (iii), the force acting on charge A becomes \boldsymbol{F}^{\prime}. The distance between the small spheres is kept constant. The ratio of the horizontal component (let us call it the x-component) of the forces is given as $F_{x} / F_{x}^{\prime}=-3$.

(a) What is a very fundamental law (property) of charges we need to determine the charges on the spheres in (iii)? [2].

```
conservation of charge
Thus (n+1)Q/2 is on A and B, respectively.
```

(b) Find the initial ratio of the charge n (an integer) (no justification, no credit!) [6]

```
Coulomb's law
The x-component of the forces are:
After: F'_x = k(n+1)^2 Q^2/4r&2,
so
or
3 n^2 +10 n +3 = (3n + 1) (n + 3) = 0.
This implies n = -3.
```

Before: $F _x=k(n Q)(Q) / r^{\wedge} 2$, where r is the distance between A and B,
(c) Draw the direction of the Coulomb force acting on A in (iii) in the figure above [2]

The force must be repulsive.
2. There are several charges on a plane as shown (as dots and a star) in the figure below left (L). The total electrostatic force acting on charge Q at the origin is 12 N in the $+x$-direction. The charge A (star) is $+10 \mu \mathrm{C}$ and is located 30 cm away from Q along the y-axis.

(a) When the charge at Q is doubled, what is the total electrostatic force acting on Q ? [2]

```
Superposition + Coulomb
The total force is proportional to Q, so 24 N
```

When the charge A is removed (situation R in the figure above) but all the remaining charges are kept intact, the total electrostatic force acting on charge Q is 12.37 N with the direction in the figure.
(b) What is the sign of charge Q? You must state justification of your answer. [3]

```
Superposition + Coulomb The red arrow must be the force on Q due to A.
Therefore, Q is attracted to A. A is positive, so Q
must be negative.
```

(c) What is the magnitude of charge Q? You must state justification of your answer. [5] The magnitude of the red arrow is, thanks to Pythagoras' theorem sqrt(12.5^2 - 12^2) $=3.5 \mathrm{~N}$.

```
Using Coulomb's force (magnitude) formula F = kQQ'/r^2, we get
```

$3.5=9 \times 10^{\wedge} 9 \mathrm{x} Q \mathrm{x}\left(10 \times 10^{\wedge}\{-6\}\right) / 0.3^{\wedge} 2$, BUT never do this. Solve Q first:
$\mathrm{Q}=\mathrm{Fr} \mathrm{r}^{\wedge} 2 / \mathrm{kQ}$.
Therefore,
$Q=3.5 \times\left(0.3^{\wedge} 2\right) /\left(9 \times 10^{\wedge} 9\right)\left(10 \times 10^{\wedge}\{-6\}\right)=3.5 \times 10^{\wedge}\{-2-9+5\}$
$=3.5 \times 10^{\wedge}\{-6\}$
or 3.5 microC. (The charge is -3.5 microC.)

