Name: \qquad Section: \qquad Score: \qquad

1. Very small metal spheres A and B are on glass stands placed $r \mathrm{~m}$ apart as in Figure below.

(a) Initially, A and B have certain charges Q and Q^{\prime}, and the electrostatic force between them is 12 N and repulsive. What is the force between them, if the AB distance is halved? [3].
(b) What is the very fundamental law/(property) of charges we need to determine the charges on the spheres after touching ? [2]

Charge conservation
(c) After A touches B, they are again isolated and placed r apart as shown in the figure. The magnitude of the force is 16 N . Obtain $x=Q / Q^{\prime}$ (Assume $Q>Q^{\prime}$). If you get the equation for x, you get the full credit. [5]

2. There are several charges on a plane as shown (as dots and a star) in the figure below left (L). The total electrostatic force acting on charge Q at the origin is 12 N in the $+x$-direction. The charge A (star) is $+10 \mu \mathrm{C}$ and is located 30 cm away from Q along the y-axis.

(a) When the charge at Q is halved to $Q^{\prime}=Q / 2$, what is the total electrostatic force acting on Q ? [2]

Superposition principle tells us that the total force is proportional to Q.

```
Hence, the total force is simply halved: 6 N.
```

When the charge at A is removed (situation R in the figure above) but all the remaining charges are kept intact, the total electrostatic force acting on charge Q becomes 15 N with the direction in the figure.
(b) What is the sign of charge Q? You must state justification of your answer. [3]

Pay attention to superposition principle

```
The difference is due to the removal of charge A. This increase the `pull' in the
```

direction of the location of A so the original force must have been repulsive.
Q must have a positive charge.
(c) What is the magnitude of charge Q? You must exhibit your work neatly. [5]

```
The magnitude of the red arrow is, thanks to Pythagoras' theorem
sqrt(15^2 - 12^2) = 9 N.
Using Coulomb's force (magnitude) formula F = kQQ'/r^2, we get
9 = 9x10^9 x Q x (5x10^{-6})/0.3^2, BUT never do this. Solve Q first:
Q = Fr^2/kQ'.
Therefore,
    Q = 9 x (0.3^2)/(9\times10^9)(10\times10^{-6}) = 9 x 10^{-2-9+5}
        = 9 x10^{-6}
or 9 microC.
```

