Name: \qquad Section: \qquad Score: \qquad

1. Electrons are sent one by one with the same speed v from far behind a single slit of width 0.24 mm .2 .9 m away from the slit is a detecting screen on which we observe a bright

(1) Collecting all the results of numerous electrons we can observe diffraction patterns with the spacing between the two first dark fringes being 3.2 mm . What is the speed v of the electrons? [5]
```
We can determine the wavelength of the proton as
lambda = a{d/L), where a = 24 x 10^{-6}, d = (3.2/2) x10^{-3}, L = 2.9; n = 1.
Therefore,
    lambda = 24\times10^{-5} x (1.6/2.9) x10^{-3} = 13.2\times10^{-8} m.
This means p = h/lambda = 6.626x10^{-34}/1.3\times10^{-7} = 5.02\times10^{-27}
    = 9.11\times10^{-31} v,
so v = p/m = 5.02x10^{-27}/9.11x10{-31} = 0.559x10^4 m/s = 5.59 km/s
```

(2) If the kinetic energy of the electrons is doubled (compared with the case (1)), what is the spacing between the two first dark fringes now? [5]

```
waves with smaller lambda go more straight. See the
figure on p 141.
Large p gives smaller lambda; more ballistic.
K -> 2K implies p -> sqrt\{2\}P, which implies lambda -> lambda/sqrt\{2\},
so the pattern shrinks: \(3.2 /\) sqrt \(\{2\}=2.26 \mathrm{~mm}\)
```

2. When the surface of a metal is illuminated with photons of wavelength 164 nm . The speed of the fastest photoelectron ejected from the surface has a speed of $790 \mathrm{~km} / \mathrm{s}$.
(1) What is the work function W in eV of the metal? [5]
1240/lambda = enegy in eV
$\max \mathrm{K}=\mathrm{hf}-\mathrm{W}$
```
hf = 1240/164 = 7.56 eV (incident light)
v = 790 km/s -> Kmax = (1/2)mv^2 = (1/2) x 9.11x10^{-21} (790x10^3)^2 (in J)
    =(9.11\times790^2/2x1.6) x 10^{-31+6+19} = 1.78 eV
Therefore, W = 7.56-1.78=5.78 eV.
```

(2) The photon is actually produced by a deexcitation of an excited He^{+}ion to the state with principal quantum number $n=2$. What is the principal quantum number of the initial excited state? [5]

```
En=-13.6Z^2/n^2 so hf = 13.6Z^2(1/nfinal^2 -1/ninitial^2).
Z = 2 for our case.
7.56 = 13.6x4(1/4 - 1/x^2).
Therefore,
1/x^2 = 1/4 - 0.138 = 1/8.93 -> n = 3 initial.
```

