Name: \qquad Section: \qquad Score: \qquad /20

1. Protons are sent one by one with the same speed $v=2.5 \mathrm{~km} / \mathrm{s}$ from far behind a narrow slit of width $13 \mu \mathrm{~m}$ (see the figure). Distance L away from the slit is a detecting screen on which we observe a bright spot when a proton arrives.
de Broglie wave lambda $=$ h/p
$\mathrm{p}=\mathrm{mv}$

diffraction
dark fringe positions
n lambda = a sin theta
small angle approximation
n lambda $=a(d / L)$
(1) Collecting all the results of numerous protons, we can observe a diffraction pattern with the spacing between the two first dark fringes being 0.15 mm . What is the distance L ? [5]
```
p = mv = 1.673\times10^{-27} x 2.5\times10^3, so
de Broglie wavelength = 6,626x10^{-34}/2.5\times1.673 x10^{-24} = 1.58\times10^{-10} m.
We can determine L from lambda = a{d/L) as
    L = a(d/lambda)
where a = 13 x 10^{-6}, d = (0.13/2) x10^{-3}, n = 1, so
    L = 13\times10^{-6} x 0.13\times10^{-3}/2\times1.58\times10^{-10} = 6.17 m.
```

(2) If the kinetic energy of the protons is halved, what is the spacing between the two first dark fringes? [5]

```
waves with smaller lambda go more straight. See the
K = p^2/2m
figure on p 141.
Large p gives smaller lambda; more ballistic.
```

```
K -> K/2 implies p -> p/sqrt{2}, which implies lambda -> sqrt{2}lambda,
```

K -> K/2 implies p -> p/sqrt{2}, which implies lambda -> sqrt{2}lambda,
so the pattern expands: 0.15xsqrt{2} = 0.212 mm

```
so the pattern expands: 0.15xsqrt{2} = 0.212 mm
```

2. When the surface of a metal is illuminated with photons of wavelength 486 nm , we find that the speed of the fastest photoelectron ejected from the surface has a speed of $337 \mathrm{~km} / \mathrm{s}$.
(1) What is the work function W in eV of the metal? [5]
```
1240/lambda = enegy in eV
\̧f = 1240/486 = 2.55 eV (incident light)
v = 337 km/s -> Kmax = (1/2)mv^2 = (1/2) x 9.11x10^{-21} (337x10^3)^2 (in J)
    =(9.11\times337^2/2\times1.6) x 10^{-31+6+19} = 0.323 eV
Therefore, W = 2.55-0.323 = 2.23 eV.
```

(2) The photon is actually produced by a deexcitation of a hydrogen atom to the state with principal quantum number $n=2$. What is the principal quantum number of the initial excited state? [5]

```
En = -13.6Z^2/n^2
so hf = 13.6Z^2(1/nfinal^2 -1/ninitial^2).
Z = 1 for our case.
2.55 = 13.6 (1/4 - 1/x^2).
Therefore,
1/x^2 = 1/4 - 0.1875 = 1/16 -> n = 4 initial.
```

