Name: \qquad Section: \qquad Score: \qquad /20

1. Protons are sent one by one with the same speed v through a narrow slit of width $a=9 \mu \mathrm{~m}\left(=9 \times 10^{-6} \mathrm{~m}\right) .6 \mathrm{~m}$ away from the slit is a detector bank on which we observe a bright spot when a proton arrives.

diffraction
dark fringe positions
n lambda $=\mathrm{a}$ sin theta
small angle approximation
n lambda = $\mathrm{a}(\mathrm{d} / \mathrm{L})$

(1) Collecting all the results of numerows protons, we can observe a diffraction pattern whose central peak has width 0.25 mm . What is the speed v of the protons? [5]

```
We can determine the wavelength of the proton as
lambda = a{d/L), where a = 9 x 10^{-6}, d = (0.25/2) x10^{-3}, L = 6; n = 1.
Therefore,
    lambda = 9x10^{-6} x (0.25/12) x10^{-3} = 0.1875\times10^{-9} m.
This means p = h/lambda = 6,626\times10^{-34}/0.1875\times10^{-9} = 35.2\times10^{-25},
so v = p/m = 35.2x10^{-25}/1.6x10{-27} = 21\times10^2 = 2.1 km/s
```

(2) If the kinetic energy of the protons is doubled, what is the width of the central diffraction peak now? [5]
waves with smaller lambda go more straight. See the figure on p 141.
Large p gives smaller lambda; more ballistic.

K -> 2K implies p \rightarrow sqrt\{2\}P, which implies lambda \rightarrow lambda/sqrt $\{2\}$, so the pattern shrinks: 0.25/sqrt $\{2\}=0.178 \mathrm{~mm}$
2. When the surface of a metal is illuminated with photons of wavelength 293 nm . The speed of the fastest photoelectron ejected from the surface has a speed of $391 \mathrm{~km} / \mathrm{s}$.
(1) What is the work function W in eV of the metal? [5]

```
1240/lambda = enegy in eV
\(\max \mathrm{K}=\mathrm{hf}-\mathrm{W}\)
hf \(=1240 / 293=4.23 \mathrm{eV}\) (incident light)
\(\mathrm{v}=391 \mathrm{~km} / \mathrm{s}->\operatorname{Kmax}=(1 / 2) \mathrm{mv}^{\wedge} 2=(1 / 2) \mathrm{x} 9.11 \mathrm{x} 10^{\wedge}\{-21\}\left(391 \times 10^{\wedge} 3\right)^{\wedge} 2\) (in J)
    \(=\left(9.11 \times 391^{\wedge} 2 / 2 \times 1.6\right) \times 10^{\wedge}\{-31+6+19\}=0.453 \mathrm{eV}\)
Therefore, \(W=4.23-0.453=3.8 \mathrm{eV}\).
```

(2) The photon is actually produced by a deexcitation of an excited Li^{2+} ion to the state with principal quantum number $n=4$. What is the principal quantum number of the initial excited state of the ion? [5]

```
En=-13.6Z^2/n^2 so hf = 13.6Z^2(1/nfinal^2 -1/ninitial^2).
Z = 3 for our case.
4.23 = 13.6x9(1/16 - 1/x^2).
Therefore,
1/x^2 = 1/16 - 0.0345 = 1/35.7 -> n = 6 initial.
```

