Name: \qquad Section: \qquad Score: \qquad /20

1. For a myopic person the distance between the middle of her lens and her retina is 27 mm as illustrated below.
(1) To read a book held 25 cm away from her own eyes, she must wear a pair of glasses with the focal length -11 cm , if the lenses of the glasses are held 2.5 cm from her own lenses. Where is her uncorrected near point from her own lenses? [5]
Principle of eye correction = place virtual image
where you can see it clearly
$\mathrm{f}=-110 \mathrm{~mm}$
She must hold the book $250-25=225 \mathrm{~mm}$

from the lenses to place its virtual image at her uncorrected near point.
$1 /(-110)=1 / 225+1 / x->1 / x=-1 / 110-1 / 225=-1 / 73.9$.
That is, the virtual image is 7.4 cm in front of the glasses. That is, the virtual
image is 7.4 cm left of the glasses $->9.9 \mathrm{~cm}$ from the eyes.
This is her uncorrected near point.
(2) Prescribe her contact lenses for reading. [5]

Contact lens is in contact (of course) with the eyes.

```
The book must be 25 cm from the contact lens, and the virtual image must be at the
uncorrected near point 9.9 cm from her eyes.
do = 250 mm, di = -94 mm, so
1/f = 1/250 -1/99 = -1/164 -> 16.4 cm concave lens.
```

2. A concave lens of focal length $\left|f_{1}\right|=5 \mathrm{~cm}$ is 15 cm in front of a concave mirror of focal length $\left|f_{2}\right|=45 \mathrm{~cm}$.

(1) An object of height 2 cm is placed 2 cm to the left to the concave lens. Where is the final image? You must tell whether the image is real or virtual. [You must solve this problem step by step, starting from the lens.] [5]
```
For the lens: f = -50 mm, do = 20 mm
1/(-50) = 1/20 + 1/di -> 1.di = -1/50 -1/20 = -70/1000 = -1/14.3 -> 14.3 mm
virtual image.
That is, this image is 16.4 cm in front of the mirror. The virtual image is located by
extrapolating back the outgoing rays. Therefore, the image acts as a real object for
the mirror.
For the mirror: f = +50 mm, dO = +164 mm.
1/di = 1/f - 1/do = 1/50 - 1/164 = 1/71.9. That is the image is real and 7.2 cm in
front of the mirror.
```

(2) What is the size of the image? Is it upright or inverted? [5]

```
Lens: m = - (-14.3)/20 = 0.715.
Mirror: m = -71.9/164 = - 0.438
Therefore, the overall magnification is
```

$m=-d i / d o$
compute this for each element
and multiply all.

