Name: \qquad Section: \qquad Score: \qquad /20

1. A triangular prism as sketched in the figure with the index of refraction $n=1.4$ is surrounded by a liquid of index of refraction $n_{L}=1.2$. Light is incident from left as illustrated in the figure (dotted lines denote normal directions of respective surfaces).
(1) The wavelength of the light in the prism is 385 nm . What is its wavelength in the surrounding liquid? [5]
c = f lambda
$\mathrm{c}=\mathrm{c} 0 / \mathrm{n}$

The frequency does not change in different media.

Therefore, lambda in a medium is proportional to $1 / n$. That is, $\mathrm{n} x$ lambda is common to all the media. Hence,
$1.4 \times 385=1.2 \times \mathrm{X}$. $X=385 \times 1.4 / 1.2=449 \mathrm{~nm}$.

You must know that the wavelength in the prism is shorter than that in the liquid

$$
\begin{aligned}
& \text { This angle is } 60 \\
& \text { deg }
\end{aligned}
$$

(2) Can the light go out from P into the surrounding liquid? [5]

$$
\text { Geometry: } y-x=60 \text { deg }
$$

Snell's law: n1 sin theta1 = n2 sin theta2

```
1.2 sin 11 = 1.4 sin x -> sin x = 0.21635 -> 9.41 deg.
Therefore, y = 60 + 9.41 = 69.4 deg
Apply Snell's law at P: 1.4 sin 69.4 = 1.31 = 1.2 sin theta.
Thus sin theta = 1.31/1.2 = 1.092 Hence, total reflection occurs.
```

```
If
(n1/n2)sin theta1 > 1 -> internal
reflection
```

2. 12 cm in front of a mirror is a real object of height 24 mm whose image is formed 8 cm away from the mirror.

(1) What is the (absolute) size of the image? [5]
```
|m| = |di|/|do| = 8/12 = 2/3.
Therefore, 24 x 2/3 = 10/3 = 16 mm
```

(2) The image is actually inverted. What is the focal length of the mirror? Is it converging or diverging? [5]
$m>0$ upright
$m<0$ inverted
$m=-3 / 2$ or $\mathrm{di}=12 \mathrm{~cm}$ (that is 12 cm in front of the mirror.
$1 / \mathrm{f}=1 / 8+1 / 12=(3+2) / 24=5 / 24$ Therefore $\mathrm{f}=24 / 5=4.8 \mathrm{~cm}>0$. This means that the mirror can actually gather light energy. Thus, concave mirror. (converging)

