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Formula sheet

The Solution/Explanation Manual for each weekly discussion problem set will be posted on

the course homepage before the actual discussion meetings. You must not abuse the

Manual as is clearly explained at the beginning of the Discussion Booklet.
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Physics 102 Discussion

Introduction

Welcome to your Physics 102 Discussion

My Discussion Section is:

My TA’s name and e-address are:

Possible Office Hours I can use are:

Discussion is the opportunity to finalize your understanding of the materials covered in

the preceding week.

The course is one of the courses you are supposed to improve your quantitative and log-

ical skills.

∗ No quiz answer will be credited unless your justification is given.

∗ Symbolic calculations are strongly recommended before entering any numerical values.

Overall Structure of a Discussion Session:

In each Discussion Session, we start with a very brief summary of the preceding week. It is

outlined in Key Points. Then, hopefully at least occasionally, we wish to have some inter-

esting discussion about topics related to the weekly themes (e.g., why hawks can have sharp

eyesight). We go on to solve Discussion Problems designed to illustrate key concepts and

laws/rules. These problems are similar to the homework questions, but Discussion Session

is really the last opportunity to make your understanding sure. The final 20-30 minutes will

be devoted to Quiz that is directly related to Discussion Problems of the week to check your

understanding of the Key Points. Sample quizzes will give you a preview.

Structure of the Discussion Booklet:

The Discussion Booklet is a collection of weekly Discussions.

Each weekly Discussion consists of Key Points, Discussion Problems and a Sample Quiz.

Any participant should read the Key Points before coming to the session. It is strongly

recommended that you should read Key Points before doing Homeworks.

Key Points summarize the important concepts and relations (laws and rules). Important

concepts are in bold and always with some defining statements. You might think physics

is quite different from biology and chemistry and there is nothing to memorize, but it is

strongly recommended that important concepts should be memorized to the level that you

can explain them to your lay friends. Key formulas that appear in the formula sheet (at-

tached at the end of this booklet) are highlighted with vermillion. You must understand the
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contexts in which they show up and know how to use them.

Discussion Problems illustrate key concepts and formulas (especially those in the For-

mula Sheet).

(i) You must first clearly recognize what the problem asks.

(ii) Then, you must be able to identify (and explain at least to yourself) relevant concepts

and laws.

(iii) Try to solve the questions as symbolically as possible. At least, do not jump to use the

calculator.

(iv) After getting your answer check whether it is ‘reasonable.’

Solution Manual: Unfortunately, we do not have enough time to solve problems together

interactively in an orderly fashion as (i)-(iv) above step by step, discussing with all of you

and answering all the questions you may have. Therefore, an extensive solution manual will

be made available before each Discussion Session.

Most professors are against this practice, because they believe students always follow the

easiest path and lose learning opportunities. This may be true, but it is also true that

obtaining the correct answers in a timely fashion as reinforcing stimuli is always the most

effective learning experience as every biologist knows. Therefore, the editor of this Discus-

sion Booklet sticks to the practice that makes the solution manual available.

To use the solution manual properly you must have some will power: you must NOT

read the solutions BEFORE attempting to solve the problems by yourself. Since you can

acquire practically usable knowledge only through active learning process, you must not rely

on this solution manual before you try your own ideas; you must use the manual sparingly.

If you cannot tell how to proceed, read the first line which is often a basic question, hiding

the rest. Its solution is in pale gray fine letters lest it jump into your eyes immediately.

If you think having the solution manual useful, do not abuse it so this practice will not

be forbidden by the majority professors.

Quiz: As can be seen from the samples, the quiz problems are directly related to the

Discussion Problems. It is a closed book quiz, but you can consult Formula Sheet attached

at the end of this booklet. The same formula sheet will be used throughout the course; hour

and final exams will also use the same formula sheet. You should better become able to

explain all the formulas on the sheet by the final exam.

When graded, answers without justification will never be counted, even if the answers are

(numerically) correct. However, if the grader can clearly recognize that you understand the

key points of the problems, you could even get full credits without the numerical answers.

Therefore, try to show your understanding when you compose your answers; it is a good

practice to write your answer that you will be able to understand in ten years. Accordingly,

careless errors may not be penalize unless the resultant answer is outrageous.
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Physics 102 Discussion Week 1

Rudimentary Math Review – simple algebra and vectors
This week we will review elementary algebra and vectors we need throughout Physics 102.

Key Points:

Crux of algebraic approach:

In this course it is absolutely important to use symbols to solve problems.

∗ You must be able to describe problems in terms of symbolic formulas.

Pretend that you know everything you need.

If there are quantities you want but not given, call them x, etc., and write

down the relations and formulas as if you know everything, including x, etc.

The following topics are very elementary. Use the corresponding Discussion Problems to

check/consolidate your elementary math knowledge and skill.

Elementary algebra: See Discussions 1-1 and 1-2.

∗ You must be able to solve simultaneous linear equations for x and y:

Ax + By = S,

Cx + Dy = T.

∗ You must know the graph of ax+ by = c (and its relation to the solutions for simultaneous

equations).

∗ You must be able to solve quadratic equations: ax2 + bx + c = 0.

Exponential functions and logarithms: See Discussion 1-3.

∗ y = 10x ⇐⇒ x = log10 y.

∗ y = ex ⇐⇒ x = log y (natural log; which is occasionally written as ln y).

(You should be able to sketch these functions.)

∗ You must know the following elementary relations:

log(xy) = log x + log y,

log(1/x) = − log x, in particular, log 1 = 0.

The volume/area formulas:

∗ The area of a disk of radius r: A = πr2.

∗ The surface area of a sphere of radius r: S = 4πr2 = 4A.

∗ The volume of a solid circular cylinder of radius r and height L: V = πr2L.

∗ The volume of a solid circular cone of radius r and height L: V = πr2L/3.

∗ The volume of a ball of radius r: V = 4πr3/3 = rS/3.
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The volume of a sphere was obtained by Archimedes:

∗ The area of a disk of radius r: A = πr2. (What is π?)

∗ The volume of a solid circular cylinder of radius r and height r: Vcy = πr3.

∗ The volume of a solid circular cone of radius r and height r: Vco = πr3/3. (Can you

explain the factor ‘1/3’?)

∗ The volume of a half ball of radius r: Vhs = 2πr3/3.

Notice that Vhs + Vco = Vcy.

Archimedes (287 BCE - 212 BCE) was the first to demonstrate that the volume of a ball of

radius r is given by 4πr3/3.

He proved the equality Vhs + Vco = Vcy mentioned above. How did Archimedes do it?

Cicero (107 BCE - 44 BCE) found the headstone of Archimedes’ tomb, on which was

described the way Archimedes obtained the ‘volume of the half ball of radius r’ = 2πr3/3.

The following figure illustrates how he accomplished this.

+

the volume of  a

circular cone of 

radius and height r

=

the volume of a

circular cylinder of

radius and height r

the volume of a

half ball of 

radius  r

+ =
cross sections 

at height ‘red’

+ =
cross sections 

at height ‘green’

Archimedes realized that if he added the cross sectional areas of the (inverted) cone and

of a half ball at the same height, then the sum was always πr2 (it is a good exercise for you

to show this). Thus, he sliced the volumes into parallel thin slices and computed the total

volume by stacking these thin slices (basically he invented integration). Since the volumes

of the cylinder and of the cone were known, he got what he wanted.



5

Trigonometric functions

∗ cos θ and sin θ are defined as the x and y coordinates, respectively, of a point on the unit

circle as illustrated below. Needless to say,

cos2 θ + sin2 θ = 1.

y

x1

1

O

θ

(cos   , sin   )θθcircle
arc length 

       =     in radiansθ

unit

∗ tan θ = sin θ/ cos θ.

∗ You must be able to explain what radian means (see Figure above). What is 38◦ in

radians?

You should remember what 30◦, 45◦, 60◦, 90◦, 120◦, 180◦ and 360◦ are in radians.

Also, you should learn by heart the values of sin, cos and tan at these angles

(e.g., cos(π/6) =
√

3/2). Can you sketch the graphs of these functions?

Vectors: See Discussion 1-4

∗ What is a vector? You must be able to give examples and to explain this concept to

your friends.

∗ Clearly understand vector addition and subtraction and their graphic representations.

If you are not very sure, do all the examples with solutions in Discussion 1-4.

∗ How to describe a vector in terms of components: v = (vx, vy).

Magnitude: |v| =
√

v2
x + v2

y .

x

y

(v , v )x y

|v| = (v x
2 + v 

2
y )1/2

θ = tan  (v /v )xy
−1
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Discussion 1-1 Simultaneous Equations

This review contains some explanations of simultaneous linear equations.

You must be able to solve simultaneous equations for x and y as unknown of the following

form:1

Ax + By = S, (1)

Cx + Dy = T. (2)

Instead of reviewing the general formula, let us review practical procedures through exam-

ples.

Example 1.
x + 2y = 3, (3)

x + 3y = 4. (4)

Look at the structure of the equations BEFORE jumping into any actual calculation and

choose the least laborious way. In this case, the easiest way is to subtract (3) from (4):

x + 3y = 4 · · · (4)
−) x + 2y = 3 · · · (3)

y = 1
(5)

That is, y = 1. Consequently, x = 3 − 2y = 1. After obtaining the solution, you should

check it by substituting the obtained values of x and y into (one of) the original equations

(not used in getting x): x + 3y = 1 + 3 = 4. Correct.

Notice that writing equations neatly and aligning them properly almost solve

the problem.

Alternatively, you could solve x from (3) as x = 3 − 2y and substitute this into (4) to

obtain (3− 2y) + 3y = 4, that is, y = 1. The rest is the same as before.

Example 2.
2x + 3y = 4, (6)

x− y = 1. (7)

A wise way may be to subtract 2×(7) from (6):

(6), that is, 2x + 3y = 4 ⇒ 2x + 3y = 4
−) 2× (7), that is, 2× x− y = 1 ⇒ −) 2x− 2y = 2

5y = 2
(8)

That is, y = 2/5. Consequently, x = 1+ y = 7/5. Check: 2x+3y = 14/5+6/5 = 4, correct.

Alternatively, you could get x from (7) as x = 1 + y and substitute this into (6) to obtain

2(1 + y) + 3y = 4 or 5y = 2, that is, y = 2/5. The rest is the same as before.

1AD 6= BC is assumed.
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Linear Algebra is the math branch studying such equations systematically. If you have

not learned Linear Algebra (matrices and determinants, vector spaces, etc) yet, you should

learn it as soon as possible. It is much more important than elementary physics.

Let us solve some practice examples. Answers are in [ ].

1)
2x− y = 4, (9)

3x + 2y = 2. (10)

[x = 10/7, y = −8/7]

Draw the graphs of the above two linear equations below, and graphically locate the solution.

1 2 3 40

1

2

3

1

2

3

4

1

4

−

−

−

−

−

−

2)
3x− 4y = 5, (11)

x + 4y = 3. (12)

[x = 2, y = 1/4]

3)
2x− 2y = 5, (13)

x + 3y = 3. (14)

[x = 21/8, y = 1/8]
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4)
3x− 2y = 5, (15)

−7x + y = 8. (16)

[x = −21/11, y = −59/11]

5)
3x− 4y = 5, (17)

2x + 3y = 7. (18)

[x = 43/17, y = 11/17]

In the following, set up the equations for unknown quantities and solve them.

6) There are some cranes (two-legged) and porpoises (without legs). The total number of

legs is 100, and the total number of organisms is 60. How many porpoises are there?

7) An apple is 70 cents and a banana is 30 cents. You bought 30 fruits and paid 17 dollars.

How many apples did you buy?

6) 50 cranes and 10 porpoises; 2x + 0× y = 100, x + y = 60.

7) 20 apples; 70x + 30y = 1700, x + y = 30.
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Discussion 1-2 Quadratic Equations

In Physics 102 you may occasionally need the formula for the roots of a quadratic equation

(a 6= 0):

ax2 + bx + c = 0. (1)

The formula for the roots of (1) is given by

x± =
−b±

√
b2 − 4ac

2a
. (2)

You should learn this by heart (you should be able to derive this as well; at least you should

be able to demonstrate that x± indeed satisfies (1)).

Let us do some practice examples (the solutions are given below the problems). Sim-

pler examples should be solved directly without the use of formula (2), i.e., with the use of

factorization:

(x + α)(x + β) = x2 + (α + β)x + αβ. (3)

Solve the following examples:

1) x2 − 3 = 0.

2) x2 − 3x + 2 = 0.

3) x2 + x− 6 = 0.

4) 2x2 + 5x− 3 = 0.

5) 6x2 − x− 1 = 0.
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6) x2 + 2x− 3 = 0.

7) 2x2 + 3x− 5 = 0.

8) −3x2 − 2x + 5 = 0.

9) 4.9x2 − 3.2x− 11 = 0.

10) −1.3x2 + 5.1x− 2.2 = 0.

1) x = ±
√

3 = ±1.732 · · ·.
2) = (x− 1)(x− 2), so x = 1 or 2.

3) = (x− 2)(x + 3), so x = 2 or −3.

4) = (2x− 1)(x + 3), so x = 1/2 or −3.

5) = (2x− 1)(3x + 1), so x = 1/2 or −1/3.

6) = (x− 1)(x + 3), so x = 1 or −3.

7) = (2x + 5)(x− 1), so x = −2.5 or 1. In this case, using the formula for the root may be

easier (but do not use the calculator).

8) = −(x − 1)(3x + 5), so x = 1 or −5/3, In this case, using the formula for the root may

be easier (but do not use the calculator).

9) x = (3.2±
√

3.22 + 4× 11× 4.9)/9.8 = 1.857 · · · or −1.20 · · ·.
10) x = (−5.1±

√
5.12− 4× 2.2× 1.3)/(−2.6) = 0.5 · · · or −3.42 · · ·.
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At this elementary level you must not use the formulas you cannot understand.

Let us demonstrate the formula (2); this you must be able to do by yourself. Those who are

not sure of their algebraic muscle, follow the calculation with a pencil and paper.

0 = ax2 + bx + c = a

[
x2 +

b

a
x

]
+ c. (4)

Now, we need a small trick called the completion of square. Note that (since (x + B)2 =

x2 + 2Bx + B2)

x2 + Ax = x2 + Ax +
A2

4
− A2

4
=

(
x +

A

2

)2

− A2

4
. (5)

We utilize this relation:

x2 +
b

a
x =

(
x +

b

2a

)2

− b2

4a2
. (6)

Therefore,

0 = a

[
x2 +

b

a
x

]
+ c = a

[(
x +

b

2a

)2

− b2

4a2

]
+ c, (7)

= a

(
x +

b

2a

)2

+ c− b2

4a
. (8)

This implies that

a

[(
x +

b

2a

)2
]
− b2 − 4ac

4a
= 0 (9)

or (
x +

b

2a

)2

− b2 − 4ac

4a2
= 0. (10)

Therefore,

x +
b

2a
= ±

√
b2 − 4ac

4a2
= ±

√
b2 − 4ac

2a
. (11)

Thus, we finally arrived at the desired formula:

x = − b

2a
±
√

b2 − 4ac

2a
=
−b±

√
b2 − 4ac

2a
. (12)
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Discussion 1-3 Logarithms and Exponents

Logarithm of x in base B (> 0) is written as logB x. Notice that

BlogB x = x

or

logB Bx = x.

1) Assume log10 2.1 = 0.3222 is given. What is log10 2100? Answer without using a calcula-

tor.

2) We can calculate 1/2.1 = 0.7762. What is log10 0.7762? Answer without using a cal-

culator.

3) Define α and β as log10 2 = α and log10 3 = β. Express the following quantities in

terms of α and β.

(i) log10 96 =

(ii) log10 50 =

(iii) log10 120 =

4) We will learn that the ‘electric charge’ Q stored in a ‘capacitor’ behaves (decays) as

Q(t) = Q0e
−t/τ ,

where Q0 is the charge at time t = 0, and τ (> 0) is called the ‘time constant’.2

(i) Find t when Q(t)/Q0 = 1/2 in terms of τ .

(ii) Q(3)/Q0 = 0.2. Find τ .

2The terms with ‘ ’ will be explained later in this course (Week 6).
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Discussion 1-4 Vectors
1) Scalar multiplication and addition

∗ Draw 2.3v and −0.5v in Fig. 1. Also draw c + d.

∗ Draw two arrows as you like them and construct their sum.

-0.5

Figure 1: Scalar multiplication and addition

2) Addition does not care about the order: a + b = b + a (commutative). You can add

several vectors in any order. Construct the vectors asked in Fig. 2.

Figure 2: Construct the vectors asked in the figure.

3) Illustrate subtractions (Fig. 3):

a
a − b

a − b

Figure 3: Draw vectors wanted in the figure.
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4) If two distinct directions are given, we can decompose a given vector v as a sum of two

vectors a and b that are respectively pointing the given distinct directions (Fig. 4).

Figure 4: Decomposition of a vector v into two prescribed directions as v = a + b.
Complete the right three figures, constructing ‘a’ and ‘b’.

5) Component-wise expression of vectors (see Fig. 5).

(i) Find the x and y components in the figure.

(ii) For a and b, find components. Draw a vector c given by (−3, 1):

Figure 5: Coordinate expression of vectors

(iii) Visualize addition and subtraction of vectors.

Figure 6: Draw the results of addition.

6) Find the magnitudes of the following vectors: (2, 3), (−1, 5), (3,−4).
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D1-4 Solutions
1)

Fig. 1 Vector: scalar multiplication and addition. Here α > 0 is assumed.
2)

Fig. 2 Exercise. Construct the vectors asked in the figure.
3)

a

a − b

a − b

Fig. 3 Subtraction of vectors. Complete the figures.

∗ a + b = (1, 9), a− b = (3,−1), 2a− b = (5, 3), −2a + 5b = (−9, 17).
∗ |(2, 5)| = 5.4 = |(−2, 5)|, |(3, 4)| = 5.
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4)

Fig. 4 Decomposition of a vector v: Complete the right three figures, constructing ‘a’ and ‘b’.

5) (i) (ii) omitted.

5) (iii)

Fig. 5 Draw the results of addition examples.

6)
√

13,
√

26, 5.
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Physics 101 Discussion Week 2 (Lectures 1 and 2)

Electric Charge, Coulomb’s law, and Electric Dipole

Key Points

Electrostatic interactions among charges (Coulomb’s law)

Empirically, we know that the following two basic rules 1 and 2 are enough to describe the

electrostatic interactions among relatively stationary charges.

1. Coulomb force between two charges

Charge 1 is q1 and charge 2 is q2 (in C = coulombs, the unit of charge).3 Let the distance

between these two charges be r. Then, due to the electrostatic interaction between the

charges (see Figure below)

Coulomb force F 12 acts on charge 1 due to charge 2 (cf. Figure below):

its magnitude is give by

F12 = k
|q1||q2|

r2
with k = 8.99× 109 Nm2/C2 =

1

4πε0

,

if the force is measured in N (newtons), r in m (meters) and charges in C.

its direction is along the line connecting the two charges, and

attractive, if the two charges have opposite signs (i.e., q1q2 < 0)

repulsive, if the two charges have identical signs (i.e., q1q2 > 0)

Coulomb force F 21 acting on charge 2 due to charge 1 is −F 12.

cf. the action-reaction principle: F 12 + F 21 = 0.

If not, what do you imagine to happen?

+
− +

+

−

−
1

1

2 2

2 1

+
−

1

2

F
21

F21 F
21

F
21F

21
F21

F21
F21

2. Superposition principle

If there are more than two charges,

(i) decompose the whole system into pair Coulomb interactions,

(ii) compute the pairwise forces separately following 1 above, and then

(iii) sum all of them (as vectors) to get the total force on each charge.

The following example illustrates the principle:

3The units are always written in upright letters; the unit ‘coulomb’ commemorates Coulomb, and always
starts with a lower case letter.
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q
1

q
2

q
3
+

+
_

To study the system consisting of three charges in the above figure, decompose the system

into pairs of charges as the top row of the following figure, and then add the resultant forces

for individual pairs (green, red and blue) as vectors as illustrated in the bottom row:

q
1

q
2

+

q
2

q
3

q
1

q
3
+

+

q
1

q
2

q
3
+

+
_

+ +
=

_

+

_

Notice that the Coulomb forces do not change, even if all the charge signs are flipped simul-

taneously (charge conjugation symmetry).

Conductor/Insulator

Conductor: a material in which charges can move freely.

Insulator: a material in which charges cannot move freely (however, ‘polarization’ is still

possible due to small localized displacements of charges).
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Induced charge and conservation of charge

If a charge (+ in the following figure) comes close to a conducting ball, since charges can

move freely in the conducting ball, plus charges ‘wish to go away from the plus charge,’

and negative charges ‘wish to come near the plus charge.’ Thus, the induced plus charge

δ+ appears away from the external plus charge, and the induced negative charge δ−
appears near it. Thus, an induced electric dipole (see below) is formed. (Even if the ball is

an insulator, still charges can move slightly in it, and induced charges with the same signs

as illustrated appear.)

++ _
_

__

_

+

+

+
+δ+ δ−

Initially, there is no net charge on the conducting sphere, so (δ+) + (δ−) = 0. This is

one of the most fundamental laws of physics, the conservation of electric charges: you

cannot create or annihilate electric charges.

Electric dipole

If charge +q (q > 0) is at r+ and charge −q is at r−, the system is called an electric dipole,

and

p = (+q)r+ + (−q)r− = q(r+ − r−) = qd

is called the electric dipole moment, where d = r+ − r−. Notice that the vector d is the

vector connecting the positive and the negative charges (from the negative to the positive

charge).

+q

−q
p

+
r

−r

q= d

=
+
r −r − d

If an electric dipole p is placed in an electric field E, there is a torque τdip = p × E,

whose magnitude is τdip = pE sin θ, where θ is the angle between p and E.
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Discussion 2-1 Induced charges

A conducting ball hangs from the ceiling with a flexible insulating string. Initially, the ball

is fixed, and a positively charged small conducting sphere is placed near it as shown in the

figure.

+

conducting

ball

initially

fixed

charged 

conducting 

sphere

1) What happens if the ball is released (allowed to move) while still hanging from the ceiling?

2) What happens if the ball is released (allowed to move) while still hanging from the

ceiling, but only after the positively charged small conducting sphere is allowed to make

contact with the ball?

3) If the ball were made of an insulating material (say, a plastic ball), what would you

expect to happen in the similar situation as 1)?

4) What do you expect to happen in 1)–3) above, if the positively charged small conducting

sphere is replaced with a negatively charged small conducting sphere? Assume that the

absolute values of the charge on the sphere do not change.

5) If the string hanging the ball is conducting and is (electrically) connected to the earth,

then what difference do you expect from the situation 1) and 2)?
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Discussion 2-2 Coulomb force

There are three charges q1, q2 and q3 as shown in the figure. q1 = −0.1 mC and q2 = q3 = 0.3

mC.

1

x

y

1 2

2

3

3

40

q

qq

1

2 3

(m)

(m)

P

1) Find the force acting on charge q2 (find its x and y components).
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2) Find the force acting on charge q1 (find its x and y components). Also determine its

magnitude.

3) We place a new charge of −0.1 mC at point P. What is the magnitude of the total force

acting on this new charge?
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Discussion 2-3 Dipole moment of H2O

The water molecule has the structure as illustrated below. The dipole charge is with δ+ =

0.35e, where e = 1.6× 10−19 C.

104
o

0.096 nm

δ+

2δ−

δ+

Obtain the magnitude and the direction (indicate it in the figure above) of the dipole moment

of the water molecule.



24



25

Physics 102 (Quiz Sample) Q1s

Name: Section: Score: /20

1. Very small and identical metal spheres A and B are with glass handles as in Fig. 1.

Initially, A has no net charge and B has a net charge Q. After the metal spheres are con-

nected, they are separated and placed as in the lower-right figure.

0.30 m

A B

no net 

chrage

net charge Q

touching

separated

A

B

Figure 1:

(a) The magnitude of the force acting on charge at A is 10 N. What is the original net charge

Q on B before touching with A? [5]

Notice that charge is conserved. After touching A and B must have equal charges due

to symmetry. Both must have Q/2 charges due to conservation of charges.

In terms of Q, the force between A and B satisfies (k = 9× 109)

F = |F | = k
(Q/2)2

0.32
=

Q2

4
× 1011 = 10 N.

Therefore, Q2 = 4 × 10−10, or |Q| = 2 × 10−5. That is, |Q| is 20 µC. We cannot

determine its sign (recall the charge conjugation symmetry).

(b) If the above experiment is repeated with a doubled Q, what is the magnitude of the force

acting on A? [5]

F is proportional to the product of charges, so F must be quadrupled, or 40 N.
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3. Look at the configuration of three charges in the figure 2. A and C have −2 µC and B

−3 µC.

3 cm
3 

cm

A

B

C
Q

Figure 2:

(a) What is the total force acting on B from the other charges A and C? Compute its

magnitude and indicate its direction in Figure 2. [5]

Recall :

Superposition principle,

Forces are vectors.

The x-components of the forces cancel each other, so we have only to consider the y-

component. The forces are repulsive, so the resultant force must be in the −y-direction.

The magnitude of the force between A and B is

|F | = (9× 109)
(2× 10−6)(3× 10−6)

(0.03)2
= 6× 109−12+4 = 60 N.

Therefore, 60× 2 cos 45◦ = 60× 1.414 = 84.9 N (green arrow).

(b) Q is the point equidistant from all three points A-C and on the line connecting A and C.

What is the total force acting on a 2 µC charge placed at Q? Compute its magnitude and

indicate its direction in the figure 2. [5]

By symmetry forces due to A and C cancel each other, so we have only to consider the

effect of B on Q. These charges have opposite signs, so the force is attractive and Q is

pulled downward (red arrow). Its magnitude is

|F | = (9× 109)
(2× 10−6)(3× 10−6)

(0.03 cos 45◦)2
= 12× 109−12+4 = 120 N.
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Physics 102 Discussion Week 3 (Lecture 3)

Electric Field

Key Points

Electric field

Suppose charge q is located at the origin. If we place another charge away from the origin,

then there is a Coulomb force acting on this charge.

We can interpret this informally as follows: the charge at the origin ‘warps’ the property

of the space, and the new charge senses it and feels a force.

In more proper terms, we say the charge creates a field called the electric field E all

over the space. If a charge q′ is placed where there is an electric field E, the following force

acts on the charge q′:

F = q′E.

Thus, the unit of electric field is N/C.

We know Coulomb’s law, so we can find E created by a single charge.

The electric field created by a system of charges is determined by the following two

basic rules, 1 and 2.

1. Electric field due to a single charge

The electric field E created by a charge q (see Figure below):

its magnitude E at a location P which is distance r away from the charge is

given by (k = 8.99× 109 Nm2/C2)

E = k
|q|
r2

,

its direction is along the line connecting the charge and P

if q > 0, away from the charge to P,

if q < 0, toward the charge from P.

+
−

P

P

2. Superposition principle

If there are more than one charges q1, q2, · · ·, the electric field at point P due to these

charges is the vectorial sum (superposition) of all the electric fields Ei due to charge

qi determined separately according to 1:

E =
∑

Ei.

The following example illustrates the principle:
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q
1

q
2

q
3 +

+

_

P

To study the system consisting of three charges illustrated above, decompose the system

into individual charges as the top row of the following figure, and then the resultant electric

fields due to individual charges are added as vectors (the bottom row):

q
1

+

P

q
2_

P q
3 +

P

q
1

q
2

q
3 +

+

_

P

+ +

=

Remark: No self interaction: There is no self interaction between the part of E created

by a charge q and the charge itself.4

Electric field lines

If electric field E is given all over a region, we can imagine a curve whose tangent directions

agree with E along it (see a red curve in A below). Such a curve is called an electric field

line.

-

A B

+ −

Sufficiently close to any charge, the field is almost determined by the charge alone, so field

lines near a charge are solely determined by the charge and look as illustrated in B above.

You may imagine that (see B in Figure above; ε0 below is defined by ε0 = 1/4πk)

q/ε0 field lines emanate isotropically (i.e., evenly in all directions) from a positive

charge q, and

|q|/ε0 field lines are sucked by a negative charge −|q|.
Thus, the density of field lines can indicate the intensity of the electric field.

Needless to say, the direction of the line (tangent direction) indicates the electric

field direction at the point. See Discussion 3-3 for an illustration.

Electric force lines never cross (except where E = 0) and are never created nor annihilated

except where charges are or at infinity.

4This ‘infinite interaction’ is already taken care of in the quantum field theoretical definition of the
observed charge, so we need not worry about it.
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Discussion 3-1 Electric field due to charges

We have three charges exactly as in D2-2: q1 = −0.1 mC and q2 = q3 = 0.3 mC.

1

x

y

1 2

2

3

3

40

q

qq

1

2 3

(m)

(m)

P

Q

1) Find the electric field at P (i.e., Ex and Ey at P).

2) What is the force on the charge of q′ = −0.1 mC placed at P?
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3) Is there any place where E = 0 on the rectangle [0, 4]× [0, 3]?

4) If the sign of the charge q1 is flipped to 0.1 mC, is there any place where E = 0 on the

rectangle [0, 4]× [0, 3]?
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Discussion 3-2 Electric quadrupole

Sketch the electric field lines due to an electric quadrupole in the following figure. Assume

charges A and C are positive, and B and D are negative.

A

B C

D

O
x

y

 1   mμ

 1
   m
μ
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Discussion 3-3 Field lines

There are several plus and minus charges on the plane defined by the sheet of this paper.

You may assume that there are no other charges in the world.5

A

B

C

D

E

F

P

Q

1) Suppose A is a positive charge. Choose positive charges among B - F.

2) Mark the locations with X where E = 0.

3) Indicate the direction of the electric field at point P and Q.

4) Which point, P or Q, has a stronger electric field?

5The figure was created by using http://www.cco.caltech.edu/∼phys1/java/phys1/EField/EField.html.
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Physics 102 (Sample Quiz) Q2s

Name: Section: Score: /20

1. As shown in Figure 1 several point charges are fixed on the sheet of this paper, making an

electric field E in a plane. At the origin O the electric field is given by E = (−3.2, 1.2)×103

N/C.

O
x

y

+

-

+

+

+
-

-

E
(0, 0.01)

Figure 1:

(a) A charge q = 1.5 µC is placed at the origin. What is the magnitude of the force acting

on the charge? [5]

Recall

F = qE.

|E| = 3.42× 103 N/C.

|F | = q|E| = (1.5× 10−6)× (3.42× 103) = 5.13× 10−3 N

(b) Another charge which is exactly −q is placed at (0, 0.01) m and connected to the +q

charge to make a dipole. What is the magnitude of the torque on this dipole? [5]

Recall

torque = |p||E| sin(angle from p to E).

Angle = 180− tan−1(3.2/1.2) = 180− 69.4 = 110.6◦.

|p| = 1.5× 10−6 × 0.01 = 1.5× 10−8 m·C.

Therefore, torque = (1.5× 10−8)× (3.42× 103) sin(110.6◦) = 4.8× 10−5 m·N.
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2. Electric field lines due to more than 10 charges on a plane are depicted in Fig. 2.

A

B

C

D

E

F

a b c d e

P

−

+

−
−

−

−

+

+ +
+

Figure 2:

(a) Suppose charge A is negative. Give all the negative charges among B-F. [4]

B and E are negative.

(b) Among the points a-e, where is the electric field zero? [2]

c.

(c) Draw an arrow describing the direction of the electric field vector at P. [4]
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Physics 102 Discussion Week 4 (Lectures 4 and 5)
Electric Potential and Work

Key Points
Electric potential

Background: Suppose charge Q is at the origin and charge q is initially very far away from the
origin (at infinity). Now, let us drag the charge q from infinity to a point P which is distance r away
from the origin (Figure below). If Q and q are with the same sign, we must do work against the
repulsive Coulomb force F acting on charge q. It is known that the work you must perform is given
by W = kQq/r.

P

Q

+
q

F

Coulomb fo
rce

+

move to P

r

at the Origin

+

This may be understood as the potential energy of charge q. If we exchange the charge q with another
charge q′, then this potential energy would become kQq′/r. Therefore, we interpret that the charge
Q creates an electric potential field V = kQ/r, and a charge q placed at a point in this field has a
potential energy U = qV , where V is the electric potential at the point.

The electric potential field created by a system of charges is determined by the

following two basic rules, 1 and 2.

1. Electric potential due to a single charge

The electric potential field V created by charge q at P which is distance r away from

the charge is give by (k = 8.99× 109 Nm2/C2)

V = k
q

r
,

If q > 0, then V > 0; if q < 0, then V < 0. Its unit is J/C (= V, volts).

2. Superposition principle

If there are more than one charges q1, q2, · · ·, the electric potential field V at a point

P due to these charges is the sum of all the individual electric fields Vi due to charge

qi determined separately according to 1:

V =
∑

Vi.

Remark. No self interaction: Just as in the case of E there is no self interaction

between the charge and the field created by it.

Electric potential energy

If charge q is placed at a position with electric potential V , its electric potential energy U

reads

U = qV .

You may interpret U at a point as the needed work for you to bring q from infinity to the

point. If U is due to charges q1, q2, · · ·, thanks to the superposition principle, you may
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interpret U as the sum (U =
∑

Wi) of the needed work Wi to bring q to the point from

infinity, assuming only qi exists:

U = k
qq1

r1

+ k
qq2

r2

+ · · · = q

[
k
q1

r1

+ k
q2

r2

+ · · ·
]

,

where r1 (resp., r2, · · ·) is the distance between q and q1 (resp., q2, · · ·).
If you wish to move the charge q from a location with electric potential U1 to another

location with electric potential U2, then you must supply work W given by

W = q(U2 − U1).

Electric energy stored in a charge system

To create a system with charges q1, q2, · · ·, located at r1, r2, · · ·, respectively, starting with

non-interacting charges, we can bring charges one by one from infinity to the specified loca-

tions. The total work you do to create the charge system may be interpreted as the total

electric energy U stored in the charge system. The superposition principle and the formula

for the pairwisely stored electric potential energy gives

U =
∑

all charge pairs

k
qiqj

rij

,

where rij is the distance between charge i and j. The following example illustrates the for-

mula.

Illustration:

There are four charges in the space. What is the total electrostatic energy U stored in this

system?

q
2

qqq
4

q
1

q
3

pairwise interaction

r12

r14

r13

r24 r34

r23

U = k
q1q2

r12

+ k
q1q3

r13

+ k
q1q4

r14

+ k
q2q3

r23

+ k
q2q4

r24

+ k
q3q4

r34

.

We have only to add all the pair contributions.
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Potential field as a landscape

If we place a positive charge q at a point with an electric potential V , its potential energy is

U = qV . Thus, we can visualize the potential energy field as a potential energy landscape.

Similarly, we can visualize the field V as a landscape: a plus point charge creates an infinitely

tall peak, and a negative point charge an infinitely deep pit. Where there is no charge, there

is no peak or pit.

We can illustrate the V field in terms of equipotential curves (contours)6 just as the usual

geographic landscape (See Figure below).

Electric field denotes the steepest descending direction and the slope along it

At a point in an electric potential field V , the electric field E (vector) is given by

Magnitude: E = |E| is the slope of the V landscape,

Direction: The vector E points in the steepest descending direction.

Thus, equipotential contours and E vectors are orthogonal; the field lines are always orthog-

onal to the equipotential contours as illustrated below by an example.7

A

peak

peak
dip

field lines are 

orthogonal to 

equipotential contours

Notable qualitative features of equipotential contours and electric field lines

1) A high contour density implies a strong electric field; dense contours surrounding

a charge indicate its magnitude. Larger charges are also connected with more numerous

force lines. In the above the charge near A has the biggest absolute size.

2) The electric field lines and contour curves must be orthogonal; E points the

steepest descending direction of the potential field V .

6Actually, they are cross sections of equipotential surfaces in 3D space.
7Field figures of this week are created with the aid of http://irobutsu.a.la9.jp/mybook/ykwkrEM/sim.html

(Masahiro Maeno’s Comprehensible Electromagnetism (in Japanese) support page).
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Discussion 4-1 Electric potential energy due to two charges

You should try to illustrate the questions before answering them.

1) A positive charge A of 10 µC is fixed at a point O. Another charge B of −5 µC is found

at point P which is 5 mm away from O. What is the electric potential energy stored in this

charge configuration?

2) If initially the negative charge B in 1) is infinitely away from O, what work do you have

to do to bring charge B to P?

3) Instead of the negative charge B, now you bring a positive charge C of 12 µC from infinity

to P. What work do you have to do?
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4) What is the electric potential energy stored in this two-positive-charge (A and C) con-

figuration?

5) Next, you wish to bring the charge C currently at P to the point R that is 1 mm away

from O. What work do you have to do?

6) The +12 µC charge C is allowed to move freely with the intial speed zero from R. When

it is 18 mm away from O, what is its speed? Let us assume that the mass of this movable

charge C is 1.0 g.

7) What happens if you switch the signs of all the charges (i.e., + charge to be − charge of

the identical magnitude and vice versa.) in the above questions?
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Discussion 4-2 Electric potential energy of a quadrupole

In Fig. 1 we wish to bring two +q = +100 µC charges to A and C, and two −q = −100 µC

charges to B and D from infinity one by one to make an electric quadrupole.

First, we fix one +q at A = (−3, 3) µm.

A

B C

D

O
x

y

 1   mμ

 1
   m
μ

Figure 1:

1) −q is brought to B from infinity and is fixed. What is the work you have to do? While

performing this process what force do you feel?

2) Next, the other −q is brought from infinity to D. What is the work you have to do?
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3) Finally, the remaining +q is brought to C from infinity. What is the work you have to

do?

4) What is the electric potential energy stored in the completed electric quadrupole?

5) What is the electrical potential at O?

6) Is there any point within the square ABCD where the electric potential is more than 10

MV?
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Discussion 4-3 Electric potential and work

Let us move a minus charge Q of −10 mC around a positive charge. The equipotential curves

(surfaces) are depicted in the following figure (Fig. 2).

20 V16 V

9 V

6 V

12 V

C

a

b

c
d

C’

Figure 2:

1) What work do you have to do to move charge Q along the curve C’ from b to c?

2) What is the work do you have to do to move charge Q from a to b?

3) What work do you have to do to move charge from d to the same point d along curve

C?
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Discussion 4-4 Electric potential ‘landscapes’

1) What can you tell from the following four figures (Fig. 3; e.g., sign, magnitude, field lines,

voltage, etc.)? Discuss with your friends.

A B C D

Figure 3:

2) Suppose A is positive in Fig. 4. Tell the signs of B-D and extend the field line start-

ing from B.

A

B

C

D

Figure 4:
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3) Seven charges are on the plane and the equipotential surfaces (or contours) are described

in Fig. 5. Let us assume charge A to be positive.

A

B

C

D
E F

G

Figure 5:

(i) What charge is with the largest magnitude?

(ii) Write down all the negative charges.

(iii) Is there zero electric potential point in this figure?
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Discussion 4-5 Electric potential and field lines with a conductor

A conducting circular ring is placed so that its center coincides with the center of the electric

quadrupole constructed in D4-2 as shown in Fig. 6.

1) Sketch the equipotential surfaces and the electric field lines in the figure.

+

_
+

_

conductor

Figure 6:

2) What is the electric potential of the conductor?

3) What is the electric potential at the center of the ring?
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Physics 102 (Sample Quiz) Q3s

Name: Section: Score: /20

1. A −11 µC point charge A is fixed in the space.

(1) You bring a positive charge B of 8 µC from infinity to a point which is 7 cm away from

charge A. What is the work you have to do? [5]

Recall W = Uf − Ui.

The initial potential energy is 0, because B is infinitely away from A.

The final potential energy is

k
QAQB

r
= (9× 109)

(−11× 10−6)(8× 10−6)

0.07
= −11314× 109−6−6 = −11.3 J.

Thus, you do −11.3 J of work (or you are dragged by the charge system and done

+11.3 J of work by the system).

(2) Now, charge B is gently released and moves to a point 4 cm away from the fixed charge

A. What is its speed, if its mass is 1.5 g? [5]

The initial potential energy is Ui = −11.3 J as computed in (1).

The final potential energy is Uf = (9 × 109)(−11 × 10−6)(8 × 10−6)/0.04 = −19.8 J

(which is = −11.3× (.07/0.4)).

Energy conservation:

−11.3 + 0 kinetic energy = −19.8 +
1

2
mv2,

so v2 = 2× (19.8− 11.3)/0.0015 = 11333.33, or v = 106.45 m/s.
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2. There are four charges on the plane. The equipotential curves are described in the fol-

lowing figure.

A

B

C

D
P

−

+

−

+

(1) Suppose A is negatively charged. State the signs of all the remaining charges B - D.

(2) Which charge has the largest magnitude?

C

(3) Indicate the direction of the electric field at P. You must briefly explain your choice.

Since D is positive and since A is negative, the left side must be with lower potential.

E must be perpendicular to the equipotential line.
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Physics 102 Discussion Week 5 (Lectures 6 and 7)
Circuit elements and simple circuits

Key Points

Capacitors

A capacitor consists of two electrodes and the spacing d between them, which may or may

not be filled with material (with a dielectric constant κ; Figure below). Positive and

negative charges ±Q are separately stored on the electrodes with area A.

area A

spacing d

+Q

−Q

κ

The stored charge Q is proportional to the voltage difference V across the spacing, and the

proportionality constant C is called the capacitance:

Q = CV .

The unit of C is F = C/V and is called farad.

The electric energy U stored in the capacitor reads

U =
1

2
QV =

1

2
CV 2 =

Q2

2C
. (1)

The capacitance C may be computed as

C = κε0
A

d
,

where κ is a materials constant called the dielectric constant and ε0 = 8.85 × 10−12

C2/Nm2.

Resistors

If charges move through a cross section at a constant rate such that charge ∆q flows within

a time span ∆t, we say an electric current I given by

I =
∆q

∆t

flows through the cross section. The unit of the current is A = C/s (ampere).

The current I through a material is proportional to the voltage V across it (Ohm’s

law);

V = IR.

The constant R is called the resistance and is measured in Ω = V/A (ohm).
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cross section A

L

ρ

The resistance R of a rod may be calculated as follows. Suppose the rod has a cross

section A and length L (see Figure). The resistance is proportional to L/A:

R = ρ
L

A
,

where the proportionality constant ρ is called the resistivity.

If a current I flows down the voltage difference V , electric energy is dissipated. The

electric energy loss per unit time is the electric power consumed (= converted to heat) by

the resistor and is given by

P = IV = I2R =
V 2

R
.

Parallel connection and series connection

See the figure below: Let V1 and V2 be the voltage drops across circuit element 1 and 2,

respectively.

For a series connection V = V1 + V2,

For a parallel connection V = V1 = V2.

parallel connectionseries connection

V

V

V
VV

V

1
1

2

2
only one path

more than one paths

Parallel and series connections of resistors

(1) Series connection of resistors R1 and R2 (henceforth, the name of the resistor also denotes

its resistance as well):

What quantity is shared by R1 and R2?

The current I is shared, so V1 = R1I, V2 = R2I.

The effective resistance RS is defined by V = RSI.

Since V = V1 + V2 (see Figure above),

RSI = R1I + R2I ⇒ RS = R1 + R2.

(2) Parallel connection of resistors R1 and R2.

What quantities are common for R1 and R2? The voltage drops V1 and V2 are, so

V = R1I1 = R2I2.

Due to the charge conservation (or Kirchhoff’s junction rule, see below) I = I1 + I2, so
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the effective resistance RP defined by V = RPI implies

I = I1 + I2 ⇒
1

RP
=

1

R1

+
1

R2

.

Although this is the standard formula, it is convenient to memorize

RP =
R1R2

R1 + R2

.

Parallel and series connections of capacitors

(1) Parallel connection of capacitors C1 and C2 (henceforth, the name of the capacitor also

denotes its capacitance as well).

What are the common quantities for these capacitors?

The voltage drops V1 and V2 are, so Q1 = C1V , Q2 = C2V .

The effective capacitance CP is defined by Q = CPV .

Since Q = Q1 + Q2 (see Figure below)

CP = C1 + C2.

C

+Q
1

1V C2

+Q
2

-Q
1

-Q
2

VC

+Q

-Q

∼= P

(2) Series connection of capacitors C1 and C2.

What are common? The charges on the positive plates +Q are due to the charge

conservation.

Take C1. If the positive plate has charge +Q, its other plate must have charge

−Q. Before charging, the ‘wire’ between C1 and C2 has no net charge, so the charge

conservation implies that charge +Q must be on the plate of C2 closer to C1. That is,

both the capacitors store the same charge Q. See Figure below.

C
+Q

1 C2

+Q-Q
-Q +Q -Q

∼=

V

V

C

V V1 2

S

the total charge must be 0

Q = C1V1, Q = C2V2 and Q = CSV . Therefore,

V = V1 + V2 ⇒
1

CS
=

1

C1

+
1

C2

.

Although this is the standard formula, it is convenient to memorize

CS =
C1C2

C1 + C2

.



52

Discussion 5-1 Capacitors and work

(A) We wish to halve the spacing of the parallel plate capacitor as illustrated below.

V d d/2

1) Initially, the voltage across the capacitor is V . What is the voltage across the spacing

after halving it? Assume that the terminals of the capacitor are kept open.

2) By this halving process how does the stored energy change?

3) The energy is not conserved. Explain why the energy is not conserved. Who did the

required work?
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(B) We wish to insert a dielectric material with dielectric constant κ into the spacing as

illustrated below.

κ κ

4) Initially, the voltage across the capacitor is V . What is the voltage across the spacing

after inserting the dielectric material? Assume that the terminals of the capacitor are kept

open.

5) By this insertion of the dielectric material how does the stored energy change?

6) The energy is not conserved. Explain why the energy is not conserved. Who did the

required work?
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Discussion 5-2 Power dissipation due to resistors

There are four resistors made of the same material as illustrated in the figure below. The

resistance of (A) is R.

L

radius r

L

2L

radius 2r

radius 2r

(A)

(B)

(C)

radius r(D)

L/2

1) Find the resistances of (B), (C) and (D) in terms of R.

2) If the voltage across the resistors are identical, which resistor dissipates the electric energy

most?
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Discussion 5.3 Finding effective resistance

Consider the following resistor network. All the resistors are with R = 3 Ω.

A B

c

d

e f

g

1) Let us identify junctions that need not be distinguished before starting the reduction.

Check that the above circuit is equivalent to the following circuit.

A B

c

d

e
f
g
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2) Find the effective resistance between A and B.

3) Suppose a 15 V power supply was connected between A and B. What is the potential

difference between c and g ?

4) If these resistors were all identical light bulbs, which one would be the brightest? Which

one would be the least bright?
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Discussion 5-4 Capacitor circuit

Consider the capacitor network connected to a battery as illustrated below. You have al-

ready measured the quantities numerically given in the table in 1):

C

V

C

C C

1

2

3

4

1) Fill the empty boxes in the following table and determine V of the battery.

Capacitor Capacitance Stored Charge Voltage Stored Energy

C1 6.0 µF 6.0 µC

C2

C3 0.5 µF 25 µJ

C4

2) What is the total electrostatic energy stored in this capacitor system?
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Physics 102 (Sample Quiz) Q4s

Name: Section: Score: /20

1. Initially, between the plates of area A of the capacitor is vacuum and the magnitude

of the electric field at P is E.

(1) What is the amount of charge Q stored in this capacitor? [4]

Q

d

−Q

C

P

E = V/d

Q = CV = ε0AV/d

Q = ε0AE.

(2) Into the spacing of the capacitor considered in (1) is inserted a dielectric material with

dielectric constant κ = 3/2 that exactly fills the space (see the figure). The terminals are

kept open throughout the process. What is the magnitude of the work W you do in terms

of U , which is the stored energy in the case of (1) (i.e., without the dielectric material)? [6]

κ κ

Notice that the charge is conserved.

U = Q2/2C. Also note that C ∝ κ.

Therefore, U ∝ 1/κ.

The initial energy is Ui = U . The final energy is Uf = U/κ = 2U/3.

W = Uf − Ui = U/3. Thus, the system has lost U/3 of energy. That is, you have

been done a work of U/3 by the capacitor system.

This must be intuitively understandable, because the dielectric material is actually

sucked into the gap.
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2. Find the resistance between A and B in the following resistor system. All the resistors

are identical with resistance R. [5]

A B

These red-circled joints have the same voltage, 

so you can combine them into a single joint.

=~

A B

Thus, R and R/3 are in series ⇒ the total resistance is 4R/3.

3. In the following capacitor circuit E = 12 V. The capacitors are C1 = 1.5 µF and C2 = 0.5

µF with Q1 = −9 µC. What is the capacitance C3? [5]

C

E

C

C

1

2

3

Q
1

Q
3

Q
2

V1

Q = CV .

The voltage across C1 is V1 = 9/1.5 = 6 V.

Therefore, the voltage across C2 = 12− 6 = 6 V → Q2 = 0.5× 6 = 3 µC.

Q1 + Q2 + Q3 = 0 due to charge conservation. This means Q3 = 6 µC.

We know the voltage across C3 = 6 V. Therefore, C3 = Q3/6 = 1 µF.

OR

C2 + C3 must be equal to C1, because the voltage across C2 + C3 is also 6 V. This

should imply C3 = 1 µF.
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Physics 102 Discussion Week 6 (Lectures 8-9)

Kirchhoff’s rules and RC Circuits

Key Points

Kirchhoff’s rules

Kirchhoff’s rules are reviewed here with the following example:

R

loop 2

R

R R

R

loop 1

1

2

3

4

5

E

I

I I1

2

3J

1

E2

Algebraic expression of the currents

To determine the current along a branch, in order to express the current (say, I1 in the

above), we must assign the current direction before knowing the actual current. If the value

of the current so assigned turns out to be positive, it means indeed the actual current flows

in the direction you assigned (with an arrow). If negative, the actual current flow is in the

opposite direction. Algebraically, you need not worry about whether the true flow direction

is as assigned or not. Simply, calculate algebraically, assuming everything is as assigned. At

the end, your wrong assumptions (if any) would automatically corrected with negative signs

that are algebraically obtained.

Kirchhoff’s rules

Kirchhoff’s rules consist of (1) the junction rule and (2) the loop rule:

(1) Junction rule: The algebraic sum of all the in-coming currents and that of the

out-going currents are identical (due to the conservation of charge).

For the junction J in the above figure, I1 + I2 + I3 = 0.8

(2) Loop rule: Around any loop the voltage returns to the original value (see Figure

below). Thus, around a loop algebraic sum of all the voltage drops and electromotive

forces add up to zero.

Illustration using the above circuit.

Junction rule:

If applied to J, we have I1 + I2 + I3 = 0 as already noted above.

8Clearly, at least one of them must be negative according to our choice of the arrows.
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R

loop 2

R

R R

R

loop 1

1

2

3

4

5

E

I

I I1

2

3

V |I R |11

1
|I R |22

E

1

E2

Loop rule:

Notice that I1 flows from right to left through R1 (due to the conservation of charge)

irrespective of the true direction of the current. Assume everything is positive and set

up the equations. Solve them. If some values are negative, simply flip your assigned

directions. That is all. Trust algebra.

Loop 1: −E1 + R2I2 −R1I1 = 0,

The loop direction (which you may choose as you wish, but here we adopt the

one in the figure) goes from the positive to the negative terminals of the

battery (downhill); the (algebraic) voltage change through the battery: −E1.

The loop direction is against I2 through R2, so it is (algebraically) uphill;

the (algebraic) voltage change through R2: +I2R2.

The loop direction is in the same direction as I1 flowing through R1, so

the (algebraic) voltage change through R1: −I1R1.

Loop 2: −I2R2 + R3I3 + R4I3 + R5I3 + E2 = 0.

The loop direction goes from the negative to the positive terminals of the

battery (uphill); the (algebraic) voltage change through the battery: +E2.

The loop direction is against I3 through R3, R4 and R5, so these contributions

are all (algebraically) uphill, so

the (algebraic) voltage changes through R3, R4, and R5: +I3R3, +I3R4, +I3R5,

respectively.

The loop direction is in the same direction as I2 flowing through R2, so

the (algebraic) voltage change through R2: −I2R2.
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RC circuits

The most important fact about RC circuits is:

the amount of charge in any capacitor cannot change instantaneously at all.

This of course implies that the voltage across any capacitor cannot change at all instanta-

neously. In contradistinction, currents can change instantaneously.

Time dependence: In a RC circuit the time dependence of the charge q(t) of a capac-

itor is always the following form:

Let q(0) = q0 (the initial charge) and q∞ be the final charge after a sufficiently long time.

Then,

q(t) = q∞ + (q0 − q∞)e−t/τ ,

where τ is the time constant obtained from the effective circuit as τ = ReffCeff . Two

examples (case q0 > q∞ and case q∞ > q0) are illustrated

t

q

q

0

8

τ ττττ2 3 54 t

q

q

0

8

τ ττττ2 3 54

Example:

In the following RC circuit with a battery E with two switches let us assume that the

capacitor is uncharged initially.

RS1

E C

S2

1) At t = 0, switch S1 is closed. What is the current immediately after t = 0?

Since q0 = 0, so must be the charge stored in the capacitor immediately after t = 0. Therefore, the

voltage across R is E, so I = E/R.

2) What is q(t), the charge stored in the capacitor at t?

q0 = 0 and q∞ = CE, so the above formula gives q(t) = (CE)
(
1− e−t/RC

)
.

3) Now, after a long time we open S1. Then, resetting the clock, at t = 0 switch S2 is closed.

Find q(t).

q0 = CE. Obviously, q∞ = 0. Therefore, q(t) = (CE)e−t/RC .
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Discussion 6-1 Kirchhoff’s rules

Consider the following circuit.

R

loop 2R

R

loop 1

1

2

3

E

I

I I1

2

3

E

1

2

J

I4

E3

loop 4

loop 3

1) Apply the junction rule at J.
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2) Apply the loop rule to loop 1, loop 2 and loop 3.

3) What is the relation among these three loop equations?

4) What is I4?
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Discussion 6-2 RC circuit, time dependence

Initially, there is no charge in the capacitor and the switch is open.

S

10 V

5 μC

4 Ω
4 Ω

1) At time t = 0, switch S is closed. What is the current through switch S immediately after

t = 0?

2) What is the current through switch S a long time later? What is the charge stored in the

capacitor?
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3) Now, switch S is opened. What is the current in the circuit immediately after S is opened?

4) How long does it take for the current to fall to 1/e of the initial value after switch S is

opened?



68



69

Physics 102 (Sample Quiz) Q5s

Name: Section: Score: /20

1. Consider the following circuit.

E

R

R

E

E

I

I

L
L

1

2

1

2

2

3

3
11

I3

E4

R2

I2 here

(1) What is the relation among I1, I2 and I3? [3]

Apply the junction rule at the red spot:

in: I3,

out: I1 nd I2.

⇒ I1 + I2 = I3.

(2) Write down the loop equation for loop L2 [3].

Apply the loop rule along L2:

down: E2, I2R2, E3, I3R3.

Therefore,

−E2 − I2R2 − E3 − I3R3 = 0.

(3) Find the current through R1. Assume all resistors are 2 Ω and all the batteries supply 5

V. [4].

The voltage across R1 is solely determined by E4, so the current is E4/R1 = 5/2 = 2.5

A.
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2. The voltage E = 20 V, R = 1 kΩ and the capacitance C = 3 µF. [Hint: Recall the

formula in the Key Points: q(t) = q∞ + (q0 − q∞)e−t/τ ).

E

C
RR

S

E

RR

(1) Switch S has been closed for a long time. What is the charge in the capacitor? [5]

‘For a long time’ ⇒ C is full ⇒ no current through C.

All the current is along the red arrow, whose magnitude is E/2R. (as illustrated by

the equivalent circuit in green).

Therefore, the voltage across marked R is r × (E/2r) = E/2. This must be the same

voltage across C.

Therefore, Q = (E/2)C = 30 µC.

(2) Now, at t = 0 switch S is opened. After 2 ms what is the charge in the capacitor? [5]

Now, at t = 0 q(0) = 30 µC from the answer to (1).

We can know q(∞) = 0, because all the charge in C would drain through ‘marked’ R.

τ = CR = 3 ms. (note that k × µ = milli)

q(t) = q(0)e−t/τ = 30 e−2/3 = 30× 0.5134 = 15.4 µC.
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Physics 102 Discussion Week 7 (Lectures 10 and 11)

Magnetic force

Key Points

Magnetic force

If a charge q moves at a velocity v in a uniform magnetic field B, there is a magnetic force

F on the charge:

Its magnitude is: F = |q|vB sin θ, where θ is the angle between v and B.

Its direction is determined by the right-hand rule (Figure just below):

The fingers point in the direction of B, the magnetic field.

The thumb points in the direction of the current due to the motion of the charge.9

The ‘pushing direction’ by the palm denotes the direction of F .

I

B

F

θ

Arrow convention 

perpendicular 

to the sheet of the paper

The vector pointing 

toward you out of

the page

The vector pointing 

away from you into

the page

Cyclotron motion

You must remember how to write down the radial equation of motion:

m × centripetal acceleration = centripetal force

m
v2

r
= F ⇒ m

v2

r
= qvB.

v

B

+

Since the magnetic force is always 

perpendicular to the velocity, magnetic

field does not do any work to the

particle.  

     Thus, the kinetic energy of the

particle is conserved.

This implies the radius of the circular motion (called cyclotron motion) is given by

r =
mv

qB
.

9If q > 0, it is the direction of v, but if q < 0, it is the direction of −v. HOWEVER, if you use the
right-hand rule in terms of the current, you can always use the same rule.
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Magnetic force on current

Suppose there are movable charges ρ per unit length of a wire, and the movable charges move

with the mean velocity v. Then, the current is I = ρv. Therefore (see the figure below),

if the magnitude of the magnetic field is B, the magnitude of the magnetic force per unit

length of the wire is IB (× sin θ if not perpendicular, where θ is the angle between I and

B).

L

ρ

v
B

F
L

1

Thus, the magnetic force acting on the portion of length L of a wire carrying current I is

a vector with:

the magnitude given by

F = ILB sin θ.

the direction just specified by the right-hand rule we have discussed.

Torque on a loop current

There is a rectangular loop of wire of size 2d×L that can rotate around the horizontal axle

as illustrated below. A uniform magnetic field B is vertical. The magnetic forces F act on

the longer edges, which are always in the horizontal direction with magnitude ILB.

B
I

L
B

θ

d norm
al dire

ctio
nθ

I

I

F

F

side view

projection to 

normal

projection to 

normal

The magnitude of the torque is the arm length × the force component (pink arrows)

orthogonally projected onto the normal direction to the plane determined by the arm and

the rotation axis, so there is a torque Fd sin θ due to the force on one long edge. There are

two edges, so the magnitude of the total torque is given by

τ = 2Fd sin θ = 2dLIB sin θ = IAB sin θ,

where A is the area of the loop. Next week, we will discuss the magnetic moment due to

the current loop: µ = IA and τ = µB sin θ. If the loop consists of N turns of the wire

instead of one, N is multiplied to I as τ = NIAB sin θ (and µ = NIA, etc).
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Discussion 7-1 Cyclotron motion

[Qualitative]

1) Find the signs of charges A - D in the following situations consistent with the cyclotron

motion. The arrows denote the moving directions of the charges. The background magnetic

fields B are indicated by gray arrow heads/tails.

BA

B

C

D

B

[Quantitative]

A proton, traveling with speed v = 3.0× 106 m/s, enters a region with a uniform magnetic

field of intensity B = 1.5 T described below. After completing a semicircular orbit, the

proton exits the field.

B

d
v

2) Calculate the distance d.
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3) How long does it take for the proton to complete this semicircular orbit?

4) Let the answer to 2) be d0 and that to 3) t0. Find the following distances d and times t

in terms of d0 and t0.

(i) For the proton, if the initial speed is doubled, but if the magnetic field is the same, what

is the distance d, and the needed time t to complete the semicircular orbit ?

(ii) What is the distance d if the proton is replaced with a deuterium ion (its mass is twice

as large as that of a proton)? What is the needed time t to complete the semicircle? Assume

that the initial velocity and the magnetic field are the same as the proton case.
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Discussion 7-2 The velocity selector

A uniform magnetic field of 0.5 T into the page is applied in the region shown below. A

beam of electrons is directed through the region. Without an electric field, the path of the

electrons will be a circle.

B = 0
B

E

B = 0.5 T

1) What direction will the electron beam bend when only the magnetic field is present?

Indicate it in the figure above.

2) In what direction does the electric field need to point for the electron beam to travel

along a straight line, as shown? Indicate in the figure above with an arrow marked with E.

3) If we want a beam of electrons with speed v = 600 m/s to exit through the slit on

the right, how strong should the electric field be?
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4) What happens if an electron in the beam has a different speed? Sketch the trajectories

for the slower and the faster cases in the following figure with E and B being fixed as in 3).

B

E

5) How would the answers change if the charge is positive with all other quantities un-

changed?
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Discussion 7-3 Current loop and torque

A square wire can rotate freely around the center line in the figure. A current I = 8 A flows

in the direction indicated by the arrow along the wirework. A uniform magnetic field B of

magnitude 4 mT is applied in the plane of the sheet of this paper as shown in the figure.

Initially, the orientation of the loop is flat on the page.

20 cm

14 cm

I

B

a

A

D C

B

b

1) What is the magnitude and direction of the force on wire segment CD?

2) Which way does the loop rotate? Choose a or b.
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3) What is the magnitude of the torque on the loop in this position?

4) If the magnetic field were, instead, oriented into the page, would the loop feel a torque?
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Physics 102 (Sample Quiz) Q6s

Name: Section: Score: /20

1. In the figure below the gray zone has a uniform magnetic field B perpendicular out

of the page whose magnitude is 0.12 T. A negatively charged particle is already rotating in

the plane of this page as illustrated below.

(a) What is the rotational direction of the charge of this particle, a or b? Justify your choice

briefly. [2]

Keys: Rotational motion is due to centripetal force; Right-hand rule

Thus the current direction is b. However, the charge is negative, so it must run in the

opposite direction: a.

(b) The radius of the circular motion is 1.3 mm. The particle mass m = 15× 10−27 kg, and

the magnitude of its charge is e = 1.6× 10−19 C. What is the speed of the particle? [4]

E

B

This is for c)

−

ba

P

Force direction

Key: mv2/r = qvB ⇒ v = rqB/m

v = 1.3× 10−3 × 1.6× 10−19

× 0.12/15× 10−27

= 0.0166× 10−3−19+27

= 1.66× 103 = 1.66 km/s

(c) When the particle comes to point P, the electric field E is turned on, which is perpen-

dicular to the tangent line at P (dotted line) and in the sheet of the paper. The magnitude

of the electric field is |E| = 150 V/m. Can the particle stay above (in the paper) the dotted

line? [Yes or no, but you must quantitatively justify your choice.] [4]

Magnetic force = qvB, Electric force = qE, so we have only to compare vB and E

vB = 1660× 0.12 = 199.2 V/m,

E = 150 V/m.

Therefore, the magnetic force wins! ⇒ Yes, the particle stays above the dotted line.

The particle cannot bend into the domain opposite to the dotted line (at least for a

short time according to the above logic. To show this is true for all t > 0 is beyond

P102).
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2. A metal square frame with edge 0.5 m lies in the xy-plane. A uniform magnetic field B

of magnitude 2.5 T is parallel to the yz-plane, making an angle 35◦ with the xy-plane as

illustrated below.

(a) The metal frame carries a permanent current of I = 2 A in the direction of the arrow.

What is the magnitude of the total force acting on the edge ab, which is parallel to the

x-axis? [5]

I

35

B

a
x

z

y

o

b

the angle here is 90 deg.

BRight-hand rule:

Magnitude = ILB sin θ

Notice that in this case θ = 90◦.

F = ILB = 2× 0.5× 2.5 = 2.5 N.

(b) What is the magnitude of the torque on the square? [5]

I a

b

B

normal

the directiion of the  magnetic moment

θ

τ = IAB sin θ, where θ is the angle between B and the normal.

The angle θ = 90◦ − 35◦ = 55◦, so

τ = IAB sin θ = 2× 0.52 × 2.5× sin 55 = 1.0239 N·m.
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Physics 102 Discussion Week 8 (Lectures 12 and 13 )

Magnetic Field due to Currents, Magnetic Dipoles

Key Points

Magnetic field due to a single straight wire

Empirically, we know the following two basic rules 1 and 2 to understand the magnetic field

due to currents through several straight wires.

1. Magnetic field due to single wire carrying current

The magnetic field B created by a wire with current I (see Figure below):

its magnitude B at a location P which is distance r away from the wire is give

by (µ0 = 4π × 10−7 T·m/A)

B =
µ0I

2πr
.

its direction is given by the right-hand(ed) screw rule

B

I

right-handed screw rule

r
P 

I

B

2. Superposition principle

If there are more than one wires with current, each wire contributes a magnetic field

Bi according to 1, and the total magnetic field is simply the (vector) sum of all the

individual magnetic fields Bi:

B =
∑

Bi.

Magnetic field B inside a long solenoid with n turns per meter

its magnitude B inside is uniform and is given by B = µ0nI (B = 0 outside).

Here, n = N/L.

its direction is given by the right-hand(ed) screw rule.

B

I

right-handed screw rulesolenoidN

L

turns
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Forces between currents

Parallel currents attract each other; antiparallel currents repel each other.

This can be understood by combining the magnetic field due to the current summarized

above and the magnetic force on the current discussed in Week 7. (No self-interaction is

considered.)

B

I

B

I

I’

B

I’

B
F

B

I

I’

B

B

I’I

B

F

B

F F

 parallel

attractive

antiparallel

  repulsive

Current loop and magnetic dipole

If we place a small square loop with edge length b carrying a current I in a magnetic field

B (see Figure below), it feels a torque as illustrated in Figure below (center).

B

I

B

θ

θ
θb

B

θ

μ= b I 2

side view

I

Torque on the loop

The magnitude of the forces (green arrows) are bIB. The (magnitude of the) torque on the

loop due to each force is bIB × (b/2) sin θ, where (b/2) sin θ is the ‘arm length’ projected to

the plane perpendicular to the force (blue bars). Therefore, the total torque on the loop has

a magnitude b2IB sin θ. This is equal to AIB sin θ, where A is the area of the square.

Definition of magnetic dipole moment

We know the magnitude of the torque τ felt by an electric dipole p placed in an electric field

E is given by τ = pE sin θ.10 Therefore, we can define a magnetic dipole µ analogously such

that the torque is given by

τ = µB sin θ.

Comparing this with b2IB sin θ, we say that a small square in the figure has a magnetic

dipole moment with a magnitude given by b2I with the direction as illustrated in the right

figure above. The right-hand(ed) screw rule applies.

General formula of magnetic moment

The following illustration tells us that the magnetic moment of a current loop can be written

in terms of the area of the loop irrespective of its shape as

µ = AI.

10If you know the vector product, τ = p×E.
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μ= b I 2
currents

cancel here

I

II
I

μ= 3b I 2

I

The area is 3b  .
2

The above figure illustrates that joining small square loops can approximate any shape if the

squares are small enough. When, e.g., three squares carrying the same current are joined,

the currents along the joined edges cancel. Only the outermost current survives and the

moment vectors are added as illustrated. Thus, the shape of the loop does not matter; only

the area matters as can be guessed from the rightmost figure.

N -turn coil

If the loop is a coil with N turns, we may regard it as a stack of N loops, so the general

formula for the (magnitude of the) magnetic moment of a coil reads

µ = NAI.

Potential energy stored

The work we must do to change θ to θ + ∆θ is bIB sin θ × b∆θ,11 so the work you have to

do to rotate the dipole from θ = 0 (parallel to the magnetic field) to θ is −b2IB cos θ. That

is, the energy of a magnetic dipole in a magnetic field can be written as

U = −µB cos θ,

if the energy origin is chosen to be at θ = 90◦ (perpendicular to the magnetic field).

Bar magnet is a collection of loop currents

A bar magnet is actually a collection of microscopic loop currents:

N

N
S

is

actually

N

S

B
B

Therefore, we have a macroscopic correspondence between a loop current and bar magnet

as illustrated above right.

11Notice that the displacement of the point where the force acts upon is always perpendicular to the loop,
so the work done by the force to the system is ∆W = −bIB× (b∆θ/2) cos(90◦ + θ) = (b2/2)IB∆θ sin θ. We
have a pair of forces, so the work done to the loop is doubled: ∆W = b2IB∆θ sin θ. That is, to increase θ by
∆θ, we must do a work ∆W = b2IB∆θ sin θ. Summing all these pieces from θ = 0 (the lowest energy state)
to θ, we can calculate the energy U stored in the magnetic dipole-magnetic field system as U = −b2IB cos θ,
because ∆ cos θ/∆θ = − sin θ.
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Discussion 8-1 Magnetic field due to straight wires

Three parallel long wires are perpendicular to the page. They carry currents whose mag-

nitudes are identical and I = 3 A, but in various directions as noted in the figure. ABC

makes an isosceles right triangle and the length of the edge AB = 2 m.

A P B

C

O

1) What is the magnetic field at the midpoint P of edge AB? Draw the directional arrow in

the figure and compute its magnitude.
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2) Suppose the magnitude of the magnetic field due to A at O (the midpoint of edge AC)

is b. What is the magnitude of the total magnetic field at O?

3) What is the magnetic force acting on wire B per 1 m due to the other two? Draw an

arrow indicating the force direction in the figure.
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Discussion 8-2 Solenoid

A 100 turn solenoid has a radius 1 cm and length 10 cm.

B

solenoid

10 cm

100 turns

radius

1 cm

1) What is the magnetic field strength inside the solenoid if a current of 1 A is flowing?

First, write a general equation, and then calculate the value.

2) When a magnetic field of intensity B is perpendicular to a cross section of area A, we

can imagine something is flowing through the cross section. Recall electric field lines were

imagined as flow lines of some fluid whose velocity field is the electric field; this time B is

imagined as a velocity field of some fluid. The amount of this fluid is called the magnetic

flux. If the magnetic field is uniform across the cross section, we say there is a magnetic

flux of Φ = BA through the cross section. Its unit is Wb = T·m2 (= weber). As we will

learn next week Φ or its changing rate is critical to the generation of electricity by using

mechanical work.

What is the magnetic flux Φ through the cross section of the solenoid?
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Discussion 8-3

A two turn circular coil of radius 0.5 m is on the xy-plane. The wire carries a permanent

current of I = 2.5 A as shown in the figure below. The magnetic field B whose magnitude

is 0.3 T is in the yz-plane and makes an angle of 30◦ with the z-axis.

I

B
I

front

back

x

y

z

1) What is the magnetic moment of this two-turn coil? You must calculate its magnitude

and indicate its direction in the figure.

2) What is the magnitude of the torque on the coil? In the figure you must specify the axis of

the rotation of the coil due to the torque and indicate which direction the coil turns around

the axis of your choice.
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3) If you wish to turn the coil 20◦ from y to z around the x axis, how much work do you

have to do? Before any computation you should tell whether you have to do a positive work

or not.
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Physics 102 (Sample Quiz) Q7s

Name: Section: Score: /20

1. Two parallel wires are D = 0.2 cm apart as illustrated below. The current through

wire A is I = 20 A, and the force F acting on wire A is 0.2 N/m. There is a constant current

through wire B as well. You may assume that there are only these two wires. [Note that

the current in B is not given.]

(a) What is the force acting on wire B per unit length? Also show its direction in the

figure with an arrow. [3]

D

B

I

F

A

B

Action-Reaction!

If −F (the red arrow in the figure) were not the

answer, you could have a free lunch.

The force must be 0.2 N/m in the opposite direction

thanks to the action-reaction principle.

(b) What is the magnetic field at the position of wire A due to the current through wire B?

Also indicate its direction in the figure with an arrow (or its head/tail symbol ⊗ or �).

[3]

Magnetic force: RH rule and F = ILB sin θ.

B = F/IL (because B must be perp to I in A), so B = 0.2/20 = 0.01 T, because

F/L = 0.2 N/m.

( c) What is the current in wire B? [4]

Ampere’s law: RH screw rule and B = µ0I/2πr.

I = 2πDB/µ0

= 2π × 0.2× 10−2 × 0.01/4π × 10−7

= 2× 0.2× 10−2 × 0.01/4× 10−7 = 0.1× 103 = 100 A.
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2. On the xy-plane is a closed square loop of wire enclosing an area A = 2.3× 10−4 m2. The

wire carries a permanent current of I = 12 A as shown in the figure.

(a) A uniform magnetic field B makes an angle θ = 30◦ with the positive z-axis as illustrated

twists the loop with a torque of 4×10−3 N·m. What is the magnitude of |B| of the magnetic

field? [5]

I

B

front

back

x

y

z

θ
τ = NIAB sin θ.

B = τ/IA sin θ

= 4× 10−3/12× 2.3× 10−4 × 0.5

= 0.2898× 10−3+4 = 3.0 T.

(b) After turning off the magnetic field, a bar magnet parallel to the x-axis is placed on

the x-axis as illustrated below while the loop with the same current as in (a) is fixed. Then,

the loop is gently released so that it can freely rotate around the origin. What happens to

the loop shortly after it is released? [e.g., it starts to rotate around · · · as shown by the

arrow (that you draw) in the figure.] [5]

II

front

back

x

y

z

N
S

N

S

The easiest way is to replace the loop with a bar magnet and

use your common experience:

The same poles repel; opposite poles attract.

N is attracted to S, so the loop turns around the y-axis as shown in the figure (or

positively/counterclockwisely).
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Physics 102 Discussion Week 9 (Lecture 13 and 14)

Motional emf, Lenz’s law and Faraday’s law

Key Points

Motional emf

Motional emf can be understood easily, if you know the magnetic force (p72, Week 7) on a

moving charge.

Let us hold a metal bar perpendicularly to a uniform magnetic field as illustrated below,

and then move the metal bar in the direction of the arrow with velocity v.

+

v

B
magnetic force

L

a

b

q

(i) Imagine a positive charge q in the bar. The charge would feel a magnetic force of magni-

tude qvB in the direction indicated by the red arrow. Analogously, a negative charge in the

bar feel a force of magnitude |q|vB in the opposite direction.

(ii) Thus, due to the presence of the magnetic field B, moving charges with velocity v in

the metal bar feel an electric field E whose magnitude is E = vB and whose direction is

determined by the right-hand rule p71). Plus charges accumulate at a, so, seen from the

outside, the bar end a has a higher voltage compared to end b.

(iii) If the ends of the moving bar are connected to, e.g., a resistor, the charges can move with-

out building up at the ends, and the metal bar acts as an electric battery. Its electromotive

force (emf) must be equal to LE, or .

motional emf = vBL,

because the electric field E is present uniformly along the moving metal bar in the magnetic

field.

If the sign of the emf were opposite (i.e., if ‘b’ had a higher voltage than ‘a’), what could happen?

(i) Immediately after you start to move the metal bar, there must be an electric current (until charges

build up at the ends and polarize the metal bar).

(ii) What force do you expect to act on this current?

(iii) What is the direction to the force the bar feels relative to its velocity? You should realize that

eventually horrible things happen. Such things never happen in the benevolent world in which we

have evolved. This topic is related to the next topic: Lenz’s law.



92

Lenz’s law tells us that our world is stable

We need a new concept (there was a preview in D8-2): magnetic flux. Imagine the mag-

netic vector field B as a flow field (just we did for E when we considered electric force

lines in Week 3). Then, the total amount of flow of this fluid through a cross section A =

A× normal component of B is called magnetic flux (unit = T·m2 ≡ Wb (weber)).

Lenz’s law tells us that the direction of the current due to motional emf is to reduce the

effect of changes (perturbations) applied to the system. Imagine the opposite. What would

happen? If you apply a small perturbation to the system, its effect on the system would

be amplified indefinitely, implying the system is unstable. Since (intelligent) organisms can

evolve only in the stable world, the world we live satisfies Lenz’s law.

Imagine a closed circuit made by connecting both ends of the conducting bar with a

conducting wire (see Figure below). As the metal bar slides to the right, the green-shaded

area increases. Lenz says that the current flows to oppose the increase of the magnetic flux

through this shaded area.

Since the magnetic field is constant and uniform, and since the area increases, the current

should flow to oppose the increase of the magnetic flux into the page. Then the right-handed

screw rule tells us that the current must flow in the counterclockwise direction through the

closed circuit. Thus, the current flows upward through the metal bar (as we know).

If you understand the spirit of Lenz’s law just explained, even without imagining the

magnetic flux through the loop, you can tell which way the current should flow as follows

(this is a bit of the repetition of the discussion at the bottom of the preceding page):

(i) If there is a current through the metal bar, we know there is a magnetic force on the bar.

(ii) This force direction must be in the direction to decelerate the metal bar (otherwise, you

can make a gun; even if the metal bar does not move initially, it starts to move and then

would be accelerated indefinitely, but our world is stable, so such things cannot happen.)

(iii) Thus, if a conducting bar is moving to the right (in the B field into the page), the

magnetic force must be to the left. The right-hand rule for the magnetic force tells us that

the current must be upward through the metal bar.

Faraday’s law

If a magnetic flux Φ through an N -turn coil (see Figure on the next page) is time-dependent,

then there is an electromotive force E in the coil (Faraday’s law):
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Its magnitude is given by

E = N

∣∣∣∣∆Φ

∆t

∣∣∣∣.
Its sense is specified by Lenz’s law.

N

Φ

turns emf

Φ may be changed by changing the magnetic field and/or the loop shapes or directions. The

motional electromotive force discussed above may be understood in terms of Faraday’s law

(as we have already noted).

Transformer

Two key points of (ideal) transformers:

(1) No flux leak (the magnetic flux is totally confined to transformer material) ⇒ Φ per

single turn is the same for any single turn, irrespective of the

primary side or the secondary side.

(2) Conservation of energy (or power).

(1) and Faraday’s law implies
Vs

Vp

=
Ns

Np

.

(2) implies that P = IV is the same on the primary and the secondary sides. Thus,

Ip

Is

=
Vs

Vp

=
Ns

Np

.

N Nsp

Φ

Remark. Root-mean-square values and maximum values:

For a quantity changing sinusoidally in time (as A sin ωt), its maximum (or peak) value is

A, the amplitude itself: Amax = A. If |A sin ωt|2 is averaged over time, the average is equal

to A2
rms, and Arms = A/

√
2. Therefore,

Arms =
Amax√

2
.
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Discussion 9-1 Bar sliding on parallel wires

There are two parallel wires as shown in the figure, whose left ends are connected to a resistor

R. There is a magnetic field B into the page. Along the wires we can slide a conducting

rod. You may assume the wires and the rod have only negligible resistance. Thus,

1) If the rod is pulled to the right on the wires, what kind of current I can we expect along

the rod, upward or downward in the figure above?

2) Suppose the current is I. What force F (magnitude) do you need to maintain the speed

of the rod to be v?
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3) The distance between the wires is now known to be L. What is the magnitude of the

magnetic field B in terms of I, L, R and v?

4) Suppose we remove the resistor, but the rod continues to slide on the wires at speed v to

the right. What is the voltage difference between the two wires? Which wire is at a higher

voltage, the upper or the lower wire?
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5) In the original configuration R = 20 Ω, L = 0.3 m and the force F = 15 N is required to

move the rod at speed 2 m/s. What is the magnitude of the magnetic field B?

6) What is the rate of change of the magnetic flux through the closed loop made by the rod,

wires and the resistor? Does it agree with the answer to 4)?
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Discussion 9-2 Conducting rod is sliding down a slope

[This is not a very easy question, so you may treat this as an extra question.]

A rod of mass m = 3 g is sliding down frictionlessly along a pair of parallel wires on the

slope making angle 30◦ from the horizontal ground. The wires are 0.5 m apart. There is a 1

T magnetic field perpendicular to the slope surface. The wires are connected with a resistor

of resistance R = 2 Ω. Assuming that the slope is sufficiently long, determine the terminal

speed. [Hint. Assuming the current I through the rod, write down the force balance and

power balance equations.]

R B

30
o
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Discussion 9-3 Faraday’s Law and Transformers

A simple transformer is made of two solenoids sharing the magnetic flux through them.

In the figure Left the primary side of the transformer is a solenoid of Np = 100 turns

around an iron core (the gray portion) of cross section 1 cm2, covering 5 cm length of the

core. Since the space inside the solenoid is not a vacuum for the actual transformer, the

actual magnetic flux (and magnetic field) in the transformer through the solenoids is different

from the case without the core (Right in the figure), but the flux is just proportional to the

amount of magnetic flux (and magnetic field) we get when there is no iron core. Therefore,

let us consider the solenoid without the core (Right) for simplicity (but assuming there is no

flux leak).

N Nsp N Nsp

Φ

1) What is the magnetic flux Φ through the solenoid, if the primary current is Ip = 15

A?
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2) Suppose the primary current Ip changes as described in the following figure.

Ip

t

Figure 1:

Qualitatively sketch the magnetic flux Φ through the solenoid on the secondary side, and

also the emf that appears in the secondary coil. You may choose your own sign convention.

I
p

t

I
p

t

flux

emf

Figure 2:
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3) Ns = 15 and the current through the primary coil is given by Ip = 12(1− 0.5t) A, where

t is time in seconds. What is the electromotive force at time t in the secondary coil?

4) Now, 60 Hz AC current of power 120 W is supplied to the primary side. The root mean square

current on the secondary side is 1.1 A. What is the peak voltage supplied to the primary

side?
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Discussion 9-4 Field change through a coil

A square loop with side L = 0.2 m has its normal direction making 30◦ with the magnetic

field B as illustrated below:

30
o

normal direction

sq
ua

re
 lo

op

B

1) The formula for the magnitude of the time-dependent magnetic field is B = 8 − 0.3t T,

where t is measured in seconds. What is the magnetic flux through the square loop at t = 1

s?

2) Suppose the resistance of the square loop is 12 Ω. Find the magnitude of the current I

through the loop as a function of time.
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Discussion 9-5 Rotating coil in a magnetic field

Now, the B field is constant (|B| = 1.5 T) but the square loop with side L = 0.2 m (the

same as in D9-4 above) is rotating at an angular velocity ω = 1500 rad/s. The electromotive

force in the loop is sinusoidal.

1) In which angular position of the loop does the magnitude of the electromotive force max-

imum?

B

square loop
 (side views at 

various moments)

2) The angle between the magnetic field and the normal direction of the loop is given

by θ = ωt. Find the magnetic flux Φ(t) through the loop as a function of time. Then,

using Faraday’s law, find the maximum electromotive force along the square loop. Notice

that
∆ cos ωt

∆t
' −ω sin ωt.
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Physics 102 (Sample Quiz) Q8s

Name: Section: Score: /20

1. In a rectangular domain is a uniform magnetic field B perpendicularly out of the page

as illustrated below. A rectangular loop in the figure is a square with edge length L = 0.3

m. It is a conductor with the total resistance R = 12 Ω and can move frictionlessly in the

plane of the sheet of this paper.

A B

FFFFFFF

v

for problem a) for problem b)

a) The square is pulled into the magnetic field with a constant force F . It has a constant

speed in the situation depicted by A in the above figure. B is constant and |B| = 5 T. Find

the ratio |F |/|v|. [5]

power balance Fv = V 2/R

emf V = LvB

Therefore, Fv = (LvB)2/R ⇒ F/v = (LB)2/R.

That is F/v = (0.3× 5)2/12 = 0.1875 N·s/m.

b) After the pulling was stopped, the square moved to the position described in situation

B and stopped. Now, you increase the intensity of the magnetic field at a constant rate,

maintaining its direction. Then, the square started to move. In which direction does it start

to move? Indicate your answer with an arrow in the figure, and justify your arrow briefly.

[5]

Lenz tells us that we would have a clockwise current. Upon this current works a mag-

netic force to the right. Thus, the loop is pushed out.

A more direct argument is: to keep the magnetic flux through the loop, it should

get out of the magnetic field.
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2. In the figure below A describes a(n ideal) transformer.

primary side

N Nsp

Φ

secondary side

Is

t

Φ I

t

s

A CB

a) Suppose the magnetic flux Φ in the secondary coil changes as illustrated in B. Sketch the

secondary current Is in C (i.e., continue the current already drawn in the graph). Briefly

justify your choice. [5]

Because ∆Φ/∆t changes its sign, the current also flips its sign.

b) The primary solenoid of the transformer has Np = 300 turns, and the secondary side

Ns = 120 turns. A sinusoidal voltage of 240 V (rms voltage) is applied to the primary side.

What is the peak value of the voltage on the secondary side? [5]

V/N is constant.

(peak) =
√

2 × rms.

240/300 = x/120 ⇒ x = 24× 4 = 96 V.

This is rms, so to get the peak value we must multiply
√

2: 136 V.
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Physics 102 Discussion Week 10 (Lectures 15, 16 and a part of 17)

Electromagnetic Wave, Polarizer and Plane Mirror.

Key Points

Electromagnetic wave

If a charge undergoes an accelerated motion, electromagnetic waves (EM waves) are gen-

erated. For example, if a dipole moment oscillates, an EM wave is produced; this is the

working principle of many antennas. If a fast moving charged particle is stopped or changes

its direction suddenly, very short-wave length EM waves (e.g., γ-rays, X-rays) may be pro-

duced.

As shown in the following table, γ-rays, X-rays, (visible) light, microwaves, etc., are ex-

amples of electromagnetic waves.

PHz (petahertz) = 1015 Hz; EHz (exahertz) = 1018 Hz (source: Wikipedia)

Speed of light

All the electromagnetic waves travel at the same speed c in vacuum; c is the speed of light =

3× 108 m/s. The wave length λ and the frequency f of an electromagnetic wave in vacuum

are related as

c = fλ.

Speed of light v may be different in different materials: v = c/n, where n is called the index

of refraction (n ≥ 1). Notice that the frequency of light is invariant.
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Plane electromagnetic wave

Take a plane electromagnetic wave of wavelength λ propagating in the +y direction (see

Figure below). ‘Plane’ means that at any moment in any plane perpendicular to the prop-

agation direction (y-axis in our case) the electric field E is identical everywhere. The same

is true for the magnetic field B as well. That is, for a plane electromagnetic wave, the fields

change in unison in any plane perpendicular to its propagation direction.

Therefore, to visualize a plane electromagnetic wave we have only to know the fields along

one line pointing in the propagation direction (along the y-axis in our case as illustrated be-

low):

x

y

z

E

B

λ

propagation direction

Notice the following points:

(0) EM waves are transverse waves.

(1) E and B fields are in phase.

(2) The propagation direction is determined by the right-handed screw rule: rotating from

E to B pushes the “screw” in the propagation direction as in the figure.

(3) E = cB, where c is the speed of light (if the wave is propagating through vacuum).

(4) Electromagnetic waves carry energy at the speed of light.

The (time-averaged) energy density of an electromagnetic wave reads

u =
1

2
ε0E

2
rms +

1

2µ0

B2
rms = ε0E

2
rms =

1

µ0

B2
rms.

Note that the amplitudes (max or peak values) and rms values are related as Erms =

Emax/
√

2 and Brms = Bmax/
√

2.

Thus (see Figure below) the energy flux S (energy through a unit area per unit time) is

S = cu. The intensity of the EM wave (including light) I is measured by S: I = S.

y

z

x unit cube

containing energy      (on the average) 

u
_

u
_

moving at speed c
u
_

EM radiation from a point source

If an EM wave is produced from a point source (say, light bulb, star, etc.), then its flux S(r)

(also called intensity I) decays as 1/r2, where r is the distance from the source. This is due to

energy conservation: 4πr2S(r) must be constant (total power supplied by the source).



107

Polarization

An EM wave is a transverse wave of E and B, and sometimes its E field may be spatially

regular. In such cases we say the EM wave is polarized, and its E-vector direction (which

need not be constant in time) is called the polarization direction. If the polarization

direction is fixed in one direction, we call the light is linearly polarized.

Although lasers usually produce polarized lights, ordinary light bulbs produce unpolarized

light. We can produce linearly polarized light from such light by selective absorption. A

linear polarizer is a device that absorbs the component of the electric field vector perpen-

dicular to its transmission axis.

The following figure illustrates what happens when a linearly polarized light (E and B)

is incident upon a linear polarizer whose transmission axis makes an angle θ with the polar-

ization direction of the incident light. Only the E component parallel to the transmission

direction can go through the polarizer. Therefore, an EM wave with E and B leaves the

polarizer.
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Therefore, the amplitude of the electric field changes from the incoming E0 to the outgo-

ing E0 cos θ through a linear polarizer. This derives the law of Malus, because the light

intensity S = I is proportional to the amplitude of the electric field squared:

I = I0 cos2 θ.

If the incident light is unpolarized, θ in the above formula is random and evenly dis-

tributed, so the intensity after passing a linear polarizer would become I = I0×average of cos2 θ =

I0/2.
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Geometrical optics

As we will learn more clearly later (p141), if the wavelength of the electromagnetic wave

is small enough compared to the systems we are interested in, we may assume the waves

propagate along lines (rays). Thus, we can analyze the paths of the wave geometrically. This

is geometrical optics.

Law of reflection

The angle θi between the incident ray and the normal direction of the reflecting surface

(called the incident angle or the angle of incidence) and the angle θr between the outgoing

(reflected) ray and the normal direction of the reflecting surface (called the reflection angle

or the angle of reflection) are identical:

θi = θr.

Remember that whenever a surface is involved, angles are measured from its normal direction.

normal directon

to the surface

θ

θ

i

r

incident ray

reflected ray

Plane mirror

The image of an object in front of a plane mirror (a real object) is located “behind” the

mirror as illustrated below:

object

(virtual) 

      image

plane mirror

All the reflected rays appear to originate 

from a single point behind the mirror: the 

location of the (virtual) image.
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Discussion 10-1 The Plane Electromagnetic Wave

Consider the electromagnetic wave shown in the diagram below. The wave is propagating

through a vacuum. Along the y-axis the electric field of the wave is parallel to the z-axis

and is a sine wave of amplitude 3.3 V/m. The accompanying magnetic field is parallel to

the x-axis. See Figure (which is a snapshot at a particular instant).

x

y

z

E

B

17 cm

E     /max 2

P

A

B
C

E b

1) In which direction is this wave propagating?

2) Is this wave polarized? If so, in what direction is it polarized?

3) What is the frequency of this electromagnetic wave?
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4) What are the intensities of the electric field at point A, B and C? (note: this is only a

question about the convention to illustrate plane waves.)

5) What is the intensity of the magnetic field at P, where the magnitude of the electric field

is Emax/2?

6) What is the amount of energy going through a square with edge length 2 m perpendicular

to the y-axis in 1 hr?

7) This wave goes through a slab made of a material with the index of refraction n = 2.1.

What are the wavelength, the propagation speed and the frequency of this wave in the

slab?



111

Discussion 10-2 Polarizer

Unpolarized light, of intensity I0, is incident on a series of 6 linear polarizers, each with its

transmission axis tilted by the same amount relative to the previous polarizer, θ = 18◦, as

illustrated below.

I

I

0

f

18
o

1) What is the intensity of the light after the first polarizer in terms of I0?

2) What is the intensity of the light after the 2nd polarizer in terms of I0?
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3) What is the final intensity If in terms of I0?

4) If the angle between the transmission axes of adjacent polarizers is halved (θ = 9◦) and if

the number of the polarizers is doubled (or, more precisely, is increased from 6 to 11), what

happens to the final intensity? No quantitative calculation is needed. Guess your answer

and produce some justifying argument for your guess.
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Elementary geometry of triangles:

The following figures may refresh what you learned long ago:

θ1 θ3

θ2

1
ο

θ  + θ  + θ  = 18032

θ1

θ2

θ1 θ2+
a

b

c

a  + b  = c2 22

Discussion 10-3 Elementary geometry

1) Find the length L in the following figure.

25
o

30
o

1 m
L

2) What is the area of this triangle?
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Discussion 10-4 Reflections

(1) Two flat mirrors are joined at one end at an angle α = 72◦ as shown in the figure. The

bottom mirror is horizontal. A beam of light hits the horizontal mirror at an incidence angle

θ and reflects off of both mirror surfaces at P and Q, emerging horizontally from the two

mirrors. What is the angle θ?

P α = 72
o

θ 

Qhorizontal

horizontal

(2) Inside an orthogonal triangular prism shown in the figure (internal) reflection occurs at

point P. The angle θ = 9◦ and α = 37◦. What is the angle β?

P

α = 37
o

o
θ = 9

β
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Discussion 10-5 Plane mirror

You (represented by your right eye in the figure) stand on a horizontal floor and the height

of your eyes is 175 cm. 50 cm away from you is a vertical wall on which is a large vertical

plane mirror whose lower edge is 140 cm from the floor. What is the closest point (‘×’) on

the floor to the wall you can see without moving your head?

175 cm

140 cm

50 cm

m
ir

ro
r

x
?

1) There may be several ways to solve this problem. One way is to locate the image of

your right eye by the mirror. Locate it in the figure above, and also give its height and the

distance from the wall. Is it a real or a virtual image?

2) Then, imagine that you are at the image and from there peek into the room through the

mirror. Where is the closest point on the floor you can see?

3) Or, you can look into the lowest edge of the mirror. If the light ray comes from that edge

into your eyes, where must the ray before reflection have started? This also answers the

question.
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Discussion 10-6 Two orthogonal mirrors

Two plane mirrors are connected vertically as in the figure. One mirror is in the xz-plane

and the other in the yz-plane (the z-axis is out of the page toward you). A small object is

at (0.4, 0.5) (m).

O
x

y

(0.40, 0.50)

1) How many images are made by these mirrors? Mark the image positions in the above

figure and then write down the xy-coordinates of these images.

2) Now, you wish to use a flashlight at (0.6, 0.2) (m) to shine the object (indirectly), pointing

the flash light downward as in the figure. What is the x-coordinate of the location on the

bottom mirror you must shine? [There are two possibilities, but answer the one with two

reflections or the point closer to the vertical mirror.]
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Physics 102 (Sample Quiz) Q9s

Name: Section: Score: /20

1. A plane electromagnetic wave in a vacuum propagating in the +y-direction is illus-

trated below [5].

x

y

z

22 m

propagation direction

(1) Is the propagating field parallel to the z-axis the magnetic field of this electromagnetic

wave, Yes or No? [2]

E to B RH screw!

Therefore, E is parallel to z, NO.

(2) The peak value of the electric field of this wave is 1.2 V/m. How much energy can this

wave on the average send in 12 s through an area of 5 m2 perpendicular to the y-axis? [5]

I = cu,

u = (1/2)ε0E
2
max,

total energy = IAt

total energy = c× (1/2)ε0E
2At = (1/2)3× 108 × 8.85× 10−12 × 1.22 × 5× 12

= (1/2)× 3× 8.85× 1.22 × 5× 12× 108−12

= 1147× 10−4 = 0.1147 J.

(3) This wave goes into a medium with the index of refraction n = 1.4. What is its wavelength

and frequency in the medium? [3]

c = λ× f

c → c/n, but f is invariant.

λ = 2× 22 = 44 m in vacuum.

f = c/λ = 3× 108/44 = 300× 105/44 = 6.82× 105

= 682 kHz. This is the same in the medium. λ in the medium = 44/1.4 = 31.4 m.
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2. A plane electromagnetic wave is incident on a polarizer as depicted in the figure. The

‘plane of electric field’ indicates the plane in which the electric field of the wave along the

x-axis lies. It makes an angle of 55◦ with the transmission axis of the polarizer at P. The

whole system is in a vacuum.

What is the intensity I of the light beyond the second polarizer at Q in terms of the

intensity I0 of the incident light? [5]

x

E

P tr
an

sm
is

si
o

n
 a

x
is

plane of electric field

Q
55

o

55
o

transm
ission axis

The plane of E is the plane of polarization.

The law of Malus: I = I0 cos2 θ.

Beyond the first polarizer, the plane of polarization makes an angle 55◦ with the po-

larizer at Q.

I = I0(cos 55◦)4 = 0.108I0.

3. Two plane mirrors (indicated by the two thick line segments in the figure) are joined at

P. A ray coming from the left is reflected twice by the mirrors in this sheet of paper and

leaves in the same direction as it came. What is the angle θ between the two plane mirrors?

[5]

P

α = 24
o

parallel rays

θa

b
c d

Let the red broken line be parallel

to the bottom mirror.

Then, a = b. α = a due to the law of

reflection.

Also α = c. Thus, b = c.

Therefore,

the broken red line must b perpendicular to the upright mirror due to the law of reflection.

Thus b + d = a + d = 90◦ = θ.
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Physics 102 Discussion Week 11 (Lectures 17-19)

Refraction, Mirrors and Lenses

Key Points

Ray optics

Short wavelength electromagnetic waves propagate as if they consist of particles moving

straight, so tracing (piecewise) straight rays, we can analyze many optical devices. This

is geometrical optics (also called ray optics). Rays travel in straight lines in the uniform

space or materials. At the boundary of different optical media reflection and/or refraction

occurs (see below).

Optical reciprocity

“If I can see you, you can see me.”

If a ray can go from A to B (with any reflections, refractions, etc.) in space, then a ray can

reach from B to A retracing the ray from A to B.

Refraction

Speed of light v may be different in different materials (as noted last week): v = c/n, where

n is called the index of refraction (n ≥ 1).

Notice that the frequency of light is invariant, so λn = λ/n, where λn is the wave-

length in a material with the index of refraction n.

Snell’s law

The angle of incidence θ1 and the angle of refraction θ2 are related as (see Figure below)

n1 sin θ1 = n2 sin θ2 .

The angles are measured from the normal direction of the interface.

θ1

θ2

1

2n

n

Thanks to optical reciprocity, incident and reflective rays may be switched with the same

Snell’s law. Also, do not forget that at any interface there is reflection, albeit faint.

Total internal reflection

Suppose n1 < n2 and a ray is incident from the ‘2’ side. Since θ1 > θ2, θ1 = 90◦ occurs for

θ2 = θc < 90◦. This angle θc is called the critical angle (for this interface). Clearly,

sin θc = n1/n2.

If θ2 is further increased, no light comes out of medium ‘2’ (see Figure below). This phe-

nomenon is called total internal reflection.

θ1

θ2

1

2n

n

critical angle total internal reflection

θ θr2

θ2 increases

θ  = θ2 c
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Ray optics of thin lenses and mirrors

Some terminologies of ray optics may be summarized as follows:

Object: the source from which light rays appear to originate.

real object: an object from which actual rays (light particles) are coming.

virtual object: an imaginary object to which coming rays extrapolated forward

converge, but from which no actual rays are coming.

Image: the point where rays apparently converge.

real image: the point where actually light rays converge.

virtual image: an imaginary point at which coming rays extrapolated backward

converge, but at which no actual rays arrive.

Principal axis (or optical axis): line through the center of the optical system (usually the

line around which the system is symmetric).

Tracing rays (see D11-3∼11-8)

You can unambiguously draw the following rays only (see the following figures; colors are

corresponding):

(1) Rays incident parallel to the optical axis

(2) Rays going through focal points

(3) Rays going through the center of the lenses or mirrors.

Only the following rays can be extended unambiguously:12

optical axis

lens or

mirror

optical axis

lens or

mirror

f f

case with f > 0 case with f < 0

Lens formula

1

f
=

1

do
+

1

di
.

The (signed) magnification is give by

m = − di
do

.

Here, the symbols with their sign conventions and interpretations are as follows:
+ −

f focal length can actually gather light energy cannot gather light energy
do object distance real object (actually rays come from it) imaginary object (rays extrapolated forward converge)
di image distance real image (actually light energy gathers) imaginary image (rays extrapolated backward converges)
m magnification upright inverted

12For mirrors, the rays going through their centers of curvature retrace themselves.



121

Discussion 11-1 Parallel layers with distinct refractive indices

There are three horizontal flat layers of transparent materials with different indices of re-

fraction. Light is incident from vacuum as indicated in the figure. You may assume all the

interfaces are strictly parallel.

= 1.2

n

n

n

vacuum

= 2.05

P

30
o

θ
?

vacuum

1) What is the angle θ? What happens to the direction of the ray in the third (= bottom)

layer if the second layer is removed?

2) Can you choose the index of refraction of the third layer so the ray is internally reflected

at P?
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Discussion 11-2 Fiber optic cable

A fiber optic cable is illustrated below. The core is made of polystyrene with index of

refraction n = 1.60, and the cladding (outer layer) is made of poly(methyl methacrylate)

(acrylic glass) with n = 1.49. The fiber is surrounded by air (' vacuum).

θcapture = 1.60

 = 1.49

vacuum

n

n
1

4

3

2

1) There are 4 rays drawn in the above figure. Which is realizable? You must be able to

state your reason for your answer.

2) What is the largest capture angle possible?
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In the following algebraically identical lens and mirror problems are paired (11-

3/11-4, 11-5/11-6, 11-7/11-8).

Discussion 11-3 Convex lens I

In front of a convex lens with focal length 4 cm is an object of height 2cm. It is 7 cm away

from the lens.

principal axis f f

1) Find the location of the image graphically.

2) Continue the red ray beyond the lens.

3) Find the location and the size of the image numerically. Then, describe the characteristics

of the image (i.e., whether real/virtual, upright/inverted).
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Discussion 11-4 Concave mirror I

In front of a concave mirror with focal length 4 cm is an object of height 2cm. It is 7 cm

away from the mirror.

principal axis
f

1) Find the location of the image graphically.

2) Continue the red ray after reflected by the mirror.

3) Find the location and the size of the image numerically. Then, describe the characteristics

of the image (real/virtual, upright/inverted).
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Discussion 11-5 Convex Lens II

In front of a convex lens with focal length 4 cm is an object of height 2cm. It is 3 cm away

from the lens.

principal axisf f

1) Find the location of the image graphically.

2) Find the location and the size of the image numerically. Then, describe the characteristics

of the image (real/virtual, upright/inverted).
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Discussion 11-6 Concave Mirror II

In front of a concave mirror with focal length 4 cm is an object of height 2cm. It is 3 cm

away from the mirror.

principal axisf

1) Find the location of the image graphically.

2) Find the location and the size of the image numerically. Then, describe the characteristics

of the image (real/virtual, upright/inverted).
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Discussion 11-7 Concave Lens

In front of a concave lens with focal length −4 cm is an object of height 2cm. It is 7 cm

away from the lens.

principal axis f f

1) Find the location of the image graphically.

2) Continue the red ray after reflected by the mirror.

3) Find the location and the size of the image numerically. Then, describe the characteristics

of the image (real/virtual, upright/inverted).
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Discussion 11-8 Convex mirror

In front of a convex mirror with focal length −4 cm is an object of height 2cm. It is 7 cm

away from the mirror.

principal axis f f

1) Find the location of the image graphically.

2) Continue the red ray beyond the lens.

3) Find the location and the size of the image numerically. Then, describe the characteristics

of the image (real/virtual, upright/inverted).
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Physics 102 (Sample Quiz) Q10s

Name: Section: Score: /20

1. Surrounded by air is a triangular prism as sketched in the figure, which is with in-

dex of refraction n = 1.53. Light of wavelength 585 nm is incident as illustrated in the figure

(dotted lines denote normal directions of respective surfaces).

P

22o
35
o

x

This angle is 180 − (22 + x)

(1) What is the frequency of the light in the prism? [5]

Recall f = c/λ.

f = 3× 108/(585× 10−9) = 0.005128× 108+9 = 5.128× 1014 = 512.8 THz

(2) Can the light go out from P into air? [5]

Recall: Snell’s law: n1 sin θ1 = n2 sin θ2. Review D10-3 and D10-4 for triangles.

Snell tells us that

sin 35◦ = 1.53 sin x ⇒ x = 22.33◦.

Notice that the incidence angle at P is 90− (22 + 22.3) = 45.7◦.

1.53 sin 45.7◦ = 1.095, but this (i.e., > 1) is impossible, so there must be total

internal reflection at P.
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2. 6 cm in front of a lens is a real object of height 2.5 mm whose image is formed 8 cm away

from the lens.

6 cm

(1) What is the (absolute) size of the image? [5]

Recall m = −di/do.

|m| = 8/6 = 4/3, so the image size is 2.5× (4/3) = 3.33 mm.

(2) The image is actually upright. What is the focal length of the lens? Is it converging or

diverging? [5]

Recall 1/f = 1/do + 1/di

The image is upright ⇒ m > 0 ⇒ di = −8 cm.

1/f = −1/8 + 1/6 = (4− 3)/24 = 1/24.

That is, f = 24 cm, which is positive, so it is a converging (convex) lens.
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Physics 102 Discussion Week 12 (Lectures 20 and 21)

Corrective Vision and Optical Instruments

Key Points

Some terminologies:

Accommodation: the process by which the eye changes the focal length of its lens.

Far point: the farthest distance the (uncorrected) eye can see clearly.

Near point: the closest distance on which the (uncorrected) eye can focus.

Farsighted (hyperopic): the condition which occurs when the relaxed eye produces

an image behind the retina.

Nearsighted (myopic): the condition which occurs when the focal length of the

relaxed eye produces an image in front of the retina.

Refractive power: a measure of a lens’ ability to focus, measured in D (diopter):

1/f with f being measured in m.

Human eye, nearsighted and farsighted

To see an object, the eye must make its real image on the retina. The eye varies the focal

length f of its lens by accommodation. For a normal eye, the far point is at infinity (> 10

m). Rays from a far-away object arrive at the eye parallelly to the principal (optical) axis.

The relaxed eye bends these rays to form a real image on the retina.

A nearsighted eye with a stronger-than-normal refractive power makes the real image

of a far object in front of the retina (see Figure below; red); thus, without correction it can

see clearly only as far as the actual far point (green).

A farsighted eye with a weaker-than-normal refractive power makes the real image of a

near object behind the retina (red); thus, without correction it can see clearly only as near

as the actual near point (green).

re
ti

n
a

lens

re
ti

n
a

lens

nearsighted

farsighted

object at infinity

actual

near point
normal

near point 

actual

far point 

normal

far point 
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Corrective vision:

Principle of correcting eyes

“Make an illusion at the place you can see clearly.”

That is, make a virtual image of an object, which you wish to see, at a location where you

can see real objects clearly without any corrective means.

Nearsighted eyes: we wish to make the virtual image of objects at infinity at the actual

(or uncorrected) far point.

corrected

uncorrected

re
ti

n
a

lens

nearsighted

object at infinity

actual

far point 

re
ti

n
a

lens

object at infinity

on this side the green ray is realized thanks to the corrective lens, so a distant

object is virtually (or its virtual image by the corrective lens is) placed at the 

actual far point.

Farsighted eyes: we wish to make the virtual image of objects placed at the normal near

point (25 cm from the eyes, usually) at the actual (or uncorrected) near point.

re
ti

na

corrected

uncorrected

re
ti

n
a

lens

farsighted

actual

near point
normal

near point 

lens

on this side the green ray is realized thanks to the corrective lens, so an object at the 

normal near point is virtually (or its virtual image by the corrective lens is) placed at the 

actual near point.

Remark: The prescriptions for glasses and contact lenses are different due to the presence

or absence of the distance between the corrective lenses and the eye lenses.
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Magnifying glass

We wish to make a magnified virtual image of a real object of height ho placed at do. The

position of the virtual image is |di| behind the converging lens of focal length f :

1

f
=

1

do
+

1

di
=

1

do
− 1

|di|
⇒ do =

f |di|
f + |di|

.

We wish to place the image at our near point (distance dnear from our eyes). Usually, we

place the magnifying glass very close to our eyes, so we may set di = −dnear.

f

h

h

o

i

do

di

The magnification m, which is written as M in this context, is

M = −di/do =
f + dnear

f

(
' M =

dnear
f

, if, as usual, dnear � f

)
.

Angular magnification interpretation of M

The magnification may be defined as the ratio of the angle we see with and without the

magnifier. To see an object with an unaided eye, we must place it at dnear (see Figure

below), so the angle θ we see is θ = ho/dnear (in radians; small angle approximation).

On the other hand, with the magnifier, the angle we observe is given by θ′ = hi/dnear.

Hence,

M =
θ′

θ
=

hi/dnear
ho/dnear

=
hi
ho

=
dnear
do

' dnear
f

.

f

h

h

o

i

do

di

the object placed at a distance |    | =   di d near

θ’
θ
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Compound lens system

To analyze a system consisting of lenses and mirrors, we have only to study each lens or

mirror one by one. This is illustrated with the following example:

f

ff

f
1

2 2

1

1 2

object

image by 1

= object for 2

image by 2

The first lens may be analyzed just as usual.

f

ff

f
1

2 2

1

1

object

image by 1

The image due to lens 1 is a real image, so rays converging there ‘restart’ from this image.

Thus, this image acts as the real object for the next lens. The analysis of lens 2 goes just as

usual.

ff
2 2

2

image by 1

= object for 2

image by 2

When you analyze a compound system numerically, you must recalculate the distances (e.g.,

do) at each step with respect to the lens or mirror being analyzed.
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Discussion 12-1 Myopia

A myopic person has her far point at 7 cm from her eyes and the distance between her lens

and retina is 27 mm.

1) What is the focal length of her lens when it is relaxed?

2) The lens of the glasses for her to see the scenery clearly is held from her own lens. What

should be the power of this collective lens?

3) What is the power of the contact lens for her to see the scenery clearly?
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Discussion 12-2 Magnifying glass

A convex lens of focal length 3 cm is to be used as a magnifying glass. An object is placed

2.68 cm in front of the lens.

1) Graphically construct the image in the following figure.

f f
5101525 20 0

Figure 1:

2) Now, compute the position and the magnification of the image.
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Discussion 12-3 Combination of convex and concave lenses

The left lens is a convex lens with a focal length of 30 cm. The right lens is a diverging lens

with a focal length of 7 cm.

20 cm

Figure 2:

1) Where is the image of the object at infinity by the converging lens (if the diverging lens

were not there)?

2) Discuss why the real image due to the converging lens becomes effectively the virtual object

for the diverging lens, and then compute the position of the final image. Is it virtual/real

and upright/inverted?
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Discussion 12-4 Microscope

A microscope has an objective lens with focal length fo = +4 mm and an eyepiece lens with

focal length fe = +40 mm. The two lenses are positioned L = 118.5 mm apart in the barrel

of the microscope. An object to be viewed is placed 4.2 mm in front of the objective lens.

118.5 mm

Figure 3:

(1) What is the overall magnification of this microscope (using the formulas in the formula

sheet)?

(2) If you use the lens formula, what is the accurate answer?
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Physics 102 (Sample Quiz) Q11s

Name: Section: Score: /20

1. For a myopic student the distance between the middle of her lens and her retina is

26 mm as illustrated below.

(1) Her near point is 5 cm. What is the focal length of her lens when strained? [5]

26 mm

  glasses to be 

prescribed in (2)

20 mm

1/f = 1/do + 1/di

do = 5 cm, di = 2.6 cm ⇒ 1/5 + 1/2.7 = 1/1.71.

Hence, f = 1.71 cm.

(2) To read books held 25 cm from her eyes what lenses should be prescribed for her glasses?

Give their strength in diopters. Assume that the glasses are held 2 cm from her own lenses.

[5]

The principle of eye correction is to put an illusion (= virtual image) at the position

of clear vision with uncorrected eyes.

The book is 23 cm = 25− 2 cm from the glasses: do = 23 cm.

The virtual image should be at her near point, which is 3 cm in front of the glasses:

di = −3 cm (virtual).

Therefore,

1/f = 1/23− 1/3 = −1/3.45 cm.

Thus, −1/0.0345 = −29 D.
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2. An apparatus consists of a convex lens with focal length |f1| = 12 cm and a concave lens

with focal length |f2| = 20 cm. The lenses are separated by 20 cm as illustrated below.

20 cm

(1) An object of height 2 cm is placed 10 cm to the left to the convex lens. Where is the

final image by these two lenses? You must tell whether the image is real or virtual. [You

must solve this problem step by step, starting from the left lens.] [5]

The first lens:

1/12 = 1/10 + 1/di ⇒ 1/di = 1/12− 1/10 = −1/60.

That is,

the image is 60 cm left of the convex lens. It is a virtual image, so the rays to the right

of the first lens behave as if they emanate from this image. That is, this image acts as

the real object for the second lens. Thus,

The second lens:

f2 = −20 cm, do = 60 + 20 = 80. 1/di = 1/f − 1/do = −1/20− 1/80 = −1/16.

Thus, the image is 16 cm to the left of the concave lens; virtual.

(2) What is the size of the image? Is it upright or inverted?[5]

For the first lens: m1 = −(−60)/10 = 6.

For the second lens m2 = −(−16)/80 = 0.2.

Thus, the overall magnification is m1m2 = 1.2

Therefore, the image is upright and the size is 2× 1.2 = 2.4 cm.
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Physics 102 Discussion Week 13 (Lectures 22 and 23)

Interference and Diffraction

Key Points

Light is a wave

We know light is a kind of electromagnetic wave, so it is a wave. However, if the wavelength

is small enough compared with the beam width, the beam proceeds almost without any

spread, so ‘particle-like’ geometrical-optics behavior can be observed (as we know in geomet-

rical optics). The relation between the spread of a beam and its wavelength is illustrated

below.

Wave interference

See Figure below:

If two waves with the same wavelength are in phase (i.e., wave peaks align), constructive

interference occurs between them.

If two waves with the same wavelength are out of phase (i.e., not in phase; however, often

this means that wave peaks of one wave align with wave troughs of the other wave), destruc-

tive interference occurs between them.

constructive interference

destructive interference

in phase

out of phase

λ

superposition

superposition

If the peak displacement is an integer multiple of the wavelength λ, interference is construc-

tive. If it is a half-odd number multiple of λ, interference is totally destructive.
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Huygens’ principle

Every point on a wave front acts as a source of the wave of the same frequency and phase

with the incoming wave.

Double-slit interference

Huygens’ principle tells us that two slits become sources of wave in phase. Whether there is a

constructive interference or not between these two waves at a point on the screen determines

the interference pattern. The optical path length difference between the two beams in the

following figure is d sin θ. Therefore, constructive interference (bright fringes) occurs at P

if

d sin θ = mλ for m = 0,±1,±2, · · · .

Destructive interference (dark fringes) occurs if

d sin θ =

(
m +

1

2

)
λ for m = 0,±1,±2, · · · .

double slit

λ sc
re

en

in
terferen

ce p
attern

d θ

sin   = path length difference d θ

magnified
double slit experiment

P θ

double slit

screen

d

Diffraction grating

Instead of only two, if there are many equally spaced slits, the device is called a diffraction

grating. Bright fringes can be found at the same positions on the screen just as the double

slit case, but bright fringes are much sharper and brighter.
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Single slit diffraction

A single slit may be understood as a collection of identical wave sources (thanks to Huygens’

principle) (see the following figure for 2 and 6 source interpretations). If the length difference

of the paths connecting the adjacent wave sources and the screen is equal to λ/2, then, these

waves interfere totally destructively (see A in the figure). Therefore, if the slit observed from

a direction θ may be interpreted as 2m (m = ±1,±2, · · ·) sources (see B in the figure for

m = 3) and if the differences between the lengths of the paths connecting the adjacent wave

sources and the screen are all equal to λ/2, then the direction θ gives a dark fringe. That

is, the dark fringe positions (directions) are given by

(a/2m) sin θ = λ/2 ⇒ a sin θ = mλ for m = ±1,±2, · · · .

single slit

d
iffra

c
tio

n
 p

a
tte

rn

a θ

         sin    = path length 

                 difference
                    

θ

magnified

single slit diffraction

a/2

(a/2)

sc
re

e
n

first dark fringe

central peak

 λ /2

first dark fringe

a
θ

a/6 th
ir
d 

da
rk

 f
ri
ng

e

A

B

=

         sin    = path length 

                 difference
                    

θ(a/6)

 λ /2=
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Diffraction by a circular aperture

The diffraction pattern by a circle hole is similar (see A in Figure) to that due to a slit,

but some shape-dependent modifications are needed. The first dark fringe position is given

by

D sin θ = 1.22λ,

if the diameter of the circular aperture is D.

circular aperture

diffraction pattern

  (brightness inverted)

the first dark fringe

position is 1.22 times

that for a linear slit 

circular aperture

htnene

θ
diameter D

A

B

Resolving power or Rayleigh’s formula for resolution

Each bright spot makes a diffraction pattern as in A around its principal axis. Therefore,

if the directions of the two spots are close (i.e., θ of B in the above Figure is not large

enough), then the images of the spots on the screen do not separate well. That is, there is

a diffraction limit for resolution of images. To recognize two separate spots the distance

between the central diffraction peaks for these spots should not be smaller than the angle

for the first dark fringe. Thus, the minimum angle discernible by the optical device with

aperture D is given by

D sin θ = 1.22λ.

This is called Rayleigh’s formula.

Small angle approximation (warning)

sin θ and tan θ may be computed approximately easily, if the angle θ is not too large. Prac-

tically, if |θ| < 0.2 rad (i.e., |θ| . 10◦), then

sin θ ' tan θ ' θ in radians

is accurate. The last approximation (the small angle approximation) is meaningful, ONLY

IF θ is expressed in radians (see the figure of Key Points of Week 1, Elementary trigonometry

on p5).
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Discussion 13-1 Double slit

A double slit with slit spacing 0.13 mm is placed 250 cm in front of a screen as illustrated

below.

d = 1.3 mm

250 cm

screen

double slit

1) Red light (λ = 665 nm) illuminates the slits. What is the distance on the screen between

the central bright fringe and the third order bright fringe?

2) A yellow-green light (λ = 565 nm) also impinges on the slits. What is the distance

between the third order red fringe and the third order yellow-green fringe?



146

Discussion 13-2 Diffraction grating

We wish to use a diffraction grating to determine the wavelength of a light. We choose

L = 25 cm.

L

central axis

screengrating

1) First, we determine the spacing of the slits with the aid of a known light from a red laser

λ = 680 nm. The first bright fringe is observed 5 cm below the central axis on the screen.

How many lines per cm does this grating have?
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2) An unknown light source has a spot exactly 4.18 cm above the central axis. What is its

wavelength? Is the answer unique? Why or why not?

3) Where is the second interference maximum for the red (680 nm) light?
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Discussion 13-3 Single slit

A single slit is placed L = 75 cm in front of a screen as illustrated below.

L

central axis

screensingle slit

1) Light of 665 nm is incident on a single slit. Draw the expected intensity pattern above in

a qualitative manner. That is, don’t expect to draw it to scale. Show at least five brightest

peaks.

2) Indicate the width of the central bright fringe (the spacing between the first dark fringes

bounding the central peak) on your drawing. How do you estimate its width?
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3) If the distance between the two first order dark fringes (i.e., the width of the central peak

according to the definition here) is 2.6 cm on the flat screen, what is the width of the slit?

4) If the light had a wavelength of λ = 425 nm instead, now what would the distance between

the two first order dark fringes (i.e., the width of the central peak) be?
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Discussion 13-4 Resolution

1) At a clear night you see a UFO flying toward you, which has a purple light of wavelength

= 420 nm on each side, 1.5 miles apart.

How close must the UFO get to you for you to recognize that the purple light is not coming

from a single spot? Assume that you have ideally good vision and that your pupil diameter

is 2.5 mm.

2) A radio telescope of diameter 305 m observes the ‘hydrogen line’ whose frequency is 1420

MHz. What is its angular resolution in degrees?
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Physics 102 (Sample Quiz) Q12s

Name: Section: Score: /20

1. Light of wavelength λ = 560 nm (greenish yellow) from a dye laser illuminates a double

slit. An interference pattern is observed on a screen 4 m away. The following illustration

exaggerates the vertical direction.

L = 4 m

d

third peak

y = 2.4 cm

(1) The third bright fringe is at a position y = 2.4 cm on the screen as in the figure. What

is the slit separation d? [5]

Recall d sin θ = mλ.

Here, m = 3, θ = y/L (in radian). Since θ is small, θ ' sin θ = y/L.

d = 3L× λ/y = 3× 4× 560× 10−9/2.4× 10−2 = 2800× 10−7 = 0.28× 10−3.

That is, 0.28 mm.

(2) Now, the laser is tuned to 600 nm (orange). Where can you find the third bright fringe

on the screen? Get the new y value. [5]

Notice that θ = y/L is proportional to the wavelength, so new y must be 2.4×600/560 =

2.57 cm.

Waves with longer wavelengths bend more as illustrated in this week’s Key Points.
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2. A pinhole camera with a circular aperture is used to make an image of two light sources

separated by a distance ∆y = 2 cm and located a distance L = 75 m away.

(1) If the light sources emit light of wavelength λ = 620 nm, what is the minimum aperture

diameter D of the ‘pinhole’ of the camera to resolve the two light sources? [5]

Recall Rayleigh’s formula: D sin θ = 1.22λ.

θ = ∆y/L ⇒ D = 1.22λ× L/y

= 1.22× 620× 10−9 × 75/2× 10−2 = 28365× 10−7 = 2.8× 10−3 m

or 2.8 mm.

(2) If you wish to resolve the light sources with the same camera when ∆y = 1.8 cm, what

is the longest possible wavelength of light the sources must emit? [5]

The above formula tells us that if θ is made smaller, λ should also be scaled in the

same fashion to maintain D. Therefore, 620× 1.8/2 = 558 nm.
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Phys 102 Discussion Week 14 (Lectures 24-)

Photons, Matter wave and Bohr atom

Key Points

Photons and photoelectric effect

It was empirically found that when a metal surface is illuminated with a light, light acts in

units called photons. They may be understood as particles of energy E given by

E = hf

for light with frequency f , where h = 6.626 × 10−34 J·s is Planck’s constant. Thus, light

exhibits wave-particle duality.

Each photon can produce at most one photoelectron with a kinetic energy whose maximum

value is give by
Emax = hf −W0,

where W0 is the work function of a given metal. W0 is the needed energy to liberate an
electron from the metal surface under question.

Energy units: The above formula is convenient, if energies are all in eV.
eV is the potential energy of an electron (its charge = −1.6× 10−19 C) in the electric potential of

−1 V. Therefore, 1 eV = (−1)× (−1.6× 10−19) = 1.6× 10−19 J.
Since f = c/λ, hf = hc/λ. The formula sheet tells us that hc = 1240 eV·nm. This means that if

λ is measured in nm, then the number 1240/λ is the photon energy in eV, or if the photon energy E
is in eV, then its wavelength is 1240/E in nm.

For example, if the wavelength of a photon is λ = 540 nm, then 1240/540 = 2.3 is the energy of
this photon in eV; if a photon has an energy 3.7 eV, its wavelength is 1240/3.7 = 335 nm.

Quantization is demanded by the existence of atoms

Classical physics does an excellent job, but one of its greatest defects is that it cannot explain

why atoms are stable. An atom consists of electrons going around a positively charged nu-

cleus. We know, however, charge undergoing an accelerated motion radiates electromagnetic

waves that carry away energy. Consequently, according to classical physics atoms cannot be

stable; they always lose energy continuously.

Quantum mechanics solves this most important question by discretizing (= quantizing)

possible states of an atom. Thus, no continuous loss of energy occurs for the atom. Conse-

quently, atoms are stable.

de Broglie’s matter wave

This quantization is based on de Broglie’s idea of wave-particle duality (or matter wave):

if light exhibits this duality, why not ordinary particles? With a particle having a momentum

p is associated a matter wave of wavelength given by

λ =
h

p
.

This relation is true for photons as well: For photons p = E/c, so h/p = hc/E = hc/hf =

c/f = λ.

If there is a standing matter wave of an electron in the atom, that state of an atom is

stable. This is the fundamental idea of Bohr’s.
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Heisenberg’s uncertainty relation

The idea of matter wave demands total reconsideration of the concepts of position and

momentum of a given particle. They are not well-defined quantities separately, but are

complementary with each other: the uncertainty in momentum ∆p and the uncertainty in

location ∆x must satisfy the uncertainty relation:

∆p∆x ≥ 1

2
~,

where ~ = h/2π = 1.06× 1034 J·s.
Bohr radius and energy levels

From the condition that the electron matter wave makes a standing wave around the nucleus

it was noted that the angular momentum L is quantized as

Ln = n~, where n = 1, 2, 3 · · · .

This determines stable atomic states specified by the principal quantum number n: its

radius (Bohr radius) is given by

rn =

(
~2

meke2

)
n2

Z
= (5.29× 10−11 m)

n2

Z
,

and its energy En (Bohr energy level) by

En = −
(

mek
2e4

2~2

)
Z2

n2
= (−13.6 eV)

Z2

n2
.

Here, me is the electron mass, e is the electron charge, k is the constant appearing in the

Coulomb interaction, and Z (× e) is the nuclear charge.

A transition of state with n to that with n′ (< n) produces a single photon of energy

given by hf = En − En′ .

Atomic states

A (stable) state of an electron in Bohr’s atom is uniquely specified by four quantum numbers

n, `, m` and ms. Their ranges are as follows:

n = 1, 2, · · ·.
` = 0, 1, 2, · · · , n− 1 (for an electron with a given n).

m` = −`, −` + 1, · · · −1, 0, 1, · · ·, `− 1, ` (for an electron with a given `).

ms = ±1
2
.

n determines the energy En of the electron.

` determines the (total) angular momentum L of the electron: L =
√

`(` + 1)~.

m` determines the z-component Lz of the angular momentum Lz = m`~.

ms determines the z-component Sz of the spin angular momentum Sz = ms~

Pauli’s principle: No two electrons can have the same set of quantum numbers (n, `, m`, mS)

in a given atom.
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Discussion 14-1 Photons

1) A laser emits 1.3× 1018 photons in one second in a beam of light that has a diameter of

2.00 mm and a wavelength 514.5 nm. Determine the average electric field strength of the

electromagnetic wave that constitutes the beam. Let us do this step by step.

(i) What is the energy of a single photon of this light (in J and in eV)?

(ii) What is the energy carried by this beam of light? Or, determine the flow rate (energy

flux I or S, p106) of week 10, in J/s (= W) of the energy in the beam.

(iii) What is the flow rate of energy per unit area? This is the intensity I of the beam.
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(iv) What is the average energy density u of this electromagnetic wave?

(v) Finally, determine the average electric field strength.

2) An owl has good night vision because its eyes can detect a light intensity as small as

5.0×10−13 W/m2. What is the minimum number of photons per second that an owl eye can

detect if its pupil has a diameter of 8.5 mm and the light has a wavelength of 510 nm?
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Discussion 14-2 Work function and photoelectric effect

1) The work function for a sodium surface is 2.28 eV. What is the shortest wavelength (in

nm) of an electromagnetic wave that cannot eject electrons?

2) What is the maximum kinetic energy of the ejected electrons from a sodium surface if it

is illuminated with a light of wavelength 320 nm? What is the fastest possible speed of the

electron?
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Discussion 14-3 de Broglie wave

1) Electrons are sent one by one with the same speed v from far behind a double slit whose

spacing is 0.12 mm (see Figure). 1 m away from the slits is a detector bank on which we

observe a bright spot when an electron arrives.

  L = 1 m

0.12 mm

electron gun

v

peak spacing

0.23 mm

detector

     bank

Collecting all the results of numerous electrons, we can observe an interference pattern whose

adjacent detection peaks are 0.23 mm apart (cf. watch https://www.youtube.com/watch?v=_oWRI-LwyC4;

see Figure below for the final outcome by A Tonomura of Hitachi Central Res Lab (1983)).

What is the speed v of the electron?
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2) Now the slit spacing is 100 nm and electrons are replaced with buckyballs (C60; see Figure)

of speed 200 m/s.13 What is the spacing between the adjacent interference peaks?

13M Arndt, O Nairz, J Vos-Andreae, C Keller, G van der Zouw and A Zeilinger, Wave-particle duality of
C60 molecules, Nature 401, 680-682 (1999). The figure above is taken from Wikipedia.
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Discussion 14-4 Uncertainty principle

1) In a potential well of radius 1 pm is confined a proton. If this radius is considered to

be the uncertainty in the position of the proton, what is the minimum uncertainty in its

momentum p?

2) This momentum uncertainty implies that the kinetic energy of the proton must be high.

What potential energy (< 0, i.e., the depth of the well) do you expect to need to confine the

proton in the well?
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Discussion 14-5 Bohr atom

1) What is the radius of a ground state hydrogen atom according to the Bohr model?

2) A ground-state hydrogen atom absorbs a photon and is excited to the n = 3 level. What

is the energy (in eV) of this photon?

3) Calculate the ionization energy of a hydrogen atom with an electron in the n = 3 state. If

the electron is replaced by a negative muon (mass = 204me), does this photon have enough

energy to ionize this muonic hydrogen atom?
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4) What is the wavelength of a photon emitted by the de-excitation of the hydrogen atom

in the n = 6 state to that in the n = 5 state?

5) What is the ionization energy of helium ion He+ ?



163

Physics 102 (Sample Quiz) Q13s

Name: Section: Score: /20

1. Electrons are sent one by one with the same speed v from far behind a double slit

separated by a 0.24 mm spacing (see the figure). 1.2 m away from the slits is a detector

bank on which we observe a bright spot when an electron arrives.

L = 1.2 m

0.24 mm

electron gun

v

peak spacing

1.7 mm

detector

     bank
(1) Collecting all the results of numerous electrons, we can observe interference patterns

with the spacing of adjacent interference peaks being 1.7 mm. What is the speed v of the

electrons? [5]

Recall: d sin θ = mλ and de Broglie wavelength λ = h/p, where p = mv.

The wavelength may be obtained as

λ = dy/L = 0.24× 10−3 × 1.7× 10−3/1.2 = 0.34× 10−6 m,

so

v = h/mλ = 6.626× 10−34/9.11× 10−31 × 3.4× 10−7 = 0.202× 10−34+38

That is, v = 2.02 km/s.

(2) If the electrons are replaced with muons (whose mass is 200 times as large as that of

electrons) with the same kinetic energy as in (1), what is the spacing between adjacent in-

terference peaks? [5]

The kinetic energy reads K = p2/2m, so p =
√

2mK. K is maintained and m → 200m,

so the de Broglie wavelength becomes λ → λ/
√

200 = λ/14.1. The spacing is propor-

tional to the wavelength. Therefore, the new spacing would be 1.7/14.1 = 0.12 mm.

λ becomes smaller, so the wave propagation direction is harder to bend. Recall why

sky is blue.
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2. Using the photons created by the de-excitation of the n = 3 state of Hydrogen to its

ground state, we wish to study the photoelectric effect of a metal.

(1) What is the wavelength of the photons? [5]

Use Bohr’s formula: En = −13.6/n2 eV.

The ground state is with n = 1.

hf−13.6+13.6/9 = 0, so hf = 12.09 eV. This implies λ = 1240/12.09 = 103 nm.

(2) The work function of the metal is 2.8 eV. What is the maximum speed of the ejected

electrons from the metal surface illuminated by the photons discussed in (1)? [5]

Recall hf = W + Kmax.

Kmax = 12.24− 2.8 = 9.44 eV = 15.1× 10−19 J = (1/2)mv2

or

v =
√

30.2× 10−19/9.11× 10−31 =
√

3.315× 1012 = 1.8× 106 m/s.

(This is still not fast enough to observe relativistic effects significantly.)



Physic 102 formula sheet (FA2016)

Kinematics and mechanics

x = x0 + v0t +
1
2
at2 v = v0 + at v2 = v2

0 + 2a∆x

F = ma ac =
v2

r

Etot = K + U K =
1
2
mv2 =

p2

2m
p = mv WF = Fd cos θ P = Fv cos θ

Electrostatics

F12 = k
q1q2

r2
E =

F

q0
U12 = k

q1q2

r
V ≡ U

q0
WE = −∆U = −Wyou

Point charge E = k
q

r2
V = k

q

r
Electric dipole p = qd τdip = pE sin θ Udip = −pE cos θ

Resistance

R =
V

I
I =

∆q

∆t
Physical resistance: R = ρ

L

A

P = IV = I2R =
V 2

R
RS = R1 + R2 + · · · 1

RP
=

1
R1

+
1

R2
+ · · ·

Capacitance

C =
Q

V
Parallel plate capacitor: C =

κε0A

d
E =

Q

ε0A
V = Ed

UC =
1
2
QV =

1
2
CV 2 =

1
2

Q2

C
CP = C1 + C2 + · · · 1

CS
=

1
C1

+
1
C2

+ · · ·

Circuits∑
∆V = 0

∑
Iin =

∑
Iout

q(t) = q∞(1− e−t/τ ) q(t) = q0e
−t/τ I(t) = I0e

−t/τ τ = RC

Magnetism

F = qvB sin θ r =
mv

qB
Fwire = ILB sin θ τloop = NIAB sinϕ

Magentic dipole: µ = NIA τdip = µB sinϕ Udip = −µB cos ϕ

Bwire =
µ0I

2πr
Bsol = µ0nI

Electromagnetic induction

E = −N
∆Φ
∆t

Φ = BA cos ϕ

|Ebar| = BLv Egen = Emax sinωt = ωNAB sinωt ω = 2πf

Vrms =
Vmax√

2
Irms =

Imax√
2

Vp

Vs
=

Is

Ip
=

Np

Ns

Electromagnetic waves

λ =
c

f
E = cB

uE =
1
2
ε0E

2 uB =
1

2µ0
B2 u =

1
2
ε0E

2
rms +

1
2µ0

B2
rms = ε0E

2
rms =

B2
rms

µ0
S = I = uc =

P

A

f0 = fe

√
1 + vrel/c

1− vrel/c
≈ fe

(
1 +

vrel

c

)
I = I0 cos2 θ

1



Reflection and refraction

θr = θi
1
do

+
1
di

=
1
f

f = ±R

2
m =

hi

ho
= − di

do

n1 sin θ1 = n2 sin θ2 v =
c

n
sin θc =

n2

n1
M =

θ′

θ
≈ dnear

f

Compound microscope: mobj =
Ltube

fobj
Meye =

dnear

feye
Mtot = Meyemobj

Interference and diffraction

Double-slit interference: d sin θ = mλ d sin θ =
(

m +
1
2

)
λ m = 0,±1,±2, · · ·

Single-slit diffraction: a sin θ = mλ m = 0,±1,±2, · · ·
Circular aperture: D sin θ ≈ 1.22λ

Quantum mechanics

E = hf =
hc

λ
λ =

h

p
∆px∆x ≥ ~

2
~ =

h

2π

Bohr atom: 2πrn = nλ n = 1, 2, 3, · · · Ln = mevnrn = n~

rn =
(

~2

meke2

)
n2

Z
≈ (5.29× 10−11 m)

n2

Z
En = −

(
mek

2e4

2~2

)
Z2

n2
≈ −(13.6 eV)

Z2

n2

1
λ
≈ (1.097× 107 m−1)Z2

(
1
n2

f

− 1
n2

i

)
Quantum atom: L =

√
`(` + 1)~ Lz = m`~ Sz = ms~

Atomic magnetism: µe,z = − e

2me
Lz µs,z = − ge

2me
Sz, g ≈ 2 µB ≡ e~

2me
≈ 5.8× 10−5 eV/T

Nuclear physics and radioactive decay

A = Z + N r ≈ (1.2× 10−15 m)A1/3 E0 = mc2

mnucleus = Zmproton + Nmneutron −
|Ebind|

c2

∆N

∆t
= −λN N(t) = N0e

−λt = N02−t/T1/2 T1/2 =
ln 2
λ

≈ 0.693
λ

Constants and unit conversion

g = 9.8 m/s2 e = 1.60× 10−19 C

ε0 = 8.85× 10−12 C2/Nm2 k ≡ 1
4πε0

= 8.99× 109 Nm2/C2 µ0 = 4π × 10−7 T ·m/A

c =
1

√
ε0µ0

= 3× 108 m/s h = 6.626× 10−34 J · s hc = 1240 eV · nm

1 eV = 1.60× 10−19 J melectron = 9.11× 10−31 kg = 511 keV/c2

mproton = 1.673× 10−27 kg = 938 MeV/c2 mneutron = 1.675× 10−27 kg = 939.5 MeV/c2

SI Prefixes
Power Prefix Symbol
109 giga G
106 mega M
103 kilo k
100 — —
10−3 milli m
10−6 micro µ
10−9 nano n
10−12 pico p

2
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