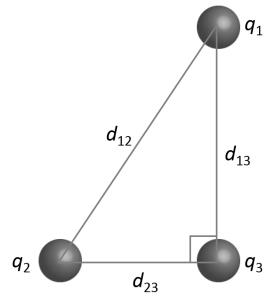

An uncharged conducting sphere *A* hangs from the ceiling by a non-conducting string. As shown in the figure below, a positively charged conducting sphere *B* is brought close to the hanging sphere but **does not** touch it.


- 1) What happens to the hanging sphere *A*?
 - a. It moves toward sphere *B*.
 - b. It moves away from sphere *B*.
 - c. It does not move.
- 2) Now the two spheres are **touched** briefly and then separated to the same distance as before. What happens to the hanging sphere *A*?
 - a. It does not move.
 - b. It moves away from sphere *B*.
 - c. It moves toward sphere *B*.
- 3) Consider the three molecules to the right. Each atom has a partial charge indicated in the figure. The bond lengths and δ are the same in all three molecules.

Which of these molecules has the largest electric dipole moment?

- a. molecule 1
- b. molecule 3
- c. molecule 2

Consider the following configuration of three point charges $q_1 = 12 \mu C$, $q_2 = 5.9 \mu C$, and $q_3 = -2.5 \mu C$ arranged in a right triangle with sides $d_{23} = 0.1 m$ and $d_{13} = 3.5 m$. The point charges q_2 and q_3 are both on the x axis of the coordinate system.

4) Calculate the x-component $F_{Itot,x}$ of the force on charge q_1 due to q_2 and q_3 .

a.
$$F_{1tot,x} = -0.0022 N$$

b.
$$F_{1tot,x} = 0.003 N$$

c.
$$F_{1tot,x} = 0.0015 N$$

d.
$$F_{1tot,x} = -0.0018 N$$

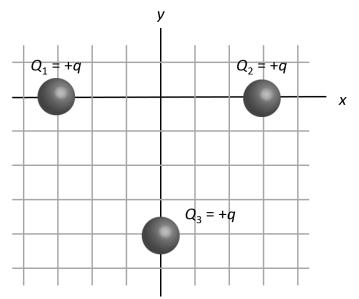
e.
$$F_{1tot,x} = 6.8 \times 10^{-4} N$$

- 5) If q_1 were replaced with a charge of the same magnitude but opposite sign, $-12 \mu C$, how would the **magnitude** $|F_{1tot}|$ of the total force on charge q_1 due to q_2 and q_3 change?
 - a. It would increase.
 - b. It would remain the same.
 - c. It would decrease.
- 6) Calculate the magnitude of the electric field, E_{tot} , at the position of charge q_3 due to charge q_1 and q_2 .

a.
$$E_{tot} = 0 \text{ kV/m}$$

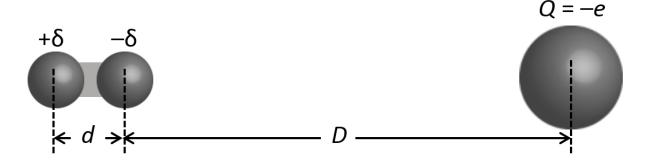
b.
$$E_{tot} = 9100 \text{ kV/m}$$

c.
$$E_{tot} = 7200 \text{ kV/m}$$


d.
$$E_{tot} = 5300 \text{ kV/m}$$

e.
$$E_{tot} = 1.1 \times 10^4 \, kV/m$$

7) Consider the following arrangement of three charges on the coordinate axes. All of the charges are positive and have the same magnitude, i.e., $Q_1 = Q_2 = Q_3 = +q$. Note that the grid spacing is the same in x and y.


Where should you place a fourth charge $Q_4 = +q$ such that the total force on Q_3 is zero, i.e.

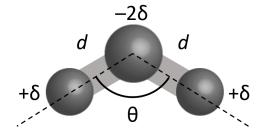
$$F_{3tot} = 0$$
?

- a. on the y axis below Q_3 .
- b. on the y axis above Q_3 but below the origin.
- c. on the x axis, to the left of Q_1 .
- d. on the x axis, to the right of Q_2 .
- e. at the origin.

8) A molecule with an electric dipole moment is placed a distance $D = 9.9 \, nm$ from an ion of charge Q = -e and is oriented as shown in the following figure. The molecule has a bond length $d = 0.1 \, nm$ and partial charges $\delta = +0.3e$.

Calculate the magnitude of the total force on the dipole due to the ion.

a.
$$F_{tot} = 1.4 \times 10^{-14} N$$


b.
$$F_{tot} = 9.3 \times 10^{-15} N$$

c.
$$F_{tot} = 4 \times 10^{-15} N$$

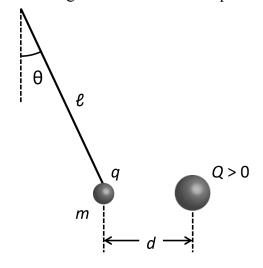
d.
$$F_{tot} = 4.5 \times 10^{-14} N$$

e.
$$F_{tot} = 3.1 \times 10^{-14} N$$

9) A molecule consists of three atoms arranged at an angle $\theta = 120^{\circ}$ as shown in the figure below. The atoms have partial charges, with $\delta = +0.1e$ and the same bond length $d = 1.9 \times 10^{-10}$ m.

Determine the net electric dipole moment p of the molecule.

a.
$$p = 3 \times 10^{-30} \text{ C} \cdot \text{m}$$


b.
$$p = 2 \times 10^{-30} \text{ C·m}$$

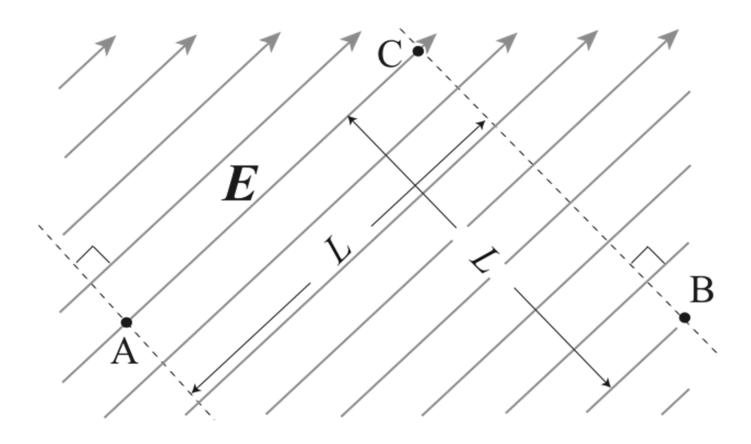
c.
$$p = 0 C \cdot m$$

d.
$$p = 6.6 \times 10^{-30} \text{ C·m}$$

e.
$$p = 9.6 \times 10^{-30} \text{ C·m}$$

10) Consider a point charge of mass m = 19 g and charge q = -6.2 nC suspended from the ceiling by a massless and non-conducting string of length l = 7 cm. When another point charge of magnitude Q = 8 nC approaches, the hanging charge swings and comes to rest at an angle of $\theta = 20^{\circ}$, as shown in the figure. Assume that the point charge q comes to rest at the same height as the point charge Q.

What must be the separation *d* between the charges?


a.
$$d = 0.87 \, mm$$

b.
$$d = 2.6 \, mm$$

c.
$$d = 4.4 \, mm$$

d.
$$d = 1.3 mm$$

The following figure describes a uniform electric field E whose magnitude is E. The dashed lines denote planes perpendicular to the field.

11) What is the electric potential difference $\Delta V = V_B$ - V_A between points B and A in the figure?

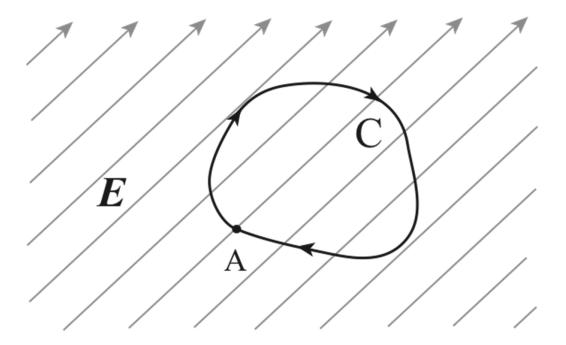
a.
$$\Delta V = \sqrt{2}EL$$

b.
$$\Delta V = 0$$

c.
$$\Delta V = -\sqrt{2}EL$$

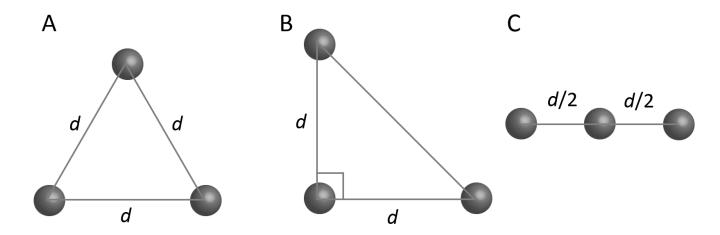
d.
$$\Delta V = -EL$$

e.
$$\Delta V = EL$$

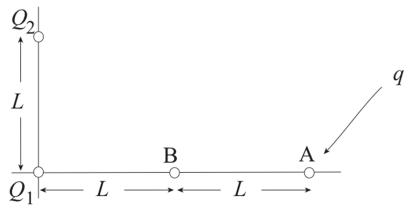

12) A charge *Q* is placed initially at B. You drag the charge to point C. What is the work you must do?

a.
$$W = 0$$

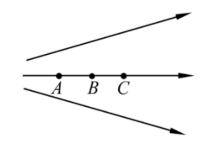
b.
$$W = -E L$$


c.
$$W = E L$$

13) What work W do you have to supply to drag charge Q from point A along the curve C back to the same point A in the uniform electric field E?

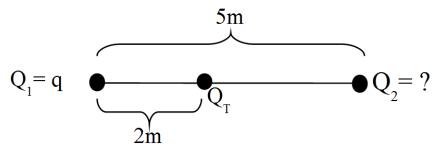

- a. W < 0
- b. W = 0
- c. W > 0

14) Which of the following arrangements of equal positive charges has the highest potential energy?

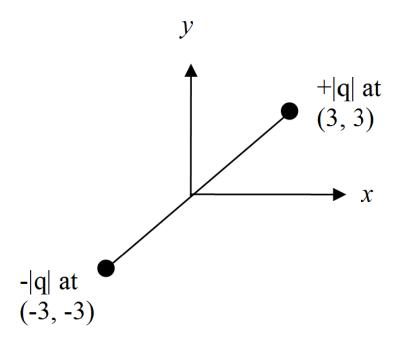


- a. B
- b. C
- c. A

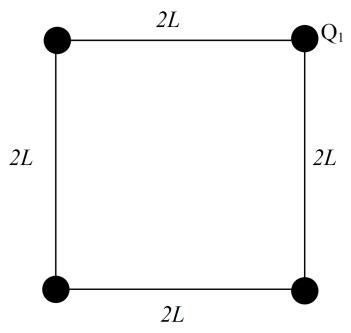
On the y axis are two charges $Q_1 = 1 \mu C$ and $Q_2 = 3 \mu C$ separated by a distance L = 0.4 m. Now the charge $q = 4 \mu C$ is brought to the position A from infinity. (Assume there are no other charges.)



- 15) What is the required work by you to bring the charge q to A from infinity?
 - a. W = 0.44 J
 - b. W = 0.17 J
 - c. W = 0.15 J
 - d. W = 0.22 J
 - e. W = 0.65 J
- 16) Suppose the work needed by you to bring q from A to B is W. If we double both the charges Q_1 and Q_2 the needed work will become
 - a. W/2
 - b. 2 *W*
 - c. 4 W
- 17) The arrows to the right indicate the electric field emanating from the charge q. No other charges are present. Point B is in the middle between Point A and Point C. We know Point A has an electric potential of 40 V and Point C has an electric potential of 20 V. What statement about the electric potential V_B at Point B is correct?


- a. $V_B < 30 \ V$
- b. $V_B = 30 \ V$
- c. $V_B > 30 V$

18) Two charges Q_1 and Q_2 are placed on the x-axis with no other charges around. The charge Q_1 is glued to the origin and has a charge of $q = 3.9 \,\mu$ C. The other charge Q_2 is firmly glued to the x-axis at $x = 5 \, m$. A small positive test charge Q_T is brought into the position as shown in the figure and gently released. The test particle does not start to move along the x-axis. What is the value of Q_2 ?


- a. $Q_2 = 9.8 \,\mu C$
- b. $Q_2 = 24 \,\mu C$
- c. $Q_2 = 1.7 \,\mu C$
- d. $Q_2 = 5.8 \,\mu C$
- e. $Q_2 = 8.8 \,\mu C$

19) A charge of +|q| is placed at the point (3, 3) and a charge of -|q| is placed at the point (-3, -3). There are no other charges. Which of the following points has a potential of 0 V?

- a. (4, -4)
- b. (3, 2)
- c. (4, -5)
- d. (-5, 4)
- e. (-1, -1)

Four identical **negative** point charges, each with charge -Q, are placed at the corners of a square as shown below. The edge length of the square is 2L.

20) What is the magnitude of the electric field *E* at the center of the square?

a.
$$E = -2\sqrt{2}k|Q|/L$$

b.
$$E=2\sqrt{2}k|Q|/L^2$$

c.
$$E = 0$$

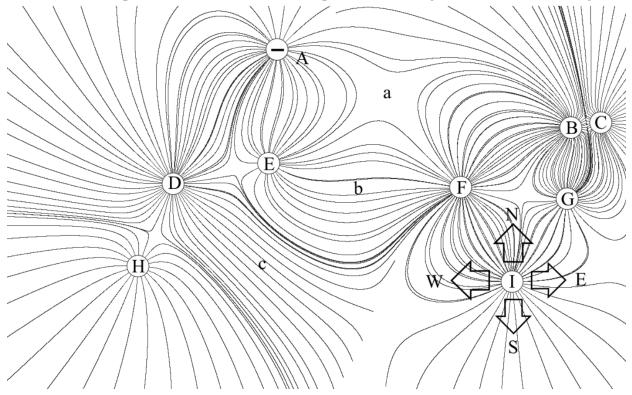
d.
$$E=-2\sqrt{2}k|Q|/L^2$$

e.
$$E=2\sqrt{2}k|Q|/L$$

21) What is the absolute value of the electric potential at the center of the square?

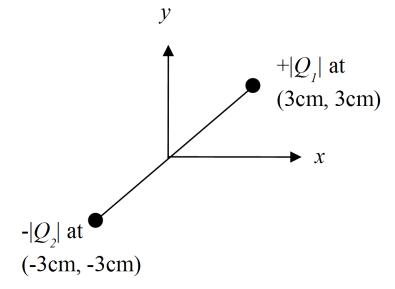
a.
$$V = 2\sqrt{2}k|Q|/L$$

b.
$$V = 8k|Q|/L$$


c.
$$V = k|Q|/L$$

d.
$$V=4k|Q|/L^2$$

e.
$$V = 0$$


- 22) Now we move the charge Q_I at the upper right corner of the square to somewhere infinitely far away while keeping the other charges fixed in place. Which of the following statements about the work done **by you** on the charge Q_I is true?
 - a. The work you need to do to move the charge is infinitely large.
 - b. The work you need to do to move the charge from the corner of the square to infinity depends on the path we take.
 - c. The work you need to do to move the charge is negative.
 - d. The work you need to do to move the charge is zero.
 - e. The work you need to do to move the charge is positive.

On a plane there are many point charges. In the following figure eight (8) charges, A, B, C, D, E, F, G, H, and I are depicted with field lines on the plane. The charge A is known to be negative.

- 23) Choose the correct statement from the following three statements.
 - a. B, C, and E are negatively charged.
 - b. D, E, and F are positively charged.
 - c. F and G are negatively charged.
- 24) The electric field vanishes at a point very close to
 - a. a
 - b. c
 - c. b
- 25) Suppose the charge I is allowed to move, but the rest are all fixed. In which direction does charge I start to move?
 - a. Roughly in the E direction.
 - b. Roughly in the W direction.
 - c. Roughly in the S direction.
 - d. Roughly in the N direction.
 - e. None of N, S, W, E.

A positive charge $Q_1 = 6 \mu C$ is located at position (x, y) = (3 cm, 3 cm) and a negative charge $Q_2 = -2 \mu C$ is located at position (x, y) = (-3 cm, -3 cm).

- 26) What is the potential at the origin of the coordinate system (x, y) = (0, 0) due to these two charges? No other charges are present.
 - a. V = 1700 kV
 - b. V = 850 kV
 - c. V = 2100 kV
 - d. $V = 340 \, kV$
 - e. $V = 420 \ kV$
- 27) What is the magnitude of the work done to assemble the charge configuration as shown above?
 - a. W = 0.52 J
 - b. W = 2.6 J
 - c. W = 0.65 J
 - d. W = 3.2 J
 - e. W = 1.3 J