Last Name: \qquad First Name \qquad Network-ID

Discussion Section: \qquad Discussion TA Name: \qquad

Turn off your cell phone and put it out of sight.
Keep your calculator on your own desk. Calculators cannot be shared.
This is a closed book exam. You have ninety (90) minutes to complete it.

1. Use a \#2 pencil. Do not use a mechanical pencil or pen. Darken each circle completely, but stay within the boundary. If you decide to change an answer, erase vigorously; the scanner sometimes registers incompletely erased marks as intended answers; this can adversely affect your grade. Light marks or marks extending outside the circle may be read improperly by the scanner. Be especially careful that your mark covers the center of its circle.
2. You may find the version of this Exam Booklet at the top of page 2. Mark the version circle in the TEST FORM box near the bottom right on the face of your answer sheet. DO THIS NOW!
3. Print your NETWORK ID in the designated spaces at the right side of the answer sheet, starting in the left most column, then mark the corresponding circle below each character. If there is a letter " o " in your NetID, be sure to mark the "o" circle and not the circle for the digit zero. If and only if there is a hyphen "-" in your NetID, mark the hyphen circle at the bottom of the column. When you have finished marking the circles corresponding to your NetID, check particularly that you have not marked two circles in any one of the columns.
4. Print YOUR LAST NAME in the designated spaces at the left side of the answer sheet, then mark the corresponding circle below each letter. Do the same for your FIRST NAME INITIAL.
5. Print your UIN\# in the STUDENT NUMBER designated spaces and mark the corresponding circles. You need not write in or mark the circles in the SECTION box.
6. Sign your name (DO NOT PRINT) on the STUDENT SIGNATURE line.
7. On the SECTION line, print your DISCUSSION SECTION. You need not fill in the COURSE or INSTRUCTOR lines.

Before starting work, check to make sure that your test booklet is complete. You should have 15 numbered pages plus three Formula Sheets.

Academic Integrity-Giving assistance to or receiving assistance from another student or using unauthorized materials during a University Examination can be grounds for disciplinary action, up to and including dismissal from the University.

This Exam Booklet is Version A. Mark the A circle in the TEST FORM box near the bottom right on the face of your answer sheet. DO THIS NOW!

Exam Grading Policy-

The exam is worth a total of $\mathbf{1 0 6}$ points, composed of three types of questions.
MC5: multiple-choice-five-answer questions, each worth 6 points.
Partial credit will be granted as follows.
(a) If you mark only one answer and it is the correct answer, you earn 6 points.
(b) If you mark two answers, one of which is the correct answer, you earn 3 points.
(c) If you mark three answers, one of which is the correct answer, you earn 2 points.
(d) If you mark no answers, or more than three, you earn 0 points.

MC3: multiple-choice-three-answer questions, each worth 3 points.
No partial credit.
(a) If you mark only one answer and it is the correct answer, you earn 3 points.
(b) If you mark a wrong answer or no answers, you earn $\mathbf{0}$ points.

MC2: multiple-choice-two-answer questions, each worth 2 points.
No partial credit.
(a) If you mark only one answer and it is the correct answer, you earn 2 points.
(b) If you mark the wrong answer or neither answer, you earn $\mathbf{0}$ points.

Some helpful information:

- A reminder about prefixes: p (pico) $=10^{-12} ; \mathrm{n}$ (nano) $=10^{-9} ; \mu$ (micro) $=10^{-6}$;

$$
\mathrm{m}(\text { milli })=10^{-3} ; \mathrm{k}(\text { kilo })=10^{+3} ; \mathrm{M} \text { or Meg }(\text { mega })=10^{+6} ; \mathrm{G} \text { or Gig }(\text { giga })=10^{+9} .
$$

The next three questions pertain to the following situation.

A coil consisting of 5 square turns connected in series rotates at 60 revolutions per second $(\omega=$ $2 \pi 60$ radians per second). The magnetic field $\mathrm{B}=2 \mathrm{~T}$ points in the -z direction (into the page). At $t=0$, the plane of the coil lies in the $x+y$-plane; a side of the coil is labeled with points " a " and "b." The rotation is around the y axis, such that at $\mathrm{t}=0$ side $\mathrm{a}-\mathrm{b}$ is moving out of the page. The loops have an area of $100 \mathrm{~cm}^{2}$ and no resistance of their own. A 10Ω resistor is connected across the coils as shown.

c. the current is zero.
2. The maximum value of the current is
a. 0 A
b. 1.00 A
c. 2.56 A
d. 100.53 A

```
The max emf = NAB¥omega
    = 5 x (100 x 10^{-4}) x 2 x 120¥pi
    = 37.70 V
    Since R = 10, so I = 37.70/10 = 3.77 A
```

 (e.) 3.77 A

The next question continues from the previous page.

3. Once the coil has rotated forward by 45°
a. the current flows clockwise, directly from point b to point a.
b. the current flows counterclockwise, directly from point a to point b.
c. the current is zero.

Motional emf

If you imagine $a+c h a r g e ~ o n ~ a-b, ~ i t ~ m o v e s ~$ right (i.e., a current is to the right), so it feels the force 'upward' in the sheet of the paper as noted by the arrow in the above figure.

Mag flux our of the page
is diminishing, so the
loop wishes to make the
flux out of the page
-> Lenz + right-handed
screw rule tells us an induced clockwise current.

The next two questions pertain to the following situation.

A triangular conducting coil lies in a uniform magnetic field B which varies in time as shown in the graph of B (Tesla) versus t (seconds). At $t=1 \mathrm{~s}$, the magnetic field is pointing out of the page. The triangle has height $h=\sqrt{3} \mathrm{~m}$, and the base of the triangle has length $L=2 \mathrm{~m}$.
5. The current is zero
emf = A dB/dt
emf = A dB/dt
= ¥sqrt{3}x 2 = 3.46 V
= ¥sqrt{3}x 2 = 3.46 V
(a) between $\mathrm{t}=1 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$. $d ¥ P h i / d t=0$, where B is flat.
b. at $\mathrm{t}=0.5 \mathrm{~s}$.
c. at $\mathrm{t}=3.5 \mathrm{~s}$.

The next three questions pertain to the following situation.

An electromagnetic wave indicated below has wavelength $\lambda=420 \mathrm{~nm}$.

6. This wave is polarized along the

Propagation direction:
E to B right-handed screw.
a. x axis.
b. y axis.
c. z axis.
7. The frequency of this wave is

$$
\text { fx } ¥ \text { lambda = c }
$$

a. $7.14 \times 10^{14} \mathrm{~Hz}$
b. $2.13 \times 10^{14} \mathrm{~Hz}$

$$
\begin{aligned}
f & =3 \times 10^{\wedge} 8 /\left(420 \times 10^{\wedge}\{-9\}\right) \\
& =0.007142 \times 10^{\wedge} 17 \mathrm{~Hz}
\end{aligned}
$$

c. $4.76 \times 10^{14} \mathrm{~Hz}$

This is a bad expression of propagation of a wave.
8. The time it takes for a point on the wave to travel forward 2 m is

	This is a bad expression of propagation of a wave.

a. 2.30 ms
(b.) 6.67 ns

$$
2 /\left(3 \times 10^{\wedge} 8\right)=0.667 \times 10^{\wedge}\{-8\} s
$$

c. 1.75 ps

The next two questions pertain to the following situation.
Unpolarized light with intensity I_{0} is incident on a series of three polarizers, as shown in the picture below.
Unpolarize through linear polarizer
-> Intensity halved

9. The intensity after the first polarizer is
a. $0.75 \mathrm{I}_{0}$
b. $0.87 \mathrm{I}_{0}$
c. independent of the angle of the first polarizer.
10. The intensity of the light after the third polarizer is
a. $0.05 \mathrm{I}_{0}$
$I=\left(I _0 / 2\right)(\cos 5 \times \cos 47)^{\wedge} 2$
b. $0.34 \mathrm{I}_{0}$
$=(0.46158 / 2) \quad I_{-} 0=0.2308$ I_0
c. $0.23 \mathrm{I}_{0}$

The next four questions pertain to the following situation:
A circuit consisting of a 10Ω resistor, 10 mH inductor, and 5μ skipped eries is being driven by an $A C$ generator with $V_{\max }=10 \mathrm{~V}$ at $\mathrm{f}=60 \mathrm{~Hz}$.

11. What is the impedance Z of this circuit?
a. 10Ω
b. 50Ω
c. 234Ω
d. 265Ω
e. 527Ω
12. Which graph of the voltages across the capacitor and inductor shown below is most accurate? The voltage across the inductor is shown using a dashed line, and the voltage across the capacitor is shown using a solid line.

1

2

3
a. 1
b. 2
c. 3

The next two questions continue from the previous \boldsymbol{p} skipped

13. What is the resonant frequency of this circuit?
a. $1.4 \times 10^{-3} \mathrm{~Hz}$
b. 60 Hz
c. 320 Hz
d. 712 Hz
e. 956 Hz
14. The resistor will catch on fire if it dissipates more than 0.5 W of average power. What will happen to the resistor in this circuit if the circuit is driven on resonance?
a. The resistor will dissipate less than 0.5 W .
b. The resistor will not dissipate any power.
c. The resistor will dissipate more than 0.5 W and catch on fire.
15. There is a transformer inside the charger for your cell phone that is designed to reduce the voltage supplied by an electrical outlet. The outlets in your house provide $\mathrm{V}_{\mathrm{rms}}=120 \mathrm{~V}$ AC power, while the charger requires $\mathrm{V}_{\max }=5 \mathrm{~V}$ AC power. How many turns should there be on the secondary side of the charger if there are 100 primary turns?

a. 3
b. 6
c. 1700

$$
\text { N_s }=\text { N_p V_s/N_p }=100(3.53 / 120)=\text { about } 3 .
$$

16. Your tibial plateau was fractured during a soccer game, and afterward you are having an MRI scan performed to check for damage to the menisci in your knee. The 1 T magnetic field inside the MRI machine is roughly uniform. You are lying very still when you realize that you forgot to take off your digital watch. There are 0.003 m long wires carrying 0.001 A of current perpendicular to the magnetic field inside your watch. What is the force on one of these wires?
a. $0.3 \times 10^{-6} \mathrm{~N}$
$\mathrm{F}=\mathrm{ILB} \cos ¥ \mathrm{theta}$
b. $3 \times 10^{-5} \mathrm{~N}$
c. $3 \times 10^{-6} \mathrm{~N}$

$$
F=10^{\wedge}\{-3\} \times\left(3 \times 10^{\wedge}\{-3\}\right) \times 1=3 \times 10^{\wedge}\{-6\} N
$$

17. You are measuring the wavelength of the light emitted by a distant star. The star, which is moving away from you at $100,000 \mathrm{~m} / \mathrm{s}$, emits light with a 30.00 cm wavelength. What is the wavelength of the light that you measure?

a. 60.00 cm
b. $1.111 \times 10^{-3} \mathrm{~cm}$
c. 31.00 cm

The star is receding, so the light should be red-
d. 29.99 cm
e. 30.01 cm shifted.

$$
\begin{aligned}
& 30 \times\left(3 \times 10^{\wedge} 8+1 \times 10^{\wedge} 5\right) / 3 \times 10^{\wedge} 8 \\
& =30 \times(1+0.0003333)=30.01 \mathrm{~cm}
\end{aligned}
$$

The next two questions pertain to the following situation:

Two long straight wires are placed parallel to one another 9 cm apart, as shown in the figure. The current in wire 1 is oriented out of the page, and the current in wire 2 is oriented into the page. A point P is located 6 cm to the right of wire 2 .

18. Calculate the net magnetic field in the y direction at the point P.

B due to wire
magnitude $=\left(\not ¥ m u _0 / 2 ¥ \mathrm{pi}\right) / / \mathrm{r}$
direction: right-handed screw

a. $B_{\text {net }}=+1.04 \times 10^{-5} \mathrm{~T}$
b. $B_{\text {net }}=+3.99 \times 10^{-5} \mathrm{~T}$
c. $B_{\text {net }}=+6.72 \times 10^{-5} \mathrm{~T}$
d. $B_{\text {net }}=-5.34 \times 10^{-5} \mathrm{~T}$
e. $\mathrm{B}_{\text {net }}=-2.40 \times 10^{-5} \mathrm{~T}$

Two contributions are in the opposite direction and
I_2 wins, so the B field must be in the -y direction.
$B=\left(¥ m u _0 / 2 ¥ p i\right)(8 / 0.06-2 / 0.15)$
$=2 \times 10^{\wedge}\{-7\} \times 120=240 \times 10^{\wedge}\{-7\} T$
19. The net magnetic field due to the two wires equals zero at a point in the region between the two wires.

```
They are all in the +y direction.
```

a. True
b. False

The next three questions pertain to the following situation:

A particle of mass $5 \times 10^{-8} \mathrm{~kg}$ and charge $\mathrm{q}=+6 \mu \mathrm{C}$ is moving with speed $\mathrm{v}_{\mathrm{i}}=3000 \mathrm{~m} / \mathrm{s}$ when it enters a region with magnetic field $\mathrm{B}_{\text {bottom }}$, which is perpendicular to the plane of the paper. The magnitude of $\mathrm{B}_{\text {bottom }}$ is not known. The particle follows a quarter-circle trajectory and enters another region with a different magnetic field $\mathrm{B}_{\text {top }}$, which is also perpendicular to the plane of the paper. It again follows a quarter-circle trajectory. The magnitude of $B_{\text {top }}$ is also not known. The radius of curvature for the motion in the top region is larger than that in the bottom region $\left(\mathrm{r}_{\text {top }}>\right.$ $\mathrm{r}_{\text {bottom }}$).

20. In which direction does $\mathrm{B}_{\text {top }}$ point?
a. into the page
b. out of the page

$$
\begin{gathered}
m v^{\wedge} 2 / r=q v B \\
->r=m v / q B
\end{gathered}
$$

21. Which is true regarding the relationship between $\mathrm{B}_{\text {top }}$ and $\mathrm{B}_{\text {bottom }}$?
a. $\mathrm{B}_{\text {top }}<\mathrm{B}_{\text {bottom }} \quad$ Since v is constant, $\mathrm{r} ¥ \mathrm{propo} 1 / \mathrm{B}$
b. $\mathrm{B}_{\text {top }}=\mathrm{B}_{\text {bottom }}$
c. $\mathrm{B}_{\text {top }}>\mathrm{B}_{\text {bottom }}$
22. Calculate $\mathrm{B}_{\text {top }}$ if $\mathrm{r}_{\text {top }}=1.35 \mathrm{~m}$.
a. $\mathrm{B}_{\text {top }}=4.9 \mathrm{~T}$
b. $\mathrm{B}_{\text {top }}=18.5 \mathrm{~T}$
c. $B_{\text {top }}=68.4 \mathrm{~T}$

$$
\begin{aligned}
\mathrm{B} & =\mathrm{mv} / \mathrm{rq} \\
& =5 \times 10^{\wedge}\{-8\} \times 3 \times 10^{\wedge} 3 / 1.35 \times\left(6 \times 10^{\wedge}\{-6\}\right) \\
& =1.85 \times 10^{\wedge}\{-8+3+6\}=18.5 \mathrm{~T}
\end{aligned}
$$

d. $\mathrm{B}_{\text {top }}=173 \mathrm{~T}$
e. $\mathrm{B}_{\text {top }}=557 \mathrm{~T}$

The next two questions pertain to the following situation: They are a bit hard problems.
A square loop with sides of unknown length L is carrying a current $I=3 \mathrm{~A}$. The loop is oriented in space at a 35° angle with respect to the horizontal. The current flows into the page at the top of the loop and out of the page at the bottom of the loop, as shown in the picture below. A magnetic field of magnitude $\mathrm{B}=2.8 \mathrm{mT}$ is applied in an unknown direction.

23. In which direction could the magnetic field be oriented for the torque due to the magnetic field to cause the loop to rotate in the counter-clockwise (CCW) direction as viewed in the picture above?
a. $+x$
b. +y
c. +z

> | torque |
| :--- |
| magnitude $=¥ m u \quad B ¥ \sin ¥$ phi |
| direction: $¥ m u$ to B right-handed screw |

```
torque vector coming out of the page
You can use the magnetic force on the top part of the loop
```

24. Presume the magnetic field is now directed downward, in the $-y$ direction. The torque on the loop is measured to be $\tau=6.4 \times 10^{-6} \mathrm{~N} \mathrm{~m}$. Calculate the length L of the sides of the square.
a. $\mathrm{L}=0.381 \mathrm{~m}$
b. $L=0.192 \mathrm{~m}$
c. $\mathrm{L}=0.633 \mathrm{~m}$
mag dipole moment $=L^{\wedge} 2 x I$
d. $\mathrm{L}=0.085 \mathrm{~m}$
torque $=¥ m u$ B sin $¥ p h i$
That is
L^2 = torque/3B sin¥phi
$=6.4 \times 10^{\wedge}\{-6\} /\left(3 \times 2.8 \times 10^{\wedge}\{-3\} \sin 35\right)$
$=1.328 \times 10^{\wedge}\{-3\}=0.0364^{\wedge} 2$

The next two questions pertain to the following situation:

A positively charged particle moving with speed $v=250 \mathrm{~m} / \mathrm{s}$ enters a region of magnetic field of magnitude $\mathrm{B}=300 \mathrm{~T}$ oriented out of the page, as shown in the figure. The magnetic force on the particle is measured to be $15 \times 10^{-9} \mathrm{~N}$.

magnetic force magnitude $F=q v B$ direction: RH rule
25. Calculate the charge Q of the particle.
a. $\mathrm{Q}=1 \times 10^{-13} \mathrm{C}$
$Q=F / v B=15 \times 10^{\wedge}\{-9\} /(250 \times 300)$
b. $\mathrm{Q}=2 \times 10^{-13} \mathrm{C}$
$=0.0002 \times 10^{\wedge}\{-9\}$
c. $\mathrm{Q}=3 \times 10^{-13} \mathrm{C}$
$=2 \times 10^{\wedge}\{-4-9\} C$
d. $\mathrm{Q}=4 \times 10^{-13} \mathrm{C}$
e. $\mathrm{Q}=5 \times 10^{-13} \mathrm{C}$
26. An electric field is now applied in the same region as the magnetic field. In which direction must the electric field be oriented so that the charge travels a straight-line trajectory through the region of the two fields?

a. Up	The magnetic force is downward as in the figure above.
b. down c. into the page d. out of the page e. right	To kill this force, we need an electric force opposing
	this: E field upward.

Check to make sure you bubbled in all your answers. Did you bubble in your name, exam version and network-ID?

