
Homework 2 Solution

1 Limit cycle example

Consider the following nonlinear equation defined on R2 (𝜖 > 0):

𝑥̇ = 𝑦 + 𝜖(𝑥− 𝑥3), (H2.1)

𝑦̇ = −𝑥. (H2.2)

1.1. Can you show that this system exhibits a limit cycle on its phase space spanned by 𝑥

and 𝑦 with the aid of the Poincaré-Bendixson theorem? In this case, first argue that there

is a domain 𝐷 containing a disc centered at the origin such that on 𝜕𝐷 the vectors are

all inwardly oriented (that is, no trajectory can get out from 𝐷). Then, try to apply the

theorem to 𝐷.

Soln.

We must find 𝐷 such that on 𝜕𝐷 all the vectors are inward.

Take a large circle. Note that for |𝑥| > 1 the vector field is inward along the circle, because

𝑥(1 − 𝑥2) < 0 (resp. > 0) for 𝑥 > 1 (resp 𝑥 < −1). For |𝑥| < 1 consider 𝑦 > 0 case. The

slope of the vector (the red arrows in the figures below) is given by

𝑦̇

𝑥̇
=

−𝑥

𝑦 + 𝜖(𝑥− 𝑥3)
(H2.3)

with 𝑦+𝜖(𝑥−𝑥3) > 𝑦. That is, the flow tends to go out from the 𝑥 > 0 (the green arrow is the

boundary tangent, if it is a circle), so we need a steeper declining boundary for 𝑥 > 0 than

a circle (to be transversal to the red arrow). On the other hand for 𝑥 < 0 𝑦 + 𝜖(𝑥− 𝑥3) < 𝑦,

so the vectors tend to be steeper than the tangent to the circle. Again the perturbation

makes vector flow tend to go out, so we must make the boundary of 𝐷 ‘steeper.’ Therefore,

the boundary of 𝐷 in the strip |𝑥| < 1 must have slopes whose absolute values are larger

than that of the circle(s) crossing 𝜕𝐷 (except at some isolated points). To illustrate such a

boundary is not easy, but a sketch (exaggerated) is in Fig. H2.1:
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Figure H2.1: Domain 𝐷 on 𝜕𝐷 the vector field is inward.
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Let us draw the vector field (since I am lazy, I used http://user.mendelu.cz/marik/

EquationExplorer/vectorfield.html). The green arrows denote the unperturbed, and

the red the perturbed field. The difference is extremely exaggerated in Fig. H2.2:

1
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Figure H2.2: Let us look at the vector field. Green arrows denote the field with 𝜖 = 0, Red arrows with
𝜖 > 0 (very exaggerated). The green curve is a circle; The dark blue curve is the curve transversal to the
inward red arrows, a candidate of 𝜕𝐷. Clearly, any circle fails.

At least the relative shape of 𝜕𝐷 can be seen.

In 𝐷 there is only one singularity (0, 0) (center for 𝜖 = 0; for 𝜖 > 0 it is an unstable

focus (see 4.10). Therefore, Poincaré-Bendixson’s theorem tells us that the 𝜔-limit set in

𝐷 must consist of periodic orbits. HOWEVER, we cannot say the orbits are isolated, so we

CANNOT assert the existence of a limit cycle (from the argument above alone) from the

above topological consideration + the PB theorem alone.

1.2. Let us derive the amplitude equation using the renormalization approach and show

that the system exhibits a limit cycle (relying on Chiba’s theory).

Soln.

In the following I did all the calculation as 2D system using matrices, but practically, for

2 variables, the ordinary second-order 1D equation approach is often simpler. In any case,

here I stick to the general approach.

We formally expand 𝑥 and 𝑦 in 𝜖 as, e.g., 𝑥 = 𝑥0 + 𝜖𝑥1 + 𝜖2𝑥2 + · · ·. We have

𝑥̇0 = 𝑦0, (H2.4)

𝑦̇0 = −𝑥0, (H2.5)

𝑥̇1 = 𝑦1 + 𝜖(𝑥0 − 𝑥3
0), (H2.6)

𝑦̇1 = −𝑥1. (H2.7)
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The zeroth order is

𝑥0 = 𝐴𝑒𝑖𝑡 + cc . (H2.8)

The perturbative term may be computed as

𝑓(𝑡) = 𝑥0 − 𝑥3
0 = 𝐴𝑒𝑖𝑡 − 3|𝐴|2𝐴𝑒𝑖𝑡 − 𝐴3𝑒3𝑖𝑡 + cc . (H2.9)

Notice that, generally,

𝑧̇ = 𝐴𝑧 + 𝑓(𝑡) (H2.10)

with zero initial condition1 reads

𝑧(𝑡) =

∫︁ 𝑡

0

𝑑𝑠 𝑒𝐴(𝑡−𝑠)𝑓(𝑠). (H2.11)

Since (︂
1/
√

2 𝑖/
√

2

𝑖/
√

2 1/
√

2

)︂(︂
𝑖 0
0 −𝑖

)︂(︂
1/
√

2 −𝑖/
√

2

−𝑖/
√

2 1/
√

2

)︂
=

(︂
0 1
−1 0

)︂
, (H2.12)

we have

exp

[︂
𝑡

(︂
0 1
−1 0

)︂]︂
=

(︂
1/
√

2 𝑖/
√

2

𝑖/
√

2 1/
√

2

)︂(︂
𝑒𝑖𝑡 0
0 𝑒−𝑖𝑡

)︂(︂
1/
√

2 −𝑖/
√

2

−𝑖/
√

2 1/
√

2

)︂
(H2.13)

=
1

2

(︂
𝑒𝑖𝑡 + 𝑒−𝑖𝑡 −𝑖(𝑒𝑖𝑡 − 𝑒−𝑖𝑡)

𝑖(𝑒𝑖𝑡 − 𝑒−𝑖𝑡) 𝑒𝑖𝑡 + 𝑒−𝑖𝑡

)︂
. (H2.14)

Therefore, 𝑥1(𝑡) reads

𝑥1(𝑡) =
1

2

∫︁ 𝑡

0

𝑑𝑠 [𝑒𝑖(𝑡−𝑠 + 𝑒−𝑖(𝑡−𝑠)]𝑓(𝑠). (H2.15)

To perform our RG to get the amplitude equation, we have only to compute the secular

term, so we need

𝑥1(𝑡) =
1

2

∫︁ 𝑡

0

𝑑𝑠 𝑒𝑖(𝑡−𝑠)
(︀
𝐴− 3|𝐴|2𝐴

)︀
𝑒𝑖𝑠 + cc + regular terms (H2.16)

=
1

2
(𝐴− 3|𝐴|2𝐴)𝑡𝑒𝑖𝑡 + cc + regular terms . (H2.17)

Thus

𝑥(𝑡) = 𝐴𝑒𝑖𝑡 +
𝜖

2
(1 − 3|𝐴|2)𝐴𝑡𝑒𝑖𝑡 + cc + · · · . (H2.18)

Renormalization 𝑡 → 𝑡− 𝜏 with 𝐴 → 𝐴(𝜏) gives

𝑥(𝑡) = 𝐴(𝜏)𝑒𝑖𝑡 +
𝜖

2
𝐴(1 − 3|𝐴|2)(𝑡− 𝜏)𝑒𝑖𝑡 + cc + · · · . (H2.19)

1We need only this case, because the deviation in the intial condition to 𝑂[𝜖] may be absorbed into the
benign modification of 𝐴.
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The RG equation 𝑑𝑥(𝑡)/𝑑𝜏 = 0 reads (after changing 𝜏 → 𝑡)

𝑑𝐴

𝑑𝑡
= 𝜖

1

2
𝐴(1 − 3|𝐴|2). (H2.20)

Since there is obviously a rotation in the (𝑥, 𝑦) plane, this equation governs the size of the

isolated periodic orbit = limit cycle. This (with the help of Chiba’s theorem) means that

the original system has a limit cycle of radius ∼ 1/
√

3.

As you can read in Chiba’s papers he automated the calculation so that you can use

Matlab, Mathematica, etc. to do all the computations.

2. How the Lax pair was born:

Taste (while minimizing pain) how the Princeton group (Gardner-Greens-Kruskal-Miura)

proceeded:

Let 𝑢 be a solution to the KdV equation (with − in front of the nonlinear term)2:

𝜕𝑢

𝜕𝑡
− 6𝑢

𝜕𝑢

𝜕𝑥
+

𝜕3𝑢

𝜕𝑥3
= 0. (H2.21)

Consider the Schrödinger equation (with 𝐿 = −𝜕2
𝑥 + 𝑢)

𝐿𝜙 = 𝜆𝜙. (H2.22)

From this we get

𝑢 = 𝜆 +
1

𝜙

𝜕2𝜙

𝜕𝑥2
. (H2.23)

2.1 Put this into (H2.21), assuming 𝜆 can depend on time and 𝜙 on time and space, and

check that the following equation holds (NB: 𝑄 is not an operator):

𝜆𝑡𝜙
2 +

𝜕

𝜕𝑥
[𝜙𝑄𝑥 − 𝜙𝑥𝑄] = 0, (H2.24)

where

𝑄 = 𝜙𝑡 −𝐵𝜙, 𝐵 = −4
𝜕3

𝜕𝑥3
+ 6𝑢

𝜕

𝜕𝑥
+ 3𝑢𝑥. (H2.25)

To save your time I allow you to use the following Lax relation:3

𝐿𝑡𝜙 = [𝐵,𝐿]𝜙 (H2.26)

in place of the KdV (H2.21). Here, 𝐿𝑡 in our case is 𝑢𝑡 (that is, a multiplication of 𝑢𝑡:

𝐿𝑡𝑔 = 𝑢𝑡𝑔 for a test function 𝑔). You have only to perform operator juggling without any

explicit calculation.

Soln.

2In order to make the accompanying Schrödinger equation to have bound states
3Needless to say, originally they honestly used the KdV; is there any cleaver way to get (H2.24) without

using (H2.26)?
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Remark. The interpretation of 𝐿𝑡 is simply (𝐿(𝑡+ 𝑑𝑡)−𝐿(𝑡))/𝑑𝑡 = 𝜕𝑢/𝜕𝑡. 𝜆 is later shown

to be a constant, but in this calculation we cannot show that, so 𝜆 does not commute with
𝜕
𝜕𝑡

. Also 𝐿 (𝑢) is time-dependent, so[︂
𝐿,

𝜕

𝜕𝑡

]︂
𝑔 = 𝐿

𝜕

𝜕𝑡
𝑔 − 𝜕

𝜕𝑡
𝐿𝑔 = 𝐿

𝜕

𝜕𝑡
𝑔 − 𝐿𝑡𝑔 − 𝐿

𝜕

𝜕𝑡
𝑔 = −𝐿𝑡𝑔. (H2.27)

That is, [𝐿, 𝜕
𝜕𝑡

] = −𝐿𝑡.

Note that
𝜕

𝜕𝑥
[𝜙𝑄𝑥 − 𝜙𝑥𝑄] = 𝜙𝑄𝑥𝑥 − 𝜙𝑥𝑥𝑄. (H2.28)

We may write 𝜕𝑥𝑥 = 𝑢− 𝐿, so (In the following formula 𝐿 does not act beyond “ ] ”)

𝜙(𝑢−𝐿)(𝜕𝑡 −𝐵)𝜙− [(𝑢−𝐿)𝜙](𝜕𝑡 −𝐵)𝜙 = 𝜙(−𝐿)(𝜕𝑡 −𝐵)𝜙− [(−𝐿)𝜙](𝜕𝑡 −𝐵)𝜙, (H2.29)

because 𝑢 is simply a multiplication operator. Since 𝜙 satisfies (H2.22), we have

𝜙(−𝐿)(𝜕𝑡 −𝐵)𝜙− [(−𝐿)𝜙](𝜕𝑡 −𝐵)𝜙 = 𝜙(−𝐿)(𝜕𝑡 −𝐵)𝜙− [−𝜆𝜙](𝜕𝑡 −𝐵)𝜙. (H2.30)

Next we use

𝜆𝜕𝑡 = 𝜕𝑡𝜆− 𝜆𝑡 (H2.31)

or 𝜆𝜕𝑡𝑔 = 𝜕𝑡(𝜆𝑔) − 𝜆𝑡𝑔 to rewrite the above relation as

𝜙(−𝐿)(𝜕𝑡 −𝐵)𝜙 + 𝜙(𝜕𝑡𝜆− 𝜆𝑡 −𝐵𝜆)𝜙 = 𝜙(−𝐿)(𝜕𝑡 −𝐵)𝜙− 𝜙(𝜕𝑡 −𝐵)(−𝐿)𝜙− 𝜙𝜆𝑡𝜙

(H2.32)

= 𝜙[(−𝐿)(𝜕𝑡 −𝐵) − (𝜕𝑡 −𝐵)(−𝐿)]𝜙− 𝜙𝜆𝑡𝜙.

(H2.33)

The rest is straightforward (See te remark above)

= −𝜙([𝐿, 𝜕𝑡] − [𝐿,𝐵])𝜙− 𝜙𝜆𝑡𝜙 (H2.34)

= −𝜙(−𝐿𝑡 − [𝐿,𝐵])𝜙− 𝜙𝜆𝑡𝜙. (H2.35)

Thus, (H2.26) (= the KdV equation) implies (H2.24). Notice that if we do not know (H2.26),

we get

𝜆𝑡𝜙
2 +

𝜕

𝜕𝑥
[𝜙𝑄𝑥 − 𝜙𝑥𝑄] = 𝜙(𝐿𝑡 − [𝐵,𝐿])𝜙. (H2.36)

2.2. We already know from the Lax-pair argument that 𝜆 is time-independent. Here, let

us forget about it. Assuming that 𝜙 is smooth and localized in space, show that 𝜆 cannot

depend on time: 𝜆𝑡 = 0.

Soln.
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Since we may assume 𝜙 is 𝐿2, integrating (H2.24) over (−∞,∞) and noting 𝜙 and its

derivative must vanish far from the origin, we get

𝜆𝑡

∫︁
𝑑𝑥𝜙2 = 0. (H2.37)

Thus, 𝜆 must be time-independent.

2.3 Since 𝜆𝑡 = 0 (H2.24) holds if 𝑄 = 0, we may set

𝜙𝑡 −𝐵𝜙 = 0. (H2.38)

Thus, we have three equations

𝐿𝜙 = 𝜆𝜙, 𝜙𝑡 = 𝐵𝜙, 𝜆𝑡 = 0. (H2.39)

From these, Lax realized his formalism. Can you derive the Lax relation from these three?

Soln.

Differentiating the first equation, we get

𝐿𝑡𝜙 + 𝐿𝜙𝑡 = 𝜆𝜙𝑡. (H2.40)

Thus, we get

𝐿𝑡𝜙 + 𝐿𝐵𝜙 = 𝜆𝐵𝜙. (H2.41)

Since 𝜆 is a number

𝐿𝑡𝜙 + 𝐿𝐵𝜙 = 𝜆𝐵𝜙 = 𝐵𝜆𝜙 = 𝐵𝐿𝜙 (H2.42)

or

𝐿𝑡𝜙 = [𝐵,𝐿]𝜙. (H2.43)

Notice that this is true only if 𝜙 is an eigenfunction of 𝐿. Then, why can we conclude

𝐿𝑡 = [𝐵,𝐿] and use as if it is an identity? A practical answer is: Recall that we use the

relation to demonstrate the invariance of 𝜆, so actually, we are safe.

A much more respectable answer is that the totality of eigenfunctions can be a basis of an

𝐿2 space, so actually, we may4 conclude that the operator identity is correct on the Hilbert

space on which 𝐿 is defined.

3 Closed orbits demand 1/𝑟 potential5

Consider a point particle (planet) in a spherically symmetric potential 𝑉 (𝑟). For a given

energy 𝐸 and angular momentum 𝐿, the equation of motion reads in the polar coordinates

𝑑𝑟

𝑑𝑡
= ±

√︂
2

𝑚
[𝐸 − 𝑉eff(𝑟)],

𝑑𝜃

𝑑𝑡
=

𝐿

𝑚𝑟2
, (H2.44)

4Well, of course, we differentiate 𝜙 so we must be a bit more careful; the second derivatives are also 𝐿2

in our case. That is, honestly, we need a Sobolev space 𝐻2 = 𝑊 2,2.
5We will ignore the spherically symmetric harmonic potentials.
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where

𝑉eff(𝑟) =
𝐿2

2𝑚𝑟2
+ 𝑉 (𝑟). (H2.45)

3.1 Introducing 𝑢 = 1/𝑟, show that the above equation is equivalent to

1

2
𝑚*

(︂
𝑑𝑢

𝑑𝜃

)︂2

+ 𝑉eff(𝑢) = 𝐸, (H2.46)

where

𝑚* =
𝐿2

𝑚
, 𝑉eff =

1

2
𝑚*𝑢2 + 𝑉 (1/𝑢). (H2.47)

Soln.

Combining two equations in (H2.44), we get

𝑑𝑟

𝑑𝜃
= ±𝑚𝑟2

𝐿

√︂
2

𝑚
[𝐸 − 𝑉eff(𝑟)]. (H2.48)

𝑑𝑢 = −𝑑𝑟/𝑟2 gives

𝑑𝑢

𝑑𝜃
= ∓𝑚

𝐿

√︂
2

𝑚
[𝐸 − 𝑉eff(𝑟)]. (H2.49)

Squaring both sides, we get (H2.46).

We consider a perturbation of a circular motion with constant radius, or equivalently,

𝑢 = 𝑢0, which is determined by 𝑉 ′
eff(𝑢0) = 0. The perturbed orbit may be written as

𝑢(𝜃) = 𝑢0 + 𝜌(𝜃). (H2.50)

The equation of motion around 𝑢 = 𝑢0 must be harmonic for small 𝜌, since

1

2
𝑚*

(︂
𝑑𝜌

𝑑𝜃

)︂2

+
1

2
𝑉 ′′
eff(𝑢0)𝜌

2 = 𝐸 ′ = 𝐸 − 𝑉eff(𝑢0). (H2.51)

Choosing the origin of the angle variable to be the ‘farthest from the sun,’ the perturbed

orbit reads

𝑢(𝜃) = 𝑢0 + 𝐴 cos(Ω𝜃). (H2.52)

3.2 Show that

Ω =

√︃
3𝑉 ′(𝑟0) + 𝑟0𝑉 ′′(𝑟0)

𝑉 ′(𝑟0)
. (H2.53)

(Using 𝑉 ′
eff(𝑢0) = 0, express 𝑚* in terms of 𝑉 ′).

Soln.

From (H2.51) we get

Ω =
√︁
𝑉 ′′
eff(𝑢0)/𝑚*. (H2.54)
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(H2.45) implies

𝑉eff(𝑢) =
1

2
𝑚*𝑢2 + 𝑉 (1/𝑢), (H2.55)

so

𝑉 ′
eff(𝑢) = 𝑚*𝑢− (1/𝑢2)𝑉 ′(1/𝑢) ⇒ 𝑉 ′′

eff(𝑢) = 𝑚* + (2/𝑢3)𝑉 ′(1/𝑢) + (1/𝑢4)𝑉 ′′(1/𝑢). (H2.56)

𝑉 ′
eff(𝑢0) = 0 implies 𝑚* = (1/𝑢3

0)𝑉
′(1/𝑢0), so

𝑉 ′′
eff(𝑢0) = (3/𝑢3

0)𝑉
′(1/𝑢0) + (1/𝑢4

0)𝑉
′′(1/𝑢0). (H2.57)

Introducing this and 𝑚* in (H2.54), we get

Ω2 =
(3/𝑢3

0)𝑉
′(1/𝑢0) + (1/𝑢4

0)𝑉
′′(1/𝑢0)

(1/𝑢3
0)𝑉

′(1/𝑢0)
=

3𝑉 ′(1/𝑢0) + (1/𝑢0)𝑉
′′(1/𝑢0)

𝑉 ′(1/𝑢0)
, (H2.58)

which is (H2.53).

3.3 At the angle 𝜃𝐴, where the particle is the closest to ‘the sun,’ 𝑢 = 𝑢0 −𝐴, so 𝜃𝐴 = 𝜋/Ω.

If this angle is an irrational multiple of 𝜋, we cannot expect a closed orbit. Thus, Ω must be

rational. Since Ω is a continuous function of 𝐸 (and 𝐿), Ω can depend on neither of them,

so it is a constant (i.e., a continuous function taking only rational values must be constant).

Let 𝑓(𝑟) = 𝑉 ′(𝑟). Then, Ω = 𝑐 (constant) implies a differential equation for 𝑓 . Solving the

differential equation, show that

𝑓(𝑟) = 𝐶𝑟𝑐
2−3, (H2.59)

where 𝐶 is an integration constant.

Soln.

The resultant differential equation reads

Ω2 =
3𝑓(𝑟0) + 𝑟0𝑓

′(𝑟0)

𝑓(𝑟0)
= 𝑐2 ⇒ 𝑟0

𝑑

𝑑𝑟0
log 𝑓(𝑟0) = 𝑐2 − 3. (H2.60)

Solving this we immediately obtain the desired 𝑓(𝑟0).

Thus, setting 𝛼 = 𝑐2 − 2 (𝛼 > −2, so now Ω =
√
𝛼 + 2), we can write

𝑉 (𝑟) =
𝐶

𝛼
𝑟𝛼. (H2.61)

Using (H2.61), (H2.46) reads

1

2
𝑚*

(︂
𝑑𝑢

𝑑𝜃

)︂2

+
1

2
𝑚*𝑢2 +

𝐶

𝛼
𝑢−𝛼 = 𝐸. (H2.62)
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Let us consider only the case 𝛼 < 0.

3.4 For bounded orbits 𝐸 < 0. Now consider the 𝐸 → 0 limit. Set 𝑢2+𝛼 = 𝑣2 and convert

1

2
𝑚*

(︂
𝑑𝑢

𝑑𝜃

)︂2

+
1

2
𝑚*𝑢2 +

𝐶

𝛼
𝑢−𝛼 = 0 (H2.63)

into
1

2
𝑚*

(︂
2

2 + 𝛼

)︂2(︂
𝑑𝑣

𝑑𝜃

)︂2

+
1

2
𝑚*𝑣2 = −𝐶

𝛼
> 0. (H2.64)

This is a harmonic oscillator Hamiltonian, so (ignoring the arbitrary phase)

𝑣 = 𝐴 cos Ω𝜃 (H2.65)

with Ω = (2 +𝛼)/2 is the 𝑟-𝜃 relation in the 𝐸 → 0 limit. In our case maximum 𝑟 is infinite,

implying 𝑣 = 0 (i.e., Ω𝜃 = 𝜋/2). Max 𝑣 corresponds to minimum 𝑟 (i.e., 𝜃 = 0). Thus, we

see Ω𝜃𝐴 = 𝜋/2. This must be consistent with the general Ω above. Show that 𝛼 = −1 is the

only solution (this is a trivial question).

Soln.

Since 𝑢 = 𝑣2/(𝛼+2), 𝑑𝑢/𝑑𝜃 = (2/(𝛼 + 2))𝑣−𝛼/(𝛼+2)𝑑𝑣/𝑑𝜃, so (H2.63) reads

1

2
𝑚*

(︂
2

2 + 𝛼

)︂2

𝑣−2𝛼/(𝛼+2)

(︂
𝑑𝑣

𝑑𝜃

)︂2

+
1

2
𝑚*𝑣4/(2+𝛼) +

𝐶

𝛼
𝑣−2𝛼/(2+𝛼) = 0, (H2.66)

that is,
1

2
𝑚*

(︂
2

2 + 𝛼

)︂2(︂
𝑑𝑣

𝑑𝜃

)︂2

+
1

2
𝑚*𝑣2 +

𝐶

𝛼
= 0. (H2.67)

The angle between max and min distances is Ω𝜃𝐴 = 𝜋/2 or 𝜃𝐴 = 𝜋/(2 + 𝛼). This is the

limit 𝐸 → 0− case. That is, in this limit the relation between 𝛼 and 𝜃𝐴 is given by this

formula. However, in the general case this relation is, as noted in 3.3 𝜃𝐴 = 𝜋/
√

2 + 𝛼. For

these to be compatible
𝜋

2 + 𝛼
=

𝜋√
2 + 𝛼

. (H2.68)

Thus, 𝛼 = −1.

The original paper is: S. A. Chin, “A truly elementary proof of Bertrand’s theorem,”

arXiv:1411.7057v1 [physics.class-ph] 25 Nov 2014.
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