
Homework 2

Due on xxx (negotiable)1 2018 to minl2@illinois.edu.

If you use pdf (scanned PDF is OK if the file size is not huge), you can submit your draft

to me for comments (I will try to respond fairly quickly).

HW is treated as a learning device, so do not hesitate to ask me any question, and also

you may discuss with each other (after your individual efforts). I expect all the participants

will get 100%.

1. Limit cycle example

Consider the following nonlinear equation defined on R2 (𝜖 > 0):

𝑥̇ = 𝑦 + 𝜖(𝑥− 𝑥3), (H2.1)

𝑦̇ = −𝑥. (H2.2)

1.1 Can you show that this system exhibits a limit cycle on its phase space spanned by 𝑥

and 𝑦 with the aid of the Poincaré-Bendixson theorem? In this case, first argue that there

is a domain 𝐷 containing a disc centered at the origin such that on 𝜕𝐷 the vectors are

all inwardly oriented (that is, no trajectory can get out from 𝐷). Then, try to apply the

theorem to 𝐷.

1.2 Derive the amplitude equation using the renormalization approach and show that the

system exhibits a limit cycle explicitly (relying on Chiba’s theory).

2. How the Lax pair was born:

Taste (while minimizing pain) how the Princeton group (Gardner-Greens-Kuskal-Miura) pro-

ceeded:

Let 𝑢 be a solution to the KdV equation (with − in front of the nonlinear term)2:

𝜕𝑢

𝜕𝑡
− 6𝑢

𝜕𝑢

𝜕𝑥
+

𝜕3𝑢

𝜕𝑥3
= 0. (H2.3)

Consider the Schrödinger equation (with 𝐿 = −𝜕2
𝑥 + 𝑢)

𝐿𝜙 = 𝜆𝜙. (H2.4)

From this we get

𝑢 = 𝜆 +
1

𝜙

𝜕2𝜙

𝜕𝑥2
. (H2.5)

2.1 Put this into (H2.3), assuming 𝜆 can depend on time and 𝜙 on time and space, and

check that the following equation holds (NB: 𝑄 is not an operator):

𝜆𝑡𝜙
2 +

𝜕

𝜕𝑥
[𝜙𝑄𝑥 − 𝜙𝑥𝑄] = 0, (H2.6)

1You have at least two weeks
2In order to make the accompanying Schrödinger equation to have bound states
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where

𝑄 = 𝜙𝑡 −𝐵𝜙, 𝐵 = −4
𝜕3

𝜕𝑥3
+ 6𝑢

𝜕

𝜕𝑥
+ 3𝑢𝑥. (H2.7)

To save your time I allow you to use the following Lax relation:3

𝐿𝑡𝜙 = [𝐵,𝐿]𝜙 (H2.8)

in place of the KdV (H2.3). Here, 𝐿𝑡 in our case is 𝑢𝑡 (that is, a multiplication of 𝑢𝑡:

𝐿𝑡𝑔 = 𝑢𝑡𝑔 for a test function 𝑔). You have only to perform operator juggling without any

explicit calculation.

2.2 We already know from the Lax-pair argument that 𝜆 is time-independent. Here, let

us forget about it. Assuming that 𝜙 is smooth and localized in space, show that 𝜆 cannot

depend on time: 𝜆𝑡 = 0.

2.3 Since 𝜆𝑡 = 0 (H2.6) holds if 𝑄 = 0, we may set

𝜙𝑡 −𝐵𝜙 = 0. (H2.9)

Thus, we have three equations

𝐿𝜙 = 𝜆𝜙, 𝜙𝑡 = 𝐵𝜙, 𝜆𝑡 = 0. (H2.10)

From these, Lax realized his formalism. Can you derive the Lax relation from these three

equations?

3. Closed orbits demand 1/𝑟 potential4

Consider a point particle (planet) in a spherically symmetric potential 𝑉 (𝑟). For a given

energy 𝐸 and angular momentum 𝐿, the equation of motion reads in the polar coordinates

𝑑𝑟

𝑑𝑡
= ±

√︂
2

𝑚
[𝐸 − 𝑉eff(𝑟)],

𝑑𝜃

𝑑𝑡
=

𝐿

𝑚𝑟2
, (H2.11)

where

𝑉eff(𝑟) =
𝐿2

2𝑚𝑟2
+ 𝑉 (𝑟). (H2.12)

3.1 Introducing 𝑢 = 1/𝑟, show that the above equation is equivalent to

1

2
𝑚*

(︂
𝑑𝑢

𝑑𝜃

)︂2

+ 𝑉eff(𝑢) = 𝐸, (H2.13)

where

𝑚* =
𝐿2

𝑚
, 𝑉eff =

1

2
𝑚*𝑢2 + 𝑉 (1/𝑢). (H2.14)

3Needless to say, originally they honestly used the KdV; is there any cleaver way to get (H2.6) without
using (H2.8)?

4We will ignore the spherically symmetric harmonic potentials.

2



We consider a perturbation of a circular motion with constant radius, or equivalently,

𝑢 = 𝑢0, which is determined by 𝑉 ′
eff(𝑢0) = 0. The perturbed orbit may be written as

𝑢(𝜃) = 𝑢0 + 𝜌(𝜃). (H2.15)

The equation of motion around 𝑢 = 𝑢0 must be harmonic for small 𝜌, since

1

2
𝑚*

(︂
𝑑𝜌

𝑑𝜃

)︂2

+
1

2
𝑉 ′′
eff(𝑢0)𝜌

2 = 𝐸 ′ = 𝐸 − 𝑉eff(𝑢0). (H2.16)

3.2 Choosing the origin of the angle variable to be the ‘farthest from the sun’ the perturbed

orbit reads

𝑢(𝜃) = 𝑢0 + 𝐴 cos(Ω𝜃). (H2.17)

Show that

Ω =

√︃
3𝑉 ′(𝑟0) + 𝑟0𝑉 ′′(𝑟0)

𝑉 ′(𝑟0)
. (H2.18)

(Using 𝑉 ′
eff(𝑢0) = 0, express 𝑚* in terms of 𝑉 ′).

3.3 At the angle 𝜃𝐴, where the particle is the closest to ‘the sun,’ 𝑢 = 𝑢0 −𝐴, so 𝜃𝐴 = 𝜋/Ω.

If this angle is an irrational multiple of 𝜋, we cannot expect a closed orbit. Thus, Ω must

be rational. Since Ω is a continuous function of 𝐸 (and 𝐿), Ω can depend neither of them,

so it is a constant (i.e., a continuous function taking only rational values must be constant).

Let 𝑓(𝑟) = 𝑉 ′(𝑟). Then, Ω = 𝑐 (constant) implies a differential equation for 𝑓 . Solving the

differential equation, show that

𝑓(𝑟) = 𝐶𝑟𝑐
2−3, (H2.19)

where 𝐶 is an integration constant.

3.4 For bounded orbits 𝐸 < 0. Now consider the 𝐸 → 0 limit. Set 𝑢2+𝛼 = 𝑣2 and convert

1

2
𝑚*

(︂
𝑑𝑢

𝑑𝜃

)︂2

+
1

2
𝑚*𝑢2 +

𝐶

𝛼
𝑢−𝛼 = 0 (H2.20)

(this is (H2.13) with 𝐸 = 0) into

1

2
𝑚*

(︂
2

2 + 𝛼

)︂2(︂
𝑑𝑣

𝑑𝜃

)︂2

+
1

2
𝑚*𝑣2 = −𝐶

𝛼
> 0. (H2.21)

This is a harmonic oscillator Hamiltonian, so (ignoring the arbitrary phase)

𝑣 = 𝐴 cos Ω𝜃 (H2.22)

with Ω = (2 +𝛼)/2 is the 𝑟-𝜃 relation in the 𝐸 → 0 limit. In our case maximum 𝑟 is infinite,

implying 𝑣 = 0 (i.e., Ω𝜃 = 𝜋/2). Max 𝑣 corresponds to minimum 𝑟 (i.e., 𝜃 = 0). Thus, we

see Ω𝜃𝐴 = 𝜋/2. This must be consistent with the general Ω above. Show that 𝛼 = −1 is the
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only solution (this is a trivial question).

4. Actions for the Kepler problem

(H2.11) allows us to introduce the action variables as

𝐼𝜃 =
1

2𝜋

∫︁ 2𝜋

0

𝑚𝑟2𝜃𝑑𝜃, (H2.23)

𝐼𝑟 =
1

𝜋

∫︁ 𝑟max

𝑟min

√︀
2𝑚[𝐸 − 𝑉eff(𝑟)]𝑑𝑟. (H2.24)

Show that 𝐸 is a function of 𝐼𝑟 + 𝐼𝜃, if 𝑉 ∝ 𝑟𝛼 with 𝛼 = 2 or −1 (For the harmonic case

𝛼 = 2, 𝐸 = 𝜔(𝐼𝜃 + 𝐼𝑟) is well-known, so you need not do anything).

You must have realized some possible relation with 3. If you can say something general

about 𝐼𝑟 for general 𝑉 ∝ 𝑟𝛼, I believe you can publish it.
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