Review

Macroscopic system: (from pure mechanics point of view)
 Extensive/Intensive dichotomy
 Irreversibility
 time-reversal asymmetry of the world is broken due to ‘openness.’
 time’s arrow problem is a pseudo problem.

∃ **Fundamental difference** between Mechanics & Thermodynamics
Phenomenology

Thermodynamics = (energetic phenomenology of macroequilibrium states

Macrosopic phenomenology of equilibrium systems.

∗ Choose right states
∗ Choose right variables

Equilibrium states
States where Thermodynamics holds
Lecture 8 Critical Review of Thermodynamics

Let us answer all the elementary questions.

Thermodynamic coordinates 12.4.

spanning **Thermodynamic Space**

No thermodynamics needed

Unique description of equilibrium states

lucky or logic circular? chopping head parable

State functions/quantities 12.7

functions with domains in the thermodynamic space
memoryless/historyless,

making thermodynamics very useful

∃ other reasons, as well.
Fourth Law 11.6: extensive/intensive dichotomy
 Partitioning/rejoining invariance 12.11

Quasistatic process 12.6
 Why does slowing down often work?
 Do not forget hot coffee in a thermos.

The so-called zeroth law 12.13 is probably meaningless.

Axiomatic formulation??
 Note: Löwenheim-Skolem theorem
The First law = energy conservation. Really?

\[\Delta E = W + Q \]

Never write \(\Delta W \) or \(\Delta Q \)

\[d'W = -PdV + xdX \]

ONLY under quasistatic conditions.

Mayer, Joule, Helmholtz

‘conservation of mechanical energy.’ [explained as]
The second law: prehistory

<table>
<thead>
<tr>
<th>Year</th>
<th>Inventor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1712</td>
<td>Newcomen</td>
</tr>
<tr>
<td>1760-70</td>
<td>Watt</td>
</tr>
<tr>
<td>1804</td>
<td>Puffing Devil</td>
</tr>
<tr>
<td>1807</td>
<td>Fulton</td>
</tr>
<tr>
<td>1829</td>
<td>Stevenson</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnot’s theorem 1824</td>
</tr>
<tr>
<td>Mayer’s work equivalence 1842</td>
</tr>
<tr>
<td>Helmholtz: First law 1847</td>
</tr>
<tr>
<td>Clausius Second law 1850</td>
</tr>
</tbody>
</table>

Joule: denied Carnot
Thomson: accepted I and Carnot + X needed
Clausius: I and Carnot enough
The Second Law

Planck’s principle:

adiabatic cycle cannot decrease energy.

What is adiabaticity?

\(\neq \) QM adiabaticity

\exists \text{ Entropy (can be made differentiable)}

foliating the thermodynamic space, extensive, \(dS \propto d'Q \).

\[d'Q = dS/T \]

This \(T \) is \(T \) on \(PV = Nk_B T \).

Entropy principle: to reduce \(S \) you must cool...

Gibbs’ relation

\[dE = TdS - PdV + BdM + xdX \]

Only for quasistatic processes
Principle of increasing entropy (for spontaneous...)

Entropy maximization principle

Adiabatic spontaneous change 14.2 \(\delta S \geq 0. \)

\[\text{eq} \Rightarrow \text{no spontaneous change} \]
\[\Rightarrow \delta S \geq 0 \text{ never happens} \]

\[S_{\text{max}} \Rightarrow \text{eq} \]

Entropy is concave.14.3

\[S((1-\alpha)E_1+\alpha E_2, \cdots) \geq (1-\alpha)S(E_1, \cdots)+\alpha S(E_2, \cdots) \]

Internal energy is convex 14.5

Fluctuations substantiate variational principles.
Clausius’ inequality 14.7

\[\Delta S + \Delta S_{\text{bath}} \geq 0 \Rightarrow \Delta S \geq \frac{\Delta Q}{T}. \]

Entropy exercise 15.x