Assume that the binary interaction potential decays spatially faster than \(r^{-d} \) in \(\mathfrak{d} \)-space: let us assume \(r^{-(d+\epsilon)} \) for some \(\epsilon > 0 \). Let us divide the \(\mathfrak{d} \)-cube of edge \(L \) into two halves and estimate the interaction energy \(\Delta E \) between them (Fig. 0.0.1).

![Diagram of a \(\mathfrak{d} \)-cube divided into two halves](image)

Figure 0.0.1: A \(\mathfrak{d} \)-cube of edge \(L \) is smoothly divided into two halves.

Let us divide the volume into slices of thickness \(dr \), and collect the interaction energies between two slices located at \(r_1 \) and \(r_2 \) along one edge. Let \(\mathbf{x} \) and \(\mathbf{y} \) be the \(\mathfrak{d} - 1 \)-dimensional coordinates in each slice. We also assume that the system is uniform with the number density \(n \). We have

\[
\Delta E = n^2 \int_{L^{d-1}} dx \int_{L^{d-1}} dy \int_{0}^{2L} dr_1 \int_{L+\delta}^{2L} dr_2 \left(\frac{1}{|x - y|^2 + (r_1 - r_2)^2(\delta + \epsilon)/2} \right). \tag{0.0.1}
\]

Here, the contribution from the two slices of thickness \(\delta \) around the center cutting plane is separated. Its contribution must be proportional to \(L^{d-1} \), so we may ignore it relative to the total potential energy of the bulk (\(\propto L^d \)).

\[
\Delta E = \frac{n^2}{2} \int_{L^{d-1}} dx \int_{L^{d-1}} dy \int_{L+\delta}^{L} dr_1 \int_{4\delta^2}^{L^2} dz \left(\frac{1}{|x - y|^2 + z(\delta + \epsilon)/2} \right). \tag{0.0.2}
\]

\[
\Delta E = \frac{n^2}{d - 2 + \epsilon} \int_{L^{d-1}} dx \int_{L^{d-1}} dy \left[\frac{1}{(|x - y|^2 + 4\delta^2)(\delta - 2 + \epsilon)/2} - \frac{1}{(|x - y|^2 + L^2)(\delta - 2 + \epsilon)/2} \right]. \tag{0.0.3}
\]

The second term does not exceed \(L^{2d - 2 - (d - 2 - \epsilon)} = L^{d - \epsilon} \). The first term term must be smaller than the case assuming that \(x \) can become \(4L \), so

\[
\int_{L^{d-1}} dx \int_{L^{d-1}} dy \frac{1}{(|x - y|^2 + 4\delta^2)(\delta - 2 + \epsilon)/2} \leq \frac{L^{d-1} S_{d-2}}{L^{d-1} S_{d-2} L^{d-1} S_{d-2}} \int_{0}^{4L} dr \frac{r^{\delta - 2}}{(r^2 + 4\delta^2)(\delta - 2 + \epsilon)/2} \tag{0.0.4}
\]

\[
= L^{d-1} S_{d-2} \int_{0}^{16L^2} dz \frac{z^{(\delta - 3)/2}}{(z + 4\delta^2)(\delta - 2 + \epsilon)/2}. \tag{0.0.5}
\]

\[
\int_{L^{d-1}} dx \int_{L^{d-1}} dy \frac{1}{(|x - y|^2 + z(\delta + \epsilon)/2)} \leq L^{d-1} S_{d-2} \int_{0}^{4L} dr \frac{r^{\delta - 2}}{(r^2 + 4\delta^2)(\delta - 2 + \epsilon)/2} \tag{0.0.6}
\]

\[\text{1}\text{The molecular potential is not necessarily binary, so, precisely speaking, } U \text{ cannot be written as a sum of binary interactions. Here, for simplicity, we assume that we can majorize } |U| \text{ by a sum of binary interactions of the form above.}\]
Here, $S_{\delta-2}$ is the volume of the $\delta - 2$-unit sphere. This integral may be estimated in terms of its primitive function; its value for 0 (the lower bound of the integral) is independent of L, so its contribution to ΔE is bounded by $L^{\delta-1}$. The contribution from the primitive function at the upper bound $16L^2$ is bounded by $L^{\delta-1} \times (L^2)^{(\delta-3)/2-(\delta-2+\epsilon)/2+1} = L^{\delta-\epsilon}$. Thus, ΔE may be ignored relative to L^δ in the large volume limit.\footnote{Within the macroscopic thermodynamic framework, we ignore the surface energy. If noted otherwise, the surface energy is ignored in this book.}

Thus, if the interaction potential decays faster than $r^{-\delta}$, then we may assume that the total energy is proportional to the volume of the system.