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Rudiments of dynamical systems

What should we learn?
‘Nonlinear systems’ usually discusses nonlinear dynamics and, these days, the so-
called complex systems, because complex systems are purportedly closely related
to chaos, fractal, etc.1 In my perspective course I confine myself to the discussion
of time-evolution of nonlinear systems and to that of (sometimes) complicated out-
comes of seemingly rather simple systems. That is, my scope will cover a subset of
the topics discussed in the standard theory of dynamical systems2 and some needed
rudiments of the theory of computation.

Since the theory of dynamical systems is a highly developed branch of mathemat-
ics, its precise understanding demands rather sophisticated mathematics. However,
the ‘perspective’ will try to make theories as intuitively accessible as possible (with
illustrations), although I will not avoid precise mathematical statements; physicists
must learn how to read math intuitively. Thus, I will try to go back and forth
between rigorous math and intuitive arguments; if intuitive understanding strongly
suggests a certain statements very natural, I will not give a rigorous argument.

A dynamical system is a deterministic system (i.e., its future is uniquely deter-
mined by the information about its past), whose significance was first clearly recog-
nized by Newton. In many cases such systems are described by (ordinary) differential
equations3 or by time-evolution maps (that give the next time slice from the current
one).4 Such systems are called dynamical systems. We are especially interested in
the global (often this means ‘long-time’) qualitative features of dynamical systems.5

Most dynamical systems are nonlinear, so we are interested in the long-time quali-

1As Prigogine totally screwed up: Nicolis and Prigogine’s Exploration of Complexity (W. H.
Freeman and Co., New York, 1989) wrote on p8: Since the 1960s a revolution in both mathematical
and physical sciences has imposed a new attitude in the description of nature. Parallel development
in the thermodynamic theory of irreversible phenomena, in the theory of dynamical systems, and in
classical mechanics have converged to show in a compelling way that the gap between ‘simple’ and
‘complex,’ between ‘disorder’ and ‘order,’ is much narrower than previously thought.” Immediately
after this is a mention of chaos as an example of complex behavior. As we will learn we cannot be
this naive. We must reflect on what ‘complexity’ really mean.

2Cf. Dynamical Systems I-X of Encyclopaedia of Mathematical Sciences (Springer).
3We will discuss vector fields and flows on manifolds, unique existence of the solution to the

initial value problem/rectification theorem for Lipschitz continuous ODE.
4We will discuss diffeomorphisms, the relation between time continuous and discrete dynamical

systems (i.e., Poincaré map and suspension).
5We will see the classification of low dimensional systems, 𝜔-limit sets, limit cycles, the Poincaré-

Bendixson theorem, etc.
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tative behavior of nonlinear systems (general ODEs): what is the fate of the system
after a long time? Will there be eventually no time dependence, or periodic oscilla-
tions, etc.?6

Since we are interested in naturally occurring dynamical systems, their features
must be reproducibly observable. This requires the stability argument of the systems
themselves and that of their behaviors.7,8

Incidentally, one might ask what such studies are for when we can numerically
solve differential equations efficiently these days. I must point out that still long-
time study of nonlinear dynamics is numerically hard.9 Furthermore, it is hard to
conclude something general for a class of systems numerically. We must not forget
a dictum: What we can show only with computers is not general; what is general
should be demonstrable without computers.

The study of qualitative behaviors makes it clear that there are many stable but
complicated behaviors called chaos often supported by strange attractors. To charac-
terize such behaviors we must have a clear understanding of randomness. Therefore,
before going to such topics requiring some tools that may not be familiar to physi-
cists, we go to a special branch of dynamical systems: classical mechanical systems
or the Hamiltonian systems which were the original target of the qualitative study:
is a planetary motion predictable or a star system bounded forever?10 I will out-
line a history of celestial mechanics culminating in Poincaré’s topological study.11

The study of integrability of mechanics leads to the study of completely integrable
systems and eventually to the theory of solitons.12 I will discuss solitons only very
briefly, and then will go to the perturbation of integrable systems. The original ques-
tion was: suppose we have a completely integrable system, then what happens if we
perturb it? Poincaré realized that the outcome is complicated ‘beyond imagination.’
Then, Kolmogorov realized that still most periodic motions stay periodic (the KAM

6Weak nonlinear perturbations (the so-called singular perturbations) will be discussed as an
application of RG. Chiba’s theorem will also be discussed.

7Andronov-Pontryagin’s structural stability, hyperbolicity, etc., will be discussed.
8The stability of solutions will be discussed. Thus, the Grobman-Hartman theorem will be

discussed to justify linear stability analysis.
9A general discussion of numerical analysis may be given. When the size of the time increment

is not sufficiently small, the numerical results can be qualitatively different from the true behavior
of the ODE.

10Three-body problems, Bruns’ theorem. etc., will be outlined historically.
11This will review the canonical transformation and Hamilton-Jacobi theory, classical solvability

condition, etc. This culminates in Arnold’s theorem about integrability of Hamiltonian systems.
12The Lax pair and complete integrability will be discussed. Kortweg-de Vries equation will be

looked at briefly.
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theorem). The destroyed periodic orbits, however, behave, as Poincaré expected,
chaotically, leading to almost random motion of planets (Arnold diffusion). These
topics are also related to the almost periodic quantum systems.

Thus, we have encountered deterministic but very complicate motion of dynamical
systems. How can we characterize complicate behavior? How can we quantify the
extent of complicatedness? I believe this is most unambiguously answered with the
theory of computation and computational complexity.

After introducing classic examples of complicate behaviors (e.g., Lorenz system
and interval endomorphisms)13 I will embark on characterization of chaotic behaviors,
starting with the discussion: what is computation? The universal Turing machine
and Church’s thesis is introduced and then Kolmogorov complexity will be discussed.
With this preparation we can unambiguosly discuss what chaos should be.14

Incidentally, there is a deep question: even if an ODE has a unique solution, if we
cannot compute it, what is its significance in physics? Such questions will also be
discussed briefly.15

Now, we have all the machineries to discuss general dynamical systems. The
general question is: what is the behavior of typical dynamical systems? I wish to
discuss the Palis conjecture trying to answer the question once and for all. I will
outline how the theory of dynamical systems had culminated in this conjecture,
following the theory of hyperbolic dynamical systems16

13This portion will not only introduce popular chaotic systems, but also introduce mathematical
concepts and tools such as the Kolmogorov-Sinai entropy, Lyapunov exponents, etc. and related
topics.

14The argument will introduce the symbolic dynamical system (Markov partition, 𝜀-tracing prop-
erty), endomorphism of an interval (“Period ̸= 2𝑛 implies chaos”, Li-Yorke’s theorem, Sharkovski’s
theorem), Kolmogorov-Sinai entropy and its relation to Kolmogorov complexity (Brudno’s theo-
rem), Artin-Mazur 𝜁-function and thermodynamic formalism. We need the Shannon-McMillan-
Breiman theorem.

15This will cover the theory of computable numbers and functions. There are functions that are
differentiable but their derivatives cannot be evaluated, because they are not computable. See M.
B. Pour-El and J. I. Richards, Computability in analysis and physics (Springer,1989).

16This will cover open-density, Baire properties (residual or generic features). Then, Peixoto’s
theorem, Kupka-Smale and Morse-Smale systems will be discussed as standard topics, but these
will come after all the rudiments such as the Sinai-Ruelle-Bowen measure is introduced.
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1 Introductory overview

1.1 What is a dynamical system?
If the states of a system17 change in time18 according to a definite rule, the system
is called a dynamical system.

‘Dynamics’ here follows a definite rule; that is, the state at present (or more
generally, up to present) determines the future states.19 Actually, we discuss only
two types of dynamical systems:

A discrete-time dynamical system is defined by a map 𝑓 from a set 𝑀 into itself
(= endomorphism). For an ‘initial condition 𝑥0 ∈ 𝑀20 the state 𝑥𝑛 at time step
𝑛 ∈ (say) N21 is defined by 𝑓𝑛𝑥0 ≡ 𝑓(𝑓(· · · 𝑓(𝑥0) · · ·)) (there are 𝑛 𝑓 ’s). 𝑀 = [0, 1],
𝑓 = 4𝑥(1− 𝑥) (the logistic map) is a typical example (Fig. 1.1 Left).

A continuous dynamical system is defined by a vector field 𝑋 on 𝑀 , and the rule
is given by a differential equation22 (Example Fig. 1.1 Right)

𝑥̇(𝑡) = 𝑋(𝑥(𝑡)). (1.1)

1.2 Topological and measure-theoretical dynamical systems

17⟨⟨System⟩⟩ A ‘system’ is a part of the universe (or nature) which is more or less with a sort
of integrity (for example, an electronic circuit, a dog, the Earth, the solar system, etc.). The word
‘system’ consists of ‘syn’ (together) and ‘histanai’ (stand) in Greek. Thus, its original meaning is
“a set of objects supporting each other to make an entity.” Therefore, ideally,

(1) we should be able to distinguish things belonging to the system and those not, and
(2) things belonging to the system interact (have relations) with each other through system-

specific interactions; their interactions with the things outside the system may be treated separately.
18⟨⟨Time⟩⟩ What is ‘time’? Although I wish you to think this philosophico-physics question at

least on and off, in these lectures, we understand ‘time’ as the one we understand in common sense:
it passes homogeneously and has a direction. Carlo Rovelli, The order of time (Riverhead Books
2018) is perhaps the best book so far written by a physicist on the topic, although I do not share
some key opinions with the author.

19The rule usually gives a deterministic result (unique future), but whether a set of rules allows
determinism (= unique future from the data at and/or before present) or not must be checked
carefully and may depend on contexts.

20𝑥0 is usually a multidimensional vector, but I will not use the vector notation such as 𝑥0.
21N = {0, 1, 2, · · ·}, nonnegative integers. Other standard number set notations will be used

freely: R: real numbers; Q: rational numbers; Z: integers; C: complex numbers.
22We will discuss whether this can consistently define a time evolution rule later. This is the

fundamental problem of ODE.
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Figure 1.1: Left: The discrete dynamics defined by the logistic map, and how to follow the
trajectory {𝑥𝑖}. Right: Vector field and its flows for 𝑥̇ = 𝑥− 𝑦, 𝑦̇ = 𝑦 − 𝑥2.

Dynamical systems are often classified by their main features we pay attention to,
geometrical features of their trajectories (topological dynamical systems) or proba-
bilisitic features (measure-theoretical dynamical systems). When we will discuss the
theory of dynamical systems in earnest, we discuss these aspects separately.

1.3 Linear vs nonlinear dynamical systems
The title of the course is ‘nonlinear ...,’ so we must discuss what ‘nonlinear’ means.

A system is called a linear system if its observable 𝑦 depends on the ‘control’
variable 𝑥 linearly: the map 𝑦 = 𝑓(𝑥) is linear. 𝑓 is linear if

𝑓(𝑎𝑥1 + 𝑏𝑥2) = 𝑎𝑓(𝑥1) + 𝑏𝑓(𝑥2). (1.2)

That is, 𝑓 is linear, if it satisfies linear scaling 𝑓(𝑎𝑥) = 𝑎𝑓(𝑥) and additivity:
𝑓(𝑥1 + 𝑥2) = 𝑓(𝑥1) + 𝑓(𝑥2). (1.2) is called the superposition principle. If 𝑓 is
not linear, we say the system is nonlinear.23

The reader must have heard that nothing strange occurs for linear dynamical
systems, but, in contrast, we may encounter strange complicate time evolutions for
nonlinear systems. This is largely true, but we will learn that ‘strange behaviors
(called ‘chaos’) are caused, in essence, due to (local) ‘expansion’ in the ‘bounded’

23A more careful definition may be found in Chapter 1 of YO The nonlinear world (Springer,
2012) [henceforth abbreviated as ‘TNW’.
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phase space. Nonlinearity is required to bound the domain where the states live, if
the domain is not naturally bounded (say, R𝑛). If the domain is intrinsically bounded
like an 𝑛-torus 𝑇 𝑛, chaotic behavior does not require nonlinearity.

The main reason why we are interested in nonlinear dynamical systems is that
their behaviors are often unexpected and complicate (e.g., chaos = deterministic un-
predictability). However, as we learn, complication is due to local expansion (small
errors are magnified) with ‘confinement’; if not spatially confined, we would find
explosion, which is not usually complicate.

1.4 Nonlinearity means scale interference24

Still it is true that nonlinearity is often a key to nontrivial dynamical behavior, be-
cause many systems are not geometrically confined. A nonlinear system is a system
that is not a linear system as discussed in 1.3. We know most phenomena in the
world are nonlinear,25 and to characterize this important ‘nonlinearity’ by the nega-
tion of ‘linearity’ is quite unsatisfactory. We should characterize ‘nonlinear systems’
more positively rather than through negation of something else.

Thanks to the superposition principle, even if we superpose high-frequency per-
turbation to a linear system, its behavior (esp., time-coarse-grained behavior) is not
affected. However, for a nonlinear system such a guarantee does not exist, because
different scales (length and/or time scales) interfere. Typical nonlinear phenomena
are often due to such interference. For example, critical phenomena in phase transi-
tion are due to the nonlinear coupling of small scale fluctuations producing mesoscale
or even macroscale fluctuations. Thus, we may characterize nonlinear systems as sys-
tems having scale interferences. We will see that chaos clearly teaches us that the
very microscopic scale of the Universe affects our scale sometimes significantly.

1.5 Unknowable affects our lives due to nonlinearity
Since what happens on extreme small scales are never knowable/observable, even if
we totally ignore quantum mechanics, our world even on the scale we can directly
observe is inevitably riddled with the absolute unknowable.

Perhaps the geometrical study of dynamical systems try to understand what sort
of mechansims cause this, and the probabilistic or statistical study of dynamical sys-
tems try to understand what is certain despite the unknowable. Thus, statistical and

24see Chapter 1 of ‘TNW’.
25The word ‘nonlinear system’ is a shorthand for the fact that the aspect of the system we are

interested in does not have a description that admits the superposition principle.
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topological qualitative studies of dynamical systems are the main goal of the theory
of dynamical systems.

1.6 What features should we pay attention to?
As noted in 1.1 we pay attention to topological and probabilistic features of dynam-
ical systems. Although we will discuss some details of concrete examples, we are
much more interested in generic (universal) or typical qualitative features of dynam-
ical systems.

Being ‘typical’ may mean what we can sample from a class of dynamical systems
‘casually’ without any premeditation. How can we ‘formalize’ this? This is not so
simple, so we will discuss this in a separate section with some mathematical rudi-
ments.

1.7 Where do we encounter dynamical systems?
This may be a rather stupid question, since differential equations appear almost ev-
erywhere in physics. Thus, we physicists are very familiar with dynamical systems,
or are we? Many elementary examples are linear and analytically simply solvable.
However, the study of dynamical systems was initiated by Poincaré to understand
unsolvable equations of motion (the three body problem). Lurking in benign-looking
dynamical systems are bewilderingly complicate motions. Thus it is not surprising
that simply looking systems with complicate unpredictable behaviors appear in, e.g.,
stellar systems, particle accelerators, plasma confinement, chemical reaction kinetics,
population dynamics. We usually do not pay particular attention to such complica-
tions in physical systems.

Apart from such relevance to physics, however, it should be simply interesting to
know what is possible in apparently not so complicate systems. Thus, application of
theory of dynamical systems is not the main concern of the course.26

Some old examples are in Figs. 1.2 and 1.4.

26“Unlearn this “for,” you creators; your virtue itself wants that you do nothing “for” and “in
order” and “because.” You should plug your ears against these false little words.” (F. Nietzsche,
Thus spoke Zarathustra, On the higher man 11) [Cambridge Texts in the History of Philosophy,
edited by A Del Caro and R Pippin].
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Figure 1.2: ‘Chemical turbulence’ [Fig. 5,6 of Yamazaki et al. JPSJ 46 722 (1978)]

Figure 1.3: Arhythmia Lorenz plot [Fig. 5,6 of YO et al JPSJ 48 733 (1980)]
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Figure 1.4: Villin head piece full MD[A Rajan Thesis UIUC (2009)]
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1.8 Outline of the course
An outline of the course is given. Here, no explanation of technical terms (in italic)
will be given (for example, manifold, compact, 𝐶𝑟-vector field, etc.). I know physi-
cists (in the US) hate math,27 but I wish you to have intuitive grasp of core math
concepts.

Basically, after warmup with or without Hamiltonians, we will understand that
‘chaos’ is algorithmically random behaviors of dynamical systems, whose statistical
behaviors we can understand ‘statistical mechanically.’

Warmup with ODE
We will begin with a geometrical study of ODE

𝑥̇ = 𝑋(𝑥), (1.3)

where 𝑥 ∈𝑀 , 𝑋 ∈ 𝒳 𝑟(𝑀). Here, 𝑀 is a 𝑛-manifold (usually compact), and 𝒳 𝑟(𝑀)
is a 𝐶𝑟-vector field on 𝑀 . Typical discussion topics are:
* When can we say 𝑥(𝑡) is unique, or determinism legitimate? 𝑋 must be Lipshitz
continuous: ‖𝑋(𝑥) −𝑋(𝑥′)‖ ≤ 𝐿‖𝑥 − 𝑥′‖. Under this condition if 𝑋(𝑥) ̸= 0, in an
neighborhood of 𝑥, 𝑋 is transformed to a constant field (say, 𝑋 = 𝑒1) [Rectification
theorem].
* What happens in the 𝑡→ ∞ limit? We will discuss attractors, invariant manifolds,
etc.
* If 𝑋(𝑥𝑓 ) = 0, 𝑥𝑓 is a fixed point (= critical point or singular point; some examples
of flow around it are in Fig. 1.5). Is 𝑥(𝑡) = 𝑥𝑓 stable against small perturbations?
Can we study its stability from the linearized equation around 𝑥𝑓? We will discuss
hyperbolicity and the fundamental theorem: Hartman’s theorem that justifies the lin-
ear stability analysis.28

* A qualitative change of the solution (say, from a stationary to oscillatory behavior)
is called a bifurcation. What sort of bifurcations do we generically encounter? When
a bifurcation occurs, can we compute the new qualitatively different solution by per-

27Boltzmann said, “What the brain is to man, mathematics is to science” (quoted in K. Sigmund,
Exact thinking in demented times: the Vienna Circle and the epic quest for the foundation of science
(Basic Books, 2017; original in 2015).

28Quiz: is the following argument legitimate?
Suppose 𝑋(0) = 0. Since we are interested in the situation very close to 𝑥 = 0, let us linearize 𝑋
around 𝑥 = 0 as 𝑥̇ = 𝐴𝑥 (i.e., we compute 𝐴 = 𝐷𝑋/𝐷𝑥|𝑥=0). It happens that all the eigenvalues
of 𝐴 has negative real part. Thus, 𝑥 = 0 is a stable fixed point.
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Figure 1.5: Some examples of flows around singular points on R2.

turbation? We will discuss a renormalization group theory for singular perturbations
(= perturbations that qualitatively alter the nature of the system).
* What kind of singular points can a system have on 𝑀? Topological constraints
matter (the Poincaré-Hopf theorem); degree theory can tell you something.

Classical mechanics
Next, we discuss a special class of ODE: the Hamiltonian systems
* After reviewing classical mechanics (extremely briefly) canonical transformation
will be discussed (with related topics as Lagrange and Poisson brackets, canonical
invariants).
* Integrable cases will be discussed generally; Liouville-Arnold’s theorem and action-
angle variables will be discusssed.
* Then we go to the cradle of the theory of dynamical systems: celestial mechanics.
* (Bruns and) Poincaré realized perturbation has problems.
* However Kolmogorov realized that still for many energies, perturbation series con-
verges [KAM theorem]. A prototypical theorem due to Siegel will be proved following
Kolmogorov’s idea. When the series do not converge, ‘chaos’ show up as Poincaré
realized. An illustration of what happens is in Fig. 1.6

Figure 1.6: Many tori due to integrability are destroyed except for the KAM tori; the destroyed
tori exhibit chaotic behavior such as the Arnold diffusion. [Fig. 6.7 of A E Jackson, Perspective of
nonlinear dynamics Vol. 2 (Cambridge, 1990) p56]
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* This chaotic behavior will be discussed with the aid of the standard map (related
to accelerator dynamics).

Up to this point is introductory; although mathematically delicate issues (or at
least its delicate nature) should be appreciated (for Hartman, Siegel and Poincaré
theorems), technical details will not be emphasized (details are already posted as
supplements). However, the flow of the logic should be understood.

An exposition of the ‘modern’ theory of dynamical systems begins here. Physicists
should realize that most of the main ingredients had been finished before 1980 when
physicists, esp., in the US started to pay serious attention to the topic. Computers
were in large part irrelevant (contrary to the claim of Gleick, whose book I cannot
recommend) and many key ingredients were done in USSR.29

We must not forget a dictum: What we can show only with computers is not gen-
eral; what is general should be demonstrable without computers (if we understand
it). Needless to say, however, for exploratory work computers are great especially in
the hand of those who understand mathematics.

Chaos gallery:
We begin with typical and historical examples to become familiar with the real issues
of dynamical systems.
* Weather forecasting and Lorenz system. The iconic figure must be familiar to most
of you:
https://upload.wikimedia.org/wikipedia/commons/1/13/A_Trajectory_Through_Phase_Space_

in_a_Lorenz_Attractor.gif

* Strange attractors and how to observe them (Takens’ reconstruction theorem).
* Interval maps and Theorem: “Period ̸= 2𝑛 implies chaos.” I will follow the path I
took more than 40 years ago.30

* But what is chaos? We use coding of dynamical behaviors into symbol sequence
(shift dynamical systems), and discuss its complexity with typical examples: baker’s

29Y. G. Sinai, “Chaos Theory Yesterday, Today and Tomorrow,” J. Stat. Phys. 138, 2 (2010).
“My personal experience shows that people in the West consider the development of Chaos Theory
differently from their Russian colleagues, mathematicians and physicists.” [This seems a great
euphemism or sarcasm.] “Many people share the point of view that the beginning of chaos theory
dates back to 1959 when the Kolmogorov’s paper [“New metric invariant of transitive dynamical
systems and automorphisms of Lebesgue spaces,” Dokl. Acad. Nauk SSSR 119, 861 (1958)] on the
entropy of dynamical system appeared.”

Since my collaborator in this field (Y. Takahashi) was a postdoc of Sinai, naturally I am close
to the Russian school.

30before 1980 in the US only the people at UCSC [Rob Shaw, Doyne Farmer, Normal Packard
and Jim Crutchfield] were active in the field, and we were in correspondence.

https://upload.wikimedia.org/wikipedia/commons/1/13/A_Trajectory_Through_Phase_Space_in_a_Lorenz_Attractor.gif
https://upload.wikimedia.org/wikipedia/commons/1/13/A_Trajectory_Through_Phase_Space_in_a_Lorenz_Attractor.gif
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transformation and Bernoulli systems.
* We must know how to measure complexity or the extent of being chaotic. This
requires Kolmogorov complexity which requires Turing machines. Thus we will dis-
cuss the ABC of algorithmic complexity and computability of physical processes: I
wish you to think of the scientific significance of a theoretical result that is not com-
putable.
* Eventually Brudno’s theorem tells us chaos = algorithmically complex trajectories.

After these elementary examples we go into measure theoretical and topological
dynamical systems.

Measure-theoretical dynamical systems
We will prove the Poincaré recurrence theorem and the Birkhoff ergodic theorem.
The latter was long misunderstood as the key to statistical mechanics (even long after
Boltzmann himself realized this). The Kolmogorov-Sinai entropy is a (the?) measure
of the extent of chaos, which is related to statistical mechanical entropy. We will
discuss the thermodynamic formalism for dynamical systems. This allows us to char-
acterize observable invariant measures (i.e., observable or numerical-experimentally
detectable stationary states) with a variational principle (mathematically isomorphic
to Gibbs variational principle in statistical mechanics).

General theory of dynamical systems
Hopefully, the course will conclude with the typical behaviors of dynamical systems
(e.g., Axiom A systems), which are structurally stable (i.e., stable against small mod-
ification of the system). Palis proposed the conjecture (Palis conjecture): typical
systems have a finite number of (strange) attractors which support the observable
invariant measures (called the Sinai-Ruelle-Bowen measure). Or in the physicist-
friendly words: Any typical and structurally stable finite dimensional dynamical
system with its phase space being compact may be understood by using a statisti-
cal mechanical device. The demonstration of this conjecture will close a very active
phase that started with Smale’s horseshoe.

1.9 Some ‘practical’ topics we will discuss
When we observe various time-dependent phenomena in hydrodynamics, cell biology,
population dynamics, etc., often we do not have any explicit mathematical descrip-
tion at the beginning. Can we visualize ‘strange attractors’ directly from the observed
time data? This is broadly answered affirmatively by Takens’ theorem and related
topics. The ‘UCSC gang of four’ proposed a similar method (see 1.7).31 Even if clean

31N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a Time Series
PRL 45 712 (1979).
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geometrical fatures may not be obtained, still something suggestive may be gleaned
(for example about our brains). Even some discrete plots could suggest something,
although no simple dynamics behind the data can be guessed.

Figure 1.7: Reconstruction from a time series [Fig. 1,2 of Packard et al., PRL 45 712 (1979)]

Most natural phenomena are high-dimensional phenomena described by partial
differential equations and by field theories. However, their asymptotic behaviors
may not be very high-dimensional, and at least qualitatively we can reduce them to
a low dimensional systems via various attractor theories and analytic methods like
the Galerkin method. The famous Lorenz system is obtained by Salzmann in such
an attempt.32

Such dimensional reduction methods may be of some interest in summarizing large
scale MD simulation of biomolecules.

1.10 Video: Chaos
The following 9 (artistic) videos from http://www.chaos-math.org/enmay be close
to the spirit of the course. Most of you feel the pace is too slow and the explanation
too elementary, but the movie actually explains sophisticated topics (very quietly
esp beyond Chapter 6); the movie exhibits nice European taste.

Chapter 1: Motion and determinism—𝜋𝛼𝜈𝜏𝛼 𝜌𝜀𝜄.
https://www.youtube.com/watch?v=c0gDLEHbYCk&t=4s&frags=pl%2Cwn

Chapter 2: The vector fields—The lego race
https://www.youtube.com/watch?v=_Y68GX2UpQ0&frags=wn

Chapter 3: Mechanics—The apple and the Moon (Newton, universal law of gravity,
etc.)

32For a systematic approach to the Couette flow is worked out by H. Yahata, Temporal devel-
opment of the Taylor vortices in a rotating fluid, Prog. Theor. Phys. Suppl. 64 176 (1978).

http://www.chaos-math.org/en
https://www.youtube.com/watch?v=c0gDLEHbYCk&t=4s&frags=pl%2Cwn
https://www.youtube.com/watch?v=_Y68GX2UpQ0&frags=wn
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https://www.youtube.com/watch?v=ZwTGAW0b_bo&frags=wn

Chapter 4: Oscillations—the swing (including Lotka-Volterra; Poincare-Bendixson
theorem including the idea to prove it)

https://www.youtube.com/watch?v=uEfB5DG9x9M&frags=wn

Chapter 5: Billiards—Duhem’s bull (geodesics on negative curvature surface in-
cluded, symbolic dynamics a bit)

https://www.youtube.com/watch?v=3u2SJKxJhh8&frags=wn

Chapter 6: Chaos and the horseshoe—Smale in Copacabana (Poincaré map, Smale’s
horseshoe, symbolic dynamics, structural stability)

https://www.youtube.com/watch?v=ItZLb5xI_1U

Chapter 7: Strange attractors—the butterfly effect (Lorenz system, Lorenz template,
symbolic dynamics

https://www.youtube.com/watch?v=aAJkLh76QnM&frags=wn

Chapter 8: Statistics—Lorenz’ mill (measure-theoretical aspect, physical model of
Lorenz system, sensitivity to initial conditions, SRB measure)

https://www.youtube.com/watch?v=SlwEt5QhAGY&frags=wn

Chapter 9: Chaotic or not—research today (bifurcation diagram, heteroclinic con-
nection, non-generic case, Palis conjecture)

https://www.youtube.com/watch?v=_xfi0NwoqX8

1.11 Classic books still fresh
Recommended books for very serious students are listed here. They are now clas-
sic but still almost fresh. Readable? Yes, if you know basic math well (after one
semester of my course you know the outline of many key portions of these classics).

* V. I. Arnold and A. Avez: Ergodic Problems of Classical Mechanics (Advanced
Book Classics; Addison-Wesley; Reprint edition 1989; original in French 1967).

* J. Moser: Stable and random motions in dynamical systems (Annals of Mathemat-
ical Studies 77, Princeton UP 1973).

* J. Palis, Jr. andW. de Melo: Geometric theory of dynamical systems (Springer,1982).

* J. Palis and F. Takens: Hyperbolicity & sensitive chaotic dynamics at homoclinic
bifurcations (Cambridge studies in advanced mathematics 35, Cambridge UP, 1993).

* R. E. Bowen: Equilibrium states and the ergodic theory of Anosov diffeomorphisms
(Springer Lecture Notes in Mathematics 470; Second Ed 2008).

https://www.youtube.com/watch?v=ZwTGAW0b_bo&frags=wn
https://www.youtube.com/watch?v=uEfB5DG9x9M&frags=wn
https://www.youtube.com/watch?v=3u2SJKxJhh8&frags=wn
https://www.youtube.com/watch?v=ItZLb5xI_1U
https://www.youtube.com/watch?v=aAJkLh76QnM&frags=wn
https://www.youtube.com/watch?v=SlwEt5QhAGY&frags=wn
https://www.youtube.com/watch?v=_xfi0NwoqX8
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1.12 Do not misunderstand complexity
It is often said that the study of chaos is an important part of complexity study.
I totally disagree with this popular view. If you admit that biological systems are
complex systems, which is not merely complicated, you must recognize the distinc-
tion between the truly complex systems and pseudo complex systems that have been
studied under the name of complexity study. If something is easy to (re)produce
without any special preparation, that something must not be complex. Chaos is a
typical example. As you learn it is easy to produce; perhaps the surprise was that
benign-looking simple systems readily exhibit bewilderingly complicated behaviors
(as illustrated in Fig. 1.6). In contradistinction, you cannot readily produce life from
scratch; we do not even understand how life began at all. Complex systems are
systems requiring a lot of prerequisite that we cannot (at leat readily) construct; you
have your parents, because you are complex systems. Pasteur realized that complex
systems are produced only by complex systems.

Thus, chaos has nothing to do with complex systems. The so-called complex-
systems study in physics33 studied only pseudo-complex systems that can self-organize
almost from scratch.

33Even in our department this is the case, unfortunately.
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2 Lecture 2: Setting the stage

2.1 Two main purposes of this lecture
There are two main topics today. Dynamical systems are defined as maps or flows
defined by vector fields on manifolds. Therefore, first, we discuss manifolds and vec-
tor fields on them.

For practical physicists, basically we have only to understand what happens in
the ordinary 𝑛-dimension Euclidean space E𝑛, because manifolds are patchworks of
Euclidean spaces. Thus, the purpose of the first part of this lecture is to introduce
concepts mathematically properly, but to tell you how to ‘ignore’ their technicality.
To discuss a dynamical system we need a stage: a manifold.

The second part reflects on what ‘common’ or ‘general’ means, because we are
interested in ‘general pictures’ of dynamical systems. We review very basic concepts,
openness, denseness, etc. Cantor sets are introduced and then we will discuss what
‘dimension’ is.

Although you must be able to find (and to understand) real math definitions, as
an active physicist it is very important to grasp math concepts and theorems intu-
itively (and even emotionally).

2.2 Discrete-time dynamical systems
A discrete time dynamical system is a map 𝑓 : 𝑀 → 𝑀 , where 𝑀 is a compact34

(often 𝐶𝑟-)manifold (see justbelow).
I hope you know what map is.
The stage (or the totality of the states of the system; the phase space in classical

statistical mechanics is an example) of the dynamical system may not be a simple
space like R𝑛 (𝑛-dimensional Euclidean space; E𝑛 may be a better notation). It could
be a 2-torus (𝑇 2), so it cannot be mapped continuously to R2. Usually, we choose
the stage to be a manifold.

An 𝑛-manifold is a geometrical object that can be constructed by ‘smoothly’ past-
ing a 𝑛-Cartesian coordinate patches that are ‘flexibly deformed’ (Fig. 2.1):

A formal definition is in 2.3. To understand this we need a concept ‘diffeomor-
phism’: Let 𝐴 and 𝐵 be sets (actually, topological spaces). A map 𝑓 : 𝐴 → 𝐵 is
a 𝐶𝑟-diffeomorphism, if it is continuously 𝑟-times differentiable (𝐶𝑟-map), and its

34In a finite dimensional space, ‘compact’ means that the object is covered with a finite number
of open sets. See 3.10
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chart

coordinate map

Figure 2.1: Intuitive idea of a manifold; here only some coordinate patches are illustrated; you
must fill the whole object with such a cover.

inverse 𝑓−1 is also a 𝐶𝑟-map. If 𝑓 and 𝑓−1 are continuous maps, we say 𝑓 is a home-
omorphism.

Practically, whenever we work on a manifold, we take a chart and then locally
work in a Cartesian system. We must seamlessly connect the local results, but that
part is usually only technical, so for physicists intuitively the core discussions are
over on the chart.

2.3 Manifold
A manifold 𝑀 = (ℳ,𝒰) consists of two elements:
(1) Basic set ℳ, which is usually a Hausdorff space.35

(2) Local coordinate system 𝒰 = {𝑈𝛼, 𝜑𝛼}𝛼∈𝐴, where 𝐴 is a subscript set. Here
(i) 𝑈𝛼 ⊂ ℳ is open and ∪𝛼𝑈𝛼 = ℳ (i.e., {𝑈𝛼} is an open cover of ℳ.
(ii) 𝜑𝛼 is a homeomorphism (or diffeomorphism)36 from 𝑈𝛼 to an open set

in R𝑛.
(iii) If 𝑈𝛼 ∩ 𝑈𝛽 ̸= ∅, then 𝜑𝛽 ∘ 𝜑−1

𝛼 : 𝜑𝛼(𝑈𝛼 ∩ 𝑈𝛽) → 𝜑𝛽(𝑈𝛼 ∩ 𝑈𝛽) is a homeo
or diffeomorphism.

(𝑈𝛼, 𝜑𝛼) is called a chart, and 𝒰 is called an atlas.37 Needless to say, charts in
an atlas of a manifold must be consistent as (iii).

35⟨⟨Hausdorff space⟩⟩ A topological space 𝑋 is a Hausdorff space if all distinct points in 𝑋 are
pairwise neighborhood-separable. That is, if 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ̸= 𝑦, there is a neighborhood 𝑈 of 𝑥
and that 𝑉 for 𝑦 such that 𝑈 ∩ 𝑉 = ∅.

36This choice depends on how smoothly you wish to set up your manifold.
37The largest atlas including all the atlases containing a given chart is called the maximal atlas

(or the differentiable structure). It may not be unique even diffeomorphically. 𝑆7 has 28 different
differentiable structures.
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Figure 2.2: Manifold: local coordinate system/charts

2.4 ‘Topological continuation’
When we discuss mathematics on a manifold, it is almost always the case that we
assume some convenient charts and on each chart we discuss what we are interested
in. Then, we show that we can continue the conclusion to different charts using the
‘smoothness’ of the relations between the overlapping charts. The latter steps may
be tedious, but intuitively without any trouble. Thus, in these lecture notes, we
almost always discuss mathematics on a chart and will not discuss the ‘second step,’
simply saying ‘according to the topological continuation’ we claim the statements on
the entire manifold. As you realize, this means that we may discuss things on an
appropriate Euclidean space.

2.5 Vector field on manifold
We wish to consider an ordinary differential equation (ODE) defined on a manifold
at each point 𝑥 ∈ 𝑀 . We take a chart (local coordinates) (𝑥1, 𝑥2, · · · , 𝑥𝑛). With
respect to this coordinates a vector field 𝑋(𝑥) at 𝑥 may be expressed as

𝑋(𝑥) = (𝑋1, 𝑋2, · · ·). (2.1)

Here, 𝑋𝑖 is the 𝑥𝑖-component of 𝑋. See Fig. 2.3.

Mathematicians express 𝑋 as follows:

𝑋(𝑥) =
∑︁
𝑖

𝑋𝑖
𝜕

𝜕𝑥𝑖
. (2.2)
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x
X(x)

Figure 2.3: Vector field on manifold. The dotted lines correspond to the tangential directions
𝜕

𝜕𝑥1
and 𝜕

𝜕𝑥2
.

Here 𝜕
𝜕𝑥𝑖

|𝑥 points the tangent direction along the local coordinate 𝑥𝑖 as illustrated in

Fig. 2.3. The vector space spanned by { 𝜕
𝜕𝑥𝑖

|𝑥} is called the tangent space of 𝑀 at 𝑥,
and is denoted by the symbol 𝑇𝑥𝑀 .

The notation (2.2) is very reasonable as you can see from the directional derivative
of a function 𝑓 on 𝑀 at 𝑥 along the curve 𝜉(𝑡) ∈𝑀 . Let the tangent vector for 𝜉 at
𝑥 be 𝑋:

𝑑

𝑑𝑡
𝜉(𝑡) = 𝑋 = (𝑋1, 𝑋2, · · ·). (2.3)

Then,
𝑑

𝑑𝑡
𝑓(𝜉(𝑡)) =

∑︁
𝑖

𝑋𝑖
𝜕

𝜕𝑥𝑖
𝑓(𝑥) = 𝑋𝑓(𝑥) =

∑︁
𝑖

𝑋𝑖
𝜕𝑓

𝜕𝑥𝑖
. (2.4)

Besides, the notation (2.2) automatically tells us how to rewrite the vector com-
ponents when we change a chart from (𝑈, 𝑥) to another overlapping chart (𝑉, 𝑦):

𝑋 =
∑︁
𝑗

𝑌𝑗
𝜕

𝜕𝑦𝑗
=
∑︁
𝑗

𝑌𝑗
∑︁
𝑖

𝜕𝑥𝑖
𝜕𝑦𝑗

𝜕

𝜕𝑥𝑖
. (2.5)

Thus, we have

𝑋𝑖 =
∑︁
𝑗

𝑌𝑗
𝜕𝑥𝑖
𝜕𝑦𝑗

. (2.6)

A more mathematically respectable explanation can be found in ‘indented’ 2.7-
2.9.

2.6 Continuous-time dynamical systems
An ODE on 𝑀 may be defined as

𝑑

𝑑𝑡
𝑥 = 𝑋. (2.7)

This implies ∑︁
𝑖

𝑥̇𝑖
𝜕

𝜕𝑥𝑖
=
∑︁
𝑖

𝑋𝑖(𝑥)
𝜕

𝜕𝑥𝑖
. (2.8)
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that is, as we know in the elementary calculus, 𝑥̇𝑖 = 𝑋𝑖(𝑥).
If (3.1) is well-posed (i.e., there exists a unique solution to the Cauchy prob-

lem = initial value problem), it can define a continuous-time dynamical system
𝜑𝑡 : 𝑀 → 𝑀 , where 𝜑𝑡 is the time evolution operator ({𝜑𝑡} is a group if 𝑡 ∈ R
or a monoid if 𝑡 ∈ [0,+∞)):
(i) 𝜑0 = 1,38

(ii) 𝜑𝑡 ∘ 𝜑𝑠 = 𝜑𝑡+𝑠.

The totality of the 𝐶𝑟-vector fields on 𝑀 is written as 𝒳 𝑟(𝑀). As we will know,
𝑋 ∈ 𝒳 𝑟(𝑀) defines a continuous-time dynamical system.

Remark We discuss only the autonomous systems for which 𝑋 never depends on
𝑡 explicitly. If you wish to discuss a time-dependent vector field 𝑋(𝑡), you could
introduce a new component 𝑧 satisfying 𝑧̇ = 1.

2.7 Tangent vector
Let 𝜉(𝑡) be a (differentiable) curve in a manifold 𝑀 in the chart (𝑈, 𝜑). The
coordinate system is denoted by (𝑥1, · · · , 𝑥𝑛). Let 𝑓 :𝑀 → R be a differentiable
function. If you wish to differentiate 𝑓 along the tangential direction of 𝜉 we
can compute

𝑑

𝑑𝑡
𝑓(𝜉(𝑡)) =

∑︁
𝑖

𝑑𝜉𝑖
𝑑𝑡

𝜕

𝜕𝑥𝑖
𝑓 ≡ 𝑋𝜉𝑓 (2.9)

where
𝜕

𝜕𝑥𝑖
𝑓 = 𝐷𝑖𝑓(𝜑

−1). (2.10)

Here, 𝐷𝑖 is the differentiation with respect to the coordinate 𝑥𝑖 on the chart.
We use the following notational convention:

𝑋𝜉 =
𝑑𝜉

𝑑𝑡
=
∑︁
𝑖

𝑑𝜉𝑖
𝑑𝑡

𝜕

𝜕𝑥𝑖
. (2.11)

𝑋𝜉 denotes a vector in the tangential space of 𝑀 . If 𝑝 = 𝜉(0), then the totality
of 𝑋𝜉 at 𝑡 = 0 spans the tangential space of 𝑀 at 𝑝 denoted by 𝑇𝑝𝑀 :

𝑇𝑝𝑀 =

⟨
𝜕

𝜕𝑥1
, · · · , 𝜕

𝜕𝑥𝑛

⟩
. (2.12)

38‘1’ means ‘multiplying 1’ or the identity operator: 1𝑥 = 𝑥.
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2.8 Vector bundle
A vector bundle (𝑉,𝑀, 𝜋) on a manifold𝑀 is a triple of a manifold𝑀 , a vector
space 𝑉 and a map 𝜋 : 𝑉 →𝑀 .
𝜋−1(𝑥) for 𝑥 ∈𝑀 is called the fiber at 𝑥.
𝑠 :𝑀 → 𝑉 such that 𝜋𝑠(𝑥) = 𝑥.

If 𝑠 is 𝐶𝑟, the vector field 𝑋 is said to be a 𝐶𝑟-vector field. The totality of the
𝐶𝑟-vector field on 𝑀 is written as 𝒳 𝑟(𝑀).

M

sπ

x

fiber

section v(x)v(x)v(x)

Vvector bundle

Figure 2.4: Vector bundle

If 𝑀 is 𝐶∞, then 𝒳 𝑟(𝑀) is a separable Banach space.39

2.9 Tangent vector bundle
The vector field on a manifold 𝑀 whose fiber at 𝑥 ∈ 𝑀 is 𝑇𝑥𝑀 is called the
tangent vector bundle of 𝑀 and is denoted as 𝑇𝑀 . Thus, 𝒳 𝑟(𝑀) consists of
smooth sections of 𝑇𝑀 .

2.10 Pursuit of general pictures
Although particular examples, if representative enough in some sense, are often im-
portant to give us deep insights, our main goal is to have an overall general picture
of dynamical systems. We study discrete dynamical systems 𝐶𝑟(𝑀) or continuous
dynamical systems defined by the corresponding vector fields 𝒳 𝑟(𝑀). We wish to
know the common features of dynamical systems, or wish to characterize typical
examples in these collections of dynamical systems.

What do we wish to mean by ‘general’, ‘common’ or ‘typical’?
The most natural or desirable idea is that a general property is a property shared

by all the instances in 𝐶𝑟(𝑀), for example. However, in most cases exceptions exist
for any apparently very general properties, so ‘all’ should be relaxed to ‘almost all’

39A Banach space is a linear space with a complete norm (‘complete’ = any Cauchy sequence
converges). ‘Separable’ means that the space contains an everywhere dense countable set.
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or ‘most.’ Therefore, how to relax ‘all’ and still to secure ‘many’ in a precise sense40

is our key issue.
In the following we first discuss denseness 2.12 and openness 2.13. If systems

with property A are dense in the totality of dynamical systems (say, 𝒳 𝑟(𝑀)), we can
always find (need not be easy) a system with property A as close as you wish to a
system you pick up. If systems with property A make an open subset of the totality
of dynamical systems, then a system with property A is surrounded by systems with
property A, so property A is stable against perturbations. However, this does not
guarantee ‘many,’ although it tells us that ‘all’ (really all, not almost all) around the
example.

Then, ‘open-denseness’ = openness + denseness sounds desirable. Not quite as
we will see below.

2.11 Topology41

If we wish to say somethings are common, we must be able to classify the ob-
jects we are interested in, or at least, we must be able to tell which objects are
more similar or less so than other objects. Thus, we need a concept to judge
‘closeness’ or similarity. You might immediately have in your mind some sort
of distances, but a more basic concept is some sort of ‘nearness’ or being in the
same neighborhood. A topology furnishes this concept.

Let 𝜏 be a family of subsets of a set 𝑋. 𝜏 is a topology defined for a set 𝑋,
if
(i) 𝜏 ∋ ∅ and ∋ 𝑋.
(ii) If {𝐺𝑎 ∈ 𝜏}, then ∪𝑎𝐺𝑎 ∈ 𝜏 .
(iii) If {𝐺𝑎 ∈ 𝜏} is a finite collection, then ∩𝑎𝐺𝑎 ∈ 𝜏 .

(𝑋, 𝜏) is called a topological space, and the elements in 𝜏 are called open
sets.

Any open set containing 𝑥 ∈ 𝑋 is called a neighborhood of 𝑥 (in this topo-
logical space).

We can define continuous functions between two topological spaces 𝑋 and
𝑌 : 𝑓 : 𝑋 → 𝑌 is continuous around 𝑥 ∈ 𝑋, if for any nbh 𝑈 of 𝑓(𝑥) ∈ 𝑌 is a
nbh 𝑉 of 𝑥 ∈ 𝑋 such that if 𝑦 ∈ 𝑉 ⇒ 𝑓(𝑦) ∈ 𝑈 .

Thus, geometrical properties that are preserved by continuity are called topo-

40Here, ‘precise’ means, ultimately, ‘can be axiomatized’.
41For such basic concepts the following books are strongly recommended:

I. M. Singer and J. A. Thorpe, Lecture Notes on Elementary Topology and Geometry (Springer
Undergraduate Texts in Mathematics 1976)
A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis
(Martino Fine Books, 2012) $9.5 !
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logical properties.

2.12 Denseness
Let Ω be a set. A subset 𝑈 ⊂ Ω is dense if every neighborhood of any element
in Ω contains an element in 𝑈 .

As Q ⊂ R shows, denseness can still mean shear minority. If we evenly
and randomly sample a point from [0, 1] almost surely you are in Q𝑐. It is a
countable set, so its total length is zero (= measure zero).

Thus, a bigger subset than mere dense subset is desirable.

A countable set 𝑄 is measure zero (volume is zero; more precisely its Lebesgue measure
is zero). Since 𝑄 is countable, it is one-to-one correspondent to N+. Thus we can write
𝑄 = {𝑎𝑘}𝑘∈N+ . For example, let us assume 𝑄 ∈ R𝑛. Then, we choose a ball 𝐵𝑘 of
volume 𝜀/2𝑘+1 (𝜀 > 0, arbitrary) centered at 𝑎𝑘. Obviously 𝑄 ⊂ ∪𝑘𝐵𝑘. Therefore,
the total volume of 𝑄 (denoted as |𝑄|) must be less than the total volume of these
balls 𝐵1, 𝐵2, · · ·:

|𝑄| ≤
∑︁
𝑘

|𝐵𝑘| =
∑︁
𝑘

𝜀

2𝑘+1
= 𝜀. (2.13)

Since 𝜀 > 0 is arbitrary, |𝑄| must be smaller than any positive number: 0.

2.13 Openness, structural stability
A subset 𝑈 is open in Ω, if any element of 𝑈 has a neighborhood contained in
𝑈 .

Thus, intuitively speaking, when 𝑥 ∈ 𝑈 is perturbed to 𝑥+ 𝛿𝑥 with any suf-
ficiently small 𝛿𝑥 𝑥+𝛿𝑥 ∈ 𝑈 . This is a stability of the property. If a dynamical
system itself (in contrast to perturbing its initial condition) is perturbed and
if still the system ‘looks (behaves) similar’ to the original system, we say the
system is structurally stable.

In a certain sense ‘openness’ can be too strong or too weak, depending on
the situation. It can be too strong, because there can be special direction to
destroy the property we are interested in, although in all other directions it is
stable against small perturbations. A ‘too weak’ case is in 2.14. Also if we
recall that irrational numbers are with full measure but not open in R, de-
manding openness may not be wise to characterize ‘general.’

2.14 Open denseness
If a set 𝑈 is open, then it is measure positive for ‘natural sampling measure’ as

an open set in [0, 1] illustrates. Therefore, ‘open denseness’ could be a candidate of
‘naturalness,’ and certainly it is used to assert certain generality. However, the com-
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pliment of an open dense set could be as close to the full (measure) set as possible
as the fat Cantor set illustrates.42

However, unfortunately, it is often the case that most properties for dynamical
systems are vulnerable to a particular perturbation in a certain ‘direction’, so ‘open-
ness’ does not usually hold. Thus, we wish to relax ‘open denseness’.

Can we find an open dense set easily? Not so. See 2.19.

2.15 Cantor set
Cantor discussed a perfect nowhere dense set 𝐶 (Cantor set in the general
sense). ‘Perfect’ means no point is isolated. That is, for any neighborhood of
𝑥 ∈ 𝐶 is a point in 𝐶. ‘Nowhere dense’ means [𝐶]∘ = ∅.

The most famous example of a Cantor set is the one invented by H. J. S.
Smith, the set built by removing the open middle thirds of a line segment (see
2.7). Cantor mentioned this as an example, in passing, but it is now usually
recognized as ‘the Cantor set.’

Figure 2.5: ‘The’ Cantor set due to Smith (1874) constructed by removing the middle third
open set

This Cantor set may be analytically expressed as

𝐶 =

{︃
𝑥 =

∞∑︁
𝑛=1

𝑎𝑛
3𝑛

⃒⃒⃒⃒
⃒ 𝑎𝑛 ∈ {0, 2}

}︃
. (2.14)

It is a measure zero uncountable and self-similar set. Notice that the number
of gaps is a countable infinity. [0, 1] ∖ 𝐶 is an open dense set and with full
measure.

42B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis (Holden-Day, Inc. San
Francisco, 1964) is a great source book for delicate issues.
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2.16 Why Cantor sets are relevant to dynamical systems
Perhaps, you might think Cantor sets are rather contrived artificial sets. It is
actually not. As noted before, complicated behavior due to nonlinearity is due
to cofinement of the phase space in a finite domain by ‘folding.’ If the invariant
set43 is not identical with 𝑀 , then it is very natural to exhibit a self-similar
structure (see Fig. 2.8). Therefore, 𝑈 itself is a Cantor set or a direct product
of Cantor set and ‘an ordinary set’ (interval, circle, etc.).

AB

C D

AB

C D

B

C

D

A

Figure 2.6: Folding can produce self similar Cantor-like invariant set. This is a part of the
famous Smale’s horseshoe.

Figure 2.7: Is the ring of Saturn cantor?

43We will discuss this in detail, but here you may intuitively understand that a set 𝑈 ⊂𝑀 such
that 𝑓(𝑈) or 𝜑𝑡(𝑈) = 𝑈 .
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2.17 Cantor set due to ‘excessively tall’ tent maps
Consider a tent map 𝑓 : R → R

𝑓(𝑥) =

{︂
𝑘𝑥 for 𝑥 ≤ 1/2,
𝑘(1− 𝑥) for 𝑥 > 1/2.

(2.15)

The points remaining in [0, 1] make a Cantor set. For 𝑘 = 3 we get the ‘stan-
dard Cantor set’ explained in Fig. 2.7.

0 1

1

0

Figure 2.8: Adjusting the slopes of a tent map, we can make a self-similar middle removed
Cantor set as an invariant set

2.18 Fat Cantor set
In the standard Cantor set, we remove 1/3 of the interval in a self-similar
fashion. What if we remove much smaller interval? If the construction is self
similar, the remaining (the resultant) Cantor set is measure zero. What if, then
we remove center pieces that are shrinking faster?

Let 𝛼 ∈ (0, 1).
(i) Remove (1/2− 𝛼/4, 1/2 + 𝛼/4) from [0, 1].
(ii) Then, remove the middle 𝛼/24 fractions from the remaining two intervals.
(iii) Repeat this procedure ad infinitum (see Fig. 2.9).

The remaining set is a closed set and has no interior and perfect. That is, a
Cantor set = nowhere dense perfect set.
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α/2

α/2
3

α/2
3

α/2
5

Figure 2.9: Construction of fat cantor set. Remove successively the scaled copies of red chunks.
Left the usual measure zero cantor set; Right: a fat cantor set with a positive length (only the
values of 𝛼 are different).

The total length of the resultant cantor set is

1− 𝛼

2
−2

𝛼

23
−22

𝛼

25
−· · · = 1− 𝛼

2

(︂
1 +

1

2
+

1

22
+ · · ·

)︂
= 1− 𝛼

2

1

1− 1/2
= 1−𝛼.

(2.16)
If 𝛼 < 1, then the resultant Cantor set is no where dense but with positive
measure, so it is called a fat Cantor set. We will actually encounter such a set
in chaos.

2.19 Very small open-dense set
Now, it should be clear how to make an open and dense set which is far from
the major part of the total set.

Let us construct a fat Cantor set of measure 1 − 𝜀 for small 𝜀 > 0. Then,
make its complement in [0, 1]. It is open and dense, but with measure 𝜀 (> 0),
which can be as small as you wish. Thus, we have constructed an open dense
set that is very hard to sample.

2.20 What is dimension?44

We usually say our space is 3D because we need three independent coordinates
to specify a point in the space uniquely. However, the space may not be metric
(i.e., distances may not be clearly defined; what is space?). Perhaps the sim-
plest idea is that our space is modeled by a 3-manifold. 3-manifold is defined
by 3D charts. The latter is defined as a 3D vector space, which we can define
mathematically (will not be discussed).

However, the concept of dimension should be ‘more primitive’; we should

44Detailed reference: Y. B. Pesin: Dimension theory in dynamical systems (Chicago Lectures in
Mathematics, Chicago UP 1997).
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not be required to have a metric, for example.

2.21 Inductive topological dimension45

A motivation comes from the fact that a bounded geometric object 𝐵 its di-
mension is the dimension of 𝜕𝐵 + 1. However, if 𝐵 is an open set 𝜕𝐵 = ∅,
even though 𝜕[𝐵] is not empty. Thus, the induction suggested above must be
formulated with some care.
The inductive dimension 𝑑I is defined as follows:
(i) 𝑑I(∅) = −1.
(ii) 𝑑I(𝐵) ≤ 𝑛 if for all 𝑥 ∈ 𝐵, there is a neighborhood 𝑈 such that an open
set 𝑉 ⊂ 𝑈 such that 𝑥 ∈ 𝑉 , [𝑉 ] ⊂ 𝑈 with 𝑑𝐼(𝜕[𝑉 ]) ≤ 𝑛− 1.
(iii) 𝑑I(𝐵) = 𝑚, if 𝑚 is the smallest number satisfying (ii).

Any totally disconnected sets46 have dimension zero. Therefore, the union of
two dimension zero sets can have a positive dimension. This does not happen for
the Lebesgue cover dimension (see 2.22): dim(𝑋∪𝑌 ) = max{dim(𝑋), dim(𝑌 )}.

2.22 Lebesgue covering dimension
Consider an open cover 𝒜 of a topological space 𝑋. Suppose for any 𝑥 ∈ 𝑋 we
can refine 𝒜 so that the covering order (= the min number of the open sets in
𝒜 covering a point is its covering order) is less than 𝑛+1. Then the minimum
value of 𝑛 is called the topological dimension of 𝑋.47

Figure 2.10: How to obtain the Lebesgue covering dimension of 𝑆1

If 𝑋 and 𝑌 are homeomorphic, both have the same topological dimension.
Cantor set has dimension zero, because we can alway find a disjoint subcover.

Every compact 𝑛-topological space can be embedded in ℛ2𝑚+1 (Whitney’s
theorem https://en.wikipedia.org/wiki/Whitney_embedding_theorem), which

45There are ‘small’ and ‘large’ inductive dimensions, but here only the former is mentioned.
46A topological space 𝑋 is totally disconnected if the connected components in 𝑋 are the one-

point sets.
47The illustrations in Wikipedia are wrong (or at best misleading).

https://en.wikipedia.org/wiki/Whitney_embedding_theorem
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will be discussed later.

A problem of this definition is that finding refinements could be daunting.

2.23 Box counting or Minkowski dimension
Let𝑁𝛿(𝐴) be the smallest number of diameter 𝛿 sets covering 𝐴. If the following
limit exists, it is called the box counting (or Minkowski) dimension of 𝐴:

dim𝑀(𝐴) = lim
log𝑁𝛿(𝐴)

− log 𝛿
. (2.17)

Notice 𝐴 and [𝐴] have the same dim𝑀 . This is not a very desirable feature,
but since it is easy to compute and in many cases it agrees with the following
Hausdorff dimension 2.25. Also an unpleasant example is dim𝑀({1/𝑛}𝑛∈N) =
1/2.

2.24 Hausdorff measure
The 𝑠-dimensional Hausdorff measure of a set 𝐴 ⊂ R𝑛 is defined by

𝐻𝑠(𝐴) = lim
𝛿→0

𝐻𝑠
𝛿 (𝐴), (2.18)

where

𝐻𝑠
𝛿 (𝐴) = inf

𝒰

{︃∑︁
𝑖

diam(𝑈𝑖)
𝑠

⃒⃒⃒⃒
⃒ 𝑈𝑖 ∈ 𝒰(𝐴)

}︃
(2.19)

with 𝒰(𝐴) being the open cover of 𝐴.
𝐻𝑠 is a decreasing function of 𝑠.

2.25 Hausdorff dimension48

The Hausdorff dimension of a set 𝐴 is defined as

dim𝐻(𝐴) = sup
𝑠
{𝑠 |𝐻𝑠(𝐴) = ∞} = inf

𝑠
{𝑠 |𝐻𝑠(𝐴) = 0}. (2.20)

The H-dimension of a totally disconnected set is less than 1.
If 𝐴 is self similar, then dim𝑀(𝐴) = dim𝐻(𝐴).

48B. SimonReal Analysis (A comprehensive course in analysis, Part 1.) (AMS 2015) 8.2 is much
more detailed.
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2.26 Hausdorff dimension of Cantor set
The Hausdorff dimension of the middle third Cantor set is log 2/ log 3. This
can be confirmed due to the self-similarity of the Cantor set.

Let us consider the middle one ninth Cantor set. The first step removed 1/9.
The next step removes 1/9 of the remaining segments. Thus, (8/9)𝑛 → 0 that
is, the resultant set is not fat. As is clear, self-similar Cantor set is measure
zero. However, intuition tells us that the middle 1/9th Cantor set should be
‘larger’ than that of the middle third Cantor set. Thus, the Hausdorff dimen-
sion is useful.49

2.27 Fractals
A geometric object whose topological dimension is different from its Hausdorff
dimension is called a fractal object. A typical examples is the von Koch curve.
Its Hausdorff dimensiion is log 4/ log 3.

49⟨⟨Hausdorff⟩⟩ Felix Hausdorff (1868-1942) did his work on Hausdorff dimension in 1919. As a
World War I veteran, he could avoid the laws against Jews, but by the late 1930s he was dismissed.
He became concerned about being shipped to the camps. On the night of Jan 25, 1942, having
learned they were to be picked up the next day to be sent to the Endenich camp, Hausdorf, his
wife and his wife’s sister committed suicide by overdose of barbital [B Simon p49 + Wikipedia].
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Figure 2.11:
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2.28 Residual property
A nowhere dense set 𝐸 is defined by 𝐸

∘
= ∅. A meager set is a set described as a

countable union of nowhere dense sets. A set 𝐴 is almost open (or Baire set) if there
is an open set such that 𝐴Δ𝑈 is meager.

A property that holds on Ω except for a meager set is called a residual property.
Needless to say, a residual set that is Ω∖ a meager set (i.e., the complement of a
meager set) is ‘smaller’ than an open dense set. A residual set can be measure zero
(but an open set is always with positive measure).

2.29 Ultimate conjectures on discrete dynamical systems due to Palis [no
explanation given here.]
Palis conjectured (See Lect 44):

Every diffeomorphism in Diff1(𝑀) can be approximated by an Axiom A dif-
feomorphism or else by one exhibiting a homoclinic bifurcation involving a
homoclinic tangency or a cycle of hyperbolic periodic saddles with different
indices.

For physicists, the following Milnor-Palis conjecture may be more interesting:50

For a typical smooth dynamical system 𝑓 : 𝑀 → 𝑀 , the global attractor 𝐴𝑓
is decomposed into finitely many minimal attractors 𝐴𝑖. Moreover, for almost
every point 𝑥 ∈𝑀 , the 𝜔-limit set 𝜔(𝑥) is equal to one of the 𝐴𝑖. Typically each
minimal attractor supports a unique SRB measure 𝜇 that governs behavior of
Lebesgue almost all points 𝑥 ∈𝑀 . The latter means that as 𝑛→ ∞

1

𝑛

𝑛−1∑︁
𝑖=0

𝜑(𝑓𝑘𝑥) →
∫︁
𝜑(𝑥)𝑑𝜇(𝑥) (2.21)

for any continuous function 𝜑 ∈ 𝐶(𝑀).

Here ‘typical’51 means:
A certain property is considered to be typical if it is satisfied for almost all pa-

50in Abel Prize 2008-2012 by M Lyubich.
51The appropriate probabilistic notion (in infinitely dimensional space of systems) goes back to
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rameters in a generic one-parameter family of systems.
For one-dimensional unimodal analytical maps the conjecture was proved.52

For example, it is still conceivable that from probabilistic point of view, the Newhouse phenomenon
is negligible.

52Lyubich, M.: Dynamics of quadratic polynomials, Ill. Parapuzzle and SBR measure. 11
Géométric complexe et systémes dynamiques. Asterisque Volume in Honor of Douady’s 60th Birth-
day, vol. 261, pp. 173- 200 (2000); Lyubich, M.: Almost every real quadratic map is either regular
or stochastic. Ann. Math. 156, 1-78 (2002); Avila, A., Lyubich, M., de Melo, W.: Regular or
stochastic dynamics in real analytic families of unimodal maps, Inv Math 154 451 (2003).
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3 Lecture 3: ODE review

3.1 Ordinary differential equation on manifold
As we have already discussed in 2.6 an ordinary differential equation on a manifold
𝑀 is

𝑥̇ = 𝑋(𝑥), (3.1)

where 𝑋 is a section of 𝑇𝑀 . You may understand this as an ordinary 𝑛-vector ODE
in a flat space R𝑛 (or its subset).

More generally, an ODE is a functional relation among a function and its deriva-
tives. Thus, (3.1) is not the most general form (see 3.2), but is the most natural
object to study what can happen for a time-evolving system whose phase space is
𝑀 .

3.2 General ODE
Let 𝑦 be a 𝑛-times differentiable function of 𝑡 ∈ 𝑅. A functional relation

𝑓(𝑡, 𝑦(𝑡), 𝑦′(𝑡), · · · , 𝑦(𝑛)(𝑡)) = 0 (3.2)

among 𝑡, 𝑦(𝑡), 𝑦′(𝑡), · · ·, 𝑦(𝑛)(𝑡) is called an ordinary differential equation (ODE)
for 𝑦(𝑡), and 𝑛 is called its order, where the domain of 𝑓 is assumed to be
appropriate. Such 𝑦(𝑡) that satisfies 𝑓 = 0 is called a solution to the ODE.

If the highest order derivative of 𝑦 is explicitly solved as

𝑦(𝑛)(𝑡) = 𝐹 (𝑡, 𝑦, 𝑦′, · · · , 𝑦(𝑛−1)) (3.3)

from 𝑓 = 0, we say the ODE is in the normal form.53

3.3 Normal form ODE is essentially first order.
Let 𝑦𝑗 ≡ 𝑦(𝑗−1) (𝑗 = 1, · · · , 𝑛). Then (3.3) can be rewritten as

𝑑𝑦1
𝑑𝑡

= 𝑦2,

· · ·
𝑑𝑦𝑛−1

𝑑𝑡
= 𝑦𝑛,

𝑑𝑦𝑛
𝑑𝑡

= 𝐹 (𝑦, 𝑦1, 𝑦2, · · · , 𝑦𝑛). (3.4)

53Notice that not normal ODE’s may have many pathological phenomena, but we will not pay
any attention to the non-normal form cases henceforth.
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That is, (3.3) has been converted into a first order ODE for a vector 𝑦 =
(𝑦1, 𝑦2, · · · , 𝑦𝑛)𝑇 .54 Any normal form 𝑛-th order scalar ODE can be converted
into the 𝑛-vector first order ODE of the form

𝑑𝑦

𝑑𝑡
= 𝑋(𝑡, 𝑦). (3.5)

Any solution 𝑦(𝑡) can be understood as an orbit (or trajectory) parametrized
with ‘time’ 𝑡 in the 𝑛-space (= phase space) in which 𝑦 lives.

3.4 Autonomous vs nonautonomous
For (3.5) the vector field 𝑋 explicitly depends on time. This means that there
is a certain ‘external’ agent modifying the vector field. Thus, generally, we are
not interested in such a system that is ‘not self-contained.’55 Such a system is
called a non-autonomous system. We are interested in autonomous systems as
described by (3.1).

3.5 When does ODE define dynamical system?
If (3.1) has a unique solution for any intial condition 𝑥 ∈ 𝑀 , we may define a
continuous-time dynamical system. We know the following:
(1) Peano’s theorem: If 𝑋 is continuous, (3.1) has a solution.
(2) Cauchy-Lipshitz uniqueness theorem: If 𝑋 satisfies a Lipshitz condition ‖𝑋(𝑥)−
𝑋(𝑥′)‖ < 𝐿‖𝑥− 𝑥′‖ (see 3.6), (3.1) has a unique solution.
(3) If 𝑋 is not Lipshitz, then the uniqueness of the solution is not guaranteed (coun-
terexamples exist).

Thus, we confine our attention to differentiable vector fields that are automatically
Lipshitz.56 However, we should understand why (1)-(3). This is the purpose of the
rest of the lecture. To prove (1) an approximate solution sequence is constructed (via
the Euler approximation), and then we prove the existence of a limit. This requires
a knowledge of functional analysis, but at least the gist of the demonstration or its
delicate point should be recognized. (2) can be understood almost geometrically (the
rectifiability theorem 3.19).

3.6 Lipschitz condition.

54You may prefer 𝑦 for 𝑦, I will maximally avoid explicit vector notation throughout the lecture
notes.

55Except perhaps the perturbation is periodic.
56cf. the mean-value theorem
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Let 𝑋 be a continuous vector function whose domain is a region 𝐷 ⊂ R𝑛. For any
compact57 set 𝐾 ⊂ 𝐷, if for any 𝑦1 and 𝑦2 both in 𝐾 there is a positive constant 𝐿𝐾
(which is usually dependent on 𝐾) such that

|𝑋(𝑦1)−𝑋(𝑦2)| ≤ 𝐿𝐾 |𝑦1 − 𝑦2|, (3.6)

then 𝑋 is said to satisfy a Lipschitz condition on 𝐷.

A 𝐶1 function is Lipschitz continuous due to the mean value theorem. If a vector
field is 𝐶1, then it is Lipshitz.

3.7 Peano’s existence theorem
Suppose 𝑋 in (3.1) is continuous in a bounded closed region 𝐺 ⊂ 𝑀 , then for any
𝑥 ∈ 𝐺 there is at least one integral curve passing through it in 𝐺.

The proof may be obtained with the aid of Arzela’s theorem 3.11 that can show the
existence of the convergence of the Euler approximation sequence.58

3.8 Euler approximation
Consider

𝑥̇ = 𝑋(𝑥(𝑡)) (3.7)

for the time span [0.𝑇 ]. if we approximate the derivative with a finite difference
𝑥̇ ≃ [𝑥(𝑡+Δ𝑡)− 𝑥(𝑡)]/Δ𝑡 we may write the ODE as

𝑥(𝑡+Δ𝑡) = 𝑥(𝑡) + Δ𝑡𝑋(𝑥(𝑡)). (3.8)

Therefore, we can make an approximate function 𝜙𝑖 by making a piecewise connec-
tion of adjacent time points {𝑥(𝑛Δ𝑡𝑖)}, where Δ𝑡𝑖 is the time increment. We make
an approximation sequence {𝜙𝑖} for Δ𝑡𝑖 > Δ𝑡𝑖+1 → 0.

Does this sequence converges to a solution (have an accumulation point corre-
sponding to a solution)?

3.9 Strategy to prove Peano’s theorem
First, we must show that {𝜙𝑖} for Δ𝑡𝑖 > Δ𝑡𝑖+1 → 0 has an accumulation point.

57‘Compact’ means in a finite dimensional space ‘closed and bounded’.
58Kolmogorov-Fomin p102
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Since the totality of continuous functions [0, 𝑇 ] → 𝑀 is not compact (nor relative
compact), to show the existence of an accumulation point is not trivial. However,
Arzela’s theorem tells us that {𝜙𝑖} is compact. Thus, accumulation points exist (this
is why we cannot prove the uniqueness).

Then, we show that the limit indeed satisfies the original ODE.
As you see, we must understand the concept of compactness in a functional space

(or infinite dimensional space).

3.10 Review of compactness59

If any open covering of a set 𝑆 has a finite subcover,60 𝑆 is called a compact
set.
If the closure of 𝑆 is compact, we say 𝑆 is relative compact.

If a space is finite-dimensional, then bounded closed set is automatically
compact. It is thanks to the Bolzano-Weierstrass theorem (= bounded se-
quences must have an accumulation point; a finite dimensional bounded closed
set is countably compact). However, if the dimension is not finite, this is not

true: think of {𝑒𝑛}, where 𝑒𝑛 = (0, · · · , 0,
𝑛

1, 0, · · ·).
We can make a function space 𝐶[0,𝑇 ] as a metric space by introducing a sup

metric 𝜌(𝑓, 𝑔) = sup𝑡∈[0,𝑇 ] |𝑓(𝑡) − 𝑔(𝑡)|, but the space is obviously not finite
dimensional. We use
Theorem A necessary and sufficient condition for a metric space to be com-
pact is: (i) totally bounded and (ii) complete.

To understand this theorem we must understand:
* ‘totally bounded’: A metric space𝑀 is totally bounded if for any 𝜀 > 0 there
is an 𝜀 net 𝐴 consisting of finitely many points. That is ∀𝑦 ∈ 𝑀 ∃𝑥 ∈ 𝐴 such
that 𝜌(𝑥, 𝑦) < 𝜀.
* complete: any Cauchy sequence converges.61

[Demo]
If a metric space 𝐴 is compact, then it is totally bounded: If not, then there is
𝑒0 > 0 such that there is no finite 𝜀0-net for 𝐴. Thus, we can have an infinite
point set {𝑎𝑖 ∈ 𝐴} such that 𝜌(𝑎𝑖, 𝑎𝑗) > 𝜀0. Thus, {𝑎𝑖} is an infinite point
set without an accumulation point. Thus, 𝐴 is not compact. The necessity of
completeness is obvious.

To show (i)+(ii) implying compactness, we have only to show that any
bounded infinite set has an accumulation point. Consider an infinite sequence

59https://www.dropbox.com/home/ApplMath?preview=AMII-ElementaryCheckList.pdf

may be useful as your analysis rudiment checklist.
60a cover consisting of a subset of the original cover.
61If the distance is 𝐿2,then 𝐶 is not complete. KF3.1

https://www.dropbox.com/home/ApplMath?preview=AMII-ElementaryCheckList.pdf
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{𝑥𝑖}. Take a 1-net. Then in a ball 𝐵 within distance one from at least one of
the net point are infinitely many points in this sequence. 𝐵 is totally bounded,
we can repeat the argument with distance 1/2. Repeating this, we can con-
struct a Cauchy sequence. Thanks to the completeness, there must be a limit
point.

Thanks to this theorem and the fact that a closed subset of a complete space
is complete, we can conclude that in a complete metric space the total bound-
edness is enough to guarantee the relative compactness os any subset 𝑀 .

3.11 Arzela’s theorem62

Theorem [Arzela] A set of function Φ ⊂ 𝐶[0,𝑇 ] is relative compact iff Φ is
uniformly bounded and equicontinuous.

To understand this theorem we must understand:
* Uniformly bounded: For any 𝑓 ∈ Φ and for any 𝑡 ∈ [0, 𝑇 ], |𝑓(𝑥)| ≤ 𝐾 for
some positive 𝐾.
* Equicontinuous: For any 𝜀 > 0 there is 𝛿 > 0 such that for any 𝑓 ∈ Φ
|𝑓(𝑡)− 𝑓(𝑡′)| < 𝜀 if |𝑡− 𝑡′| < 𝛿.
[Demo]
Here we prove the sufficiency: 𝐶[0,𝑇 ] is a complete metric space, since the
convergence in sup norm means the uniform convergence on [0, 𝑇 ]. Therefore,
we have only to check the total boundedness of 𝐶[0,𝑇 ]. Since Φ is uniformly
bounded and equicontinuous, we can choose 𝛿 > 0 appropriately so that for all
𝜙 ∈ Φ

|𝜙| < 𝐾, |𝜙(𝑥)− 𝜙(𝑥′)| < 𝜀 if |𝑥− 𝑥′| < 𝛿. (3.9)

We construct an 𝜀-net consisting of piecewise linear functions. The idea must
be intuitively grasped from the figure 3.1. Make the totality of piecewise linear
functions connecting NE, E or SE arrows on the lattice. This is a finite 𝜀-net.
Therefore, Φ is compact.

3.12 Proof of Peano’s theorem
We have constructed the piecewise linear continuous approximation sequence {𝜙𝑖(𝑡)} ⊂
𝐶[0,𝑇 ]. It is uniformly bounded and equicontinuous. Therefore, Arzela’s theorem tells

us that there is a uniformly convergent subsequence in {𝜙(𝑖)(𝑡)}, converging to 𝜙(𝑡).
The remaining task is to show that for any 𝜀 > 0 we can choose Δ𝑡 small enough to

62A readable proof is given in Kolmogorov-Fomin.
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Figure 3.1: A representative piecewise linear approximate function (red) making an 𝜀-net for
bounded functions in 𝐶[0.𝑇 ].

make ⃒⃒⃒⃒
𝜙(𝑡+Δ𝑡)− 𝜙(𝑡)

Δ𝑡
−𝑋(𝜙(𝑡))

⃒⃒⃒⃒
< 𝜀. (3.10)

To this end we have only to show for sufficiently large 𝑘⃒⃒⃒⃒
𝜙(𝑘)(𝑡+Δ𝑡)− 𝜙(𝑘)(𝑡)

Δ𝑡
−𝑋(𝜙(𝑘)(𝑡))

⃒⃒⃒⃒
< 𝜀. (3.11)

We can formally demonstrate this,63 but intuitively the closeness of 𝜙(𝑘) to 𝜙 and
continuity of 𝑋 implies all the terms are close to the limits.

3.13 Nonuniqueness cases
Peano noted that for 𝑋(𝑥) = 3𝑥2/3 𝑥 = 0 and 𝑥 = 𝑡3 are solutions satisfying (0, 0)
as the starting point.64 That is, continuity of 𝑋 is not enough for the determinacy.
However, differentiability is not needed.

If 𝑋 is Hölder continuous with the exponent less than 1 at a point, the uniqueness
is lost at the point.

[Hölder continuity].

63e.g., see Kolmogorov-Fomin
64More generally, 𝑋 = 𝑥1−1/𝑛 (𝑛 ∈ N+).
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If a function 𝑓 satisfies
|𝑓(𝑥)− 𝑓(𝑦)| ≤ 𝐿|𝑥− 𝑦|𝛼 (3.12)

on its domain for constants 𝐿 and 𝛼 ∈ (0, 1), 𝑓 is said to be Hölder continuous of order 𝛼.

The physical reason for this nonuniqueness is ‘forgetting the initial condition’ due
to super-ballistic acceleration.

3.14 Relevance to physics of nonuniqueness cases?65

In a fully developed turbulence the velocity field becomes not Lipshitz but only
Hölder with 𝛼 ≃ 1/3 (if we believe in the Kolmogorov spectrum). Thus, the motion
of a particle advected by the flow becomes non-deterministic.

If we consider a particle in a potential for 𝛼 ∈ (0, ‘)

𝑉 (𝑥) = − 1

1 + 𝛼
|𝑥|1+𝛼 (3.13)

the classical mechanics gives the following equation of motion:

𝑥̇ = 𝑣, 𝑣̇ = |𝑥|𝛼sign(𝑥). (3.14)

Note the superballistic nature of 𝑣̇ around 𝑥 = 0. However, ‘a physically realizable
potential will however exhibit a power-law scaling as in (3.13) only over a limited
range of x-values, with an inner or short-distance cutoff ℓ and an outer or large-
distance cut-off 𝐿. The latter may not be very serious, but the former is serious.

Eyink and Drivas ‘mollified’ the potential with a smooth short-range cutoff, and
then considered (1D) quantum mechanical potential (although not trapping) prob-
lem. The wave packet is not max at the origin, and even in the classical limit
‘stochasticity’ remains.

3.15 Phase flow
Let a 𝑛-dynamical system

𝑥̇ = 𝑋(𝑥) (3.15)

be defined on a domain 𝑈 . We can imagine a flow field on 𝑈 described by the vector
field 𝑋. It is called the phase flow because it flows the phase space = the state space;
in our case the state is specified by 𝑥(𝑡) at time 𝑡, so the space in which 𝑥 lives is

65G L Eyink and T D Drivas, Quantum spontaneous stochasticity arXiv: 1509:04941 (2015).
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our phase space.
We can imagine a trajectory of a point passively flowing with this flow field. It is

called the phase flow.

You can use the following software to see examples of 2-vector fields and corre-
sponding phase flows for various initial conditions: https://media.pearsoncmg.
com/aw/ide/idefiles/media/JavaTools/twoddfeq.html

Figure 3.2: Vector-Flow demo

3.16 Direction field and solution curve
For (3.15) its direction field is a vector field (1, 𝑋(𝑥)) on each (𝑡, 𝑥) in 𝑇 ×𝑈 , where
𝑇 is the set of time under consideration. Again we can imagine a trajectory of a
point passively flowing with this flow field. It is called the graphs of the solutions of
(3.15).

You can use the following software to see examples of 1-dynamical systems (may
be non-autonomous) and corresponding solution graphs for various initial con-
ditions:https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/
exunqtrg.html

3.17 Singular points
A singular point of a vector field 𝑋 is point where the vector field vanishes.

The essence of the general theory of ODE is that as long as the vector field is

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/twoddfeq.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/twoddfeq.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/exunqtrg.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/exunqtrg.html
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Figure 3.3: Direction field demo. You can play a shooting game.

nonsingular, unique existence of the solutions and their ‘maximally’ nice properties
(3.21, 3.24) are guaranteed. We proceed as geometrically and intuitively as possible.

3.18 Cauchy-Lipschitz uniqueness theorem.66

For (3.15), if 𝑋 satisfies a Lipschitz condition on 𝐷, and if there is a solution passing
through 𝑥0 ∈ 𝐷, it is unique.

Remark: Even if the Lipshitz condition is not satisfied, If the variables are separable as

𝑑𝑦

𝑑𝑥
=
𝑌 (𝑦)

𝑋(𝑥)
, (3.16)

and 𝑋 and 𝑌 are continuous and not zero near (𝑥0, 𝑦0), then the solution near this point is unique.

However, the condition is important as we see in the next.

3.19 Rectifiability theorem for vector field
In a sufficiently small neighborhood of any nonsingular point a differentiable vector
field is diffeomorphic to the constant field 𝑒1 = (1, 0, · · · , 0)𝑇 .

The graph of the solution never crosses at a non-singular point.

If the original field is 𝐶𝑟, the diffeo can be 𝐶𝑟.
All the basic theorems are more or less straightforward corollaries of the funda-

66AMM 116 61 Does Lipschitz with Respect to 𝑥 Imply Uniqueness for the Differential Equation
𝑦 = 𝑓(𝑥, 𝑦)? Author(s): José Ángel Cid and Rodrigo López Pouso
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Figure 3.4: Rectification of a vector field

mental theorem.

3.20 Extension theorem67

An extension of the solution 𝜙 is a solution which coincides with 𝜙 on the (time)
interval on which 𝜙 is defined and which is defined on a greater (time) interval.

Theorem [The extension theorem] Let 𝐾 be a compact subset of the domain of the
ODE (3.15). Then, every solution of this equation with an initial condition in 𝐾 can
be extended to the the boundary of 𝐾 of infinitely in time (to ±∞).

3.21 Continuous dependence on initial conditions.
If the vector field is Lipschitz continuous (3.6), then the solution at time 𝑡 depends
on the initial condition continuously.

Although this should be intuitively clear, since we need a more quantitative state-
ment later, let us estimate the bounds. We need an important inequality:

3.22 Gronwall’s inequality
Let 𝑢, 𝑣 : [𝑎, 𝑏] → R be continuous nonnegative functions satisfying

𝑢(𝑡) ≤ 𝛼 +

∫︁ 𝑡

𝑎

𝑢(𝑠)𝑣(𝑠)𝑑𝑠 (3.17)

for some 𝛼 (≥ 0) and for ∀𝑡 ∈ [𝑎, 𝑏]. Then,

𝑢(𝑡) ≤ 𝛼 exp

(︂∫︁ 𝑏

𝑎

𝑣(𝑠)𝑑𝑠

)︂
. (3.18)

67Arnold I 2.5 p17
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[Demo]
If 𝛼 = 0, then 𝑢(𝑡) = 0, so we assume 𝛼 > 0. Let us define 𝜔(𝑡) as

𝜔(𝑡) = 𝛼 +

∫︁ 𝑡

𝑎

𝑢(𝑠)𝑣(𝑠)𝑑𝑠. (3.19)

Obviously, 𝑢(𝑡) ≤ 𝜔(𝑡).
𝜔(𝑎) = 𝛼 and 𝜔(𝑡) ≥ 𝛼 > 0. As 𝜔′(𝑡) = 𝑢(𝑡)𝑣(𝑡) ≤ 𝑣(𝑡)𝜔(𝑡), we have

𝜔′(𝑡)/𝜔(𝑡) ≤ 𝑣(𝑡). (3.20)

Integrating this, we get the inequality.

3.23 Initial condition dependence
We assume 𝑋 ∈ 𝒳 (𝑀) is Lipschitz (usually 𝐶𝑟) with the Lipschitz constant 𝐿 and
𝑀 is compact. Make two solutions starting from 𝑥0, 𝑦0 ∈𝑀 :

𝑥(𝑡) = 𝑥0 +

∫︁ 𝑡

0

𝑋(𝑥(𝑠))𝑑𝑠, 𝑦(𝑡) = 𝑦0 +

∫︁ 𝑡

0

𝑋(𝑦(𝑠))𝑑𝑠. (3.21)

Then,

𝑥(𝑡)− 𝑦(𝑡) = 𝑥0 − 𝑦0 +

∫︁ 𝑡

0

[𝑋(𝑥(𝑠))−𝑋(𝑦(𝑠))]𝑑𝑠. (3.22)

This means

‖𝑥(𝑡)−𝑦(𝑡)‖ ≤ ‖𝑥0−𝑦0‖+
⃦⃦⃦⃦∫︁ 𝑡

0

[𝑋(𝑥(𝑠))−𝑋(𝑦(𝑠))]𝑑𝑠

⃦⃦⃦⃦
≤ ‖𝑥0−𝑦0‖+

∫︁ 𝑡

0

‖𝑋(𝑥(𝑠))−𝑋(𝑦(𝑠))‖𝑑𝑠.

(3.23)
Using the Lipschitz constant we have

‖𝑥(𝑡)− 𝑦(𝑡)‖ ≤ ‖𝑥0 − 𝑦0‖+ 𝐿

∫︁ 𝑡

0

‖𝑥(𝑠)− 𝑦(𝑠)‖𝑑𝑠. (3.24)

Now, we can apply Gronwall’s inequality to obtain

‖𝑥(𝑡)− 𝑦(𝑡)‖ ≤ 𝑒𝐿𝑇‖𝑥0 − 𝑦0‖. (3.25)

That is, the solution must also be Lipschitz continuous. This explicitly proves 3.21.
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3.24 Smooth dependence on parameter.
If the vector field is smooth, then the solution at finite time is as smooth as the vector
field. If the vector field is holomorphic, then the solution is also holomorphic. Then,
we can use perturbation theory to obtain the solution in powers of the parameter.
This was the idea of Poincaré.

3.25 Picard’s successive approximation method68

𝑥0(𝑡) = 𝑥(0), (3.26)

𝑥𝑘+1(𝑡) = 𝑥(0) +

∫︁ 𝑡

0

𝑣(𝑠, 𝑥𝑘(𝑠))𝑑𝑠. (3.27)

[Demo] (may never be given explicitly)
First, we get formally

𝑥(𝑡) = 𝑥(0) +

∫︁ 𝑡

0

𝑣(𝑠, 𝑥(𝑠))𝑑𝑠. (3.28)

If the limit 𝑘 → ∞ of 𝑥𝑘(𝑡) exists, then obviously (3.27) gives (3.28). Therefore, we
need a uniform convergence of the sequence. See Arzela 3.11.

3.26 History69

‘Differential equations’ began with Leibniz, the Bernoulli brothers and others from
the 1680s, not long after Newton’s ‘ fluxional equations’ in the 1670s. Applications
were made largely to geometry and mechanics; isoperimetrical problems were exer-
cises in optimisation.”
According to:
The role of the concept of construction in the transition from inverse tan-
gent problems to differential equations. Henk J. M. Bos p2733
Tangent problems—given a curve, to find its tangents at given points—are as old
as classical Greek mathematics. ‘Inverse tangent problems’ was the name coined in
the seventeenth century for problems of the type: given a property of tangents, find
a curve whose tangents have that property. It seems that the first such problem
was proposed by Florimod De Beaune in 1639. Much of the activities in the early

68Arnold 2.4c p16
69The History of Differential Equations, 1670-1950 Organised by Thomas Archibald (Wolfville)

Craig Fraser (Toronto) Ivor Grattan-Guinness (Middlesex)
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infinitesimal calculus (second half of the seventeenth century) were motivated by
inverse tangent problems, many of them suggested by the new mechanical theory.

The transition to differential equations occurred around 1700. This transition
was much more than a simple translation from figure to formula, from geometry to
analytical formalism.

In the seventeenth century to solve this problem is to construct the curve required
in the problem. Descartes had restricted geometry to algebraic curves. But inverse
tangent problems often had non-algebraic curves as solution. Consequently math-
ematicians went outside the Cartesian demarcation of geometry and consequently
lost a clear and shared conception of what it meant to solve a differential equation;
indeed, the status of differential equations became fuzzy: were they problems? were
they objects? When were their solutions satisfactory? Many puzzling developments
in early analysis, and especially delays in developments expected with hindsight, can
be explained by the tenacity of the older ideas on problem solving.
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4 Lecture 4: Singularity

4.1 General study of flow of vector field
We have studied what happens in the domain where there is no singularity of 𝑋. We
can rectify local patches and then connect them maximally to obtain a unique flow.
Now, we are left with singularities.

Since 𝑋 vanishes there, the flow should be slow in the neighborhood, so we have
only to study it in some small neighborhood of the singularities. Thus, often lin-
earization of the original 𝑋 around singularities is effective.

Especially when the singularity is hyperbolic (i.e., linearized vector field may be
expressed in terms of linear operator whose spectrum is not on the imaginary axis),
the linearized system and the original system are homeomorphic (Hartman’s theo-
rem), so we may study the stability of singularities by linearization.

4.2 Simple singularity70

𝑝 ∈ 𝑀 is a simple singularity of 𝑋 ∈ 𝒳 𝑟(𝑀) if 𝐷𝑋𝑝 : 𝑇𝑝𝑀 → 𝑇𝑝𝑀 does not have
zero as an eigenvalue.71; in other words, the linearized vector field at 𝑝 may be writ-
ten as 𝐴𝑥 (𝐴 = 𝐷𝑋𝑝) and 𝐴 is non-singular.

4.3 Simple singularities are isolated
𝑀 as in 4.2. All the 𝐶𝑟-vector fields on 𝑀 sufficiently close to 𝑋 has a simple sin-
gularity near 𝑝. The position of the zero depends continuously on the vector field.72

This should be intuitively clear, since the solution to 𝑋 = 0 is locally unique, because
𝐴 is non-singular, and the solution should depend continuously on 𝑋.

Since the derivative of 𝑋 ‘does not vanish’, 𝑋 and the vector field everywhere 0
(= the zero section of 𝑇𝑀) should cross transversally.73 Thus, the isolation of simple
singularities should be obvious.

70Palis-de Melo p55-
71hyperbolicity ⇒ simplicity, but not vice versa.
72An official expression is: There exist a neighborhood 𝒩 (𝑋), a neighborhood 𝑈𝑝 of 𝑝 and a

continuous function 𝜌 : 𝒩 (𝑀) → 𝑈𝑝 such that all 𝑌 ∈ 𝒩 (𝑀) has a unique zero 𝜌(𝑌 ) ∈ 𝑈𝑝. Palis-de
Melo Proposition 3.1.

73Proposition 3.2 of Palis-de Melo.
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4.4 Vector fields with only simple singularities are structurally stable
More precisely, vector fields 𝒢0 with only simple singularities are open dense in
𝒳 𝑟(𝑀). This follows from 4.3. Hyperbolic vector fields are also open dense.

The concept for diffeo 𝑓 corresponding to simplicity is being elementary: if 1 (i.e.,
identity) is not an eigenvalue of 𝐷𝑝𝑓 , 𝑓 is elementary.

4.5 Linearization of ODE around singularity

For (̇𝑥) = 𝑋(𝑥) with a smooth 𝑋, near its singularity 𝑋 should be small, so if we
take the singularity at the origin, 𝑥 is small and 𝑥̇ is small. Thus, it is a natural idea
that the linearized equation

𝑥̇ = 𝐴𝑥 (4.1)

with

𝐴 =
𝑑𝑋

𝑑𝑥 𝑥=0
(4.2)

can tell us the local behavior of the system near the singularity.
The justification of the idea is not always possible, but if 𝐴 has no pure imaginary

eigenvalues (the so-called hyperbolic case),74 the idea goes through. Therefore, let
us study linear systems (4.1) fairly in detail first.

You must sense the logical error in the following argument physicists always use:
“Let us assume ‖𝑥‖ is small near the singularity 𝑝. Then, we may use linearization
(4.1) around 𝑝. Since all the eigenvalues have negative real parts, we may conclude
𝑝 is a stable fixed point,” but we have assumed from the start that 𝛿𝑥 doe not grow
(and small to linearize the system!).

4.6 Exponential function of linear operators
If a linear operator is bounded (that is, sup‖𝑥‖=1 ‖𝐴𝑥‖ = ‖𝐴‖ <∞)

𝑒𝐴 =
∞∑︁
𝑛=0

𝐴𝑛

𝑛!
(4.3)

is well defined (‖𝑒𝐴‖ ≤ 𝑒‖𝐴‖).
if [𝐴,𝐵] = 0, then

𝑒𝐴𝑒𝐵 = 𝑒𝐴+𝐵 = 𝑒𝐵𝑒𝐴. (4.4)

74Such matrices are open dense. Cf,˙ 5.7.
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Using this, the general solution to (4.1) reads

𝑥(𝑡) = 𝑒𝐴𝑡𝑥0. (4.5)

To compute the matrix representation of 𝑒𝐴 it is convenient to ‘diagonalize’ 𝐴.
However, unless 𝐴 is normal (𝐴𝐴* = 𝐴*𝐴) (and also allow the use of complex eigen-
values), this is not possible. If 𝐴 is defined on a complex vector field, we can still
use the Jordan normal form (see appendix). Therefore, we use a trick called ‘com-
plexification.’

4.7 Complexification75

Since eigenvalues of real matrices are generally complex, if we wish to use linear
operator theory fully, it is convenient to consider 𝐴 as an operator on C𝑛 instead of
its original domain R𝑛. To realize this, we introduce ‘complexification’ 𝒞.

Since any vector in C𝑛 may be written as 𝑎 + 𝑖𝑏 (𝑎, 𝑏 ∈ R𝑛), we can complexify
𝐴→ 𝒞(𝐴) = 𝐴 according to

𝒞(𝐴)(𝑎+ 𝑖𝑏) = 𝐴𝑎+ 𝑖𝐴𝑏. (4.6)

Since 𝒞 is linear by definition, to preserve the algebraic (i.e., the ring) structure
of matrices, we should show the following:

𝒞(𝐴𝐵) = 𝒞(𝐴)𝒞(𝐵). (4.7)

From this we know
𝒞(𝑒𝐴) = 𝑒𝒞(𝐴). (4.8)

We can also show (recall the definition of the norm)

‖𝒞(𝐴)‖ = ‖𝐴‖. (4.9)

4.8 Complex and real diagonalization of real matrix
We know normal matrices (satisfying 𝐴𝐴* = 𝐴*𝐴) may be unitary diagonalized on

75A very kind explanation is found in M. W. Hirsch and S. Smale, Differential equations, dy-
namical systems and linear algebra (Academic Press, 1974), Chapter 4.
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the complex vector space.76 However, this is not generally possible on the real vector
space. The eigenvectors corresponding to 𝜆 and 𝜆 𝑒1 and 𝑒2 (respectively):

𝐴𝑒1 = 𝜆𝑒1, 𝐴𝑒2 = 𝜆𝑒2 (4.10)

cannot be chosen in R𝑛. Notice that we may choose 𝑒2 = 𝑒1, so we choose two real
vectors 𝑎 = 𝑒1 + 𝑒2 and 𝑏 = (𝑒1 − 𝑒2)/𝑖 among the basis.77 Diagonalization of 𝐴 is
not possible, but still ‘almost diagonalized’ real matrix may be obtained.

To make the situation crisp clear, consider a 2×2 matrix that can be diagonalized
on C2 as (︂

𝜆 0

0 𝜆

)︂
(4.11)

with the basis {𝑒1, 𝑒2}. 𝜆 = 𝛼+ 𝑖𝛽. If we use the basis {𝑎, 𝑏} the above diagonalized
matrix reads (︂

𝛼 𝛽
−𝛽 𝛼

)︂
(4.12)

Since the ‘real translation’ is straightforward, we consider everything on C𝑛.

4.9 Complexification of linear ODE
(4.1) on R𝑛 can be complexified as

𝑧̇ = 𝒞(𝐴)𝑧, (4.13)

where 𝑧 = 𝑥+ 𝑖𝑦. This consists of two real equations 𝑥̇ = 𝐴𝑥 and 𝑦̇ = 𝐴𝑦.
How to recover the real solution from the full complexified computation is ex-

plained in 4.8.78

4.10 Singularity of 2-real vector field
The singularity of 2-dimensional system may be classified according to the Jordan
normal form of 𝐴.
(1) 0 is a sink: stable fixed point.

(a)

(︂
𝜆 0
0 𝜇

)︂
(𝜆, 𝜇 < 0), (b)

(︂
𝑎 𝑏
−𝑏 𝑎

)︂
, (𝑎 < 0, 𝑏 ̸= 0), (c)

(︂
𝜆 1
0 𝜆

)︂
(𝜆 < 0).

(4.14)

76Normality is a necessary and sufficient condition for 𝐴 to be diagonalized by a unitary trans-
formation.

77If you wish to normalize them, divide them with
√
2.

78Detailed examples can be seen in Hirsch+Smale, so I will not dwell on examples.
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For case (b) the origin is called a focus. (c) is a bicritical node.79

(2) 0 is a source: in any direction it is unstable.

(d)

(︂
𝜆 0
0 𝜇

)︂
(𝜆, 𝜇 > 0), (e)

(︂
𝑎 𝑏
−𝑏 𝑎

)︂
, (𝑎 > 0, 𝑏 ̸= 0), (f)

(︂
𝜆 1
0 𝜆

)︂
(𝜆 > 0).

(4.15)
For case (e) the origin is called a focus. (f) is a bicritical node.

(3) 0 is a saddle: there is one stable direction and one unstable direction.

(g)

(︂
𝜆 0
0 𝜇

)︂
(𝜆 > 0 > 𝜇). (4.16)

These are hyperbolic cases. The phase portraits look like Fig. 4.1.

a

d

b c

e

g

f

λ<μ<0 λ=μ<0 μ<λ<0

λ>μ>0 λ=μ>0 μ>λ>0

λ>0>μ

λ<0

λ>0

a<0<b a,b<0

a,b>0 a>0>b

Figure 4.1: Linear flows on the plane

The non-hyperbolic cases cannot be classified without referring to the higher order
terms. That is, linearization does not preserve qualitative nature of the singularity.

(4) Non-hyperbolic case.

(h)

(︂
0 𝑏
−𝑏 0

)︂
(𝑏 ̸= 0), (i)

(︂
0 1
0 0

)︂
. (4.17)

79In this case the flow looks, e.g., like 𝑥 = 𝑒𝑡𝜆𝑥0 + 𝑡𝑒𝑡𝜆𝑦0, 𝑦 = 𝑒𝑡𝜆𝑦0.
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a b c

Figure 4.2: Another illustration of (hyperbolic) singularities Black ‘before’, Green, ‘after’ The
start is the critical point = fixed points. a: sink, b: source, c: saddle

Classification (see Fig. 4.3 for an example): https://media.pearsoncmg.com/aw/

ide/idefiles/media/JavaTools/lnclppan.html. This demo inevitably includes
non-simple zero cases. Watch what happens.

Figure 4.3: Classification

Appendix 1. Jordan normal form

4.11 Generalized eigenspace80

The eigenvalues are the roots of the characteristic equation

det (𝐴− 𝑥𝐼) =
∏︁
𝑘

(𝜆𝑘 − 𝑥)𝑛𝑘 = 0. (4.18)

80A very kind explanation of the Jordan normal form is found in M. W. Hirsch and S. Smale,
Differential equations, dynamical systems and linear algebra (Academic Press, 1974), Chapter 6.

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lnclppan.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lnclppan.html
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Here 𝑛𝑘 is the multiplicity of 𝜆𝑘. Ker(𝐴− 𝜆𝑘𝐼) = 𝑉𝑘 is called the eigenspace of 𝜆𝑘.
81

Ker(𝐴− 𝜆𝑘𝐼)
𝑛𝑘 = 𝑉𝑘 is called the generalized eigenspace of 𝐴 belonging to 𝜆𝑘.

4.12 The fundamental decomposition theorem
Let 𝐴 be a linear operator on 𝑉 = C𝑛. Then, the dimension of the generalized eigenspace
𝑉𝑘 is 𝑛𝑘 and ⊕𝑘𝑉𝑘 = 𝑉 .

This is proved in 4.13 and 4.14.

4.13 Basic decomposition lemma
The key part of 4.12 is: for any linear 𝐴 : 𝑉 → 𝑉

𝑉 =𝑀 ⊕𝑁, (4.19)

where 𝑀 = ∩𝑗∈N+𝐴𝑗𝑉 and 𝑁 = ∪𝑗∈N+Ker(𝐴𝑗).82

[Demo] Let 𝑀𝑗 = 𝐴𝑗𝑉 and 𝑁𝑗 = Ker(𝐴𝑗). Then,

0 = 𝑁0 ⊂ 𝑁1 ⊂ · · · ⊂ 𝑁𝑗 ⊂ 𝑁𝑗+1 ⊂ · · · ⊂ 𝑉, (4.20)

𝑉 = 𝑀0 ⊃𝑀1 ⊃ · · · ⊃𝑀𝑗 ⊃𝑀𝑗+1 ⊃ · · · ⊃ 0. (4.21)

Since 𝑉 is finite dimensional, there must be 𝑛,𝑚 ∈ N+ such that 𝑗 ≥ 𝑚 ⇒ 𝑀𝑗 = 𝑀𝑚 and
𝑗 ≥ 𝑛 ⇒ 𝑁𝑗 = 𝑁𝑛. Let 𝑀 = 𝑀𝑚 and 𝑁 = 𝑁𝑛. Since 𝐴𝑛𝑀 = 𝑀 , if 𝑥 ∈ 𝑀 is not
zero, then 𝐴𝑛𝑥 ̸= 0. On the other hand, 𝐴𝑛𝑁 = 0, so for any 𝑦 ∈ 𝑁 𝐴𝑛𝑦 = 0. Therefore,
𝑀 ∩𝑁 = {0}.

For any 𝑦 ∈ 𝑉 let 𝑥 ∈ 𝑀 such that 𝐴𝑚𝑥 = 𝐴𝑚𝑦; such 𝑥 exists, because 𝐴𝑚𝑦 ∈ 𝑀 and
𝐴𝑚 is reversible on 𝑀 . Then, 𝑧 = 𝑦 − 𝑥 is in 𝑁𝑚 ⊂ 𝑁 , so 𝑉 =𝑀 ⊕𝑁 .

4.14 Concluding demo of fundamental decomposition theorem
Instead of 𝐴, let us consider 𝐴𝑘 = 𝐴 − 𝜆𝑘𝐼. Let us define 𝑀𝑘 = ∩𝑗∈N+𝐴𝑗

𝑘𝑉 and 𝑁𝑘 =

∪𝑗∈N+Ker(𝐴𝑗
𝑘). Applying the fundamental decomposition theorem to 𝐴1, we get 𝑉 = 𝑁1 ⊕

𝑀1.
Now, restricting 𝐴2 on 𝑀1 we can repeat the argument above. 𝑀1 = 𝑁2 ⊕𝑀 ′

2, where
𝑀 ′

2 is the orthogonal complement of 𝑁2 in 𝑀1. Thus, we would arrive at

𝑉 = ⊕𝑘𝑁𝑘. (4.22)

If we prove 𝑁𝑘 = 𝑉𝑘, we are done. Obviously 𝑉𝑘 ⊂ 𝑁𝑘. This follows from the following
Lemma. We need one definition:

𝑁 is a nilpotent operator if for some 𝑚 ∈ N+ 𝑁𝑚 = 0 (in the domain). Notice that
𝐴𝑘 = 𝐴− 𝜆𝑘𝐼 is a nilpotent operator, if restricted to 𝑁𝑘.

Lemma. Let 𝑛 be the smallest positive integer such that 𝑁𝑛𝑥 = 0 for 𝑥 ∈ 𝑉 . Then,
{𝑥,𝑁𝑥, · · · , 𝑁𝑛−1𝑥} is a basis of subspace 𝑍 = {𝑥,𝑁𝑥, . . . , 𝑁 𝑗𝑥, · · ·} (called a cyclic sub-
space) of 𝑉 .

81If ⊕𝑘𝑉𝑘 = C𝑛, we say 𝐴 is unitary diagonalizable. Notice that, generally speaking, even if you
collect all the eigenvectors, the result can only span a genuine subset of the original vector space.

82Here, the demonstration follows Hirsch-Smale, but if you know the basic theorem of linear
algebra Im(𝐴) + Ker(𝐴) = 𝑉 for any linear operator 𝐴, it is obvious.
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[Demo] Since 𝑁𝑛𝑥 = 0, obviously 𝑄 = {𝑥,𝑁𝑥, · · · , 𝑁𝑛−1𝑥} can generate 𝑍. Thus, we have
only to show that 𝑄 is linearly independent. If not,

𝑛−1∑︁
𝑘=1

𝑎𝑘𝑁
𝑘𝑥 = 0 (4.23)

has a nontrivial solution with the first nonzero coefficient 𝑎𝑗 . Operating 𝑁𝑛−𝑗−1 we have

𝑎𝑗𝑁
𝑛−1𝑥+𝑁𝑛−𝑗−1

𝑛−1∑︁
𝑘=𝑗+1

𝑎𝑘𝑁
𝑘𝑥 = 𝑎𝑗𝑁

𝑛−1𝑥 = 0. (4.24)

This contradicts the definition of 𝑛.

4.15 𝐴 on 𝑉 𝑘

Since 𝑉 is decomposed into the direct sum of 𝑉𝑘, we have handle each subspace separately.
Let us consider 𝐴 restricted on 𝑉𝑘. Let 𝑆 = 𝜆𝑘𝐼 (here 𝐼 is 𝑛𝑘-dimensional identity) and
𝑁 = 𝐴− 𝜆𝑘𝐼. 𝑁 is nilpotent, 𝐴 = 𝑁 + 𝑆 and 𝑆𝑁 = 𝑁𝑆. This decomposition is unique.

This implies that 𝑉 can be decomposed into the diagonal 𝑆 and nilpotent 𝑁 uniquely as
𝐴 = 𝑁 + 𝑆, 𝑁𝑆 = 𝑆𝑁 on 𝑉 .

The lemma in 4.14 tells us that we can choose 𝑈 = {𝑥,𝑁𝑥, · · ·𝑁𝑛𝑘−1𝑥} as the basis of
𝑉𝑘. The subspace spanned by 𝑈−1 = {𝑥,𝑁𝑥, · · ·𝑁𝑛𝑘−2𝑥} is one dimension smaller than 𝑉𝑘,
so we can choose a vector 𝑦 in 𝑉𝑘 but orthogonal to this smaller space 𝑈−1. Now 𝑁𝑦 ∈ 𝑈−1

and is orthogonal to 𝑦, Notice that 𝑁𝑦 is not in 𝑈−2 = {𝑥,𝑁𝑥, · · ·𝑁𝑛𝑘−3𝑥} but may not be
orthogonal to 𝑈−2. Thus we make 𝑦′ such that 𝑁𝑦 = 𝑁𝑦′ + 𝑧, where 𝑁𝑦′ is orthogonal to
𝑈−2 and 𝑧 ∈ 𝑈−2. Repeating this argument, we can make 𝑁 𝑗𝑞 orthogonal to 𝑁𝑘𝑞 (𝑗 ̸= 𝑘).
That is, we can choose 𝑞 such that {𝑞,𝑁𝑞, · · · , 𝑁𝑛𝑘−1𝑞} makes an orthogonal basis. With
this basis, 𝑁 is expressed as an 𝑛𝑘 × 𝑛𝑘 matrix:

𝑁 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0

· · ·
· · ·
· · ·

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.25)

This means 𝐴 on 𝑉𝑘 has the following 𝑛𝑘 × 𝑛𝑘 matrix:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆𝑘 0 0 · · · 0 0 0
1 𝜆𝑘 0 · · · 0 0 0
0 1 𝜆𝑘 · · · 0 0 0

· · ·
· · ·
· · ·

0 0 0 · · · 1 𝜆𝑘 0
0 0 0 · · · 0 1 𝜆𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.26)
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This is called a Jordan cell.

4.16 Jordan normal form
𝐴 we have been considering can be represented as the direct sum of the Jordan cells. The
number of cells with the same eigenvalue 𝜆 is given by dim Ker(𝐴− 𝜆𝐼).

4.17 Detailed example83

Let us solve the following linear ODE 𝑥̇ = 𝑇𝑥 that reads wrt a coordinate system as
:

𝑑

𝑑𝑡

⎡⎣ 𝑥
𝑦
𝑧

⎤⎦ =

⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠⎡⎣ 𝑥
𝑦
𝑧

⎤⎦ (4.27)

Let us write

𝑇0 =

⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠ (4.28)

The solution is 𝑒𝑇0𝑡𝑥0, where 𝑥0 is the initial condition. We wish to calculate this
explicitly. Notice that⎛⎝ −1 1 −2

0 −1 4
0 0 1

⎞⎠⎛⎝ −1 0 0
1 −1 0
−2 4 1

⎞⎠ =

⎛⎝ 6 −9 −2
−9 17 4
−2 4 1

⎞⎠ (4.29)

which is not equal to⎛⎝ −1 0 0
1 −1 0
−2 4 1

⎞⎠⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠ =

⎛⎝ 1 −1 2
−1 2 −6
2 −8 21

⎞⎠ (4.30)

so we cannot diagonalize 𝑇0 with an orthogonal transformation. The eigenvalues are
obviously −1, −1 and 1. The rank of

𝑇0 + 1 =

⎛⎝ 0 1 −2
0 0 4
0 0 2

⎞⎠ (4.31)

83Hirsh-Smale Ex2 Chapter 6, but all the details are filled so that you do not need any pencil
nor paper for follow all the details.
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is 2, so its kernel is 1 dimension spanned by (1, 0, 0)𝑇 .84 Thus the eigenvalue −1 has
algebraic multiplicity 2 and geometrical multiplicity 1. Thus we need the generalized
eigenspace of −1 defined by

0 = (𝑇0 + 1)2𝑥 =

⎛⎝ 0 1 −2
0 0 4
0 0 2

⎞⎠⎛⎝ 0 1 −2
0 0 4
0 0 2

⎞⎠⎡⎣ 𝑥
𝑦
𝑧

⎤⎦ =

⎛⎝ 0 0 0
0 0 8
0 0 4

⎞⎠⎡⎣ 𝑥
𝑦
𝑧

⎤⎦
(4.32)

Therefore, the generalized eigenspace is spanned by (1, 0, 0)𝑇 and (0, 1, 0)𝑇 . The
(generalized) eigenspace of 1 is given by

0 = (𝑇0 − 1)𝑥 =

⎛⎝ −2 1 −2
0 −2 4
0 0 0

⎞⎠⎡⎣ 𝑥
𝑦
𝑧

⎤⎦ (4.33)

This implies that 𝑧 is arbitrary, say 1, and −𝑦 + 2𝑧 = 0 implies 𝑦 = 2 and 𝑥 = 0:
Thus, {|𝑎⟩, |𝑏⟩, |𝑐⟩} = {(1, 0, 0)𝑇 , (0, 1, 0)𝑇 , (0, 2, 1)𝑇} is a basis (not orthogonal!) wrt
which 𝑇 = 𝑆 +𝑁 , where 𝑆 is diagonal −1⊕−1⊕ 1 and 𝑁 is nilpotent according to
the general theorem.

Let us rewrite 𝑇 wrt to this basis (which is denoted as 𝑇1). 𝑃𝑇1 = 𝑇0𝑃 or
𝑇1 = 𝑃−1𝑇0𝑃 . We need85

⟨𝑎|𝑇 |𝑏⟩ =
∑︁
𝑥,𝑦

⟨𝑎|𝑥⟩⟨𝑥|𝑇 |𝑦⟩⟨𝑦|𝑏⟩ (4.34)

Notice that

𝑃 = ⟨𝑦|𝑏⟩ =

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠ (4.35)

Therefore, 𝑃−1 is given by (Note that det𝑃 = 1 )

𝑃−1 =

⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠ (4.36)

84Here we have used the basic theorem: for a linear map 𝑇 from a vector space V to another
vector space 𝑊 , dim 𝑉 = dim(Im 𝑇 ) + dim(Ker 𝑇 ).

85We use the bra-ket notation for the ‘mnemonic sake’; since our kets are not orthonormal, the
‘transposition’ is actually to compute the transposition of the inverse matrix. The mnemonics works
perfectly. Look at ∑︁

𝑥

⟨𝑎|𝑥⟩⟨𝑥|𝑏⟩ = 𝛿𝑎𝑏.

(𝑃 )𝑥𝑏 = ⟨𝑥|𝑏⟩, (𝑃−1)𝑎𝑥 = ⟨𝑎|𝑥⟩.
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Thus, 𝑇1 = 𝑃−1𝑇0𝑃 :

𝑇1 =

⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠𝑇0

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠ =

⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠
(4.37)

=

⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠⎛⎝ −1 1 0
0 −1 2
0 0 1

⎞⎠ =

⎛⎝ −1 1 0
0 −1 0
0 0 1

⎞⎠ (4.38)

Thus

𝑆1 =

⎛⎝ −1 0 0
0 −1 0
0 0 1

⎞⎠ , 𝑁1 =

⎛⎝ 0 1 0
0 0 0
0 0 0

⎞⎠ (4.39)

Obviously, [𝑆1, 𝑁1] = 0. This implies

𝑁0 = 𝑃𝑁1𝑃
−1 =

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠⎛⎝ 0 1 0
0 0 0
0 0 0

⎞⎠⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠ (4.40)

=

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠⎛⎝ 0 1 −2
0 0 0
0 0 0

⎞⎠ =

⎛⎝ 0 1 −2
0 0 0
0 0 0

⎞⎠ (4.41)

This tells us that

𝑇0 =

⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠ = 𝑆0 +𝑁0 =

⎛⎝ −1 0 0
0 −1 4
0 0 1

⎞⎠+

⎛⎝ 0 1 −2
0 0 0
0 0 0

⎞⎠ (4.42)

Notice that, as the general theory tells us, [𝑆0, 𝑁0] = 0. Therefore,

𝑒𝑡𝑇0 = 𝑒𝑡𝑆0𝑒𝑡𝑁0 . (4.43)

Since 𝑁0 is nilpotent (actually 𝑁2
0 = 0:⎛⎝ 0 1 −2

0 0 0
0 0 0

⎞⎠⎛⎝ 0 1 −2
0 0 0
0 0 0

⎞⎠ =

⎛⎝ 0 0 0
0 0 0
0 0 0

⎞⎠ , (4.44)

we have

𝑒𝑡𝑁0 = 1 + 𝑡𝑁0 =

⎛⎝ 1 𝑡 −2𝑡
0 1 0
0 0 1

⎞⎠ . (4.45)
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To compute 𝑒𝑡𝑆0 , we should use

𝑒𝑡𝑆0 = 𝑃𝑒𝑡𝑆1𝑃−1 =

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠⎛⎝ 𝑒−𝑡 0 0
0 𝑒−𝑡 0
0 0 𝑒𝑡

⎞⎠⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠ (4.46)

=

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠⎛⎝ 𝑒−𝑡 0 0
0 𝑒−𝑡 −2𝑒−𝑡

0 0 𝑒𝑡

⎞⎠ =

⎛⎝ 𝑒−𝑡 0 0
0 𝑒−𝑡 −2𝑒−𝑡 + 2𝑒𝑡

0 0 𝑒𝑡

⎞⎠
(4.47)

Thus we have arrived at the final answer:

𝑒𝑡𝑇0 =

⎛⎝ 𝑒−𝑡 0 0
0 𝑒−𝑡 −2𝑒−𝑡 + 2𝑒𝑡

0 0 𝑒𝑡

⎞⎠⎛⎝ 1 𝑡 −2𝑡
0 1 0
0 0 1

⎞⎠ =

⎛⎝ 𝑒−𝑡 𝑡𝑒−𝑡 −2𝑡𝑒−𝑡

0 𝑒−𝑡 −2𝑒−𝑡 + 2𝑒𝑡

0 0 𝑒𝑡

⎞⎠
(4.48)

Appendix 2. Degree theory

The aim of this appendix is very restricted: to understand the degree of the vector field
with only simple singularities. Illustrations are only in 2-space.

4.18 Index of singularity
Take a ball 𝐵 containing only one singularity of a vector field 𝑋 : 𝐵 → R𝑛. Thus, 𝑋 has
no singularity on 𝜕𝐵 = 𝑆𝑑−1 if the vector field is 𝑑-dimensional. deg(𝑋,𝐵) is defined as the
degree of the map 𝑓 : 𝜕𝐵 → R𝑑, which is defined as follows:

deg(𝑋,𝐵) = 𝑝− 𝑞, (4.49)

where 𝑝 (resp., 𝑞) is the number of points in 𝑓−1(𝑥) (𝑥 ∈ 𝜕𝐵) with det 𝑑𝑓 being positive
(resp., negative).

4.19 Examples of simple singularities
For 2-vector fields,

The indices of a sink, a source or a center is +1.
The index of a hyperbolic saddle is −1.

See Fig. 4.4.

The map 𝑓 : 𝐷 → R2, where 𝐷 is a disk around the origin of the base space, corresponds to
the relation between the red and the black arrows. Thus, to obtain the degrees for 2-space
examples, we have only to see how many times the black arrows rotate when the base vector
rotate once (i.e., when we ground 𝜕𝐷 once).
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(a) (b)

Figure 4.4: (a) with index +1, (b) −1. Red arrows show the base space vectors.

4.20 Total sum of indices = degree
The degree of a vector field 𝑋 with simple singularities is defined as

deg(𝑋,𝐷) =
∑︁
𝑠∈𝐷

index𝑠, (4.50)

where 𝑠 is a singularity.

a
b

Figure 4.5: (a) with degree 0 (index zero), (b) index +2.

In Fig. 4.5 (a) we may interpret the zero due to merging of a sink and a saddle. Thus,
+1 + (−1) = 0 is the degree of the disk in the figure. We get the same answer even if we
follow the original definition. For (b) we could follow the rotation of the vector along a small
circle around the singular point (or from the merging of a sink and a source).

4.21 Poincaré-Hopf’s theorem on degrees
Let 𝑀 be a compact orientable manifold, and 𝑋 be a differentiable vector field on 𝑀 with
finitely many singular points. Then,

∑︁
𝑧∈𝑀

index(𝑧) = 𝜒(𝑀), (4.51)
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where the sum is over all the singular points on 𝑀 , and 𝜒(𝑀) is the Euler index86 That is,
the degree of 𝒳 𝑟(𝑀) is identical to the Euler index of 𝑀 .
[Demo]
If we accept that the LHS of (4.51) does not depend on 𝑋 on 𝑀 , then we can compute it
with a convenient 𝑋. For a polyhedron assign a sink to a vertex, a source to a surface, and
saddle to an edge (Fig. 4.6).

Figure 4.6: Demo of Poincare-Hopf theorem

We can construct 𝑋. For this obviously (4.51) holds.

86or Euler characteristics defined by

𝜒(𝑀) =

∞∑︁
𝑖=0

(−1)𝑖𝑏𝑖,

where 𝑏𝑖 is the 𝑖th Betti number. For a CW complex,

𝜒(𝑀) =

∞∑︁
𝑖=0

(−1)𝑖𝑛𝑖,

where 𝑛𝑖 is the number of 𝑖-simplexes in 𝑀 . In particular, we get 𝜒(𝑀) = 𝑉 − 𝐸 + 𝐹 + · · · +
(−1)𝑛𝑋𝑛 + · · · = 1, where 𝑉 : number of vertices, 𝐸: number of edges, 𝐹 : number of faces, 𝐵:
number of 3-simplexes. In 3-space of a polyhedron (surface) this is always 2. More generally,
𝜒− 2− 2𝑔, where 𝑔 is the genus of the manifold (the number of handles attached to the sphere or
the number of holes; Solid torus has 𝑔 = 1.
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4.22 Degree-theoretical constraints on singularities
Poincare-Hopf’s theorem imposes a strong constraints on the existence of various singulari-
ties of the vector field on a manifold. For example, if the vector field is on 𝑆2, it is impossible
to have a single source or saddle. If there is a saddle, there must be at least three other
sources/sinks. However, on 𝑇 2 a single source-saddle pair can live happily.

In Fig. 4.5 (a) can be on 𝑇 2 without any other singularity, and (b) on 𝑆2. See Fig. 5.2.
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5 Lecture 5: Hyperbolicity

5.1 Hyperbolic fixed points
We have already introduced a singular point 𝑥 of a vector field 𝑋 ∈ 𝒳 𝑟(𝑀), where
𝑟 ≥ 1 and 𝑀 is (usually) a compact 𝑛-manifold: 𝑋(𝑥) = 0. Its derivative at 𝑥 is a
linear operator 𝐷𝑥𝑋 = 𝐴. 𝐴 is a 𝑛× 𝑛 matrix87.

If 𝐴 has eigenvalues whose real parts are nonzero (i..e, not neutral), we say 𝑥 is a
hyperbolic fixed point.

5.2 Invariant set
For a flow 𝜑𝑡 for 𝒳 𝑟(𝑀) (or map 𝑓 ∈ 𝐶𝑟(𝑀)), a subset 𝑆 ⊂ 𝑀 is an invariant set,
if for any 𝑥 ∈ 𝑆, 𝜑𝑡(𝑥) ∈ 𝑆 for all 𝑡 ∈ R (𝑓𝑛(𝑥) ∈ 𝑆 for any 𝑛 ∈ Z).

Needless to say, singular points (= fixed points) are in the invariant set of the
dynamical system.

5.3 Non-wandering set88

A nonwandering point of a dynamical system 𝒳 𝑟(𝑀) (or map 𝑓 ∈ 𝐶𝑟(𝑀)) is a point
such that for its any nbh 𝑈 there is 𝑡 such that 𝜑𝑡(𝑈) ∩ 𝑈 ̸= ∅ (𝑛 ∈ Z such that
𝑓𝑛(𝑈) ∩ 𝑈 ̸= ∅). The totality of non-wandering points is the non-wandering set of
the dynamical system.

5.4 𝜔 and 𝛼 limit sets
Long time behaviors of a dynamical system is studied by limit sets describing the
𝑡→ ±∞ behaviors of trajectories.

𝜔-limit set of 𝑥: the set of accumulation points of 𝜑𝑡(𝑥) for 𝑡 > 0. That is,
𝜔(𝑥) = {𝑦 | lim𝑖 𝜑𝑡𝑖(𝑥) = 𝑦, 𝑡𝑖 → ∞}.

𝛼-limit set of 𝑥: the set of accumulation points of 𝜑𝑡(𝑥) for 𝑡 < 0. That is,

87Of course, we choose an appropriate chart, but as we have discussed at length in Section 2, we
may assume our world is a (bounded) subset of R𝑛.

88There are several different definitions. For example,
(i) 𝑥 is a non-wandering point if there is a nbh 𝑈 and 𝜏 such that 𝜑𝑡(𝑈) ∩ 𝑈 ̸= ∅ for 𝑡 > 𝜏 .
(ii) 𝑥 is a non-wandering point if for any nbh 𝑈 there is 𝑡 > 0 such that 𝜑𝑡(𝑈) ∩ 𝑈 ̸= ∅.

Notice that 𝜑−𝑡(𝜑𝑡(𝑈) ∩ 𝑈) = 𝑈 ∩ 𝜑−𝑡(𝑈), so the direction of time does not matter.
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𝛼(𝑥) = {𝑦 | lim𝑖 𝜑𝑡𝑖(𝑥) = 𝑦, 𝑡𝑖 → −∞}.

5.5 Some properties of limit sets
The following statement should be intuitively clear.
Proposition. 𝜔 and 𝛼 limit sets of a point 𝑥 are non-wandering closed sets. [Wan-
dering sets are open.]

Proposition. If 𝑁 is a invariant set, then 𝜕𝑁 , 𝑁∘, 𝑁 and 𝑁 𝑐 are invariant. [This
is due to the continuity of 𝜑𝑡.]

Proposition. The totality of the non-wandering sets is an invariant set.
Any point in periodic orbits and fixed points is non-wandering but there are more

subtle nonwandering points. If an orbit densely fill a domain, then any point in(side)
the domain is non-wandering, although it need not be periodic nor fixed point.

Proposition. For any point in the non-empty compact invariant set, its 𝛼 and 𝜔
limit sets are non-empty. [If 𝑥0 is in a compact invariant set, then {𝜑𝑡(𝑥0)} is in a
compact set, so its accumulation points are in the same compact set.]

5.6 Attracting set
A closed invariant set 𝐴 ⊂ 𝑀 is an attracting set, if there is a nbh of 𝐴 such that
any 𝑥 ∈ 𝑈 stays in 𝑈 (i.e., 𝜑𝑡(𝑥) ∈ 𝑈 for all 𝑡 > 0) and 𝜑𝑡(𝑥) → 𝐴.

The domain of attraction of 𝐴 (basin of 𝐴) is ∪𝑇≤0𝜑𝑡(𝑈).
By reversing time 𝑡→ −𝑡 we can analogously define repelling sets.
Even in 1D an attracting set can be complicated as the following example by

Ruelle shows:

𝑥̇ = −𝑥4 sin 𝜋
𝑥
. (5.1)

5.7 Hyperbolic linear vector field
If the spectrum of 𝐿 ∈ ℒ(R𝑛) is disjoint from the imaginary axis, 𝐿 is called hyper-
bolic. The number of eigenvalues with negative real part is called the index of 𝐿.
Hyperbolic linear fields are open dense in ℒ(R𝑛).

If 𝐿 is hyperbolic, then there are invariant subspaces 𝐸𝑠 and 𝐸𝑢 such that R𝑛 =
𝐸𝑠 ⊕ 𝐸𝑢. 𝐿|𝐸𝑢 has positive real eigenvalues and 𝐿|𝐸𝑠 has negative real eigenvalues.



5. LECTURE 5: HYPERBOLICITY 67

Two hyperbolic linear vector fields are topologically conjugate iff their indices are
identical.

5.8 Hyperbolicity
For a hyperbolic fixed point 𝑝 we can linearize the dynamics, and then study the
linearized system as a dynamics on R𝑛. Its eigenspace for stable eigenvalues (on the
left half space for vectors and inside the unit circle for maps) may be understood as a
tangent subspace 𝐸𝑠 of 𝑇𝑝𝑀 . We can collect trajectories tangent to the vectors that
is a locally invariant submanifold of 𝑀 . This is the local stable mfd for 𝑝 denoted

as 𝑊 𝑠
𝑈
loc(𝑝), where 𝑈 is an appropriate nbh of 𝑝 (see 5.9).

Reversing the time we can define a local unstable manifold as well.

We have seen in 4.4 that 𝒢0 the vector fields with only simple singularities) is
open-dense in 𝒳 𝑟(𝑀).89 We can show that

Theorem. The vector fields 𝒢𝜏 whose singularities are all hyperbolic is open-dense
in 𝒳 𝑟(𝑀).90

[Demo’]
We have only to show that 𝒢𝜏 is open-dense in 𝒢0, but at least intuitively this should
not be surprising.

5.9 Local stable manifold
Let 𝑝 be a fixed point of 𝑓 ∈ 𝐶𝑟(𝑀,𝑀) and 𝑈 be a neighborhood. The local

stable manifold 𝑊 loc
𝑈 (𝑝) in 𝑈 is given by

𝑊 𝑠
𝑈
loc(𝑝) = {𝑞 ∈ 𝑈 | 𝑓𝑛(𝑞) ∈ 𝑈 for ∀𝑛 ∈ N}. (5.2)

5.10 Stable manifold
The stable manifold 𝑊 𝑠(𝑝) of 𝑝 is defined as

𝑊 𝑠(𝑝) = ∪∞
𝑛=0𝑓

−𝑛
(︁
𝑊 𝑠
𝑈
loc(𝑝)

)︁
(5.3)

That is, the totality of the points eventually mapped to 𝑝 is its stable manifold.
The stable manifold of 𝑓−1 is the unstable manifold.

89PdM p56
90PdM p58
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Remark: 𝑊 𝑠(𝑝) need not a a submanifold of 𝑀 .

5.11 Stable manifold theorem
Let 𝑝 be a hyperbolic fixed point of 𝑓 ∈ 𝐶𝑟(𝑀,𝑀). Thus, 𝑇𝑝𝑀 = 𝑉 𝑠 ⊕ 𝑉 𝑢,
where 𝑉 𝑠 (resp. 𝑉 𝑢) is the vector space on which 𝑇𝑝𝑓 is contracting (resp.,
expanding). Then, there is a contraction 𝑔 : 𝑊 𝑠(𝑝) → 𝑊 𝑠(𝑝) and embedding
𝐽 : 𝑊 𝑠(𝑝) →𝑀 such that 𝐽𝑔 = 𝑓𝐽 . Furthermore, 𝑇𝑝𝐽 : 𝑇𝑝(𝑊

𝑠(𝑝)) → 𝑉 𝑠 is an
isomorphism.

5.12 Example: Renormalization group flow in the Hamiltonian space
We may interpret the renormalization group transformation as a map from a
(generalized) canonical distribution 𝜇 to another (generalized) canonical dis-
tribution 𝜇′ = ℛ𝜇. We can imagine effective Hamiltonians 𝐻 and 𝐻 ′ (it is
customary that 𝛽 is absorbed in 𝐻’s) according to

𝜇 =
1

𝑍
𝑒−𝐻 , 𝜇′ =

1

𝑍 ′ 𝑒
−𝐻′

. (5.4)

We may write 𝐻 ′ = ℛ𝐻. Therefore, we can imagine that successive applica-
tions of ℛ defines a flow (RG flow) in the space of Hamiltonians (or models or
systems). This idea is illustrated in Fig. 5.1.

In Fig. 5.1 𝐻* is a fixed point with an infinite correlation length of the RG
flow. Its stable manifold is called the critical surface. The Hamiltonian of the
actual material, say, magnet A, changes (do not forget that 𝛽 is included in
the definition of the Hamiltonian in (5.4)) as the temperature changes along
the trajectory denoted by the curve with ‘magnet A.’ It crosses the critical
surface at its critical temperature. The renormalization transformation uses
the actual microscopic Hamiltonian of magnet A at various temperatures as its
initial conditions. Three representative RG flows for magnet A are depicted.
‘a’ is slightly above the critical temperature, ‘b’ exactly at 𝑇𝑐 of magnet A (‘b′’
is the corresponding RG trajectory for magnet B, a different material; both b
and b′’ are on the critical surface), ‘c’ slightly below the critical temperature.
Do not confuse the trajectory (black curve) of the actual microscopic system
as temperature changes and the trajectories (successive arrows; RG flow) pro-
duced by the RG transformation.

If we understand 𝐻*, we understand all the universal features of the critical
behaviors of all the magnets crossing its critical surface.

http://www.youtube.com/watch?v=MxRddFrEnPc a video by Douglas Ashton.

http://www.youtube.com/watch?v=MxRddFrEnPc
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critical surface
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magnet A

for magnet A
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for magnet B

T

magnet B

where linearization is OK

H*

= stable mfd of 

unstable mfd of H*

H*

aa

b

c

b'

Figure 5.1: A global picture of renormalization group flow in the Hamiltonian space ℋ. The
explanation is in the text. ‘mfd’ = manifold. The thick curves emanating from 𝐻* denote the
direction that the Hamiltonians are driven away from the fixed point by renormalization.
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5.13 Hartman’s theorem
Let 𝑋 ∈ 𝒳 𝑟(𝑀) and 𝑝 ∈ 𝑀 be a hyperbolic singularity of 𝑋. Then, 𝑋 is locally
equivalent to its linearization.

Here equivalence means topological conjugacy. That is, for 𝐴 = 𝐷𝑋𝑝, there is a
continuous map ℎ such that ℎ𝑥(𝑡) = 𝑒𝐴𝑡ℎ𝑥0.

Notice that ℎ is a homeo, not a diffeo. If we wish to have a diffeomorphic con-
jugation, then there is a strong relation between the two flow velocities, but such
relations are already fixed by the two vector fields we are comparing. Thus, such ℎ
may not be chosen.91

To prove this theorem is to construct ℎ.

5.14 Strategy to show Hartman’s theorem
The linearized system has 𝐿𝑡 = 𝑒𝐴𝑡 as the evolution operator. The evolution operator
for the original system may be written as a sum of 𝐿𝑡 and the deviation from it 𝜑𝑡
(i.e., 𝜙𝑡 = 𝐿𝑡 + 𝜑𝑡).
(i) There is a homeo ℎ such that ℎ(𝐿𝜏 + 𝜑𝜏 ) = 𝐿𝜏ℎ for some (perhaps small) 𝜏 .
(ii) The following 𝐻

𝐻 =

∫︁ 𝜏

0

𝑒−𝐴𝑠ℎ𝜙𝑠𝑑𝑠 (5.5)

is actually 𝐻 = ℎ and 𝐻𝜙𝑠 = 𝐿𝑠𝐻 for ∀𝑠 ∈ R.
Let us show the last statement holds, assuming we have constructed ℎ. Its con-

struction is in 5.15-.

𝐿−𝑠𝐻𝜙𝑠 = 𝐿−𝑠

∫︁ 𝜏

0

𝐿−𝑡ℎ𝜙𝑡𝑑𝑡𝜙𝑠 =

∫︁ 𝜏

0

𝐿−𝑡−𝑠ℎ𝜙𝑡+𝑠𝑑𝑡. (5.6)

Let us introduce 𝑢 = 𝑡+ 𝑠− 𝜏 . Then,∫︁ 𝜏

0

𝐿−𝑡−𝑠ℎ𝜙𝑡+𝑠𝑑𝑡 =

∫︁ 𝑠

𝑠−𝜏
𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 (5.7)

=

∫︁ 0

𝑠−𝜏
𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 +

∫︁ 𝑠

0

𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 (5.8)

=

∫︁ 0

𝑠−𝜏
𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 +

∫︁ 𝑠

0

𝑑𝑢𝐿−𝑢𝐿−𝜏ℎ𝜙𝜏𝜙𝑢 (5.9)

91See a comment on p33-4 of Palis-de Melo.
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=

∫︁ 0

𝑠−𝜏
𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 +

∫︁ 𝑠

0

𝑑𝑢𝐿−𝑢ℎ𝜙𝑢. (5.10)

We have used ℎ(𝐿𝜏 + 𝜑𝜏 ) = ℎ𝜙𝜏 = 𝐿𝜏ℎ. Introduce 𝑣 = 𝑢+ 𝜏 . Thus, we have shown

𝐿−𝑠𝐻𝜙𝑠 =

∫︁ 𝜏

𝑠

𝑑𝑣 𝐿−𝑣ℎ𝜙𝑣 +

∫︁ 𝑠

0

𝑑𝑢𝐿−𝑣ℎ𝜙𝑣 = 𝐻. (5.11)

This equality is true for 𝑠 = 𝜏 , so 𝐻 = ℎ.

5.15 Formal construction of ℎ
Let ℎ = 1 + 𝑢

(1 + 𝑢)(𝐿𝜏 + 𝜙𝜏 ) = 𝐿𝜏 (1 + 𝑢) (5.12)

implies
ℒ𝑢 ≡ 𝐿𝜏𝑢− 𝑢(𝐿𝜏 + 𝜑𝜏 ) = 𝜑𝜏 . (5.13)

We write
ℒ = 𝐿𝜏ℒ* with ℒ*𝑢 = 𝑢− 𝐿−1

𝜏 𝑢(𝐿𝜏 + 𝜑𝜏 ). (5.14)

Since 𝐿𝜏 is invertible and 𝐿𝜏 + 𝜙𝜏 is a homeomorphism, ℒ* is invertible. Thus, 𝑢
exists. We have shown that the formal solution is actually real. However, we have
not guaranteed that ℎ is homeomorphism. that is, invertible.

5.16 ℎ is invertible
We must show that ℎ is a homeo: can we invert 1 + 𝑢? 𝑢 must be small: we must
estimate

‖𝑢‖ ≤ ‖𝐿−1
𝜏 ‖‖(ℒ*)−1‖‖𝜑𝜏‖. (5.15)

‖𝐿−1
𝜏 ‖ is bounded. Therefore, we must show ‖(ℒ*)−1‖ is bounded and ‖𝜑𝜏‖ must be

small.

5.17 ‖(ℒ*)−1‖ is bounded
Let us write ℒ* − 1 = 𝒦. Actually 𝒦𝑢 = −𝐿−1

𝜏 𝑢(𝐿𝜏 + 𝜑𝜏 ). 𝒦 is invertible:
Notice that formally

𝒦−1𝑢 = 𝐿𝜏𝑢(𝐿𝜏 + 𝜑𝜏 )
−1. (5.16)

Since 𝐿𝜏 +𝜑𝜏 is the time evolution operator for the system, it is at least locally
homeomorphic. Therefore, its inverse is well defined. Notice that 𝒦 is a linear
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map keeping the stable (𝐸𝑠) and unstable (𝐸𝑢) subspaces at 0 intact.92 𝒦.
Thanks to the hyperbolicity ‖𝒦‖ ≤ 𝑎 < 1 on the stable subspace thanks to

the ‘shrinking nature’ of 𝐿𝜏 . Also ‖𝒦−1‖ ≤ 𝑎 < 1 on the unstable subspace
thanks to the ‘expanding nature’ of 𝐿𝜏 . Then,
(a) 1 +𝒦 is isomorphic on the stable subspace and ‖(1 +𝒦)−1‖ ≤ 1/(1− 𝑎).
(b) 1+𝒦 is isomorphic on the unstable subspace and ‖(1+𝒦)−1‖ ≤ 𝑎/(1− 𝑎).
Thus, 1 + 𝒦 = ℒ* is isomorphic and ‖(ℒ*)−1‖ ≤ max{1/(1− 𝑎), 𝑎/(1− 𝑎)} =
1/(1− 𝑎).93In that case We must show (a) and (b).

(a): To compute the norm consider (1 + 𝒦)−1𝑦 = 𝑥 for 𝑦 in the tangen-
tial space of the stable manifold with ‖𝑦‖ = 1. Then 𝑦 = 𝑥 + 𝒦𝑥 implies
1 ≥ ‖𝑥‖ − ‖𝒦‖‖𝑥‖ or ‖𝑥‖ ≤ 1/(1− ‖𝒦‖). Thus, ‖(1 +𝒦)−1‖ ≤ 1/(1− 𝑎).
(b): Analogously, (1+𝒦)−1𝑦 = 𝒦−1(1+𝒦−1)−1𝑦 = 𝑥 implies 𝑦 = (1+𝒦−1)𝒦𝑥.
Therefore, 1 ≥ (1 − ‖𝒦−1‖)‖𝑥‖/‖𝒦−1‖ = (1 − 𝑎)‖𝑥‖/𝑎. Thus, ‖(1 + 𝒦)−1‖ ≤
𝑎/(1− 𝑎).

5.18 ‖𝜑𝜏‖ is small for small 𝜏
We make 𝜙𝜏 = 𝐿𝜏 + 𝜙𝜏 . We assume 𝑋 is Lipschitz with some constant 𝐾.
(3.25) in 3.23 tells us

‖𝜙𝑡(𝑥)− 𝜙𝑡(𝑦)‖ ≤ 𝑒𝐾𝑡‖𝑥− 𝑦‖. (5.17)

We must evaluate 𝜑𝑡 = 𝜙𝑡 − 𝐿𝑡. Solving the equations formally, we get

𝜙𝑡(𝑥) = 𝑥+

∫︁ 𝑡

0

𝐴𝜙𝑠(𝑥)𝑑𝑠+

∫︁ 𝑡

0

𝜓(𝜙𝑠(𝑥))𝑑𝑠, (5.18)

𝐿𝑡(𝑥) = 𝑥+

∫︁ 𝑡

0

𝐴𝐿𝑠(𝑥)𝑑𝑠, (5.19)

where we write 𝑋 = 𝐴𝑥+ 𝜓. Therefore,

𝜑𝑡(𝑥) =

∫︁ 𝑡

0

𝐴[𝜙𝑠(𝑥)−𝐿𝑠(𝑥)]𝑑𝑠+
∫︁ 𝑡

0

𝜓(𝜙𝑠(𝑥))𝑑𝑠 =

∫︁ 𝑡

0

𝐴𝜑𝑠(𝑥)𝑑𝑠+

∫︁ 𝑡

0

𝜓(𝜙𝑠(𝑥))𝑑𝑠.

(5.20)
Hence, we obtain

‖𝜑𝑡(𝑥)− 𝜑𝑡(𝑦)‖ ≤
∫︁ 𝑡

0

‖𝐴(𝜑𝑠(𝑥)− 𝜑𝑠(𝑦))‖𝑑𝑠+
∫︁ 𝑡

0

‖𝜓(𝜙𝑠(𝑥))− 𝜓(𝜙𝑠(𝑦))‖𝑑𝑠.

(5.21)

92𝐿𝜏 + 𝜑𝜏 is a homeomorphism at least locally, so it keeps the stable and unstable manifolds
intact. Thus, their tangent spaces at the fixed point are intact. These tangent spaces are just
eigensubspaces of 𝐿𝜏 .

93Here, a convenient norm satisfying ‖𝑥+ 𝑦‖ ≤ max{‖𝑥‖, ‖𝑦‖} is chosen for 𝑥 ∈ 𝐸𝑠 and 𝑦 ∈ 𝐸𝑢

(as in most books), but the usual one is OK if you allow a constant multiple in front of 1/(1− 𝑎).
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Now we use (5.17) and the Lipschitz property of 𝜓 with sufficiently small con-
stant 𝛿 to get

‖𝜓(𝜙𝑠(𝑥))− 𝜓(𝜙𝑠(𝑦))‖ ≤ 𝛿‖𝜙𝑠(𝑥)− 𝜙𝑠(𝑦)‖ ≤ 𝛿𝑒𝐾𝑡‖𝑥− 𝑦‖ (5.22)

Therefore, (5.21) has the Gronwall form:

‖𝜑𝑡(𝑥)− 𝜑𝑡(𝑦)‖ ≤
∫︁ 𝑡

0

𝛿𝑒𝐾𝑠‖𝑥− 𝑦‖𝑑𝑠+ ‖𝐴‖
∫︁ 𝑡

0

‖𝜑𝑠(𝑥)− 𝜑𝑠(𝑦)‖𝑑𝑠. (5.23)

Or if 𝛿 (and 𝜏) is small enough, we can choose a small positive number 𝜀 and
have

‖𝜑𝜏 (𝑥)− 𝜑𝜏 (𝑦)‖ ≤ 𝜀‖𝑥− 𝑦‖+ ‖𝐴‖
∫︁ 𝜏

0

‖𝜑𝑠(𝑥)− 𝜑𝑠(𝑦)‖𝑑𝑠. (5.24)

We use Gronwall’s inequality 3.22

‖𝜑𝜏 (𝑥)− 𝜑𝜏 (𝑦)‖ ≤ 𝜀𝑒‖𝐴‖𝜏‖𝑥− 𝑦‖ (5.25)

or
‖𝜑𝜏 (𝑥)‖ ≤ 𝜀𝑒𝜏‖𝐴‖‖𝑥‖. (5.26)

Thus, we have shown that 𝜑𝜏 is Lipschitz and sufficiently small.

5.19 What if singularity is not hyperbolic? Center manifold94

If the fixed point (at 0) we consider is not hyperbolic, then the linearization gives
us a matrix with vanishing real parts. Let us consider still the stable case. That is,
the fixed point is not stable linearly but thanks to higher order terms the point is a
𝜔-limit point of itself.

In such a case the ODE looks like

𝑥̇ = 𝐴𝑥+ 𝑓(𝑥, 𝑦), (5.27)

𝑦̇ = 𝐵𝑦 + 𝑔(𝑥, 𝑦), (5.28)

where 𝑥 and 𝑦 correspond to the neutral and stable subspaces: All the eigenvalues
of 𝐴 have no real part, and the eigenvalues of 𝐵 have negative real parts. 𝑓 and 𝑔
are higher order terms and vanish at the origin. If 𝑓 = 𝑔 = 0 then, 𝑥 = 0 is a stable

94A good introduction is J. Carr Applications of canter manifold theory (Springer1981).
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manifold, and 𝑦 = 0 is called a center manifold. More generally, if 𝑦 = ℎ(𝑥) is an
invariant manifold, it is called a center manifold (which is not unique, generally). At
least locally, a center manifold exists which is 𝐶2. Let us proceed formally.

We solve

𝑦̇ = ℎ′(𝑥)𝑥̇ ⇒, 𝐵ℎ(𝑥) + 𝑔(𝑥, ℎ) = ℎ′(𝑥)(𝐴𝑥+ 𝑓(𝑥, ℎ)). (5.29)

to determine ℎ. ℎ(0) = ℎ′(0) = 0 is the auxiliary condition.
On 𝑦 = ℎ(𝑥) the flow 𝑢 is governed by

𝑢̇ = 𝐴𝑢+ 𝑓(𝑢, ℎ(𝑢)). (5.30)

Thus, the dynamics is reduced to the one on a lower dimensional space.
How can we obtain ℎ? Solving (5.29) is equivalent to solving the original system.

However, if we can solve (5.29) approximately, we can get a reasonable approximation
to ℎ. Set

𝑀(ℎ) = 𝐵ℎ(𝑥) + 𝑔(𝑥, ℎ)− ℎ′(𝑥)(𝐴𝑥+ 𝑓(𝑥, ℎ). (5.31)

If 𝑀(𝜑) = 𝑂[|𝑥|𝑞] (𝑞 > 1), then |ℎ− 𝜑| = 𝑂[|𝑥|𝑞].

5.20 Lyapunov stability
A time-independent solution (stationary solution, fixed point 𝑝) of an autonomous
differential equation is said to be Lyapunov stable, if all the trajectories starting from
a neighborhood of 𝑝 is defined for all 𝑡 > 0 and converges uniformly in time to 𝑝.

Thus, 𝑡 → ∞ behavior need not be a convergence to 𝑝. More formally, for any
𝜀 > 0 there is 𝛿 > 0 such that

‖𝑝− 𝑥(0)‖ < 𝛿 ⇒ ‖𝑝− 𝑥(𝑡)‖ < 𝜀 for ∀𝑡 > 0, (5.32)

we say the fixed point 𝑝 is Lyapunov stable.

5.21 Asymptotic stability
A fixed point 𝑝 is asymptotically stable, if it is Lyapunov stable and lim𝑡→∞ 𝑥(𝑡) = 𝑝
for some nbh of 𝑝.

Look at counterexamples in Fig. 5.2.

As can be seen from these examples, convergence to an equilibrium point in the
𝑡→ ∞ limit of all the solutions starting at near 𝑝 is not a sufficient condition for its
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Figure 5.2: Unstable singular points to which all the trajectories which start at nearby points
converge. [Fig. 3 of Arnold DS I ]

asymptotic stability.
Note that a center is Lyapunov stable, but not asymptotically stable. In such a

case the stability is called marginal.

5.22 Stability by linearization
If all the eigenvalues of the linearized equation at a singular point have negative real
parts then the singular point is asymptotically stable.

This is a special case of what Hartman’s theorem implies.

5.23 Lyapunov function95

A differentiable function 𝑓 is called a Lyapunov function for a singular point 𝑥0 of a
vector field 𝑋 if 𝑋𝑓 ≤ 096 and 𝑥0 is its strict local minimum in a neighborhood of 𝑥0.

5.24 Lyapunov’s stability theorem A singularity of a differentiable vector field
for which a Lyapunov function exists is stable.

95A DS I p24; For other attractors we can define an analogous concept. See p202-3 of DS1 by
Anosov.

96Note that (𝑑/𝑑𝑡)𝑓(𝑥) = 𝑋𝑓(𝑥); We use the ‘standard notation’ 𝑋 =
∑︀
𝑋𝑖

𝜕
𝜕𝑥𝑖

.
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6 Lecture 6: Periodic orbit and limit cycle

6.1 Three types of trajectories
For real ODE 𝑥̇ = 𝑣(𝑥) with a smooth vector field, trajectories are diffeomorphic to
a point, a circle (𝑆1) or a line.

Thus a phase curve of an equation always has a simple intrinsic geometry.97

6.2 Periodic orbit (cycle)
A trajectory diffeomorphic to 𝑆1 is called a periodic orbit or a cycle.

6.3 First return map = Poincare map = monodromy transformation
For a smooth vector field, if there is a periodic orbit, we can take a transversal
hypersurface (= codimension one surface perpendicular to the orbit; often called a
Poincare surface) crossing the orbit at a point 𝑝. The orbits starting sufficiently close
to 𝑝 on this surface will return to a neighborhood of 𝑝 and are again transversal to
the surface (Fig. 6.1). Thus, we can locally define a map from the surface into itself.
This map98 is called the first return map, Poincare map or monodromy transforma-
tion.

transversal 

hypersurface

periodic orbit

p

Figure 6.1: First return map

The periodic orbit corresponds to a fixed point of this map.
The first return map does not depend on the choice of the Poincare surface (all

97However, complicated knots can be formed as we will see in the Lorenz system.
98More precisely, its germ
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diffeomorphic locally).

6.4 Linearization around periodic orbit
In a tubular nbh of a periodic orbit 𝛾 of period 𝑇 we can linearize the flow as

𝑥̇ = 𝐷𝑋(𝛾(𝑡))𝑥 = 𝐴(𝑡)𝑥, (6.1)

where 𝐴(𝑡) = 𝐷𝑋(𝛾(𝑡)) is a linear operator with period 𝑇 : 𝐴(𝑡 + 𝑇 ) = 𝐴(𝑡). Its
solution may be written as

𝑥(𝑡) = 𝐹 (𝑡)𝑥0, (6.2)

where 𝐹 (𝑡) is a linear operator that may be formally written in terms of time ordered
exponential of the integral of 𝐷𝑋(𝛾(𝑡)). 𝐹 is called a fundamental solution matrix.
𝐹 (𝑇 ) must be the linearization of the Poincare map. It is called the monodromy

matrix.

6.5 Floquet’s theorem about fundamental matrix for periodic system99

Theorem. The fundamental matrix 𝐹 (𝑡) in 6.4 maybe written as

𝐹 (𝑡) = 𝐵(𝑡)𝑒2𝜋Λ𝑡, (6.3)

where 𝐵(𝑡+ 𝑇 ) = 𝐵(𝑡) and Λ a constant matrix.
[Demo]
Notice that Φ(𝑡) = 𝐹 (𝑡+ 𝑇 ) is also a fundamental matrix:

𝑑

𝑑𝑡
Φ(𝑡) = 𝐴(𝑡+ 𝑇 )Φ(𝑡) = 𝐴(𝑡)Φ(𝑡). (6.4)

Since 𝐹 (𝑡) is invertible for all 𝑡, so is Φ(𝑡). Therefore, Φ is also a fundamental solution
matrix. Therefore, there is an invertible matrix 𝐶 such that 𝐹 (𝑡 + 𝑇 ) = 𝐹 (𝑡)𝐶 for
all 𝑡 (for example 𝐶 = 𝐹 (𝑇 ) is a possible choice). Its log is well defined, so we can
introduce Λ as

2𝜋𝑇Λ = log𝐶. (6.5)

Let us write
𝐵(𝑡) = 𝐹 (𝑡)𝑒−2𝜋Λ𝑡. (6.6)

99Its 3D version is Bloch’s theorem for solid state physics.
‘Time crystal’ is somewhat related, which is a quantum many-body phenomenon. See Zhang et al.,
Observation of a discrete time crystal, Nature 543, 217 (2017) and papers quoted in its introduction;
I do not recommend the recent Phys Today article.
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Then,

𝐵(𝑡+ 𝑇 ) = 𝐹 (𝑡+ 𝑇 )𝑒−2𝜋Λ(𝑡+𝑇 ) = 𝐹 (𝑡)𝑒2𝜋Λ𝑇 𝑒−2𝜋Λ(𝑡+𝑇 ) = 𝐹 (𝑡)𝑒−2𝜋Λ𝑡 = 𝐵(𝑡). (6.7)

Thus, 𝐵 is invertible and periodic.
The eigenvalues of 𝑒2𝜋𝑇Λ are called the Floquet multipliers governing the behav-

ior of the Poincaré map, and the eigenvalues (×𝜋) of Λ is called the characteristic
exponents.100

We can restate the theorem as
Theorem There is an invertible periodic linear transformation 𝐵(𝑡) such that 𝑥 =
𝐵(𝑡)𝑦 transforms the original equation to

𝑦̇ = Λ𝑦. (6.8)

Thus, the real part of the eigenvalues of Λ is called a Lyapunov exponent. In
terms of Lyapunov exponents, we can discuss asymptotic stability of the periodic
orbit.

6.6 Limit cycle
A limit cycle is an isolated phase curve diffeomorphic to a circle. In other words, a
closed curve is called a limit cycle if it corresponds to an isolated fixed point of the
first return map.

The multiplicity of a limit cycle is the multiplicity of the corresponding fixed point
of its return map.

6.7 Stability of limit cycle
A periodic orbit is orbitally stable (Lyapunov stable), if any orbit staring in a certain
tubular neighborhood of the orbit stays init.

A periodic orbit is orbitally asymptotically stable. if it is orbitally stable and in
the 𝑡→ ∞ limit any orbit stating from a point in its tubular neighborhood converges
to the orbit (its fixed point of the return map is asymptotically stable).101

100In some books, any number 𝜇 such that 𝑒𝜇 becomes a Floquet multiplier is called a character-
istic exponent. In this case its imaginary part is not unique.

101⟨⟨Stability of biological clock⟩⟩ Michele Monti, David K. Lubensky, and Pieter Rein ten
Wolde, Robustness of Clocks to Input Noise, PRL 121 078101 (2018) “Here, using models of the
Kai system of cyanobacteria, we compare a limit-cycle oscillator with two hourglass models, one
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(a) (b) (d)(c)

Figure 6.2: Limit cycle on 2-space and its return maps: 𝐼 → 𝐼, where 𝐼 is an appropriate
interval. (a) Stable limit cycle, (b) Unstable limit cycle, (c) semistable limit cycle which is not
structurally stable, (d) an outcome of perturbation of (c).

As noted already, we can use Lyapunov exponents for the periodic orbit to study
its stability (6.5).

6.8 Suspension
Let 𝑓 : 𝑀 → 𝑀 be a map (say, diffeo). Then, the suspension manifold 𝑀𝑓 is ob-
tained from 𝑀 × [0, 1] by identifying (𝑥, 1) and 𝑓(𝑥), 0) for 𝑥 ∈ 𝑀 . The suspension
flow is a constant vertical flow (see 6.3).

Figure 6.3: Suspension flow [Fig. 0.3.1 of Katok and Hasselblatt p8 ]

If a dynamical system has a cross section that is transversal to ‘all the trajecto-
ries,’ then the suspension of the Poincaré map is diffeomorphic to the original flow

that without driving relaxes exponentially and one that does so in an oscillatory fashion. In the
limit of low input noise, all three systems are equally informative on time, yet in the regime of high
input-noise the limit-cycle oscillator is far superior.”
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(Smale).102

6.9 Poincare-Bendixson’s theorem
Let 𝐷 be a subset of 𝑆2.103 For a flow on 𝐷 if 𝛼 and 𝜔-limit sets of 𝑝 ∈ 𝐷 do not
contain a singular point, it is a periodic orbit.

A proof is given in 6.10-6.11. To begin with we need to know that the limit sets
of a point is a connected set.
https://www.youtube.com/watch?v=uEfB5DG9x9M&frags=pl%2Cwn illustrates the
idea of a proof of the theorem after ca 10 min.

6.10 Limit sets are connected
We consider a flow on a compact manifold 𝑀 or its subset.

Take 𝜔(𝑝) and suppose it is not connected. Limit sets are closed sets, so 𝜔(𝑝)
must consist of at least two closed sets 𝜔1 and 𝜔2. Since they are closed, they have
unoverlapping neighborhoods 𝑈1 and 𝑈2,

104 Since they are 𝜔-limit sets, there must
be a sequence of points on the orbit such that 𝑥𝑖 → 𝑥 ∈ 𝜔1 and 𝑦𝑖 → 𝑦 ∈ 𝜔2. We can
choose these sequences as 𝑥1 < 𝑦1 < 𝑥2 < 𝑦2 < · · · along the orbit. For sufficiently
large 𝑛 𝑥𝑛 ∈ 𝑈1 and 𝑦𝑛 ∈ 𝑈2, so we can choose 𝑧𝑛 on the orbit between 𝑥𝑛 and 𝑦𝑛
but outside 𝑈1 ∪ 𝑈2. Since 𝑀 is compact, we can choose a converging subsequence
from {𝑧𝑘}, but it converges somewhere other than 𝜔1 nor 𝜔2, so this sequence misses
𝜔(𝑝), a contradiction.

6.11 Demonstration of Poincare-Bendixson’s theorem
If 𝑝 is on a periodic orbit, there is nothing to show. Let us assume 𝑝 is not on a
periodic orbit and 𝜔(𝑝) does not contain any singular point.
(i) Let 𝑝′ ∈ 𝜔(𝑝). Then, the orbit 𝐶(𝑝′) going through 𝑝′ is a periodic orbit.
(ii) 𝐶(𝑝′) ⊂ 𝜔(𝑝). If they do not agree, since both must be closed, 𝜔(𝑝) ∖𝐶(𝑝′) is not
a closed set. Since 𝜔 must be connected, there must be a point 𝑎 ∈ 𝜔(𝑝) such that

𝑎 ∈ 𝐶(𝑝′) ∩ 𝜔(𝑝) ∖ 𝐶(𝑝′).
(iii) Take a small neighborhood 𝑈 of 𝑎. Since 𝑎 ∈ 𝐶(𝑝′) ∩ 𝜔(𝑝) ∖ 𝐶(𝑝′), there must
be 𝑏 ∈ 𝑈 ∩ (𝜔(𝑝) ∖𝐶(𝑝′)). Since 𝑎 is not a singular point, we can make a transversal

102Shiraiwa p179-80.
103or its open subset or 𝑃 2.
104We assume Hausdorff.

https://www.youtube.com/watch?v=uEfB5DG9x9M&frags=pl%2Cwn
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line ℓ through 𝑎 (see Fig. 6.4). Since 𝑏 ∈ 𝑈 , the vector through it must be close to
that at 𝑎, so the orbit through 𝑏 crosses ℓ at 𝑐 ∈ 𝑈 .
(iv) This 𝑐 ̸∈ 𝐶(𝑝′), since if in 𝐶(𝑝′), so is 𝑏 ∈ 𝐶(𝑝′), contradicting 𝑏 ∈ 𝜔(𝑝) ∖ 𝐶(𝑝′).
Thus, 𝑐 is recurrent and not periodic.
(v) Since 𝑎 ∈ 𝜔(𝑝), there are {𝑎𝑘} converging to 𝑎 and on ℓ in this order along the or-
bit. Take 𝑎1 and 𝑎2. Then the orbit extended beyond 𝑎2 must be in the green shaded
region in Fig. 6.4. Thus, 𝑎3 must be between 𝑎2 and 𝑎, etc. That is, lim 𝑎𝑘 = 𝑎,
implying 𝜔(𝑝) ∩ ℓ = {𝑎}, unique. This contradicts the existence of 𝑐. Therefore,
𝜔(𝑝) = 𝐶(𝑝′) = 𝐶(𝑝), a periodic orbit.

Figure 6.4: [Fig. 3.2 of Tamura, color added]

6.12 Poincare-Bendixson’s theorem: a more general version
Let 𝑋 ∈ 𝒳 𝑟(𝑆2) be a vector field with a finite number of singularities. For any
𝑝 ∈ 𝑆2 one of the followings holds:
(1) 𝜔(𝑝) is a singularity = fixed point.
(2) 𝜔(𝑝) is a periodic orbit.
(3) 𝜔(𝑝) consists of singularities {𝑝𝑖} and regular orbits 𝛾 such that if 𝛾 ⊂ 𝜔(𝑝), then
𝛼(𝑝𝑖) and 𝜔(𝑝𝑗).

6.13 Bendixson’s criterion for no closed orbit
On R2, consider 𝑥̇ = 𝑋(𝑥). On a simply connected region 𝐷 ⊂ R2, div𝑋 is positive
or negative semidefinite, then there is no closed orbit lying entirely in 𝐷.
[Demo]
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Figure 6.5: Possible 𝜔(𝑝) [Fig. 7 of DS I ]

For any closed curve 𝛾 Green’s theorem tells us∫︁
𝛾

𝑋 × (𝑑𝑥, 𝑑𝑦) ̸= 0. (6.9)

However, if 𝛾 is a solution curve, then 𝑋 must be parallel to (𝑑𝑥, 𝑑𝑦), so the integral
must vanish.

6.14 How many limit cycles are there?
There are a set of theorems on various kinds of vector fields called the finiteness
theorems. For example,
A polynomial vector field on the real plane has only a finite number of limit cycles.105

This follows from a much more general theorem:
Limit cycles of an analytic vector field on a 2-surface cannot accumulate to a com-
pound cycle of the field.106.

Hilbert’s 16th problem is to prove:
The number of limit cycles of a polynomial vector field (of order 𝑛) in the real plane
is bounded by a number 𝑁 depending only on 𝑛.

This is still open even for 𝑛 = 2.

6.15 Structurally unstable examples
Although we will pay our main attention to generic cases, we must know simple
structurally unstable behaviors as illustrated in Fig. 6.6

105Theorem 1 on p106 of DS I.
106Theorem e of DS I p 106.
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Figure 6.6: Some structurally unstable limit sets (a) homoclinic orbits (saddle loops); (b) Double
saddle loop; (c) Homoclinic cycles; (d) periodic orbit band [Fig. 1.81 of GH]

6.16 Chemical oscillation
Belousov discovered the so-called BZ reaction (Belousov-Zhabotinsky reaction). This
reaction is basically the oxidation of malonic acid by bromic acid HBrO3. If ferroin
is used as a catalyst the oscillation may be observed as a color oscillation of the
solution between blue and red.107

Stirred: https://www.youtube.com/watch?v=eSWyxMWXw00&frags=pl%2Cwn.
Not-stirred: https://www.youtube.com/watch?v=IBa4kgXI4Cg&frags=wn

The reaction involves numerous (likely to be > 50) chemical species, but a simpli-
fied model based on actual observations was proposed as the Oregonator model:108

Fig. 6.7 TWO SETS OF REACTIONS can account for the oscillation of ferroin from red to blue and

back to red. The concentration of Br− determines which of the two sets of reactions will dominate.

In the first set (left) the bromide and bromate both brominate malonate to form bromomalonate.

During this process ferroin (II) is red. If the concentration of the bromide drops below a threshold

level, then the second set of reactions (right) starts to dominate. The last vestige of bromide is

consumed and the BrO3
− takes over the bromination of the malonate. Simultaneously it oxidizes

107Belousov quit science because he could not publish his fundamental work on this reaction
in any established journals. Even after this reaction became famous, he never showed up in any
meeting on the reaction. I am sympathetic to Belousov who quit science for the reason that science
(or the science community) was not scientific enough. S. E. Shnoll was interested in the reaction,
to whom Belousov gave the prescription and promised to publish his report in the annual report of
the institute he belonged to. Shnoll told his student Zhabotinski to study the mechanism.

108A = BrO3
−, B = all oxidized organic species, X = HBrO3, Y = Br−, Z = ferroin(III).

https://www.youtube.com/watch?v=eSWyxMWXw00&frags=pl%2Cwn
https://www.youtube.com/watch?v=IBa4kgXI4Cg&frags=wn


84

Figure 6.7: Outline of th BZ reaction [Fig. of Winfree Sci Am 1974 p82]

ferroin changing it from red to blue. Accumulated bromomalonate now reduces ferroin(III) back

to its red form ferrous, releasing Br− and carbon dioxide. High concentration of bromide shuts off

this reaction sequence and restarts the red stage.

A + Y −→ X + P
X + Y −→2P
A+ X −→2X + 2Z
2X −→A + P
B + Z −→(𝑓/2)Y

A further simplification is possible, because 𝑌 is slaved to other concentrations.
Eventually, we get

𝜀𝑥̇ = 𝑥(1− 𝑥) + 𝑓(𝑞 − 𝑥)𝑧/(𝑞 + 𝑥) = 𝑔(𝑥, 𝑧), 𝑧̇ = 𝑥− 𝑧 = ℎ(𝑥, 𝑧). (6.10)

Here 𝜀 ≃ 10−2 and 𝑞 ∼ 10−3. Let us simplify these further to

𝜀𝑥̇ = 𝑥(1− 𝑥)− 𝑓𝑧 = 𝑔(𝑥, 𝑧), 𝑧̇ = 𝑥− 𝑧 = ℎ(𝑥, 𝑧). (6.11)

However, this is an oversimplification, because 𝑥 < 0 must not happen. For very
small 𝑥 (𝑥 < 𝑞) the sign of the coefficient of 𝑧 must be negative. Thus, a simplified
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model must be

𝜀𝑥̇ = 𝑥(1− 𝑥)− 𝑓(𝑥)𝑧 = 𝑔(𝑥, 𝑧), 𝑧̇ = 𝑥− 𝑧 = ℎ(𝑥, 𝑧). (6.12)

where 𝑓(𝑥) = 𝑓 − 𝑎𝛿(𝑥) (𝑎 < 0) for 𝑥 ≥ 0 to prevent 𝑥 falling to the negative world.
The fixed points are 𝑥 = 𝑧, 𝑥2 − (1 − 𝑓)𝑥 = 0. Therefore, (𝑥, 𝑧) = (0, 0) and

(1− 𝑓, 1− 𝑓) are fixed points. The former is a saddle:

𝑑

𝑑𝑡

(︂
𝑥
𝑧

)︂
=

(︂
1/𝜀 −𝑓/𝜀
1 −1

)︂(︂
𝑥
𝑧

)︂
. (6.13)

Around the other fixed point, we have

𝑑

𝑑𝑡

(︂
𝛿𝑥
𝛿𝑧

)︂
=

(︂
(2𝑓 − 1)/𝜀 −𝑓/𝜀

1 −1

)︂(︂
𝛿𝑥
𝛿𝑧

)︂
. (6.14)

Notice that the characteristic equation is 𝜆2 − 𝜆Tr𝐴 + det𝐴 = 0. In our case
det𝐴 = (1− 𝑓)/𝜀 and (1/𝜀)Tr𝐴 = 2𝑓 − 1− 𝜀. Assume 𝑓 < 1. Then, the eigenvalues
are complex. Therefore, (ignoring the small 𝜀) for 𝑓 = 1/2 the fixed point is a center.
If 𝑓 ∈ (1/2, 1) Tr𝐴 > 0, so orbits near the fixed point spiral out. This bifurcation is
called a Hopf bifurcation as we will discuss later.

6.17 Nullcline approach
Do we have a limit cycle? In this case the flow is certainly confined: 𝑥 and 𝑧 mut

be positive, and cannot be too large. There is no attracting fixed point anywhere.
To see the situation closer, a good way is to draw the nullclines 𝑔 = 0 and ℎ = 0
(Fig. 6.8).
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x

z

h = 0

g = 0

Figure 6.8: Nullclines and the vector field for a simplified Oregonator.
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7 Lecture 7: Bifurcation of vector fields

7.1 Family of dynamical systems and bifurcation
Let {𝑋𝜇 ∈ 𝒳 𝑟(𝑀)}𝜇∈𝐵 be a family of 𝐶𝑟 vector field on 𝑀 , where 𝐵 is a set of
parameter values (can be a set of vectors). We say this family exhibits a bifurcation
at 𝜇* ∈ 𝐵, if every neighborhood of 𝜇* contains 𝜇 such that 𝑋𝜇* and 𝑋𝜇 are topo-
logically distinct (i.e., there is no (local) homeomorphism between them; intuitively
speaking, qualitatively distinct). We may say 𝑋𝜇* is not structurally stable.

We have already encountered the Hopf bifurcation.

7.2 What are the key questions about bifurcations?
Suppose we have a vector field 𝑋 ∈ 𝒳 𝑟(𝑀) which is not structurally stable. The
most interesting question must be: what happens if we modify 𝑋 a bit in 𝒳 𝑟(𝑀)?
Needless to say, we are not interested in reparametrization (or chart change) of the
vector field, so we wish to classify the fields near 𝑋 modulo homeomorphism of the
fields and reparametrization of the ‘bifurcation parameters’ that describe deviation
of the fields from the original 𝑋.

7.3 Versal unfolding
Thus, we wish to make a family {𝑋𝜇} with 𝑋0 = 𝑋 that is most general and the
‘simplest.’ Such a family is called the versal unfolding of 𝑋.

Here, any 𝑋𝜇 such that 𝑋0 = 𝑋 is called an unfolding of 𝑋.
An unfolding is the versal unfolding, if any other unfolding is equivalent to it.

Here ‘equivalence’ means the same modulo homeo and reparametrization of the pa-
rameters.

To construct the versal unfolding, we use two steps: reduction of vector fields to
the normal form, and a much more subtle mathematics suh as Malgrange’s prepara-
tion theorem.

7.4 Malgrange’s preparation theorem
Let 𝐹 (𝜇, 𝑥) : R𝑛 × R → R is a smooth function defined on a neighborhood of the
origin of R𝑛 ×R. Here we discuss the simplest cas where the dynamics is in 1 space
(but the parameter is 𝑛-vector).
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Theorem.109 Suppose 𝐹 (0, 𝑥) = 𝑥𝑘𝑔(𝑥), where 𝑔 is smooth in a neighborhood of
𝑥 = 0 and 𝑔(0) ̸= 0. Then, there is a smooth function 𝑞(𝜇, 𝑥) in a neighborhood of
(𝜇, 𝑥) = (0, 0), and functions 𝑠𝑖(𝜇) (𝑖 ∈ {0, 1, · · · , 𝑘 − 1}) smooth in a neighborhood
of 𝜇 = 0 such that

𝑞(𝜇, 𝑥)𝐹 (𝜇, 𝑥) = 𝑥𝑘 +
𝑘−1∑︁
𝑖=0

𝑠𝑖(𝜇)𝑥
𝑖. (7.1)

7.5 Versal unfolding of −𝑥2

Let us consider𝑋 = −𝑥2. Certainly, this is structurally unstable. The above theorem
tells us that

𝑋𝑎,𝑏 = −𝑥2 + 2𝑎𝑥+ 𝑏 (7.2)

is a versal unfolding. However, this can be rewritten as −(𝑥 − 𝑎)2 + 𝑏 + 𝑎2, so a
homeo can change this to −𝑥2 + 𝜇 form. Therefore, we can conclude that the versal
unfolding is 𝑋𝜇 = −𝑥2 + 𝜇. We will use this result later.

A versal unfolding of 𝑥̇ = −𝑥3 is 𝑥̇ = 𝜈1𝑥+ 𝜈2𝑥
2 − 𝑥3.

7.6 Normal form
Nere 𝑥 = 0 formally a vector field has the following form

𝑋 = 𝐴𝑥+
∑︁
𝑟≥2

𝑋𝑟(𝑥), (7.3)

where 𝐴 is the derivative at 𝑥 = 0 and where 𝑋𝑟 is an order 𝑟 polynomial vector
field Since we are interested in a bifurcation at the bifurcation point usually 𝐴 has
a special feature, say, some 0 eigenvalues. If we look at Malgrange type theorems
7.4, we see that the versal family is determined by the lowest nontrivial order 𝑋𝑟 at
least locally. Thus, it is very convenient to eliminate lower order polynomial terms
as much as possible by a coordinate transformation 𝑥→ 𝑦 so that

𝑋 = 𝐴𝑦 +
∑︁
𝑟≥𝑠

𝑋𝑟(𝑦), (7.4)

as much large 𝑠 as possible. This form is called the normal form of 𝑋.
The conversion of the original 𝑋 to its normal form is done order by order.

109Needless to say there is a version for higher-dimensional spaces. This is a key theorem for
catastrophe theory, but not easy to prove.
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7.7 Formal elimination of degree 𝑟 term
Consider

𝑥̇ = 𝑋(𝑥) = 𝐴𝑥+𝑋𝑟(𝑥) +𝑂[|𝑥|𝑟+1], (7.5)

where 𝐴 is 𝑑𝐴/𝑑𝑥|𝑥=0, and 𝑋𝑟 is a sum of 𝑥𝑘 with |𝑘| = 𝑟 (degree 𝑟 polynomial
term).

Introduce
𝑥 = 𝑦 + ℎ𝑟(𝑦), (7.6)

where ℎ𝑟 is a degree 𝑟 polynomial. Using this, we try to eliminate 𝑋𝑟 from (7.5).
(7.6) may be inverted as

𝑦 = 𝑥− ℎ𝑟(𝑥) +𝑂[|𝑥|𝑟+1]. (7.7)

Thus, (𝑑/𝑑𝑥 = 𝐷)

𝑦̇ = 𝑥̇−𝐷ℎ𝑟(𝑥)𝑥̇+𝑂[|𝑥|𝑟]𝑥̇ (7.8)

= 𝐴𝑥+𝑋𝑟(𝑥)−𝐷ℎ𝑟(𝑥)𝐴𝑥+𝑂[|𝑥|𝑟]𝑥̇ (7.9)

= 𝐴[𝑦 + ℎ𝑟(𝑦)] +𝑋𝑟(𝑦)−𝐷ℎ𝑟(𝑦)𝐴𝑦 +𝑂[|𝑦|𝑟+1] (7.10)

= 𝐴𝑦 − [𝐷ℎ𝑟(𝑦)𝐴𝑦 − 𝐴ℎ𝑟(𝑦)] +𝑋𝑟(𝑦) +𝑂[|𝑦|𝑟+1] (7.11)

Notice that (with the summation convention)

(𝐷ℎ𝑟(𝑦)𝐴𝑦)𝑘 = 𝐷𝑖ℎ
𝑟
𝑘(𝑦)𝐴𝑖𝑗𝑦𝑗 =

𝜕ℎ𝑟𝑘
𝜕𝑦𝑖

𝐴𝑖𝑗𝑦𝑗 =

(︂
𝐴𝑖𝑗𝑦𝑗

𝜕

𝜕𝑦𝑖

)︂
ℎ𝑟𝑘 (7.12)

and
(𝐴ℎ𝑟(𝑦))𝑘 = 𝐴𝑘𝑗ℎ

𝑟
𝑗 (7.13)

Introduce a linear operator 𝐿𝐴 (called the Lie bracket) as110

𝐷ℎ𝑟(𝑦)𝐴𝑦 − 𝐴ℎ𝑟(𝑦) =

(︂
𝐴𝑖𝑗𝑦𝑗

𝜕

𝜕𝑦𝑖

)︂
ℎ𝑟𝑘 − 𝐴𝑘𝑗ℎ

𝑟
𝑗 ≡ 𝐿𝐴ℎ

𝑟. (7.14)

110𝐿𝐴 is the Lie derivative operator. In a more standard language (7.14) reads[︂
𝐴𝑖𝑗𝑦𝑗

𝜕

𝜕𝑦𝑖
, ℎ𝑟𝑘

𝜕

𝜕𝑦𝑘

]︂
= 𝐴𝑖𝑗𝑦𝑗

𝜕ℎ𝑟𝑘
𝜕𝑦𝑖

𝜕

𝜕𝑦𝑘
− ℎ𝑟𝑗𝐴𝑘𝑗

𝜕

𝜕𝑦𝑘
=

{︂
𝐴𝑖𝑗𝑦𝑗

𝜕ℎ𝑟𝑘
𝜕𝑦𝑖

− ℎ𝑟𝑗𝐴𝑘𝑗

}︂
𝜕

𝜕𝑦𝑘
.
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Then, (7.11) reads

𝑦̇ = 𝐴𝑦 − 𝐿𝐴ℎ
𝑟(𝑦) +𝑋𝑟(𝑦) +𝑂[|𝑦|𝑟+1]. (7.15)

If we can solve
𝐿𝐴ℎ

𝑟(𝑦) = 𝑋𝑟(𝑦) (7.16)

we are done. This is the non-resonance condition.

7.8 Lie bracket with resonance
When the ‘non-resonance condition’ is not satisfied, the procedure in 7.7 cannot
remove 𝑋𝑟 totally. The elements in the cokernel (= [Im(𝐿𝐴)]

𝑐) of 𝐿𝐴 survive.

7.9 Normal form theorem
𝑋 ∈ 𝒳 𝑟 with 𝑋(0) = 0, the differential equation with 𝐷𝑋(0) = 0

𝑥̇ = 𝐴𝑥+𝑋(𝑥) (7.17)

may be transformed by a polynomial transformation 𝑦 = 𝑥 + ℎ(𝑥), where ℎ is a
polynomial of second or higher degree, to

𝑦̇ = 𝐴𝑦 +
𝑁∑︁
𝑟=2

𝑌 𝑟 +𝑂[|𝑦|𝑁+1]., (7.18)

where 𝑌 𝑟 is a polynomial of degree 𝑟 in the cokernel of 𝐿𝐴.

Let us consider the following example:

𝑑

𝑑𝑡

[︂
𝑥1
𝑥2

]︂
=

(︂
2 0
0 1

)︂[︂
𝑥1
𝑥2

]︂
+
∑︁
𝑟≥2

𝑋𝑟(𝑥). (7.19)

The nonresonance condition (7.12) reads as follows.

𝐿𝐴 =

[︂
2𝑦1

𝜕

𝜕𝑦1
+ 𝑦2

𝜕

𝜕𝑦2
,

]︂
(7.20)

Let ℎ𝑟 be ∑︁
𝑚+𝑛=𝑟

𝑎1𝑚𝑛𝑦
𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦1
+
∑︁

𝑚+𝑛=𝑟

𝑎2𝑚𝑛𝑦
𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦2
. (7.21)
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Therefore,

[𝐿𝐴, ℎ
𝑟] = 2𝑦1

𝜕

𝜕𝑦1

∑︁
𝑚+𝑛=𝑟

{︂
𝑎1𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦1
+ 𝑎2𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦2

}︂
−

∑︁
𝑚+𝑛=𝑟

{︂
𝑎1𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦1
+ 𝑎2𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦2

}︂
2𝑦1

𝜕

𝜕𝑦1

+𝑦2
𝜕

𝜕𝑦2

∑︁
𝑚+𝑛=𝑟

{︂
𝑎1𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦1
+ 𝑎2𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦2

}︂
−

∑︁
𝑚+𝑛=𝑟

{︂
𝑎1𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦1
+ 𝑎2𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2

𝜕

𝜕𝑦2

}︂
𝑦2

𝜕

𝜕𝑦2

(7.22)

From this the 𝑦1 component reads∑︁
𝑚+𝑛=𝑟

(2𝑚𝑎1𝑚𝑛𝑦
𝑚
1 𝑦

𝑛
2 +𝑛𝑎

1
𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2 −2𝑎1𝑚𝑛𝑦

𝑚
1 𝑦

𝑛
2 )

𝜕

𝜕𝑦1
=
∑︁

𝑚+𝑛=𝑟

𝑎1𝑚𝑛(2𝑚+𝑛−2)𝑦𝑚1 𝑦
𝑛
2

𝜕

𝜕𝑦1
,

(7.23)
and similarly the 𝑦2 component reads∑︁

𝑚+𝑛=𝑟

𝑎2𝑚𝑛(2𝑚+ 𝑛− 1)𝑦𝑚1 𝑦
𝑛
2

𝜕

𝜕𝑦2
. (7.24)

The terms with vanishing coefficients are resonant terms and we cannot eliminate
them. For 𝑟 = 2 for 𝑦1 we must solve 𝑚 + 𝑛 = 2 and 2𝑚 + 𝑛 = 2. That is 𝑚 = 0,
𝑛 = 2. For 𝑦2 we must solve 𝑚 + 𝑛 = 2 and 2𝑚 + 𝑛 = 1. There is no solution. For
larger 𝑟 𝑚 = 1− 𝑟 means not solution at all. That is, all the terms can be removed.
Thus the lowest order normal form reads

𝑦̇1 = 2𝑦1 +𝐾𝑦22, (7.25)

𝑦̇2 = 𝑦2. (7.26)

7.10 Saddle-node bifurcation
Ler us study the case illustrated in Fig. 4.5(a). In this case for 𝐴 one eigenvalue
maintains its sign, and the second one changes its sign:

𝐴 =

(︂
𝜆 0
0 0

)︂
(7.27)

at the bifurcation point. Let us convert the original equation into a normal form.
The resonance condition is (a good exercise):
For the first component: 𝑚+ 𝑛 = 𝑟, 𝑚𝜆 = 𝜆 (i.e., 𝑚 = 1). 𝑚 = 𝑛 = 1 for 𝑟 = 2, for
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𝑟 ≥ 3 𝑚 = 1 𝑛 = 𝑟 − 1. Thus, 𝑥+ 𝐴𝑥𝑦 +𝐵𝑟𝑥𝑦
𝑟−1.

For the second component: 𝑚+ 𝑛 = 𝑟, 𝑚 = 0. That is,
∑︀

𝑟≥2 𝑎𝑟𝑦
𝑟.

In summary, the normal form around the saddle-node bifurcation point is

𝑥̇ = 𝜆𝑥+
∑︁

𝑎𝑟𝑥𝑦
𝑟−1, (7.28)

𝑦̇ =
∑︁

𝑏𝑟𝑦
𝑟. (7.29)

To determine a convenient versal unfolding, we truncate this at 𝑟 = 2

𝑥̇ = 𝜆𝑥+ 𝐴𝑥𝑦, (7.30)

𝑦̇ = 𝐵𝑦2. (7.31)

As Malgrange’s theorem tells us, adding lower order polynomials to the above normal
form gives a versal unfolding. However, as we noted in 7.5 we can eliminate some
terms by coordinate transformation

𝑥̇ = 𝜆𝑥+ 𝐴𝑥𝑦, (7.32)

𝑦̇ = 𝜈 +𝐵𝑦2. (7.33)

For the 𝜆 > 0 𝐵 < 0 case, the bifurcation diagram looks like Fi.g 7.1.

y

x

Figure 7.1: Supercritical saddle-node bifurcation [Fig. 4.5 of Arrowsmith and Place p201 ]

7.11 Hopf singularity
In this case for 𝐴 conjugate complex eigenvalues change the sign of their real part.



7. LECTURE 7: BIFURCATION OF VECTOR FIELDS 93

At the bifurcation point

𝐴 =

(︂
0 −𝛽
𝛽 0

)︂
. (7.34)

In this case after complexification we can still diagonalize 𝐴 as 𝐴 = [𝑖𝛽, 0𝑖𝛽].

7.12 Normal form around Hopf singularity
Let us convert the original equation into a normal form. The resonance condition is
For the first component 𝑧: 𝑚 + 𝑛 = 𝑟, 𝑖𝑚𝛽 − 𝑖𝑛𝛽 = 𝑖𝛽 (i.e., 𝑚 − 𝑛 = 1). Thus,
𝑖𝛽𝑧 + 𝑧

∑︀
𝐵𝑟(𝑧𝑧)

𝑟.
For the second component 𝑧: 𝑚+𝑛 = 𝑟, 𝑖𝑚𝛽− 𝑖𝑛𝛽 = −𝑖𝛽 (i.e., 𝑚−𝑛 = −1). Thus,
−𝑖𝛽𝑧 + 𝑧

∑︀
𝐶𝑟(𝑧𝑧)

𝑟.
Therefore, the normal form reads

𝑧̇ = 𝑖𝛽𝑧 + 𝑧
∑︁

𝐵𝑟(𝑧𝑧)
𝑟, (7.35)

and its conjugate. In terms of the original variables

𝑥̇ = −𝛽𝑦 +
∑︁

(𝑅𝑒(𝐵𝑟)𝑥− 𝐼𝑚(𝐵𝑟)𝑦)(𝑥
2 + 𝑦2)𝑟, (7.36)

𝑦̇ = 𝛽𝑥+
∑︁

(𝐼𝑚(𝐵𝑟)𝑥+𝑅𝑒(𝐵𝑟)𝑦)(𝑥
2 + 𝑦2)𝑟. (7.37)

7.13 Versal unfolding of Normal form for Hopf bifurcation
Locally we may truncate (7.37) as

𝑥̇ = −𝛽𝑦 + (𝑎𝑥− 𝑏𝑦)(𝑥2 + 𝑦2) +𝑂[|𝑥|5], (7.38)

𝑦̇ = 𝛽𝑥+ (𝑏𝑥+ 𝑎𝑦)(𝑥2 + 𝑦2) +𝑂[|𝑥|5] (7.39)

We wish to keep the circular symmetry and mirror symmetry, Then there should not
be any even order terms and the unfolding looks like

𝑥̇ = 𝜈𝑥− 𝛽𝑦 + (𝑎𝑥− 𝑏𝑦)(𝑥2 + 𝑦2) +𝑂[|𝑥|5], (7.40)

𝑦̇ = 𝛽𝑥+ 𝜈𝑦 + (𝑏𝑥+ 𝑎𝑦)(𝑥2 + 𝑦2) +𝑂[|𝑥|5] (7.41)
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7.14 Hopf bifurcation diagram
We can plot the local family described by (7.41). If 𝑎 > 0 it is called the subcritical
bifurcation; if 𝑎 < 0 it is called the supercritical bifurcation (Fig. 7.2).

A B

Figure 7.2: A: supercritical Hopf bifurcation, B: subcritical (or inverted) [Fig. 4.7 of AP ]
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8 Lecture 8: Bifurcation 2, maps

8.1 Singularities of maps
Consider 𝑓 ∈ 𝐶𝑟(𝑀). 𝑥 ∈ 𝑀 such that 𝑓(𝑥) = 𝑥 is called a fixed point of 𝑓 , which
corresponds to a singularity in a vector field: no change in time. We can Taylor
expand 𝑓 around it (often we choose the coordinate system so that 𝑥 = 0) as

𝑓(𝑥) = 𝐴𝑥+ 𝑓2 + · · ·+ 𝑓𝑟 + · · · , (8.1)

where 𝑓𝑟 is a homogeneous polynomial of degree 𝑟. If 𝐴 has no eigenvalue on the
unit circle, the fixed point is called a hyperbolic fixed point. It is structurally stable.

We can introduce all the analogues of normal forms and unfoldings.

8.2 Representative hyperbolic fixed points
According to the eigenvalues of 𝐴, we can classify the fixed points. The 2-dimensional
case is in Fig. 8.1.

(a)

(b) (f)

(e)

(d)

(c)

Figure 8.1: Representative hyperbolic fixed points [Fig. 2.1 of AP ]

In the rest of this lecture, we discuss an interval map 𝑓 : [0, 1] → [0, 1]. That is an
endomorphism of [0, 1].

8.3 Nonhyperbolic interval endomorphism
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At a fixed point if |𝑓 ′| = 1 𝑓 is non-hyperbolic, and structurally unstable.

8.4 Versal unfolding of critical map with slope 1
We must distinguish two cases: the fixed point for cases with near the critical pa-
rameter value (1) depends on the parameter or (2) not.
Case (1): The normal form with the linear term 𝑥 generally reads 𝑥 plus a higher
degree polynomial. Thus, 𝑥+ 𝐴𝑥2 is locally (i.e., around the origin) enough. Then,
unfolding should be

𝑓(𝜇, 𝑥) = 𝜈 + (1 + 𝜇)𝑥+ 𝐴𝑥2. (8.2)

However, we can scale 𝑥 and reparameterize this as

𝑓(𝜇, 𝑥) = 𝜈 + 𝑥± 𝑥2. (8.3)

Here, ± may be replaced by + with an appropriate sign change of 𝜈 so we have only
to consider 𝑓(𝑦) = 𝜈 + 𝑦 + 𝑦2. The bifurcation diagram looks like Fig. 8.2.

x

f(x)

critical

decreasing νstable

unstable

Figure 8.2: Fold: 𝜈 + 𝑦 + 𝑦2; the right is a interval map example indicating a fold bifurcation
[Left: Fig. 4.16b of AP]

For case (2): Since we cannot add a constant term, the versal unfolding reads

𝑓(𝜇, 𝑥) = (1 + 𝜇)𝑥± 𝑥2. (8.4)

In this case the lowest order term that changes the local topology (a new fixed point)
is ±𝑥2.
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The bifurcation diagram reads as Fig 8.3:

x

f(x)
critical

decreasing μ

stable

unstable

Figure 8.3: Bifurcation diagram for (1 + 𝜇)𝑥+ 𝑥2; Right. An interval map example.

8.5 Versal unfolding of critical map with slope −1
The case with the slope −1 is a bit complicated, because locally it seems that 𝑓
does not change much, but 𝑓 2 can change qualitatively. Notice that for 𝑓(𝑥) = −𝑥
𝑓 2(𝑥) = 𝑥, so it has a fixed line.

Adding ±𝑥2 (and all other even powers) does not change the topology: suppose
𝑓 = −𝑥+ 𝑥2. Then

𝑓 2(𝑥) = −(−𝑥+ 𝑥2) + (−𝑥+ 𝑥2)2 = 𝑥− 2𝑥3 + 𝑥4 = 𝑥(1 + 2𝑥2 + 𝑥3) (8.5)

so no new local fixed point appears.

Consider 𝑓 = −𝑥± 𝑥3. Then,

𝑓 2(𝑥) = −(−𝑥± 𝑥3)± (−𝑥± 𝑥3)3 = 𝑥−±2𝑥3 + · · · , (8.6)

so with perturbation new fixed points show up (see Fig. 8.4).

Adding other terms does not alter the qualitative picture. Therefore

𝑓(𝜈, 𝑥) = (−1 + 𝜈)𝑥± 𝑥3 (8.7)

is a versal unfolding. This describes the so-called pitch-fork bifurcation.
The bifurcation diagram is Fig. 8.5.
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A
B

Figure 8.4: 𝑓2 near the slope −1 fixed point. A: at the bifurcation point , B: unfolding. A:
Purple: −𝑥+ 𝑥3, green: −𝑥− 𝑥3. B: purple: −0.9𝑥+ 𝑥3, green: −1.1𝑥− 𝑥3

Figure 8.5: pitchfork bifurcation [Fig. 4.18 of AP ]

8.6 Pitchfork bifurcations in logistic maps
The logistic map is a map defined on [0, 1] as

𝑓(𝑥) = 𝑎𝑥(1− 𝑥). (8.8)

Here the parameter 𝑎 ∈ [0, 4]. As 𝑎 is increased, the map exhibits a series of pitchfork
bifurcations as illustrated in the following bifurcation diagram (Fig. 8.6):

These bifurcations correspond to period-doubling bifurcations.

8.7 Feigenbaum critical phenomenon
Initially, Feigenbaum found numerically that
(1) The successive bifurcation parameter value behaves as 𝑎𝑛 = 𝑎∞ − 𝐴𝛿−𝑛, where
𝛿 = 4.66 · · ·.
(2) The pattern size at the 𝑛-th bifurcation is compressed as (−𝑎)−𝑛, where 𝑎 =
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a =

a =a =

a =3.1 3.5

3.56 3.5685

Figure 8.6: Pitchfork accumulating to chaos (𝑎 = 3.5699456 · · ·) in the logistic map [Fig. 3.8.
3.9 of Nagashima & Baba ]

2.5029 · · ·, where − sign implies that the pattern is flipped as 𝑛 increases by one. He
found the universality as well: as long as the map is smooth (𝐶1), these results do
not depend on the map.

Figure 8.7: 𝑓4 for 𝑎 = 3 is similar to 𝑓4 for 𝑎 = 4.44949 [Fig. 3.11 of Nagashima & Baba ]

Let us define
𝑔[𝑛+1] = 𝑔[𝑛] ∘ 𝑔[𝑛] (8.9)

with 𝑔[0] = 𝑔 = 𝑓 2.
Notice that we study 𝑔 = 𝑓 ∘ 𝑓 or its iterates around 𝑥 = 1/2 (see Fig. 8.7). From
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the figure we can guess that between the 𝑛-th and the 𝑛 + 1-pitchfork bifurcations
(near 𝑥 = 1/2)

𝑔[𝑛](𝑎, 𝑥) = (−𝛼)−𝑛ℎ[𝑛](𝜀𝑛, 𝑦𝑛) +
1

2
, (8.10)

where
𝑦𝑛 = (𝑥− 1/2)(−𝛼)𝑛, 𝜀𝑛 = 𝐴(𝑎− 𝑎∞)𝛿𝑛. (8.11)

Feigenbaum’s conjecture is that the following limit is well-defined:

ℎ[𝑛](𝜀𝑛, 𝑦𝑛) → ℎ(𝜀, 𝑦) (8.12)

for any ‘smooth’ 𝑔.

8.8 Renormalization around 𝑎∞
(8.9) in terms of ℎ[𝑛] can be obtained as follows (note that 𝑦𝑛 = ℎ[𝑛](𝜀𝑛, 𝑦𝑛)):

(−𝛼)−𝑛−1ℎ[𝑛+1](𝜀𝑛+1, 𝑦𝑛+1) +
1

2
= (−𝛼)−𝑛ℎ[𝑛](𝜀𝑛, ℎ[𝑛](𝜀𝑛, 𝑦𝑛)) +

1

2
. (8.13)

Therefore,

(−𝛼)−(𝑛+1)ℎ[𝑛+1](𝜀𝑛+1, 𝑦𝑛+1) = (−𝛼)−𝑛ℎ[𝑛](𝜀𝑛, ℎ[𝑛](𝜀𝑛, 𝑦𝑛)) (8.14)

or
(−𝛼)−1ℎ[𝑛+1](𝛿𝜀𝑛,−𝛼𝑦𝑛) = ℎ[𝑛](𝜀𝑛, ℎ

[𝑛](𝜀𝑛, 𝑦𝑛)). (8.15)

Therefore, ℎ satisfies
−𝛼−1ℎ(𝛿𝜀,−𝛼𝑦) = ℎ(𝜀, ℎ(𝜀, 𝑦)). (8.16)

This is the RG fixed point equation.

8.9 Approximate solution of the RG equation
(8.16) is not easy to solve. Therefore, we use the following Ansatz: 𝜀 = 0 is the
critical point, so

ℎ(0, 𝑦) = 1− 𝑐𝑦2. (8.17)

For this to satisfy
−𝛼−1ℎ(0,−𝛼𝑦) = ℎ(0, ℎ(0, 𝑦)) (8.18)

we have
−𝛼−1(1− 𝑐(𝛼𝑦)2) = 1− 𝑐(1− 𝑐𝑦2)2 = 1− 𝑐+ 2𝑐2𝑦2 − 𝑐3𝑦4 (8.19)
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Truncating this at 𝑂[𝑦2], we require

−𝛼−1 = 1− 𝑐 (8.20)

𝑐𝛼 = 2𝑐2. (8.21)

We can determine 𝛼 = 1+
√
3 = 2.732. The empirical value is 2.5029. Not too bad.

8.10 Determination of 𝛿
To determine 𝛿 we mus point function to study the 𝜀 ̸= 0 case, so we study the
deviation 𝜓𝑛 from the fixed point.

ℎ[𝑛](𝜀𝑛, 𝑦𝑛) = ℎ(0, 𝑦𝑛) + 𝜀𝑛𝜓𝑛(𝑦𝑛). (8.22)

We introduce this into (8.15) and linearize as

(−𝛼)−1[ℎ(0,−𝛼𝑦𝑛)+𝜀𝑛+1𝜓𝑛(−𝛼𝑦𝑛)] = ℎ(0, ℎ(0, 𝑦𝑛))+𝜀𝑛𝜕𝑦ℎ(0, ℎ(0, 𝑦𝑛))𝜓𝑛(𝑦𝑛)+𝜀𝑛𝜓𝑛(ℎ(0, 𝑦𝑛)).
(8.23)

Define 𝒢 as

𝒢𝜑(𝑦) = −𝛼[𝜕𝑦ℎ(0, ℎ(0,−𝑦/𝛼))𝜑(−𝑦/𝛼) + 𝜑(ℎ(0,−𝑦/𝛼))] (8.24)

Since (−𝛼)−1ℎ(0,−𝛼𝑦𝑛) = ℎ(0, ℎ(0, 𝑦𝑛)), we get the following equation (𝑦𝑛+1 =
−𝛼𝑦𝑛)

𝜀𝑛+1𝜓𝑛(𝑦) = 𝜀𝑛𝒢𝜓𝑛(𝑦), (8.25)

That is,
𝛿𝜓𝑛(𝑦) = 𝒢𝜓𝑛(𝑦). (8.26)

The eigenvalue of 𝒢 gives 𝛿. We know ℎ(0, 𝑦) = 1− (1 + 𝛼−1)𝑦2 so we can compute
𝒢. However, I could not get a good approximate value for 𝛿 = 4.66 · · ·. Try.
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9 Lecture 9: Singular perturbation and renormal-

ization

9.1 Regular and singular perturbations111

Let us consider an ODE whose vector field is 𝑋0 ∈ 𝒳 𝑟(𝑀). When we add a ‘small’
term 𝜀𝑋1 to 𝑋0, where 𝜀 (> 0) is a small number, and 𝑋1 ∈ 𝒳 𝑟(𝑀), the resultant
systems is said to be a perturbed system

𝑥̇ = 𝑋 ≡ 𝑋0 + 𝜀𝑋1. (9.1)

Perturbations may be classified broadly into two classes, regular and singular per-
turbations. Pragmatically speaking, if the result as a power series in 𝜀 is convergent
(for some fixed time range independent of 𝜀), the perturbation is regular; if not, sin-
gular. If the perturbation is regular, there is no qualitative change of the dynamical
system due to perturbation. If singular, generally, the perturbed system exhibit new
features, e.g., new appearance of limit cycles.

Singular perturbations may be classified into two major classes; 𝑋0 is actually
defined on a submanifold of 𝑀 (in other words 𝑋1 requires new vector components;
this is probably the singular perturbation in the original sense) and 𝑋0 and 𝑋 have
no such submanifold structure (e.g., the resonance problems).

Since the perturbation series formally obtained by a straightforward perturbation
calculation for singular perturbation problems give (at best) asymptotic series just
as interacting field theories, it may not be so surprising that renormalization-group

111The best reference book (practical book) of singular perturbation is C. M. Bender and S.
A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, 1978).
Numerous examples and numerical confirmation of the results make this book unrivaled. It is a
book to be kept at one’s side whenever singular perturbation problems are studied. However, the
book is wonderfully devoid of any mathematical theory. To have an overview of various singular
perturbation methods within a short time, E. J. Hinch, Perturbation Methods (Cambridge UP.,
Cambridge, 1991) is recommended. J. Kevorkian and J. D. Cole Perturbation methods in applied
mathematics (Springer, 1981) was a standard reference.
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ideas can be useful.112,113

9.2 Simple example of singular perturbation
Consider

𝜖
𝑑2𝑦

𝑑𝑡2
+
𝑑𝑦

𝑑𝑡
+ 𝑦 = 0, (9.2)

where 𝜖 > 0 is a small constant. If this is zero, the solution decays exponentially; 𝐴𝑒−𝑡

is its general solution, where 𝐴 is a numerical constant. If 𝜖 > 0, for a sufficiently
small time, the second order derivative term is important (notice that however small
the mass may be, the inertial effect is crucial for a short time at the beginning of the
motion). However, after a long time, the system behavior should be similar to the
𝜖 = 0 case. Then, why don’t we take this term into account through perturbation?
This problem is easily solved by hand exactly, but let us pretend that we cannot do
so, and perform a perturbative calculation.

9.3 Naive perturbation and its difficulty
Let us expand the solution to (9.2) formally as

𝑦 = 𝑦0 + 𝜖𝑦1 + · · · (9.3)

and then introduce this into the equation (9.2). Equating the terms with the same
power of 𝜀, we obtain

𝑑𝑦0
𝑑𝑡

+ 𝑦0 = 0, (9.4)

112Key ideas are in N. D. Goldenfeld, O. Martin and Y. Oono, “Intermediate asymptotics and
renormalization group theory,” J. Scientific Comp. 4, 355 (1989); L.-Y. Chen, N. Goldenfeld, Y.
Oono, and G. Paquette, “Selection, stability and renormalization,” Physica A 204, 111 (1993). The
latter clearly recognized the relation between the reductive perturbation theory (fully exploited by
Y. Kuramoto) and RG. Thus, the crux of many singular perturbation methods is to construct the
equation of motion that governs the asymptotic solutions of perturbed systems. A paper with many
examples is the ‘CGO’: Lin-Yuan Chen, Nigel Goldenfeld, and Y. Oono, Renormalization group
and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory,
Phys Rev E 54, 376 (1996). Some misunderstandings (even by my collaborators) were corrected in
Y. Oono and Y. Shiwa, Reductive renormalization of the phase-field crystal equation, Phys. Rev.
E 86, 061138 (2012).

113In these days, applied mathematicians have organized the results of the renormalization group
method as a method of nonlinear variable transformation that requires no idea of renormalization.
I have no interest in this direction.
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𝑑𝑦1
𝑑𝑡

+ 𝑦1 = −𝑑
2𝑦0
𝑑𝑡2

, (9.5)

etc. Let us write the solution to the first equation as 𝑦0 = 𝐴0𝑒
−𝑡, where 𝐴0 is an

integration constant. Then, the general solution to the second equation reads

𝑦1 = 𝐴1𝑒
−𝑡 − 𝐴0𝑡𝑒

−𝑡, (9.6)

where 𝐴1 is also an integration constant. Combining these two results, we obtain to
order 𝜖

𝑦 = 𝐴0𝑒
−𝑡 − 𝜖𝐴0𝑡𝑒

−𝑡 +𝑂(𝜖2). (9.7)

Here, 𝐴0+ 𝜖𝐴1 is redefined as 𝐴0 (we ignore 𝜀
2𝐴1 in the second term; as can be seen

from this, in the perturbative expansion we have only to find special solutions).
In this way, we can compute any higher order terms, but this is usually regarded

as a bad solution, because 𝜖 appears with 𝑡 which increases indefinitely. Thus, the
perturbation effect that should be small becomes not small, and the perturbation
method breaks down. In other words, the perturbation result may be used only for
the time span much shorter than 𝜖−1. Mathematically speaking, the convergence is
not uniform in time. The term with multiplicative 𝑡 is traditionally called a secular
term.

9.4 How we extract long time behaviors
The analogy with the standard RG problem (or critical phenomena) is as follows:
We are interested in the long term behavior 𝑡 → ∞ that is insensitive to initial de-
tails (= the long-term qualitative behaviors). In this limit secular terms diverge. If
we could remove such divergences, then naive perturbation series as obtained above
could make sense.

For the present problem to watch the behavior just in front of us (‘at present
time’) corresponds to macroscopic observations and the behaviors long ago corre-
spond to microscopic scales.114 That is, we are interested in the global behavior that
does not change very much even if the initial condition is modified. In the ordinary
renormalization problem, the microscopic-detail-sensitive responses (that diverge in
the 𝐿/ℓ → ∞ limit, where 𝐿 is our scale and ℓ the atomic scale) are separated and
renormalized into materials constants.

114For ordinary deterministic systems it is hard to obtain the initial condition from the observation
result at 𝑡 (it is asymptotically impossible in the 𝑡→ ∞ limit). For chaotic systems, however, this
is not only always possible, but the estimate of the initial condition becomes more accurate if we
observe longer time asymptotic behaviors (however, we assume there is strictly no noise). That is,
in a certain sense, chaos is the antipode of renormalizability.
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Therefore, in the present problem what must be renormalized is the sensitively
dependent behavior on the initial condition, and the place it should be pushed into
must be the integration constants (the quantities connecting what we observe now
and the initial condition); it is a natural observation, because the integration con-
stants are determined by the initial condition.

Notice that what we can renormalize is the relation between what we can ob-
serve and what we cannot. Since there is no arbitrariness in the relationships among
observable quantities, there is no room for renormalization constants for observable
relationships. It is crucial to distinguish what we can observe and what we cannot.115

9.5 Renormalization along time axis
Separate the secular divergence as (𝑡 − 𝜏) + 𝜏 , and then absorb 𝜏 by modifying
unobservable 𝐴0 (since we do not know the precise initial condition) as 𝐴(𝜏), which
is understood as an adjustable parameter to be determined so that the solution agrees
with the behavior we directly observe at present, i.e., around time 𝑡.116 After this
renormalization, the perturbation series (9.7) reads

𝑦 = 𝐴(𝜏)𝑒−𝑡 − 𝜖(𝑡− 𝜏)𝐴(𝜏)𝑒−𝑡 +𝑂(𝜖2). (9.8)

(As can be seen from this, 𝜏 is actually 𝜏 − initial time, i.e., the time lapse from the
initial time). Such a series is called a renormalized perturbation series.

This equation makes sense only when 𝜖(𝑡 − 𝜏) is small, but it is distinct from
the original perturbation series (9.7) we started with (which is often called a ‘bare’
perturbation series), because we can choose 𝜏 to be large enough.

9.6 Renormalization-group equation
Since 𝜏 is a parameter not existing in the problem itself, 𝜕𝑦/𝜕𝜏 = 0. This is the
renormalization group equation for the current problem:

𝜕𝑦

𝜕𝜏
=
𝑑𝐴

𝑑𝜏
𝑒−𝑡 + 𝜖(𝑡− 𝜏)

𝑑𝐴

𝑑𝜏
+ 𝜖𝐴𝑒−𝑡 + · · · = 0. (9.9)

The equation tells us that 𝑑𝐴/𝑑𝜏 must be of order 𝜖 (the terms proportional to 𝑒−𝑡

must cancel each other), so we may discard the second term of (9.9) as a higher order

115Thus, the following ancient teaching becomes a crucial renormalization instruction: “When
you know a thing, recognize that you know it, and when you do not, recognize that you do not.”
Analects Book 2, 17 [A. Waley, The Analects of Confucius (Vintage, 1989)].

116If you know the ordinary field-theoretic RG, you must have recognized that log(length scale)
corresponds to time; 𝑡− 𝜏 ↔ log(𝐿/ℓ).
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term. Therefore, the renormalization group equation reads, to order 𝜀,

𝑑𝐴

𝑑𝜏
= −𝜖𝐴. (9.10)

The renormalized perturbation series (9.8) is simplified if we set 𝜏 = 𝑡 (those who
question this procedure should see the note below):

𝑦 = 𝐴(𝑡)𝑒−𝑡. (9.11)

(9.10) implies that 𝐴(𝑡) obeys the following amplitude equation:

𝑑𝐴(𝑡)

𝑑𝑡
= −𝜖𝐴(𝑡). (9.12)

The equation indicates that 𝐴 changes significantly only in the long time scale of
order 𝑡 ∼ 1/𝜖; only when 𝜖𝑡 has a visible magnitude can 𝐴 change significantly.
Finally, solving (9.12), we get the following asymptotic behavior,

𝑦 = 𝐵𝑒−(1+𝜖)𝑡 +𝑂(𝜖2), (9.13)

where 𝐵 is an adjustable parameter. This is our conclusion about the asymptotic
behavior.117 Here, notice that the form of 𝐴(𝑡) as a function of 𝑡 is universal in the
sense that it does not directly depend on the initial condition ((9.12) is determined
by the original differential equation itself).

As can be seen from the above example, the core of the renormalization group
method for the problems with secular terms is to derive equations that govern the
slow systematic motions such as (9.12). This may be interpreted as coarse-graining
or reduction of the system behavior.

9.7 More systematic approach
To perform calculation more systematically, we introduce the renormalization constant 𝑍 as
𝐴 = 𝑍𝐴0 or more conveniently as (notice that the following 𝑍 is the reciprocal of the 𝑍 in
𝐴 = 𝑍𝐴0)

𝐴 = 𝑍𝐴𝑅, (9.14)

where 𝐴 is the ‘bare’ microscopic quantity and 𝐴𝑅 the renormalized counterpart (in the
current context it is what we observe long time later). We are performing a perturbation
calculation, so we expand 𝑍 = 1 + 𝜖𝑍1 + · · ·, and the coefficient are determined order by
order to remove divergences. In the lowest order calculation as we have done, there is no
danger of making any mistake, so a simple calculation as explained above is admissible, but,
as we will see in Note 3.7.1, a formal expansion helps systematic studies.

117In terms of the two roots 𝜆± = (−1±
√
1− 4𝜖)/2𝜖 of the characteristic equation 𝜖𝑠2+𝑠+1 = 0

the analytic solution for (9.2) is 𝑦(𝑡) = 𝐴𝑒𝜆+𝑡 + 𝐵𝑒𝜆−𝑡, where for small 𝜖 𝜆+ = −1 − 𝜖 + 𝑂(𝜖2),
𝜆− = −1/𝜖+ 1 + 𝜖+𝑂(𝜖2), so (9.13) is a uniformly correct order 𝜀 solution up to time 𝜖𝑡 ∼ 1.
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9.8 Why we can set 𝑡 = 𝜏
In the above calculation putting 𝜏 = 𝑡 makes everything simple, but there are people who
feel that it is a bit too convenient and ad hoc a procedure, so let us avoid this procedure.
The result of renormalized perturbation series has the following structure:

𝑦(𝑡) = 𝑓(𝑡; 𝜖𝜏) + 𝜖(𝑡− 𝜏)𝑔(𝑡) +𝑂(𝜖2). (9.15)

Since 𝑓 is differentiable with respect to the second variable, with the aid of Taylor’s formula
we may rewrite it as

𝑦(𝑡) = 𝑓(𝑡; 𝜖𝑡) + 𝜖(𝜏 − 𝑡)𝜕2𝑓(𝑡, 𝜖𝑡) + 𝜖(𝑡− 𝜏)𝑔(𝑡) +𝑂(𝜖2), (9.16)

where 𝜕2 denotes the differentiation with respect to the second variable. The second and the
third terms must cancel each other, since the original problem does not depend on 𝜏 . That
is, the procedure to remove the secular term by setting 𝜏 = 𝑡 is always correct.

9.9 RG equation as envelope equations
To construct an envelop is a renormalization procedure.118 Suppose a family of curves {𝑥 =
𝐹 (𝑡, 𝛼)} parameterized with 𝛼 is given. Its envelop is given by

𝑥 = 𝐹 (𝑡, 𝛼),
𝜕

𝜕𝛼
𝐹 (𝑡, 𝛼) = 0. (9.17)

The second equation can be interpreted as a renormalization group equation. The envelop
curve is such a set of points among the points {𝑥, 𝑡} satisfying 𝑥 = 𝐹 (𝑡, 𝛼) that stay invariant
under change of 𝛼 to 𝛼 + 𝛿𝛼. Therefore, it must satisfy the second equation describing the
condition that the (𝑥, 𝑡) relation does not change under perturbation of 𝛼. This is exactly the
same idea as searching features that stay invariant even if microscopic details are perturbed.

However, renormalization group theory must not be misunderstood119 as a mere theory
of special envelop curves. The theory of (or the procedure to make) envelop curves is mean-
ingful only after a one-parameter family of curves is supplied. Thus, from the envelop point
of view, the most crucial point is that renormalization provides a principle to construct the
one parameter family to which the theory of envelop may be applied. Needless to say, the
key to singular perturbation is this principle and not the envelop interpretation, which may
not always be useful.

9.10 What the simple example suggests
The above simple example suggests the following:

118This was pointed out by T. Kunihiro. T. Wall seems to be the first to construct a result
that can be obtained naturally by a renormalization group method as an envelop of approximate
solutions: F. T. Wall, “Theory of random walks with limited order of non-self-intersections used
to simulate macromolecules,” J. Chem. Phys. 63, 3713 (1975); F. T. Wall and W. A. Seitz, “The
excluded volume effect for self-avoiding random walks,” J. Chem. Phys. 70, 1860 (1979). Later,
the same method (called the coherent anomaly method) was systematically and extensively used
by M. Suzuki to study critical phenomena.

119As Kunihiro did
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(1) The secular term is a divergence, and renormalization procedure removes this
divergence to give the same result singular perturbation methods give. Singular per-
turbation methods are ‘renormalized ordinary perturbations.’120

(2) The renormalization group equation is an equation governing slow phenomena.
The core of singular perturbation theories is to extract such a slow motion equation,
which can be obtained in a unified fashion with the aid of renormalization.121

9.11 Resonance due to perturbation
The second class of singular perturbation is due to divergence caused by resonance.
If a harmonic oscillator is perturbed by an external perturbation with the frequency
identical to the oscillator itself, its amplitude increases indefinitely. For a globally
stable nonlinear system, this divergence is checked sooner or later by some nonlinear
effect, so there is no genuine divergence. However, if the nonlinear term is treated as
perturbation, this effect disappears from the perturbation equations, so singularity
due to resonance shows up. Even if the average external force is zero, resonance
has a ‘secular effect.’ That is, there is an effect that accumulates with time. The
etymology of ‘secular term’ lies here.

9.12 Weakly nonlinear oscillators
A typical example illustrating that an ordinary perturbation series is plagued by
resonance is the following weak nonlinear oscillator:

𝑑2𝑦

𝑑𝑡2
+ 𝑦 = 𝜖(1− 𝑦2)

𝑑𝑦

𝑑𝑡
, (9.18)

where 𝜖 is a small positive constant (so the nonlinearity is weak). This equation
is a famous equation called the van der Pol (1889-1959) equation. Introducing the
following expansion

𝑦 = 𝑦0 + 𝜖𝑦1 +𝑂(𝜖2) (9.19)

into (9.18), and equating terms with the same power in 𝜀, we obtain

𝑑2𝑦0
𝑑𝑡2

+ 𝑦0 = 0, (9.20)

120As long as the lecturer has experienced, many (almost all?) problems solved by named singular
perturbation methods can be solved by renormalization method in a unified fashion without any
particular prior knowledge.

121Many (all?) famous equations governing phenomenological behaviors (e.g., the nonlinear
Schrödinger equation, the Burgers equation, the Boltzmann equation, etc.) can be derived as
renormalization group equations.
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𝑑2𝑦1
𝑑𝑡2

+ 𝑦1 = (1− 𝑦20)
𝑑𝑦0
𝑑𝑡
, (9.21)

etc.

9.13 Appearance of secular terms
The general solution to the first equation (9.20) may be written as

𝑦0(𝑡) = 𝐴𝑒𝑖𝑡 + c.c., (9.22)

where 𝐴 is a complex constant and c.c. implies complex conjugate. Using this in the
second equation (9.21), we get

𝑑2𝑦1
𝑑𝑡2

+ 𝑦1 = 𝑖𝐴(1− |𝐴|2)𝑒𝑖𝑡 − 𝑖𝐴3𝑒3𝑖𝑡 + c.c. (9.23)

We have only to obtain its special solution. To this end it is the easiest to use
Lagrange’s method of varying coefficients.122 Thus, we obtain

𝑦1 =
1

2
𝐴(1− |𝐴|2)𝑡𝑒𝑖𝑡 + 𝑖

8
𝐴3𝑒3𝑖𝑡 + c.c. (9.24)

We have obtained the naive perturbation series as

𝑦(𝑡) = 𝐴𝑒𝑖𝑡 + 𝜖

[︂
1

2
𝐴(1− |𝐴|2)𝑡𝑒𝑖𝑡 + 𝑖

8
𝐴3𝑒3𝑖𝑡

]︂
+ c.c. +𝑂(𝜀2). (9.25)

Clearly, there is a secular term. The reason for it is that the right-hand side of the
equation for 𝑦1 contains the term proportional to 𝑒𝑖𝑡 that has the same frequency as
the harmonic oscillator expressed by the left-hand side.

122For example, a special solution 𝑢 to the second order ordinary differential equation

𝑑2𝑦

𝑑𝑥2
+ 𝑎

𝑑𝑦

𝑑𝑥
+ 𝑏𝑦 = 𝑓

may be constructed as follows in terms of the fundamental solutions of the corresponding homoge-
neous equation 𝜑1 and 𝜑2:

𝑢 = 𝐶1𝜑1 + 𝐶2𝜑2,

where the coefficients (functions) 𝐶1 and 𝐶2 are obtained by solving the following equations:

𝑑𝐶1

𝑑𝑥
= −𝑓𝜑2

𝑊
,
𝑑𝐶2

𝑑𝑥
=
𝑓𝜑1
𝑊

.

Here, 𝑊 is the Wronskian 𝑊 = 𝜑1𝜑
′
2 − 𝜑2𝜑

′
1.
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9.14 Renormalization of resonance
Again, numerous singular perturbation methods have been developed to cure secular
terms, but our procedure is exactly the same as in the simple example above 9.5.
We separate 𝑡 as (𝑡− 𝜏)+ 𝜏 , and then absorb 𝜏 into the constant 𝐴 that depends on
the initial condition. The renormalized result is

𝑦(𝑡) = 𝐴(𝜏)𝑒𝑖𝑡+𝜖

[︂
1

2
𝐴(𝜏)(1− |𝐴(𝜏)|2)(𝑡− 𝜏)𝑒𝑖𝑡 +

𝑖

8
𝐴(𝜏)3𝑒3𝑖𝑡

]︂
+ c.c.+𝑂(𝜖2). (9.26)

Since 𝑦 cannot depend on 𝜏 , the renormalization group equation 𝜕𝑦/𝜕𝜏 = 0 becomes

𝑑𝐴

𝑑𝑡
= 𝜖

1

2
𝐴(1− |𝐴|2) +𝑂(𝜖2), (9.27)

where 𝜏 is already replaced with 𝑡. This is an equation governing the long time
behavior of the amplitude. Setting 𝑡 = 𝜏 in (9.26), we get

𝑦(𝑡) = 𝐴(𝑡)𝑒𝑖𝑡 + 𝜖
𝑖

8
𝐴(𝑡)3𝑒3𝑖𝑡 + c.c. +𝑂(𝜖2). (9.28)

The key result is the amplitude equation (9.27).
In this example, the case 𝜖 = 0 and the case 𝜖 > 0 are qualitatively different. For

a harmonic oscillator, any amplitude is allowed. In contrast, too large or too small
amplitudes are not stable for (9.18) as can be seen from its right-hand side term: if
(1 − 𝑦2) < 0, then it is an acceleration term that reduces the amplitude; otherwise,
it is an acceleration term injecting energy to the oscillator. Indeed, according to the
above approximate calculation, the first order solution slowly converges to a limit
cycle expressed by |𝐴| = 1. Pragmatically, much simpler calculational method called
proto-RG approach exists. See 9.15

Notice that the amplitude equation (9.27) contains 𝜖. As expected from the re-
sult of the preceding section, the renormalization group equation describes a slow
change of the amplitude (the actual motion is a busy rotation of period about 2𝜋).
As already suggested in the preceding section, the renormalization group approach
supplies a new point of view for singular perturbation: to extract such a slow motion
equation is the key point of the singular perturbation problems.

9.15 Proto RG equation
Let us consider an autonomous equation

𝐿𝑦 = 𝜀𝑁(𝑦), (9.29)
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where 𝐿 is a linear operator and 𝑁 is a nonlinear operator. We make a formal
expansion as

𝑦 = 𝑦0 + 𝜀𝑦1 + 𝜀2𝑦2 + · · · . (9.30)

We know these terms generally contain secular terms. Let us renormalize 𝑦0: accord-
ing to the spectrum of 𝐿, we may write

𝑦0 =
∑︁
𝑖

𝐴𝑖𝑒𝑖(𝑡). (9.31)

Each 𝑦𝑘 has its own secular term 𝑌𝑘: let us write 𝑦𝑘 = 𝜂𝑘 + 𝑌𝑘. Let us dissect 𝑌𝑘 as

𝑌𝑘 = 𝑡
∑︁
𝑖

𝑃
(𝑖)
𝑘 (𝐴)𝑒𝑖(𝑡) +𝑄𝑘(𝑡, 𝐴). (9.32)

Thus, we can write 𝑦 generally as follows:

𝑦(𝑡) =
∑︁
𝑖

𝐴𝑖𝑒𝑖(𝑡) + 𝑡
∑︁
𝑖

𝑃𝑖(𝐴)𝑒𝑖(𝑡) +𝑄(𝑡, 𝐴) +𝑅(𝑡, 𝐴), (9.33)

where 𝑄(𝑡, 𝐴) =
∑︀

𝑘 𝜀
𝑘𝑄𝑘(𝑡, 𝐴) is the secular term containing higher powers of 𝑡, and

𝑅 is the rest.
After renormalization (9.33) reads

𝑦(𝑡, 𝜏) =
∑︁
𝑖

𝐴𝑅𝑖(𝜏)𝑒𝑖(𝑡) +𝑅(𝑡, 𝐴𝑅(𝜏)). (9.34)

Here, note that 𝑦(𝑡, 𝑡) = 𝑦(𝑡). We have

𝐴𝑅𝑖(𝜏) = 𝐴𝐼 + 𝜏𝑃𝑖(𝐴). (9.35)

Let us introduce 𝐿̃𝑖 by

𝐿(𝑓(𝑡)𝑒𝑖(𝑡)) = (𝐿̃𝑖𝑓(𝑡))𝑒𝑖. (9.36)

Then, (9.35) reads

𝐿̃𝑖𝐴𝑅𝑖 = 𝐿̃𝑖𝑃𝑖(𝐴𝑅). (9.37)

This is the proto-RG equation. Notice that the RHS is just (−) the perturbation term
containing 𝑒𝑖, so we can read it off from the perturbation equation without solving it.
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9.16 Proto RG applied to van der Pol
As an illustration, let us go back to the van der Pol equation (9.18). We have 𝑒𝑖𝑡

and its conjugate as 𝑒𝑖(𝑡). Thus, (9.21) tells us

−𝐿̃𝑖𝑃𝑖(𝐴) = 𝑖𝐴(1− |𝐴|2). (9.38)

From (9.36) we get ℒ𝑖 for this case is[︂
𝑑2

𝑑𝑡2
+ 1

]︂
𝑓(𝑡)𝑒𝑖𝑡 = −𝑓(𝑡)𝑒𝑖𝑡 + 2𝑖𝑒𝑖𝑡

𝑑

𝑑𝑡
𝑓(𝑡) + 𝑒𝑖𝑡

𝑑2

𝑑𝑡
𝑓(𝑡) + 𝑓(𝑡)𝑒𝑖𝑡, (9.39)

so we have

ℒ𝑖 =
𝑑2

𝑑𝑡2
+ 2𝑖

𝑑

𝑑𝑡
. (9.40)

Therefore, the protoRG equation reads[︂
𝑑2

𝑑𝑡2
+ 2𝑖

𝑑

𝑑𝑡

]︂
𝐴𝑅(𝑡) = 𝜀𝑖𝐴𝑅(1− |𝐴𝑅|2), (9.41)

but differentiation wrt 𝑡 gives 𝑂[𝜀] quantity, so we may keep only the first derivative.
Thus, we have obtained the lowest order amplitude equation (9.27) almost for free.

9.17 How reliable is the renormalization group method?
It is easy to prove that (9.28) stays with the true solution within the error of 𝑂[𝜀] for
the time scale 1/𝜀 by a standard argument with the aid of the Grönwall inequality
3.22. However, such a result never tells us anything definite about the long-term
behavior of the system. For example, even the existence of a limit cycle cannot be
demonstrated.

A recent work by H. Chiba123 considerably clarified this problem. Apart from some
technicality, his conclusion is: “the long-time behavior of the system with small 𝜀 can
be qualitatively inferred from its renormalization group equation.” That is, roughly
speaking, the invariant manifold of the renormalization group equation is diffeomor-
phic to that of the original equation. In the resonance example above, it is trivial that
the renormalization group equation has a hyperbolic limit cycle, so we can conclude
that the original equation also has a hyperbolic limit cycle. At least an intuitive ex-
planation of the qualitative reliability of the RG results is attempted in the following.

123H. Chiba, “𝐶1 approximation of vector fields based on the renormalization group method,”
SIAM J. Appl. Dyn. Syst. 7, 895 (2008).
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9.18 Chiba’s logic124

(1) The invariant manifold of the renormalization group equation and that of the
equation governing the (truncated) renormalized perturbation series are (crudely
put; see 9.19) diffeomorphic.
(2) The differential equation governing the (truncated) renormalized perturbation
series is at least 𝐶1-close to the original differential equation.
With (2) and Fenichel’s theorem (see 9.20),
(3) The invariant manifold of the equation governing the (truncated) renormalized
perturbation series is diffeomorphic to the invariant manifold of the original equa-
tion.

We may expect that the invariant manifolds of 𝐶1-close vector fields are ‘close’ in
some sense. This is, however, a bit delicate question even under hyperbolicity if we
demand 𝐶1-closeness of the manifolds.

At least in the case of diffeomorphisms it is known that normal hyperbolicity (see
below) is a necessary and sufficient condition for an invariant manifold to persist.125

Thus, hyperbolicity of invariant manifolds should not be enough to guarantee the
qualitative similarity of the renormalization group equation to the original equation.

What Chiba demonstrated is that if the original system has a normally hyperbolic
invariant manifold, then the renormalization group equation preserves it. Although
for continuous dynamical systems, the relation between the normal hyperbolicity
and 𝐶1-structural stability seems not known, probably, we can conjecture that if the
original equation is 𝐶1-structurally stable (at least near its invariant manifold), then
its renormalization group equation preserves the invariant manifolds of the original
system.

9.19 Some technical comments as to Chiba’s theory
The relation between the solution 𝐴𝑅(𝑡) to the renormalization group equation and
the renormalized perturbation series solution 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) of the original equation
is given by (here maximally the same notations are used as in Section 3.7) the

124The explanation may oversimplify and may not do justice to the original theory, so those who
are seriously interested in the proof should read the original paper.

125M. Hirsch, C. Pugh and M. Shub, “Invariant manifolds,” Bull. Amer. Math. Soc. 76, 1015
(1970), and R. Mañé, “PERSISTENT MANIFOLDS ARE NORMALLY HYPERBOLIC,” Trans.
Amer. Math. Soc. 246, 271 (1978). These papers discuss the 𝐶1-closeness of the invariant manifolds.
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map 𝛼𝑡 defined as 𝛼𝑡(𝐴) =
∑︀
𝐴𝑖𝑒𝑖(𝑡) + 𝜂(𝑡, 𝐴) (thus 𝛼𝑡(𝐴𝑅(𝑡)) = 𝑦(𝑡, 0, 𝐴𝑅(𝑡)); see

(??)). Here, we are interested in truncated solutions to some power of 𝜀. Thus,
we make a truncated version of 𝛼𝑡 by truncating 𝜂. The differential equation gov-
erning 𝛼𝑡(𝐴𝑅(𝑡)) (both 𝛼𝑡 and 𝐴𝑅(𝑡) are truncated) is the equation 𝑉 ′ governing
the truncated renormalized perturbation series. A technical complication is that the
truncated 𝛼𝑡(𝐴𝑅(𝑡)) is generally explicitly time-dependent (𝛼𝑡(𝑥) is 𝑡-dependent), so
the invariant set of 𝑉 ′ must be considered in the ‘space-time’ (i.e., (𝑡, 𝑦)-space); what
(1) asserts is that the invariant set of the truncated original equation 𝑉 ′ considered
in the (𝑡, 𝑦)-space and the direct product of time and the invariant set of the renor-
malization group equation are diffeomorphic.

(2) should not be a surprise to physicists. The difference between the equation 𝑉 ′

governing 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) (appropriately truncated) and the original equation 𝑉 must
be bounded, since renormalized result is bounded uniformly. Thus, their closeness
should be obvious. Here, we need the closeness of the derivatives as well. The ap-
proximate solution and the exact solution are differentiable (actually 𝐶1). Therefore,
derivatives needed to calculate the derivatives of the vector fields are all bounded (if
the appropriate derivatives of formula with respect to 𝑦 exist). Thus, the equation
governing 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) (appropriately truncated) and the original equation are 𝐶1-
close.

The final step is (3); since the equation 𝑉 ′ governing 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) (appropriately
truncated) and the original equation 𝑉 are 𝐶1-close, if normal hyperbolicity (see the
next note) of the invariant manifold may be assumed, then Fenichel’s theorem con-
cludes the demonstration, if both 𝑉 and 𝑉 ′ are autonomous, but the equation 𝑉 ′ gov-
erning 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) (appropriately truncated) is not generally autonomous. Chiba
overcame this problem as in (1); to consider the systems in space-time. Fenichel’s
theorem can be applied there, and the 𝐶1-closeness of the invariant sets is estab-
lished.

Thus, the invariant manifolds of the renormalization group equation and of the
original equation are diffeomorphic.

9.20 Normal hyperbolicity and Fenichel’s theorem
Let us consider a (continuous time) dynamical system defined on a subset 𝑈 of a vec-
tor space with a (compact) invariant manifold𝑀 . 𝑀 is assumed to have its unstable
and stable manifolds, and the tangent space is decomposed as 𝑇𝑀𝑈 = 𝑇𝑀⊕𝐸𝑠⊕𝐸𝑢,
where 𝐸𝑠 is the stable bundle and 𝐸𝑢 the unstable bundle. 𝑀 is normal hyperbolic,
if the flow along the manifold 𝑀 is ‘slower’ than the flows in the stable and unsta-
ble manifolds. The illustration (Fig. 9.1) is basically the same in Fenichel’s original
paper.
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Figure 9.1: Why normal hyperbolicity is needed. The thick curve denotes the invariant manifold
and its stable manifold is illustrated. The big white arrow denotes perturbation. ‘NH’ denotes the
normal hyperbolic case, where the flow on the stable manifold is ‘faster’ (double arrows) than the
flow on the invariant manifold. That is, normal direction is ‘more’ hyperbolic. ‘nonNH’ denotes
the hyperbolic but not normally hyperbolic case. In the NH case the perturbation cannot disrupt
the smoothness of the invariant manifold near ‘x,’ but that is not the case for the nonNH case; a
cusp could be formed.

Theorem 3.8.1 [Fenichel]126 Let 𝑋 be a 𝐶𝑟-vector field (𝑟 ≥ 1) on R𝑛. Let 𝑀
be a normally hyperbolic invariant manifold of 𝑋 without boundary. Then, for any
𝐶𝑟-vector field 𝑌 in a certain 𝐶1-neighborhood of 𝑋 is a 𝑌 -invariant manifold 𝐶𝑟-
diffeomorphic to 𝑀 . This diffeomorphism is 𝐶1-close to the identity.

126N. Fenichel, “Persistence and smoothness of invariant manifolds for flows,” Indiana Univ.
Math. J., 21, 193 (1971).
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10 Lecture 10: Classical mechanics: review

Newton realized that if we know the current position 𝑥 and velocity 𝑥̇ of a point
mass, its future (and its past) is completely determined. This is called the Newton-
Laplace principle of determinacy. This means its acceleration 𝑥̈ is determined by 𝑥
and 𝑥̇. The resultant ODE is called Newton’s equation of motion.

Since every graduate student should be very familiar with the practical use of
classical mechanics, in this lecture, I concentrate on topics that are not very widely
known or not so much stressed:
(1) How to construct a variational principle,
(2) When the variational principle is actually a minimization principe,
(3) A succinct demo of the Jacobi identity for Poisson brackets.
(4) How Schrödinger ‘used’ the Hamiltonian principle to derive his equation.

10.1 Newton-Laplace Principle of Determinacy127

The principle asserts that the state (= point in the phase space) of a mechanical sys-
tem (= everything from Newton’s and Laplace’s point of view) at any fixed moment
of time 𝑡 uniquely determines all of its (future and past) states:

From 𝑥(𝑡0) and 𝑣(𝑡0) = 𝑥̇(𝑡0), (𝑥(𝑡), 𝑣(𝑡)) for all 𝑡 is uniquely determined.

In particular, we can calculate the acceleration as

𝑥̈ = 𝑓(𝑥, 𝑥̇, 𝑡). (10.1)

This is known as Newton’s equation of motion. With time-reversal symmetry there
is no first order derivatives in the equation

𝑥̈ = 𝑓(𝑥, 𝑡). (10.2)

Thus, to describe the system mechanics is to provide 𝑓 , the force (experimentally).
As noted in the preface to Principia, for Newton to find 𝑓 for various phenomena
was the core physics. This idea hindered the kinetic theory of gasses to explain the
gas pressure.

The equivalence of Newton’s equation of motion and the principle of determinacy
is shown by the unique existence theorem of the solution for the ODE (see 3.18).

127The following paper proposes to use the halting problem to deny the existence of Laplace’s
demon: Josef Rukavicka, Rejection of Laplace’s Demon. AmMath Month 121 498 (2014). Basically,
the question is: what is the significance of undecidable questions in this context?
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Thus it is not unconditional, but as long as the motion is sufficiently smooth the
equivalence is guaranteed.

Newton introduced the concept of ‘force’ and established the law of universal grav-
itation (with superposition principle).

10.2 Determinacy implies predictability?
One of the key issues of nonlinear dynamics is to make it clear that the answer
to the question is negative: even though deterministic you cannot predict the
future of the system, because the indefiniteness (error) in the intial condition
could be exponentially magnified within a short time span.

There are, however, actually, more serious reasons why determinacy cannot
generally imply predictability. One is already mentioned in the footnote of
10.1: for example, the calculation needed to predict the future may not end.
I do not know whether we can make a natural-looking ODE example for this.
In this case whether computation can actually produce a number or not is the
issue; we cannot even predict whether the computer will eventually give the
answer or not. The other case of unpredictability is that the computer can
indeed produce numbers, but their reliability (i.e., the size of the error bar) are
never guaranteed.

10.3 Variational principle
The fundamental equation of mechanics is (10.2), but why is this form? Is there any
deeper reason (yes, rational reason) for the Creator to choose this law?128 Somehow,
the law should be ‘optimized’, a natural route to variational principles. In elementary
classical mechanics we have already learned Lagrange’s principle, but here let us
construct the variational principle from (10.2). We use

Theorem [Veinberg]129 Suppose

128This is exactly the ‘naturalness’ question (used in high energy physics). C. Lanczos, The
variational principle of mechanics (University of Toronto Press, 3rd ed., 1960) Preface says, “There
is hardly any other branch of the mathematical sciences in which abstract mathematics speculation
and concrete physical evidences go so beautifully together and complement each other so perfectly.”
It is a good lesson to know that mathematical beauty does not guarantee the correctness of a theory
in natural science. It is very often the case that what we believe natural is not actually naturally
realized in Nature; to recognize this may be a sign of a true progress.

129See R. W. Atherton and G. M. Homsy, On the existence and formulation of variational principle
for nonlinear differential equations, Studies Appl. Math. LIV, 31 (1975). For ODE there is a newer
paper: I. A. Anderson and G. Thompson, The inverse problem of the calculus of variation for
ordinary differential equations, Memoir AMS 98, Number 473 (1991).
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(1) 𝑁 is an operator from a Hilbert space ℋ into its conjugate space,
(2) 𝑁 has a linear Gateau derivative130 𝐷𝑁(𝑢, ℎ) at every point of the ball 𝐵 =
{𝑢 | ‖𝑢− 𝑢0‖ < 𝑟} and for any ℎ ∈ ℋ,
(3) The scalar product ⟨ℎ1, 𝐷𝑁(𝑢, ℎ2)⟩ is continuous at every point of the ball 𝐵 for
any ℎ1, ℎ2 ∈ ℋ.
Then, a necessary and sufficient condition for 𝑁(𝑢) = 0 to be the Euler-Lagrange’s
equation of a variational principle in the ball 𝐵 is the symmetry

⟨ℎ1, 𝐷𝑁(𝑢, ℎ2)⟩ = ⟨ℎ2, 𝐷𝑁(𝑢, ℎ1)⟩. (10.3)

The variational functional 𝐹 (𝑢) is given by

𝐹 (𝑢) = −
∫︁
𝑑𝑡

∫︁ 1

0

𝑑𝜆 𝑢(𝑡)𝑁(𝜆𝑢(𝑡)). (10.4)

You should have realized a perfect parallelism between the condition for a force
𝐹 to be conservative: curl𝐹 = 0 and the above theorem.

10.4 Application to Newton’s equation of motion
(10.3) implies (exercise!) that 𝑓 cannot depend on 𝑥̇ = 𝑣 (that is, imposing the
variational principle enforces time-reversal symmetry) and the force must be conser-
vative. Under these conditions we obtain (exercise!) the usual result we know: the
variational functional is 𝐴 called the action:

𝐴 =

∫︁
𝑑𝑡 𝐿, (10.5)

with
𝐿 = 𝑇 − 𝑉, (10.6)

called the Lagrangian, where 𝑇 is the kinetic energy and 𝑉 the potential energy. The
equation of motion obtained from 𝛿𝐴 = 0 (the action principle) reads (Lagrange’s
equation of motion), as you know well,

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇
− 𝜕𝐿

𝜕𝑥
= 0. (10.7)

130⟨⟨Gateau derivative⟩⟩ This is a functional-derivative counterpart of the directional derivative,
and is also called the weak derivative. Let 𝐹 : 𝑋 → 𝑌 , where 𝑋 and 𝑌 are normed space. Then,

𝐷𝐹 (𝑥, ℎ) =
𝑑

𝑑𝑡
𝐹 (𝑥+ 𝑡ℎ)

⃒⃒⃒⃒
𝑡=0

.
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Remark on the Lagrangian:
(0) Landau-Lifshitz, Mechanics Chapter 1 is the best practical introduction.
(1) 𝐿 is not unique; we may add any total derivative wrt time. This allows more
general transformations than the ordinary coordinate changes (called canonical trans-
formations (Lecture 13)).
(2) 𝑇 is always a quadratic form of 𝑥̇.

10.5 Action minimum principle
The variational principle itself does not care whether 𝐴 is minimum or not along the
actual motion, but the founding fathers of the principle clearly expected ‘minimiza-
tion.’ This is actually true as long as the path is not too long. Precisely put, until
the stationary curve hits the conjugate point, the minimum principle is true.

10.6 Conjugate point
Consider two actual trajectories going through a point A making a small angle
with each other. If these two trajectories cross with each other at B, it is called
a conjugate point of A (see Fi.g 10.1).

If the final point is reached from the initial point before reaching its conju-
gate point, the action is actually minimum.

A

B

L

D

H
Q

P

Figure 10.1: A conjugate point. Here, trajectories L and H both satisfy the variational principle.

[Demo] In Fig. 10.1 trajectories L and H both satisfy the variational principle,
starting from A with different directions, and then cross for the first time at
B (a conjugate point of A). Suppose APHQB is not an actual trajectory. If
PHQ is not the actual trajectory, then there must be an actual one PDQ. Since
we can choose Q sufficiently close to P,131 10.7 tells us the action along PDQ

131Suppose PHQ is not an actual path. Take R on this path. If PR is an actual path, we can
choose replace PHQ with RHQ. If PR is not actual, there must be a ‘bypass’ which is the actual
path.



120

is smaller than that along PHQ. Then, 𝛿2𝐴 < 0 on PDQ, contradicting the
assumption that 𝛿2𝐴 = 0 along 𝑃𝐻𝑄.

10.7 Locally, action principle is minimum principle
We first rewrite the action principle in the form of Maupertuis (1698-1759)’s
principle (= the action principle on the constant energy 𝐸 surface):

𝐴 =

∫︁ 𝑡1

𝑡0

𝑑𝑡 (𝑇 − 𝑉 ) =

∫︁ 𝑡1

𝑡0

𝑑𝑡 (2𝑇 − 𝐸) = 2

∫︁ 𝑡1

𝑡0

𝑑𝑡 𝑇 − 𝐸(𝑡1 − 𝑡0). (10.8)

This means we have only to consider the first term as the action (denoted as
𝐴′). Since 𝑇 is quadratic wrt 𝑞, where 𝑞 is the spatial coordinate, we may write
𝑇 = 𝐴𝑖𝑗𝑞𝑖𝑞𝑗/2 = 𝐴𝑖𝑗𝑑𝑞𝑖𝑑𝑞𝑗/2𝑑𝑡

2 (summation convention implied), so

𝑑𝑡 =
√︁
𝐴𝑖𝑗𝑑𝑞𝑖𝑑𝑞𝑗/2𝑇 (10.9)

Therefore,

𝐴′ = 2

∫︁ 𝑡1

𝑡0

𝑑𝑡 𝑇 =

∫︁ 𝑠=𝑡1

𝑠=𝑡0

𝑑𝑠
√︀

2(𝐸 − 𝑉 )
√︁
𝐴𝑖𝑗𝑞′𝑖(𝑠)𝑞

′
𝑗(𝑠). (10.10)

Now, we must study 𝛿2𝐴′. We vary the trajectory as 𝑞 → 𝑞 + 𝛿𝑞. Choose
the time range [𝑡0, 𝑡1] sufficiently small so the variation 𝛿𝑞 is much smaller
than 𝛿𝑞′. Therefore, we have only to consider the second

√
· · · in (10.10). This

is a (positive definite) quadratic form, so its stationary value must be minimum.

10.8 Legendre transformation 𝐿 → 𝐻
We know Lagrange’s equation of motion means the following 1-form:

𝑑𝐿 = 𝑝𝑑𝑞 − 𝜕𝑉

𝜕𝑞
𝑑𝑞, (10.11)

where 𝑞 are spatial coordinates, and 𝑝 the momenta. Now we apply the following
Legendre transformation

𝐻 = sup
𝑞
[𝑝𝑞 − 𝐿] = 𝑇 + 𝑈. (10.12)

𝐻 is called the Hamiltonian and

𝑑𝐻 = 𝑞𝑑𝑝+
𝜕𝑉

𝜕𝑞
𝑑𝑞 (10.13)
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implies the Hamilton’s equation of motion (= the canonical equation of motion)

𝑞 =
𝜕𝐻

𝜕𝑝
,
𝜕𝑉

𝜕𝑞
=
𝜕𝐻

𝜕𝑞
= −𝑝̇. (10.14)

10.9 Hamilton’s principle.
Since 𝐿 =

∑︀
𝑝𝑖𝑞𝑖 −𝐻 (10.8), the action principle 10.4 may be rewritten as

𝛿

∫︁ [︃∑︁
𝑖

𝑝𝑖𝑞𝑖 −𝐻

]︃
𝑑𝑡 = 0. (10.15)

Regarding 𝑝 and 𝑞 to be independent variables, we obtain directly the canonical equa-
tion of motion (10.14) (use integration by parts). The resultant variational principle
(10.15) is called Hamilton’s principle.

10.10 Poisson bracket.
Let 𝑓 and 𝑔 be differentiable phase functions (functions of 𝑞 and 𝑝). We introduce
the Poisson bracket [𝑓, 𝑔]𝑃𝐵

132 as

[𝑓, 𝑔]𝑃𝐵 ≡ 𝜕𝑓

𝜕𝑞

𝜕𝑔

𝜕𝑝
− 𝜕𝑔

𝜕𝑞

𝜕𝑓

𝜕𝑝
=
∑︁
𝑖

(︂
𝜕𝑓

𝜕𝑞𝑖

𝜕𝑔

𝜕𝑝𝑖
− 𝜕𝑔

𝜕𝑞𝑖

𝜕𝑓

𝜕𝑝𝑖

)︂
. (10.16)

10.11 Canonical equation of motion in terms of Poisson brackets
(10.14) reads

𝑞𝑖 = [𝑞𝑖, 𝐻]𝑃𝐵, 𝑝̇𝑖 = [𝑝𝑖, 𝐻]𝑃𝐵. (10.17)

Thus, the canonical equations of motion for 𝑞 and 𝑝 have become symmetric. (cf.
Heisenberg’s equation of motion in QM)

10.12 Properties of Poisson bracket
Note the following general relations:

132or simply, [𝑓, 𝑔] when quantum and classical mechanics do not appear simultaneously.
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(i) [𝑓, 𝑔]𝑃𝐵 = −[𝑔, 𝑓 ]𝑃𝐵.
(ii) [𝑓, 𝑔 + ℎ]𝑃𝐵 = [𝑓, 𝑔]𝑃𝐵 + [𝑓, ℎ]𝑃𝐵.
(iii) [𝑐𝑓, 𝑔]𝑃𝐵 = 𝑐[𝑓, 𝑔]𝑃𝐵, where 𝑐 is a constant.
(iv) [Jacobi’s identity] [𝑓, [𝑔, ℎ]𝑃𝐵]𝑃𝐵 + [𝑔, [ℎ, 𝑓 ]𝑃𝐵]𝑃𝐵 + [ℎ, [𝑓, 𝑔]𝑃𝐵]𝑃𝐵 = 0.

(i)-(iv) imply that the Poisson bracket defines a Lie algebra structure for the set
of the differentiable phase functions. (i)-(iii) are easy to show. (iv) implies that
[ , ]𝑃𝐵 is not associative. Usually showing (iv) requires almost brute force lengthy
calculation, but see at the end of this item.

Notice further that
(v) [𝑓𝑔, ℎ]𝑃𝐵 = 𝑓 [𝑔, ℎ]𝑃𝐵 + [𝑓, ℎ]𝑃𝐵𝑔.
(vi) If 𝑓 and 𝑔 depend on a parameter 𝛼 differentiably, then 𝑑[𝑓, 𝑔]𝑃𝐵/𝑑𝛼 = [𝑑𝑓/𝑑𝛼, 𝑔]𝑃𝐵+
[𝑓, 𝑑𝑔/𝑑𝛼]𝑃𝐵.
(vii) Let 𝐹 be a function of phase functions 𝑓𝑖. Then [𝐹, 𝑔]𝑃𝐵 = (𝜕𝐹/𝜕𝑓𝑖)[𝑓𝑖, 𝑔]𝑃𝐵.

Notice that for any differentiable phase function ℎ, we can define a one parameter
group defined by 𝑑𝑓/𝑑𝛼 = [𝑓, ℎ]𝑃𝐵 (actually this is called an infinitesimal canonical
transformation and ℎ its generator; see 13.4). Use this to (vi) (compute 𝑑[𝑓, 𝑔]/𝑑𝛼),
and we get Jacobi’s identity (iv) immediately.

10.13 Integral of motion; conservation of energy
An integral of motion 𝑄 is a phase function which is time-independent. (10.17)
implies

[𝑄,𝐻]𝑃𝐵 = 0, (10.18)

if 𝑄 does not have any explicit time dependence.
Obviously,

[𝐻,𝐻]𝑃𝐵 = 0. (10.19)

This is the conservation of (mechanical) energy (𝐻 must be 𝑡-independent).

10.14 Poisson brackets of various quantities
We can easily demonstrate

[𝑝𝑖, 𝑝𝑗]𝑃𝐵 = 0, [𝑞𝑖, 𝑞𝑗]𝑃𝐵 = 0, [𝑞𝑖, 𝑝𝑗]𝑃𝐵 = 𝛿𝑖𝑗. (10.20)

Here (𝑖, 𝑗, 𝑘) is a cyclic permutation of (1, 2, 3). We also have for angular momentum
𝐿𝑖

[𝐿𝑖, 𝐿𝑗]𝑃𝐵 = 𝐿𝑘, [𝐿𝑖, 𝑝𝑗]𝑃𝐵 = 𝑝𝑘, [𝐿𝑖, 𝑞𝑗]𝑃𝐵 = 𝑞𝑘, (10.21)
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and other Poisson brackets between angular momentum components and phase vari-
ables are zero. More generally, for a differentiable phase function 𝐹 ,

[𝐹, 𝑝𝑖]𝑃𝐵 =
𝜕𝐹

𝜕𝑞𝑖
, [𝐹, 𝑞𝑖]𝑃𝐵 = −𝜕𝐹

𝜕𝑝𝑖
. (10.22)

10.15 Hamilton-Jacobi’s equation.
Let us consider the action 𝐴 defined in 10.4 as a function of the end time 𝑡 and the
end position 𝑞𝑖 = 𝑞𝑖(𝑡):

𝐴(𝑞, 𝑡) =

∫︁ 𝑡

𝑡0

𝐿(𝑞(𝑠), 𝑞(𝑠), 𝑠)𝑑𝑠, (10.23)

where 𝐿 is the Lagrangian. Obviously,

𝑑𝐴

𝑑𝑡
= 𝐿(𝑞𝑖(𝑡), 𝑞𝑖(𝑡), 𝑡) = 𝑝𝑖(𝑡)𝑞𝑖(𝑡)−𝐻, (10.24)

where 𝐻 is the Hamiltonian (10.12). Hence,

𝑑𝐴 =
∑︁
𝑖

𝑝𝑖𝑑𝑞𝑖 −𝐻𝑑𝑡, (10.25)

that is,
𝜕𝐴

𝜕𝑞𝑖
= 𝑝𝑖,

𝜕𝐴

𝜕𝑡
= −𝐻. (10.26)

Since 𝐻 is a function of 𝑞𝑖, 𝑝𝑖, and 𝑡, we obtain a closed equation for 𝐴

𝜕𝐴

𝜕𝑡
+𝐻

(︂
𝑞𝑖,
𝜕𝐴

𝜕𝑞𝑖
, 𝑡

)︂
= 0. (10.27)

This is called the Hamilton-Jacobi equation. Note that it does not contain the mo-
mentum coordinates. For example, for a particle of mass 𝑚 in the potential 𝑉 , the
Hamilton-Jacobi equation reads

𝜕𝐴

𝜕𝑡
+

1

2𝑚

{︃(︂
𝜕𝐴

𝜕𝑥

)︂2

+

(︂
𝜕𝐴

𝜕𝑦

)︂2

+

(︂
𝜕𝐴

𝜕𝑧

)︂2
}︃

+ 𝑉 (𝑥, 𝑦, 𝑧) = 0. (10.28)
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10.16 Schrödinger’s “Quantization as eigenvalue problem I”133

Schrödinger starts with the Hamilton-Jacobi equation (10.27) in the following sepa-
rated form:

𝐻

(︂
𝑞,
𝜕𝐴0

𝜕𝑞

)︂
= 𝐸, (10.29)

with 𝐴 = −𝐸𝑡+𝐴0, where 𝐴0 is called Hamilton’s principal function. He introduces
𝜓 as

𝐴0 = ~ log𝜓. (10.30)

Schrödinger use the symbol 𝐾 instead of ~. Thus, the equation (10.29) now reads

(∇𝜓)2 − 2𝑚

~2
(𝐸 − 𝑉 )𝜓2 = 0. (10.31)

Instead of this equality, he replaces the quantization condition with the following
variational problem; he says in a footnote that he is aware that this formulation is
not necessarily unique:

𝛿𝐽 = 𝛿

∫︁
𝑑3𝑥

[︂
(∇𝜓)2 − 2𝑚

~2
(𝐸 − 𝑉 )𝜓2

]︂
= 0. (10.32)

The resultant equation is (assuming that the wave function vanishes at infinity) the
time-independent Schödinger equation.

In this paper, he goes on to solve the hydrogen atom completely (he acknowledges
H. Weyl’s help). The ad hoc introduction of the Schrödinger equation as outlined
above is fully justified by recovering Bohr’s energy levels.

133Quantisierung als Eigenwertproblem I, Ann. Phys(4) 79, 361-376 (1926): received on January
27, 1926
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11 Lecture 11. Determination of motion

Here, we discuss (analytically) solvable classical mechanics problems. First, we un-
derstand the completely integrable cases geometrically (Liouville-Arnold theorem),
and then describe such systems in terms of the action-angle variables.

Then, in Lecture 12, a recent integration technique (the Lax pair approach) is
introduced. It will be illustrated with the Toda lattice. To discuss the method his-
torically, we go back to Korteweg-de Vries (KdV) equation. [This naturally leads us
to solitons, but I do not go into this vast topic.]

11.1 Determination of motion
Here the word ‘determine’ implies that we can construct a map that allows us to
transform the dynamical flow in the phase space into a simple flow (‘laminar flow’ on a
torus just like the rectifiability theorem 3.19): (𝑄,𝑃 ) (𝑃 is constant and 𝑄 = 𝑃𝑡+𝑐)
as we will see below. That is, to rectify the flow while preserving the structure of
Hamiltonian dynamical systems (i.e., by a canonical transformation). If this can be
done, the system is said to be integrable.

Thus, we need at least a rudimentary familiarity to the canonical transformation.
Needless to say, not all the systems allow such transformations (only integrable

systems). Poincaré’s recognition that the three (celestial) body problem is not inte-
grable in this sense was the birth of modern classical mechanics/study of dynamical
systems.

11.2 Canonical transformation
The transformation 𝑇 : (𝑞, 𝑝) → (𝑄,𝑃 ) that preserves the form of the canonical
equation of motion (10.14) is called a canonical transformation.134 Thus, the trans-
formation 𝑇 to be canonical implies that the equation of motion in terms of the new
variables reads

𝑑𝑄𝑖

𝑑𝑡
=
𝜕𝐾

𝜕𝑃𝑖
,
𝑑𝑃𝑖
𝑑𝑡

= − 𝜕𝐾

𝜕𝑄𝑖

, (11.1)

where 𝐾(𝑄,𝑃 ) = 𝐻(𝑞(𝑄,𝑃 ), 𝑝(𝑄,𝑃 )) is the Hamiltonian in terms of the new vari-
ables.

134Corresponding to unitary transformations in quantum mechanics.
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11.3 Generator of canonical transformation
For (11.1) to hold, we must have the action principle in terms of the new variables
(𝑄,𝑃 ).

Let (𝑞, 𝑝) be the canonical coordinates and (𝑄,𝑃 ) the new coordinates (they are
phase functions). Then, the Hamilton’s principle reads

𝛿

∫︁
(𝑃𝑄̇−𝐾)𝑑𝑡 = 0. (11.2)

Thus, we demand (see the remark below)

𝛿

∫︁ [︁
(𝑝𝑞 −𝐻)− (𝑃𝑄̇−𝐾)

]︁
𝑑𝑡 = 0. (11.3)

This means that the difference of these two integrals can be constant, so

(𝑝𝑑𝑞 −𝐻𝑑𝑡)− (𝑃𝑑𝑄−𝐾𝑑𝑡) = 𝑑𝐹, (11.4)

or
𝑑𝐹 = 𝑝𝑑𝑞 − 𝑃𝑑𝑄+ (𝐾 −𝐻)𝑑𝑡 (11.5)

must be path-independent. That is, 𝑑𝐹 must be exact.135 Thus, there is a function
𝐹 = 𝐹 (𝑞,𝑄, 𝑡) such that

𝑑𝐹 =
∑︁
𝑖

𝑝𝑖𝑑𝑞𝑖 −
∑︁
𝑖

𝑃𝑖𝑑𝑄𝑖 + (𝐾 −𝐻)𝑑𝑡, . (11.6)

𝐹 is called the generator of the canonical transformation 𝑇 : (𝑞, 𝑝) → (𝑄,𝑃 ). (11.6)
gives

𝜕𝐹

𝜕𝑞
= 𝑝,

𝜕𝐹

𝜕𝑄
= −𝑃, 𝜕𝐹

𝜕𝑡
= 𝐾 −𝐻. (11.7)

Solving these equations we can construct the canonical transformation 𝑇 . In partic-
ular, if 𝐹 is time-independent, then 𝐾 = 𝐻 is obtained by replacing 𝑞 and 𝑝 in 𝐻 in
terms of 𝑄 and 𝑃 .

Remark: For the system described by 𝑞 and 𝑝 to satisfy the canonical equation
of motion, much more general transformations are allowed, but the form with the
generator discussed above is the most convenient, especially because the Hamilto-
nian is virtually preserved if the generator is time-independent. Thus, when we say

135If form 𝜃 can be written as an (external) derivative of another form 𝜔 as 𝜃 = 𝑑𝜔, 𝜃 is called
an exact form. A form 𝜃 that satisfies 𝑑𝜃 = 0 is called a closed form. Obviously, an exact form is a
closed form.
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‘canonical transformation’ we restrict ourselves to this type of transformations.

Applying a sort of Legendre transformation to generators, we can construct dif-
ferent (perhaps more convenient) transformations:

𝑑(𝐹 + 𝑃𝑄) = 𝑝𝑑𝑞 +𝑄𝑑𝑃 + (𝐾 −𝐻)𝑑𝑡. (11.8)

Thus, replacing 𝐹 with 𝐺 = 𝐹 +
∑︀

𝑖 𝑃𝑖𝑄𝑖, we obtain

𝑑𝐺 =
∑︁
𝑖

𝑝𝑖𝑑𝑞𝑖 +
∑︁
𝑖

𝑄𝑖𝑑𝑃𝑖 + (𝐾 −𝐻)𝑑𝑡. (11.9)

11.4 Complete integrability
Let 𝐹1, · · · , 𝐹𝑛 (𝐹1 = 𝐻) be pairwise involutive (i.e., [𝐹𝑖, 𝐹𝑗]𝑃𝐵 = 0) smooth functions
on 2𝑛-mfd𝑀 . If 𝐹𝑖’s are functionally independent (or ∇𝐹𝑖’s are linearly independent
on a dense set of 𝑀), then,
(1) 𝑀𝑓 = {𝑥 |𝐹𝑖(𝑥) = 𝑓𝑖} is diffeomorphic to 𝑇 𝑘 × R𝑛−𝑘.
(2) The Hamiltonian flow on𝑀𝑓 takes the following form with the coordinate system
on 𝑇 𝑘 × R𝑛−𝑘: 𝜙1, · · · , 𝜙𝑘 mod 2𝜋, 𝑦1, · · · , 𝑦𝑛−𝑘

𝜙̇𝑖 = 𝜔𝑖, 𝑦̇𝑗 = 𝑐𝑗, (11.10)

where 𝜔 and 𝑐 are constants.

11.5 Slightly general form of integrability136

For a 𝑛-dimensional Hamiltonian system suppose there are 𝑛 first integrals
𝐹1, · · · , 𝐹𝑛 (i.e., [𝐻,𝐹𝑖] = 0) such that

[𝐹𝑖, 𝐹𝑗] =
∑︁
𝑘

𝑐𝑘𝑖𝑗𝐹𝑘, (11.11)

where 𝑐𝑘𝑖𝑗 are constants. If
(1) on 𝑀𝑓 = {𝑥 |𝐹𝑖(𝑥) = 𝑓𝑖} 𝐹𝑖 are functionally independent
(2)
∑︀

𝑘 𝑐
𝑘
𝑖𝑗𝑓𝑘 = 0.

(3) The Lie algebra 𝒜 of linear combination
∑︀
𝜆𝑖𝐹𝑖 is solvable.

137

136Theorem 1 Chapter 4 of V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical aspects
of classical and celestial mechanics in Dynamical systems III ed. V. I. Arnold (Springer, 1988).

137⟨⟨Solvable Lie algebra⟩⟩ A Lie algebra g is solvable, if

g ⊃ [g, g] ⊃ [[g, g], [g, g]] → {0}

.
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Then, the Hamiltonian dynamical system is solvable by quadrature. p107

11.6 Liouville-Arnold’s theorem
This is a special case of 11.4 when the motion is bounded (confined in a finite space;
𝑀 is compact). In this case 11.4 reads:
Let 𝐹1, · · · , 𝐹𝑛 (𝐹1 = 𝐻) be pairwise involutive (i.e., [𝐹𝑖, 𝐹𝑗]𝑃𝐵 = 0) smooth functions
on 2𝑛-mfd𝑀 . If 𝐹𝑖’s are functionally independent (or ∇𝐹𝑖’s are linearly independent
on a dense set of 𝑀), then
(1) 𝑀𝑓 = {𝑥 |𝐹𝑖(𝑥) = 𝑓𝑖} is diffeomorphic to 𝑇 𝑛.
(2) The Hamiltonian flow on𝑀𝑓 takes the following form with the coordinate system
on 𝑇 𝑛: 𝜙1, · · · , 𝜙𝑛 mod 2𝜋

𝜙̇𝑖 = 𝜔𝑖, (11.12)

where 𝜔 are constants.

Figure 11.1: Arnold-Liouville foliated torus [Fig. 8.3.2 of Abraham & Marsden]

[Demo] Consider 𝑛 Hamiltonian dynamical systems on 𝑀 each of which is governed
by 𝐹𝑗 (𝑗 ∈ {1, · · · , 𝑛}) as its Hamiltonian. We introduce a canonical coordinate
system (𝑞, 𝑝) for the phase space. The canonical equation of motion (𝑠 is the time
variable) governed by the Hamiltonian 𝐹𝑗 reads

𝑑𝑞

𝑑𝑠
=
𝜕𝐹𝑗
𝜕𝑝

,
𝑑𝑝

𝑑𝑠
= −𝜕𝐹𝑗

𝜕𝑞
. (11.13)

Since 𝐹𝑗 are involutive, the tangent vectors parallel to the flows for these 𝑛 systems
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commute. Let us check this:138

[𝐹1,𝑝𝜕𝑞−𝐹1,𝑞𝜕𝑝, 𝐹2,𝑝𝜕𝑞−𝐹2,𝑞𝜕𝑝] = [𝐹1,𝑝𝜕𝑞, 𝐹2,𝑝𝜕𝑞]+[𝐹1,𝑞𝜕𝑝, 𝐹2,𝑞𝜕𝑝]−[𝐹1,𝑝𝜕𝑞, 𝐹2,𝑞𝜕𝑝]−[𝐹1,𝑞𝜕𝑝, 𝐹2,𝑝𝜕𝑞]
(11.14)

[𝐹1,𝑝𝜕𝑞, 𝐹2,𝑝𝜕𝑞] = (𝐹1,𝑝𝐹2,𝑝𝑞 − 𝐹2,𝑝𝐹1,𝑝𝑞)𝜕𝑞. (11.15)

[𝐹1,𝑞𝜕𝑝, 𝐹2,𝑞𝜕𝑝] = (𝐹1,𝑞𝐹2,𝑞𝑝 − 𝐹2,𝑞𝐹1,𝑞𝑝)𝜕𝑝. (11.16)

[𝐹1,𝑝𝜕𝑞, 𝐹2,𝑞𝜕𝑝] = 𝐹1,𝑝𝐹2,𝑞𝑞𝜕𝑝 − 𝐹2,𝑞𝐹1,𝑝𝑝𝜕𝑞 (11.17)

[𝐹1,𝑞𝜕𝑝, 𝐹2,𝑝𝜕𝑞] = 𝐹1,𝑞𝐹2,𝑝𝑝𝜕𝑞 − 𝐹2,𝑝𝐹1,𝑞𝑞𝜕𝑝 (11.18)

(11.19)

Collecting the terms containing 𝜕𝑞, we get

𝐹1,𝑝𝐹2,𝑝𝑞−𝐹2,𝑝𝐹1,𝑝𝑞+𝐹2,𝑞𝐹1,𝑝𝑝−𝐹1,𝑞𝐹2,𝑝𝑝 = −𝜕𝑝(𝐹1,𝑞𝐹2,𝑝−𝐹1,𝑝𝐹2,𝑞) = 𝜕𝑝[𝐹2, 𝐹1]𝑃𝐵 = 0.
(11.20)

Similarly, collecting the terms containing 𝜕𝑝, we get

𝐹1,𝑞𝐹2,𝑞𝑝−𝐹2,𝑞𝐹1,𝑞𝑝−𝐹1,𝑝𝐹2,𝑞𝑞+𝐹2,𝑝𝐹1,𝑞𝑞 = 𝜕𝑞(𝐹1,𝑞𝐹2,𝑝−𝐹2,𝑞𝐹1,𝑝) = 𝜕𝑞[𝐹1, 𝐹2]𝑃𝐵 = 0.
(11.21)

Thus, the Lie bracket (11.14) vanishes.139 This implies that the time evolution groups
due to {𝐹𝑖} commute. Thus there are 𝑛 independent directions.

The compact manifold 𝑀𝑓 must be invariant under the 𝑛-dimensional Abelian
group defined by the time evolutions due to {𝐹𝑖}. This implies that𝑀𝑓 is diffeomor-
phic to 𝑇 𝑛.

11.7 Action-angle variables140

If 𝑀 is compact for a completely integrable system, then 𝑀𝑓 is diffeomorphic to 𝑇 𝑛.
(1) The small nbh of𝑀𝑓 in the ambient symplectic mfd𝑀 is diffeomorphic to𝐷×𝑇 𝑛,
where 𝐷 is a small domain in R𝑛.
(2) In 𝐷 × 𝑇 𝑛 there exists canonical coordinates 𝜙 mod 2𝜋and 𝐼 (𝐼 ∈ 𝐷, 𝜑 ∈ 𝑇 𝑛 in
which 𝐹𝑘’s depend only on 𝐼.

138We are checking [𝑋,𝑌 ]𝑓 = 0 for any differentiable 𝑓 . That is, Two paths going from (𝑎, 𝑏) →
(𝐴,𝐵), that is, (𝑎, 𝑏) → (𝐴, 𝑏) → (𝐴,𝐵) and (𝑎, 𝑏) → (𝑎,𝐵) → (𝐴,𝐵) give the same result.
Notation: 𝜕𝑥𝑓 = 𝑓,𝑥 is used.

139We have shown that [𝐹,𝐺]𝑃𝐵 = 0 implies that the Hamiltonian flows defined by 𝐹 and by 𝐺
determine independent (commutative) time evolutions.

140Nekhoroshev proved a version when the involution relation holds for a subset of {𝐹𝑗} (Arnold
DS III p117).
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𝐼 are called action variables and 𝜙 angle variables. The completely integrable
Hamiltonian 𝐻 has the form 𝐻 = 𝐻(𝐼). Consequently, the equation of motion reads

𝐼 = 0, 𝜙̇ = 𝜔(𝐼) =
𝜕𝐻

𝜕𝐼
. (11.22)

Thus 𝐼 labels the invariant tori. If the Hessian of 𝐻(𝐼) is nondegenerate, the systems
is said to be non-degenerate.

11.8 Demonstration of 11.7141

Thanks to the Liouville-Arnold theorem 11.6 in the nbh of the torus 𝑀𝑓 ≡ 𝑇 𝑛,
we can take as coordinates the functions 𝐼𝑖 = 𝐹𝑖 and the angles 𝜙𝑖. Since the
differentials 𝑑𝐹𝑖 are linearly independent, we can use 𝐼 and 𝜑 as a coordinate system
for 𝐷× 𝑇 𝑛. We have to show that 𝐼, 𝜙 system is a canonical coordinate system. We
know [𝐼𝑖, 𝐼𝑗]𝑃𝐵 = 0 (involutive invariants). [𝜙𝑗, 𝐼𝑘]𝑃𝐵 is a constant on 𝑀𝑓 according
to 11.6, so it is a function of 𝐼 only. The Jacobi identity applied to 𝐼𝑘, 𝜙𝑖 and 𝜙𝑗
implies (here [ , ] implies [ , ]𝑃𝐵)

[𝐼𝑘, [𝜙𝑖, 𝜙𝑗]] + [𝜙𝑖, [𝜙𝑗, 𝐼𝑘]] + [𝜙𝑗, [𝐼𝑘, 𝜙𝑖]] = 0, (11.23)

so [𝐼𝑘, [𝜙𝑖, 𝜙𝑗]] is a function of 𝐼 only. Since 𝐼 and 𝜙 describe the system dynamics,
the Poisson bracket determinant det[𝐼𝑘, 𝜙𝑖] must not be zero. Therefore, we can solve
the following equation

[𝐼𝑘, [𝜙𝑖, 𝜙𝑗]] =
∑︁
𝑠

[𝐼𝑘, 𝜙𝑠]
𝜕

𝜕𝜙𝑠
[𝜙𝑖, 𝜙𝑗] (11.24)

to conclude that 𝜕[𝜙𝑖, 𝜙𝑗]/𝜕𝜙𝑠 is a function of 𝐼 only. Therefore, we may write

[𝜙𝑖, 𝜙𝑗] =
∑︁
𝑠

𝑓 𝑠𝑖𝑗(𝐼)𝜙𝑠 + 𝑔𝑖𝑗(𝐼). (11.25)

Since the derivatives of 𝜙 must be single-valued, when 𝜙𝑖 and 𝜙𝑗 go around the
torus, the Poisson bracket should also return to the original value. Therefore, 𝜙𝑠
dependence should not exist: 𝑓 𝑠𝑖𝑗(𝐼) = 0.

We change 𝐼 → 𝐽 to make [𝐽𝑖, 𝜙𝑘] = 𝛿𝑗𝑘. Let us check the possibility.

[𝐼𝑖, 𝜙𝑗] =
∑︁
𝑘

𝜕𝐼𝑖
𝜕𝐽𝑘

[𝐽𝑘, 𝜙𝑗] =
𝜕𝐼𝑖
𝜕𝐽𝑗

. (11.26)

141The proof here paraphrases with details the proof on p115 of Arnold, DS III. A general version
for the situation 11.5 also holds (p118 Th10).
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The consistency condition reads

𝜕

𝜕𝐽𝑠
[𝐼𝑖, 𝜙𝑗] =

𝜕

𝜕𝐽𝑗
[𝐼𝑖, 𝜙𝑠] ⇐⇒

∑︁
𝑘

[𝐼𝑘, 𝜙𝑠]
𝜕

𝜕𝐼𝑘
[𝐼𝑖, 𝜙𝑗] =

∑︁
𝑘

[𝐼𝑘, 𝜙𝑗]
𝜕

𝜕𝐼𝑘
[𝐼𝑖, 𝜙𝑠],

(11.27)
but this follows from the Jacobi identity for 𝐼𝑖, 𝜙𝑗 nd 𝜙𝑘:

[𝐼𝑖, [𝜙𝑗, 𝜙𝑘]]+[𝜙𝑗, [𝜙𝑘, 𝐼𝑖]]+[𝜙𝑗, [𝐼𝑖, 𝜙𝑘]] = 0 ⇒ [𝜙𝑗, [𝜙𝑘, 𝐼𝑖]]+[𝜙𝑗, [𝐼𝑖, 𝜙𝑘]] = 0. (11.28)

Thus, we can obtain 𝐽 such that [𝐽𝑖, 𝜙𝑗] = 𝛿𝑖𝑗.
The remaining task142 is to guarantee [𝜙𝑖, 𝜙𝑗] = 0. If this is not the case, set

𝜓𝑖 = 𝜙𝑖 + 𝑓𝑖(𝐽). Then, we must solve the following equation for 𝑓 :

[𝜓𝑖, 𝜓𝑗] = [𝜙𝑖, 𝜙𝑗]−
𝜕𝑓𝑖
𝜕𝐽𝑗

+
𝜕𝑓𝑗
𝜕𝐽𝑖

= 0. (11.29)

Consider formally

𝑞 =
∑︁
𝑖<𝑗

[𝜙𝑖, 𝜙𝑗]𝑑𝐽𝑖 ∧ 𝑑𝐽𝑗 =
∑︁
𝑖<𝑘

(︂
𝜕𝑓𝑖
𝜕𝐽𝑘

− 𝜕𝑓𝑘
𝜕𝐽𝑖

)︂
𝑑𝐽𝑖 ∧ 𝑑𝐽𝑘 = 𝑑

∑︁
𝑖

𝑓𝑖𝑑𝐽𝑖, (11.30)

so 𝑑𝑞 = 0 is the consistency (solvability) condition. This follows from the closedness
of the symplectic 2-form 𝑑𝜙 ∧ 𝑑𝐽 (which is a shorthand of

∑︀
𝑖 𝑑𝜙𝑖 ∧ 𝑑𝐽𝑖; that is, the

invariance of (13.26) in 13.11): 𝑑(𝑑𝜙 ∧ 𝑑𝐽) = 0; we can compute this 2-form as∑︁
𝑖

𝑑𝜙𝑖 ∧ 𝑑𝐽𝑖 =
∑︁
𝑖,𝑗

𝜕𝜙𝑖
𝜕𝐽𝑗

𝑑𝐽𝑗 ∧ 𝑑𝐽𝑖 =
∑︁
𝑖<𝑗

(︂
𝜕𝜙𝑖
𝜕𝐽𝑗

− 𝜕𝜙𝑗
𝜕𝐽𝑖

)︂
𝑑𝐽𝑗 ∧ 𝑑𝐽𝑖, (11.31)

but note that
𝜕𝜙𝑖
𝜕𝐼𝑗

− 𝜕𝜙𝑗
𝜕𝐼𝑖

= [𝜙𝑖, 𝜙𝑗]. (11.32)

Thus, 𝑞 is a symplectic 2-form, so 𝑑𝑞 = 0.

11.9 Calculation of action variables
Let 𝑞.𝑝 be the symplectic coordinates in R2𝑛, and 𝛾1, · · · , 𝛾𝑛 are the fundamental
cycles of 𝑀𝑓 ≡ 𝑇 𝑛. Since 𝑝𝑑𝑞 − 𝐼𝑑𝜙 is closed, the difference∮︁

𝛾𝑠

𝑝𝑑𝑞 −
∮︁
𝛾𝑠

𝐼𝑑𝜙 =

∮︁
𝛾𝑠

𝑝𝑑𝑞 − 2𝜋𝐼𝑠 (11.33)

142[𝐽𝑖, 𝐽𝑘] = 0, because 𝐽 = 𝐽(𝐼) and 𝐼 does not depend on 𝜙.
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is a constant. Since the action variables can be determined up to additive constants,
this means

𝐼𝑠 =
1

2𝜋

∮︁
𝛾𝑠

𝑝𝑑𝑞. (11.34)

11.10 Action for harmonic oscillator
Let the Hamiltonian be

𝐻 =
1

2
(𝑎2𝑝2 + 𝑏2𝑞2). (11.35)

Then, 𝑀𝐸 specified by 𝐻 = 𝐸 is an ellipse

𝑝2

2𝐸/𝑎2
+

𝑞2

2𝐸/𝑏2
= 1. (11.36)

Its area is 2𝜋𝐸/𝑎𝑏. The angular frequency is 𝜔 = 𝑎𝑏 as can be seen from 𝑝̇ = −𝑏2𝑞,
𝑞 = 𝑎2𝑝 ⇒ 𝑞 = −(𝑎𝑏)2𝑞. Thus,

𝐼(𝐸) =
1

2𝜋

∮︁
𝑝𝑑𝑞 = 𝐸/𝑎𝑏 = 𝐸/𝜔. (11.37)

11.11 Adiabatic invariants
Let 𝐺(𝑞, 𝐼) be the generating function of the canonical transformation (𝑞, 𝑝) → (𝜔, 𝐼)
(see (13.4)) for a completely integrable system:

𝜕𝐺

𝜕𝑞
= 𝑝,

𝜕𝐺

𝜕𝐼
= 𝜔. (11.38)

Assume that the system is subjected to a small perturbation 𝜆(𝑡). Then, the above
canonical transformation now depends on time as well (through 𝜆(𝑡)), so the new
Hamiltonian reads to order 𝑂[𝜆]

𝐾 = 𝐻(𝐼) +
𝜕𝐺

𝜕𝑡
= 𝐻(𝐼) + Λ𝜆̇(𝑡), (11.39)

where Λ = 𝜕𝐺/𝜕𝜆. Therefore, the perturbed Hamilton’s equation reads

𝐼 = −𝜕𝐾
𝜕𝜔

=
𝜕Λ

𝜕𝜔
𝜆̇(𝑡). (11.40)
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𝐿𝑎𝑚 is a bounded function, so it must be a multiple periodic function. Therefore its
derivative must have the vanishing time average. Therefore, it 𝜆 change very slowly,
𝐼 must be zero. That is, 𝐼 is invariant to order 𝜆̇. Such a quantity is called an
adiabatic invariant.
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12 Lecture 12. Lax pair and Toda lattice

The story in this lecture goes as follows chronologically.
Scott-Russel observed (1834) the first solitary wave propagation along the Union

Canal, Scotland (and also he confirmed it experimentally) (see 12.6). Then, Rayleigh
and Bousinesque explained it theoretically (∼1870), and later Korteweg and his stu-
dent de Vries derived the equation governing the solitary waves (the KdV equation;
1895).

Fermi had been interested in the foundation of statistical mechanics, and the avail-
ability of Maniac I in Los Alamos allowed him to pursue the equilibration process of
nonlinear lattice systems (Fermi-Pasta-Ulam problem; ∼1955; see 12.5). This study
taught us that nonlinearity is not enough to establish thermal equilibrium due to
persistent recurrence.

Zabusky and Kruskal studied a continuum approximation of the system (= the
KdV equation) and discovered solitons (1965).143 This led to the Gardener, Greene,
Kruskal and Miura discovery of the relation between solitons and the Schrödinger
equation.144 This led to the general theory of the Lax pair (1968; see 12.1).

The explanation of recurrence in the FPU problem in terms of solitons was wrong,
but a lattice system with solitons was later discovered (the Toda lattice, see 12.3),
which can be reduced in a certain limit to the KdV equation.

12.1 Lax pair
Suppose

𝑥̇ = 𝑓(𝑥) (12.1)

can be expressed as
𝐿̇ = [𝐴,𝐿], (12.2)

where 𝐴 and 𝐿 are square matrices whose components are functions of 𝑥.

Proposition [Lax] The eigenvalues of 𝐿 are first integrals of (12.1).
[Demo] Let us solve (12.2) for 𝐿: for sufficiently small 𝑠 (notice that 𝐴 may be
time-dependent)

𝐿(𝑡+ 𝑠) = 𝑒𝑠𝐴𝐿(𝑡)𝑒−𝑠𝐴 + 𝑜[𝑠]. (12.3)

143“Interaction of “solitons” in a collisionless plasma and the recurrence of initial states”, PRL
15, 240 (1965).

144“Method for solving the Korteweg-de Vries equation” PRL 19, 1095 (1967).
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Therefore,
det[𝐿(𝑡+ 𝑠)− 𝜆] = det[𝐿(𝑡)− 𝜆] + 𝑜[𝑠] (12.4)

That is, the characteristic equation of 𝐿(𝑡) is time-independent.

Remark The 𝐿-𝐴 pair has been found for almost all problems of classical mechanics
previously integrated by other methods.

12.2 Euler’s equation
Euler’s equation reads

𝑀̇ = 𝑀 × 𝜔. (12.5)

The Lax pair representation is

𝐿 =

⎛⎝ 0 𝑀1 −𝑀2

−𝑀1 0 𝑀3

𝑀2 −𝑀3 0

⎞⎠ , 𝐴 =

⎛⎝ 0 𝜔1 −𝜔2

−𝜔1 0 𝜔3

𝜔2 −𝜔3 0

⎞⎠ . (12.6)

Confirm the Lax pair representation.

12.3 Toda lattice
Consider a chain consisting of point masses with the nearest intereaction only given
by the following potential

𝜑(𝑟) =
𝑎

𝑏
𝑒−𝑏𝑟 + 𝑎𝑟. (12.7)

If the position of the 𝑛th point mass is 𝑥𝑛, the equation of motion reads

𝑚
𝑑2𝑥𝑛
𝑑𝑡2

= 𝑎
[︀
𝑒−𝑏(𝑥𝑛−𝑥𝑛−1) − 𝑒−𝑏(𝑥𝑛+1−𝑥𝑛)

]︀
. (12.8)

so 𝑟𝑛 = 𝑥𝑛+1 − 𝑥𝑛 obeys

𝑚
𝑑2𝑟𝑛
𝑑𝑡2

= 2𝑎

[︂
𝑒−𝑏𝑟𝑛 − 1

2

(︀
𝑒−𝑏𝑟𝑛+1 + 𝑒−𝑏𝑟𝑛−1

)︀]︂
. (12.9)

A dimensionless form reads

𝑄̇𝑛 = 𝑃𝑛, 𝑃̇𝑛 = 𝑒−(𝑄𝑛−𝑄𝑛−1) − 𝑒−(𝑄𝑛+1−𝑄𝑛). (12.10)
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Figure 12.1: Toda lattice after M Toda

Now, introduce (these variables are not canonical variables)

𝑎𝑛 =
1

2
𝑒−(𝑄𝑛+1−𝑄𝑛)/2, 𝑏𝑛 =

1

2
𝑃𝑛. (12.11)

Then the dimensionless form reads (with a cyclic boundary condition 𝑎𝑛+𝑁 = 𝑎𝑛,
𝑏𝑛+𝑁 = 𝑏𝑛.

𝑎̇𝑛 = 𝑎𝑛(𝑏𝑛 − 𝑏𝑛+1), (12.12)

𝑏̇𝑛 = 2(𝑎2𝑛−1 − 𝑎2𝑛). (12.13)

This can be cast into the Lax pair form with

𝐿 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1 𝑎1 0 · · · · · · 0 𝑎𝑁

𝑎1 𝑏2 𝑎2 0 · · · ... 0

0 𝑎2 𝑏3
. . . . . .

... 0
... 0

. . . . . . . . . 0 0
...

...
. . . . . . 𝑏𝑁−2 𝑎𝑁−2 0

0 0 · · · 0 𝑎𝑁−2 𝑏𝑁−1 𝑎𝑁−1

𝑎𝑁 0 · · · · · · 0 𝑎𝑁−1 𝑏𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12.14)
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and

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −𝑎1 0 · · · · · · 0 𝑎𝑁

𝑎1 0 −𝑎2 0 · · · ... 0

0 𝑎2 0
. . . . . .

... 0
... 0

. . . . . . . . . 0 0
...

...
. . . . . . 0 −𝑎𝑁−2 0

0 0 · · · 0 𝑎𝑁−2 0 −𝑎𝑁−1

−𝑎𝑁 0 · · · · · · 0 𝑎𝑁−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12.15)

However, it is not straightforward to check that all the eigenvalues are indepen-
dent invariants.

12.4 From Toda to KdV145

(12.16) may be rewritten by space-time scaling as

𝑑2𝑟𝑛
𝑑𝑡2

= 2𝑒−𝑟𝑛 − 𝑒−𝑟𝑛+1 − 𝑒−𝑟𝑛−1 . (12.16)

In terms of interaction forces 𝑓𝑛 = 𝑒−𝑟𝑛 − 1 this equation reads

𝑑2

𝑑𝑡2
log(1 + 𝑓𝑛) = 𝑓𝑛+1 + 𝑓𝑛−1 − 2𝑓𝑛. (12.17)

Let us scale time and the function as (ℎ ∈ (0, 1])

𝑡 = 𝜏/ℎ3, 𝑓𝑛 = ℎ2𝑢𝑛(𝜏). (12.18)

(12.17) reads
𝑑2

𝑑𝜏 2
log(1 + ℎ2𝑢𝑛) =

1

ℎ4
(𝑢𝑛+1 + 𝑢𝑛−1 − 2𝑢𝑛). (12.19)

Let us write 𝑢𝑛(𝜏) = 𝑢(ℎ𝑛, 𝜏). We introduce 𝑥 = 𝑛ℎ. Next, we observe this system
from a moving coordinates:

𝑥→ 𝑦 = 𝑥−
(︂

1

ℎ2
− ℎ2

)︂
𝜏, (12.20)

145Noriko Saito, “A transformation connecting the Toda lattice and the KdV equation,” J Phys
Soc Japan 49, 409 (1980).
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Notice that

𝜕

𝜕𝜏

⃒⃒⃒⃒
𝑥

𝑢(𝑥, 𝜏) =

(︃
𝜕

𝜕𝜏

⃒⃒⃒⃒
𝑦

+
𝜕𝑦

𝜕𝜏

𝜕

𝜕𝑦

)︃
𝑢(𝑦, 𝜏) =

(︃
𝜕

𝜕𝜏

⃒⃒⃒⃒
𝑦

−
(︂

1

ℎ2
− ℎ2

)︂
𝜕

𝜕𝑦

)︃
𝑢(𝑦, 𝜏)

(12.21)
Therefore, the equation of motion reads146(︂
𝜕

𝜕𝜏
−
(︂

1

ℎ2
− ℎ2

)︂
𝜕

𝜕𝑦

)︂2

log(1+ℎ2𝑢(𝑦, 𝜏)) =
1

ℎ4
(𝑢(𝑦+ℎ, 𝜏)+𝑢(𝑦−ℎ, 𝜏)−2𝑢(𝑦, 𝜏)).

(12.22)
We consider ℎ→ 0 limit. The LHS reads(︃

𝜕2

𝜕𝜏 2
− 2

(︂
1

ℎ2
− ℎ2

)︂
𝜕2

𝜕𝜏𝜕𝑦
+

(︂
1

ℎ2
− ℎ2

)︂2
𝜕2

𝜕𝑦2

)︃(︂
ℎ2𝑢(𝑦, 𝜏)− 1

2
ℎ4𝑢2(𝑦, 𝜏)

)︂
(12.23)

→ −2
𝜕2𝑢

𝜕𝜏𝜕𝑦
+

1

ℎ2
𝜕2𝑢

𝜕𝑦2
− 1

2

𝜕2𝑢2

𝜕𝑦2
. (12.24)

The RHS reads

1

ℎ4
(𝑢(𝑦 + ℎ, 𝜏) + 𝑢(𝑦 − ℎ, 𝜏)− 2𝑢(𝑦, 𝜏)) → 1

ℎ2
𝜕2𝑢

𝜕𝑦2
+

1

12

𝜕4𝑢

𝜕𝑦4
. (12.25)

Thus, we have arrived at

𝜕

𝜕𝑦

[︂
−2

𝜕𝑢

𝜕𝜏
− 1

2

𝜕𝑢2

𝜕𝑦
− 1

12

𝜕3𝑢

𝜕𝑦3

]︂
= 0. (12.26)

[ ] must be a function of 𝜏 only. Let us assume that the ‘wave’ is localized in space
(i.e., if we chase it, it looks like a localize disturbance). Thus, [ ] must be zero. We
have arrived at

𝜕𝑢

𝜕𝜏
+

1

2
𝑢
𝜕𝑢

𝜕𝑦
+

1

24

𝜕3𝑢

𝜕𝑦3
= 0. (12.27)

This is the Korteweg-de Vries (KdV) equation.

Actual experiment of a solitary wave:
https://www.youtube.com/watch?v=w-oDnvbV8mY&frags=wn

146Saito starts from this equation; for ℎ = 1 this is just the Toda lattice.

https://www.youtube.com/watch?v=w-oDnvbV8mY&frags=wn
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12.5 Fermi-Pasta-Ulam problem
Everybody knows that for a harmonic lattice no thermal equilibrium is realized.
Thus, to study the foundation of thermal physics Fermi was interested in the effect
of nonlinearity. Since analytic study is out of question, he utilized the Los Alamos
computer Maniac I. The model is a chain of point masses interacting with the neigh-
bor points with the potential

𝜑(𝑟) =
𝜅

2
𝑟2 +

𝜅𝛼

3
𝑟3. (12.28)

The equation of motion is

𝑚
𝑑2𝑦𝑛
𝑑𝑡2

= 𝜑′(𝑦𝑛 − 𝑦𝑛−1)− 𝜑′(𝑦𝑛+1 − 𝑦𝑛) (12.29)

= 𝜅(2𝑦𝑛 − 𝑦𝑛+1 − 𝑦𝑛−1) + 𝜅𝛼((𝑦𝑛 − 𝑦𝑛−1)
2 − (𝑦𝑛 − 𝑦𝑛+1)

2). (12.30)

The numerical experiments exhibited almost complete recurrence of the intial con-
dition.147 Thus, it was clear that nonlinearity is not enough to thermalize the system.

FPU simulation (the quadratic case); you can observe recurrence:
https://www.youtube.com/watch?v=OWS548JX6D8

Zabusky and Kruskal studied its continuum limit. Assuming the lattice spacing
is ℎ, and we consider small ℎ limit.

𝑦𝑛±1 = 𝑦𝑛 ± ℎ
𝜕𝑦𝑛
𝜕𝑥

+
ℎ2

2

𝜕2𝑦𝑛
𝜕𝑥2

± ℎ3

3!

𝜕3𝑦𝑛
𝜕𝑥3

+
ℎ4

4!

𝜕4𝑦𝑛
𝜕𝑥4

(12.31)

We see

2𝑦𝑛 − 𝑦𝑛+1 − 𝑦𝑛−1 = ℎ2
𝜕2𝑦𝑛
𝜕𝑥2

+
ℎ4

12

𝜕4𝑦𝑛
𝜕𝑥4

, (12.32)

and

(𝑦𝑛 − 𝑦𝑛−1)
2 − (𝑦𝑛 − 𝑦𝑛+1)

2 = (𝑦𝑛+1 − 𝑦𝑛−1)(2𝑦𝑛 − 𝑦𝑛+1 − 𝑦𝑛−1) (12.33)

= 2ℎ
𝜕𝑦𝑛
𝜕𝑥

(︂
ℎ2
𝜕2𝑦𝑛
𝜕𝑥2

+
ℎ4

12

𝜕4𝑦𝑛
𝜕𝑥4

)︂
. (12.34)

Therefore, (12.30) becomes (with 𝜀 = 2𝛼ℎ and 𝑐20 = 𝜅ℎ/𝑚)

𝜕2𝑦

𝜕𝑡2
= 𝑐20

(︂
1 + 𝜀

𝜕𝑦

𝜕𝑥

)︂
𝜕2𝑦

𝜕𝑥2
+
𝑐20𝛼ℎ

2

12

𝜕4𝑦

𝜕𝑥4
. (12.35)

147As to the experiment and the story surrounding it, see T. Dauxois, Fermi, Pasta, Ulam and a
mysterious lady, arXiv:0801.1590.

https://www.youtube.com/watch?v=OWS548JX6D8
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Now, consider only the wave propagating to the right: new variables are 𝜉 = 𝑥−𝑐0𝑡
and 𝜏 = 𝑡. We have

𝜕

𝜕𝑥
=
𝜕𝜉

𝜕𝑥

𝜕

𝜕𝜉
+
𝜕𝜏

𝜕𝑥

𝜕

𝜕𝜏
=

𝜕

𝜕𝜉
,
𝜕

𝜕𝑡
=

𝜕

𝜕𝜏
− 𝑐0

𝜕

𝜕𝜉
(12.36)

This gives

𝜕2

𝜕𝑡2
− 𝑐20

𝜕2

𝜕𝑥2
=

(︂
𝜕

𝜕𝜏
− 𝑐0

𝜕

𝜕𝜉

)︂2

− 𝑐20
𝜕2

𝜕𝜉2
=

𝜕2

𝜕𝜏 2
− 2𝑐0

𝜕

𝜕𝜏

𝜕

𝜕𝜉
. (12.37)

Thus (12.35) now reads

𝜕2𝑦

𝜕𝜏 2
− 2𝑐0

𝜕2𝑦

𝜕𝜏𝜕𝜉
= 𝜀𝑐20

𝜕𝑦

𝜕𝜉

𝜕2𝑦

𝜕𝜉2
+
𝑐20𝛼ℎ

2

12

𝜕4𝑦

𝜕𝜉4
. (12.38)

We scale time as 𝑠 = 𝜀𝜏 . Then,

𝜀2
𝜕2𝑦

𝜕𝑠2
− 2𝜀𝑐0

𝜕2𝑦

𝜕𝑠𝜕𝜉
= 𝜀𝑐20

𝜕𝑦

𝜕𝜉

𝜕2𝑦

𝜕𝜉2
+
𝑐20𝛼ℎ

2

12

𝜕4𝑦

𝜕𝜉4
. (12.39)

Ignoring the highest order in 𝜀, and assuming ℎ2 and 𝜀 are comparable, we get

𝜕2𝑦

𝜕𝑠𝜕𝜉
= −1

2
𝑐0
𝜕𝑦

𝜕𝜉

𝜕2𝑦

𝜕𝜉2
− 𝑐0𝛼ℎ

2/𝜀

12

𝜕4𝑦

𝜕𝜉4
. (12.40)

Define 𝑢 = 𝜕𝑦/𝜕𝜉. We get

𝜕𝑢

𝜕𝑠
= −1

2
𝑐0𝑢

𝜕𝑢

𝜕𝜉
− 𝑐0𝛼ℎ

2/𝜀

12

𝜕3𝑢

𝜕𝜉3
. (12.41)

Notice that this can be rewritten as

𝜕𝑢

𝜕𝑠
+𝐵𝑢

𝜕𝑢

𝜕𝜉
+
𝜕3𝑢

𝜕𝜉3
= 0 (12.42)

for any 𝐵 > 0. First scale 𝑢 so that the ratio of the coefficients of the second and
the third terms is 𝐵, then scale time. Thus, the KdV equation was obtained. Its
numerical solution gave solitons.
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12.6 What is KdV?
The Korteweg-de Vries equation has the following form

𝜕𝑢

𝜕𝑡
+ 6𝑢

𝜕𝑢

𝜕𝑥
+
𝜕3𝑢

𝜕𝑥3
= 0. (12.43)

This describes the propagation of waves in a shallow channel observed by an ob-
server following the wave. It was motivated by the observation (and subsequent
experiments) by John Scott Russell in 1834 along the Union Canal (Scotland) [John
Scott Russell, Report on Waves, Report of the 14th Meeting of the British Associa-
tion for the Advancement of Science, (1844), pp.311-390]

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped—not so the mass
of water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving it
behind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued
its course along the channel apparently without change of form or diminution
of speed. I followed it on horseback, and overtook it still rolling on at a rate of
some eight or nine miles an hour, preserving its original figure some thirty feet
long and a foot to a foot and a half in height. Its height gradually diminished,
and after a chase of one or two miles I lost it in the windings of the channel.
Such, in the month of August 1834, was my first chance interview with that
singular and beautiful phenomenon which I have called the Wave of Translation.

KdV can be written in the Lax form with

𝐿 = − 𝑑2

𝑑𝑥2
+ 𝑢(𝑥, 𝑡), 𝐴 = −4

𝑑3

𝑑𝑥3
+ 3𝑢

𝑑

𝑑𝑥
+ 3

𝑑

𝑑𝑥
𝑢. (12.44)

Thus, eigenvalues of the Schrödinger operator are invariant.
The problem to find the potential (the inverse-scattering problem) and solving

KdV are closely related (this leads to a very large research field).

3 soliton solution
https://www.youtube.com/watch?v=mqwi8UHYwJA https://www.youtube.com/

watch?v=VFM48pSLwGc

Sine wave breaking into solitons
https://www.youtube.com/watch?v=agteGpbhEaE

https://www.youtube.com/watch?v=mqwi8UHYwJA
https://www.youtube.com/watch?v=VFM48pSLwGc
https://www.youtube.com/watch?v=VFM48pSLwGc
https://www.youtube.com/watch?v=agteGpbhEaE
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12.7 Related equations
The equation with a constant 𝑣

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑥
= 0 (12.45)

has a general solution 𝑢(𝑡, 𝑥) = 𝑓(𝑥 − 𝑣𝑡) where 𝑓 is an arbitrary differentiable
function. If 𝑣 > 0, this describes a translational motion to the right with speed 𝑣.

The following nonlinear equation

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0 (12.46)

may be locally (in space-time) understood, if we look at (12.45), as illustrated in Fig.
12.2. The position with height 𝑢 moves to the right with speed 𝑢:

Figure 12.2: A short term evolution of 𝑢 governed by (12.46).

As is clear, the solution 𝑢 ceases to exist beyond some time as a differentiable func-
tion.

To prevent this singularity from being produced, there are two ways to modify
(12.46). Both ways add a higher order spatial derivatives which adds dissipation
(even orders) or dispersion (odd orders) to (12.46).

A famous example is Burgers’ equation:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝜈

𝜕2𝑢

𝜕𝑥2
, (12.47)

which has a diffusion terms (viscosity effect) that kills sharp edges and prevent the
emerging singularity. The KdV equation is the simplest dispersive case, where the
speed of a plane wave depends on the wavelength (shorter wavelength waves travel
relatively slower, so the ‘wave front’ is always dominated by longer wavelength waves;
consequently the front is never sharp).

Incidentally, Burger’s equation can be solved analytically with the aid of the Cole-
Hopf transformation

𝑢 = −2𝜈
𝜕

𝜕𝑥
log 𝜑 = −2𝜈

1

𝜑

𝜕𝜑

𝜕𝑥
(12.48)
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Then, we obtain a diffusion equation,

𝜕𝜑

𝜕𝑡
= 𝜈

𝜕2𝜑

𝜕𝑥2
, (12.49)

which may be solved analytically.
This can be shown as follows: (12.47) may be rewritten as

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥

(︂
𝜈
𝜕𝑢

𝜕𝑥
− 1

2
𝑢2
)︂
. (12.50)

Thus,

−2𝜈
𝜕

𝜕𝑥

(︂
1

𝜑

𝜕𝜑

𝜕𝑡

)︂
=

𝜕

𝜕𝑥

(︃
−2𝜈2

𝜕

𝜕𝑥

1

𝜑

𝜕𝜑

𝜕𝑥
− 2𝜈2

𝜑2

(︂
𝜕𝜑

𝜕𝑥

)︂2
)︃
. (12.51)

That is

−2𝜈
𝜕

𝜕𝑥

(︂
1

𝜑

𝜕𝜑

𝜕𝑡

)︂
= −2𝜈2

𝜕

𝜕𝑥

(︂
−1

𝜑

𝜕2𝜑

𝜕𝑥2

)︂
. (12.52)

This means
1

𝜑

(︂
𝜕𝜑

𝜕𝑡
− 𝜈

𝜕2𝜑

𝜕𝑥2

)︂
= 𝑓(𝑡). (12.53)

Assuming that 𝜑 is constant for large |𝑥| (𝑢 vanishes there), we get (12.49).

12.8 Quick derivation of KdV from scratch148

If you read the original papers, or recent systematic expositions, the derivation via
systematic expansion with respect to the smallness of the vertical displacements of
water looks quite tedious and lengthy. Therefore, here we will ‘cheat,’ following the
logic outlined in a recent textbook of classical physics.149

The strategy is to use the linearized Euler equation to obtain the nontrivial disper-
sion relation, and then the nonlinear transport ignored in the original Euler equation
is recovered with the aid of the conservation of water.

148I am pretty sure that the KdV may be obtained as an RG equation just as almost all other
‘named’ equations. Publishable.

149The following is the logic in K. S. Thorne and R. D. Blandford, Modern classical physics
(Princeton UP 2017) p852 made palatable.
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12.9 Dispersion relation of shallow water waves
Consider the disturbance of surface height of a horizontal channel of depth ℎ0. Our
starting point is always the Navier-Stokes equation

𝜌
𝜕𝑣

𝜕𝑡
+ 𝑣 · ∇𝑣 = −𝜂Δ𝑣 −∇𝑃 + 𝐹 , (12.54)

with the incompressibility ∇ · 𝑣 = 0, where 𝜌 is the density, 𝑃 the pressure and 𝐹
the external force (we assume here gravity only, so it is a potential force). As long
as the fluid speed is slow, we may drop the nonlinear term, and also we may ignore
the viscosity term (i.e., we use the linearized Euler equation). In this case curl𝑣 is
time independent, so if there is no vorticity initially, the flow is a potential flow, so
we may introduce the velocity potential 𝜑:

𝑣 = ∇𝜑. (12.55)

The incompressibility means 𝜑 must be a harmonic function,

Δ𝜑 = 0 (12.56)

and the linearized Euler equation reads

∇
(︂
𝜕𝜑

𝜕𝑡
+ 𝑃/𝜌+ 𝑔𝑧

)︂
= 0. (12.57)

This means
𝜕𝜑

𝜕𝑡
+ 𝑃/𝜌+ 𝑔𝑧 = 𝑓(𝑡). (12.58)

If we are interested in a local disturbance, 𝑓(𝑡) = 0.150

Let 𝜁(𝑥, 𝑡) be the surface shape relative to the free surface at 𝑧 = 0, where the
pressure is constant 𝑃0:

𝑃0 = −𝜌𝜁𝑔 − 𝜌
𝜕𝜑

𝜕𝑡
. (12.59)

This gives a boundary condition:

𝜕𝜁

𝜕𝑡
𝑔 +

𝜕2𝜑

𝜕𝑡2
= 0. (12.60)

Since 𝜕𝜁/𝜕𝑡 = 𝑣𝑧 ≃ 𝜕𝜑/𝜕𝑧; this is admissible since 𝜁 is small. We have an equation
for 𝜑 (︂

𝜕𝜑

𝜕𝑧
+

1

𝑔

𝜕2𝜑

𝜕𝑡2

)︂
𝑧=𝜁

= 0. (12.61)

150This is what Landau did. We could instead redefine 𝜑 to absorb 𝑓 without spoiling 𝑣 = ∇𝜑.
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However, 𝜁 is small, so we may drop it. Thus, we have the following set of equation
at the liquid surface:

Δ𝜑 = 0, (12.62)(︂
𝜕𝜑

𝜕𝑧
+

1

𝑔

𝜕2𝜑

𝜕𝑡2

)︂
𝑧=0

= 0. (12.63)

At the bottom 𝑧 = −ℎ0 of the channel we must impose that condition that 𝑣𝑧 = 0.
Let us solve the above boundary value problem for 𝜑 that is periodic:

𝜑 = 𝑓(𝑧) cos(𝑘𝑥− 𝜔𝑡). (12.64)

Δ𝜑 = 0 reads
𝑓 ′′(𝑧)− 𝑘2𝑓 = 0, (12.65)

whose general solution is 𝑓(𝑧) = 𝐴𝑒𝑘𝑧 + 𝐵𝑒−𝑘𝑧. Its derivative must vanish at the
bottom 𝑧 = −ℎ0:

𝑘𝐴𝑒−𝑘ℎ0 − 𝑘𝐵𝑒𝑘ℎ0 = 0. (12.66)

Therefore, 𝜑 must have the following form:

𝜑 = 𝐴 cosh 𝑘(𝑧 + ℎ0) cos(𝑘𝑥− 𝜔𝑡). (12.67)

This must satisfy the boundary condition (12.63)

𝑔𝑘 sinh(𝑘ℎ0) cos(𝜔𝑡)− 𝜔2 cosh(𝑘ℎ0) cos(𝜔𝑡) = 0. (12.68)

Thus, we have obtained the dispersion relation:

𝜔2 = 𝑔𝑘 tanh 𝑘ℎ0. (12.69)

Let us assume that 𝑘ℎ0 is not large (shallow water wave151).

𝜔2 = 𝑔𝑘

(︂
𝑘ℎ0 −

1

3
(𝑘ℎ0)

3

)︂
+ · · · = 𝑔ℎ0𝑘

2

(︂
1− 1

3
ℎ20𝑘

2

)︂
+ · · · , (12.70)

or

𝜔 =
√︀
𝑔ℎ0𝑘

(︂
1− 1

6
ℎ20𝑘

2

)︂
. (12.71)

151In the opposite limit we can compute the group velocity as (1/2)
√︀
𝑔/𝑘: long wavelength wave

propagates fast.
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This means that a propagating wave 𝜁 obeys (cf 𝜔 → 𝑖𝜕𝑡, 𝑘 → −𝑖𝜕𝑥)

𝜕𝜁

𝜕𝑡
+
√︀
𝑔ℎ0

𝜕𝜁

𝜕𝑥
+

1

6
ℎ20
𝜕3𝜁

𝜕𝑥3
= 0. (12.72)

We cannot accurately reconstruct the nonlinear term (the original form of the second
term on the LHS) from this.

12.10 Nonlinear transport term
To study the nonlinear term we restart from Euler’s equation(/𝜌) and also the mass
conservation equation:

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
+ 𝑔

𝜕ℎ

𝜕𝑡
= 0, (12.73)

𝜕ℎ

𝜕𝑡
+
𝜕𝑣ℎ

𝜕𝑥
= 0, (12.74)

where ℎ = ℎ0 + 𝜁. That is, now we choose the bottom to be the origin of the height.
Let us define 𝑔ℎ = 𝜂. (12.74) read

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
+
𝜕𝜂

𝜕𝑡
= 0. (12.75)

𝜕𝜂

𝜕𝑡
+ 𝑣

𝜕𝜂

𝜕𝑥
+ 𝜂

𝜕𝑣

𝜕𝑥
= 0, (12.76)

If we wish to combine these two equations into one,152 𝑣 must be linearly combined
with

√
𝜂 (dimensional homogeneity requirement). Let us introduce 𝑍 =

√
𝜂.

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑥
+ 2𝑍

𝜕𝑍

𝜕𝑡
= 0. (12.77)

2
𝜕𝑍

𝜕𝑡
+ 2𝑣

𝜕𝑍

𝜕𝑥
+ 𝑍

𝜕𝑣

𝜕𝑥
= 0, (12.78)

Therefore,
𝜕(𝑣 − 2𝑍)

𝜕𝑡
+ 𝑣

𝜕(𝑣 − 2𝑍)

𝜕𝑥
− 𝑍

𝜕(𝑣 − 2𝑍)

𝜕𝑡
= 0 (12.79)

or
𝜕(𝑣 − 2𝑍)

𝜕𝑡
+ (𝑣 − 𝑍)

𝜕(𝑣 − 2𝑍)

𝜕𝑥
= 0 (12.80)

152The motivation for this is to find a conserved quantity that may be followed from a moving
coordinate.
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This implies that 𝑣− 2
√
𝑔ℎ is constant, if we observe it from the moving coordinate

with speed 𝑣 −
√
𝑔ℎ.

Suppose the wave propagation starts from a quiet surface with height (depth)
ℎ0 with 𝑣 = 0. Initially, 𝑣 − 2

√
𝑔ℎ = −2

√
𝑔ℎ0. Since this must be constant, 𝑣 =

2
√
𝑔ℎ− 2

√
𝑔ℎ0. Putting this into (12.74), we obtain

𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥

√
𝑔(ℎ3/2 − ℎℎ

1/2
0 ) =

𝜕ℎ

𝜕𝑡
+ (3

√︀
𝑔ℎ− 2

√︀
𝑔ℎ0)

𝜕ℎ

𝜕𝑥
= 0. (12.81)

Since

3
√︀
𝑔(ℎ0 + 𝜁)− 2

√︀
𝑔ℎ0 =

√︀
𝑔ℎ0 +

3

2

√︂
𝑔

ℎ0
𝜁, (12.82)

the equation for 𝜁 reads

𝜕𝜁

𝜕𝑡
+

(︂√︀
𝑔ℎ0 +

3

2

√︂
𝑔

ℎ0
𝜁

)︂
𝜕𝜁

𝜕𝑥
= 0 (12.83)

Now, observe this from a moving coordinate with speed
√
𝑔ℎ0. We arrive at

𝜕𝜁

𝜕𝑡
+

3

2

√︂
𝑔

ℎ0
𝜁
𝜕𝜁

𝜕𝑥
= 0. (12.84)

Augmenting this with the higher order dispersion relation (or combining (12.85)
with (12.72)) we finally obtain

𝜕𝜁

𝜕𝑡
+

3

2

√︂
𝑔

ℎ0
𝜁
𝜕𝜁

𝜕𝑥
+

1

6
ℎ20
𝜕3𝜁

𝜕𝑥3
= 0, (12.85)

the Korteweg-de Vries equation.
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13 Lecture 13. Canonical transformation

We have already used canonical transformations, but here important facts are col-
lected (point transformation, infinitesimal canonical transformation, Lagrange’s bracket,
various invariants, Liouville’s theorem).

It is important to recognize that time evolution is a canonical transformation.
Classical canonical transformations do not usually correspond to quantum unitary

transformations.

13.1 Canonical transformation with generators (review)
The transformation 𝑇 : (𝑞, 𝑝) → (𝑄,𝑃 ) that preserves the form of the canonical
equation of motion (10.14) is called a canonical transformation. As discussed in
11.3, we discuss only the canonical transformations with generators 𝐹

𝑑𝐹 =
∑︁
𝑖

𝑝𝑖𝑑𝑞𝑖 −
∑︁
𝑖

𝑃𝑖𝑑𝑄𝑖 + (𝐾 −𝐻)𝑑𝑡. (13.1)

(13.1) gives
𝜕𝐹

𝜕𝑞
= 𝑝,

𝜕𝐹

𝜕𝑄
= −𝑃, 𝜕𝐹

𝜕𝑡
= 𝐾 −𝐻. (13.2)

Solving these equations, we can construct the canonical transformation 𝑇 . In par-
ticular, if 𝐹 is time-independent, then 𝐾 = 𝐻 is obtained by replacing 𝑞 and 𝑝 in 𝐻
in terms of 𝑄 and 𝑃 .

Applying a sort of Legendre transformation to generators, we can construct dif-
ferent (perhaps more convenient) transformations:

𝑑(𝐹 + 𝑃𝑄) = 𝑝𝑑𝑞 +𝑄𝑑𝑃 + (𝐾 −𝐻)𝑑𝑡. (13.3)

Thus, replacing 𝐹 with 𝐺 = 𝐹 +
∑︀

𝑖 𝑃𝑖𝑄𝑖, we obtain

𝑑𝐺 =
∑︁
𝑖

𝑝𝑖𝑑𝑞𝑖 +
∑︁
𝑖

𝑄𝑖𝑑𝑃𝑖 + (𝐾 −𝐻)𝑑𝑡. (13.4)

13.2 Canonical transformations make a group
Let us write the generator of the canonical transformation 𝑇𝑖 as 𝐹𝑖. The gener-
ator of

∏︀
𝑖 𝑇𝑖 is given by

∑︀
𝑖 𝐹𝑖, so the totality of the canonical transformation for
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a given system makes a(n abelian) group (called the canonical transformation group).

13.3 Point transformations
Through a general canonical transformation position and momentum coordinates
are usually mixed up. When we use the spatial coordinate change (say, from the
Cartesian to the spherical), no mix-up occurs. Thus, 𝑞 → 𝑄, 𝑝→ 𝑃 can be described
by a subset (subgroup) of canonical transformations called point transformations.

Perhaps, the most convenient generator is the original 𝐺 = 𝐹 + 𝑃𝑄:

𝑑𝐺 = 𝑝𝑖𝑑𝑞𝑖 + 𝑃𝑖𝑑𝑄𝑖, (13.5)

because usually we know 𝑞 and 𝑄(𝑞, 𝑡). Since 𝑑𝐺 is exact, to obtain 𝐺 we may use
a convenient path: 𝑞 is constant. Therefore,

𝐺 = 𝑝𝑖𝑞𝑖. (13.6)

If we write 𝑞 in terms of 𝑄,

𝑃 =
𝜕𝐺

𝜕𝑄
(13.7)

gives the canonical momentum in the new coordinate system in terms of the old
momentum variables. This may be the most mechanical way to get the momentum
in the new coordinate system.

Examples:
(1) CM coordinates: (𝑞1, 𝑞2) → 𝑄1 = (𝑞1+𝑞2)/2, 𝑄2 = 𝑞1−𝑞2. Since 𝑞1 = 𝑄1+𝑄2/2,
𝑞2 = 𝑄1 −𝑄2/2, so (13.6) reads

𝐺 = 𝑝1(𝑄1 +𝑄2/2) + 𝑝2(𝑄1 −𝑄2/2). (13.8)

Therefore,

𝑃1 =
𝜕𝐺

𝜕𝑄1

= 𝑝1 + 𝑝2, 𝑃2 =
𝜕𝐺

𝜕𝑄2

=
1

2
(𝑝1 − 𝑝2). (13.9)

(2) (𝑥, 𝑦, 𝑧) → (𝑟, 𝜃, 𝜙): 𝑥 = 𝑟 sin 𝜃 cos𝜙, 𝑦 = 𝑟 sin 𝜃 sin𝜙, 𝑧 = 𝑟 cos 𝜃. The generator
reads

𝐺 = 𝑝𝑥𝑟 sin 𝜃 cos𝜙+ 𝑝𝑦𝑟 sin 𝜃 sin𝜙+ 𝑝𝑧𝑟 cos 𝜃. (13.10)

Its inverse may be generated by

𝐺 = 𝑝𝑟‖𝑥‖+ 𝑝𝜃Tan
−1

√︀
𝑥2 + 𝑦2

𝑧
+ 𝑝𝜙Tan

−1 𝑦

𝑥
. (13.11)
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(3) Rotation. We can use an orthogonal transformation to describe it as 𝑥′𝑖 = 𝑎𝑖𝑗𝑥
𝑗

(with the summation convention). The generator is 𝐺 = 𝑎𝑖𝑗𝑝𝑖𝑥
𝑗 = 𝑝𝑖𝑥

′𝑖.

(4) Translation: 𝑥′𝑘 = 𝑥𝑘 +Δ𝑥𝑘. Its generator is 𝐺 = 𝑃 (𝑥+Δ𝑥). This gives 𝑃 = 𝑝,
of course.
(5) Mirror image wrt 𝑥1: 𝑥′1 = −𝑥1, 𝑥′2 = 𝑥2, · · ·. Its generator is 𝐺 = −𝑥1𝑃1 +
𝑥2𝑃2 + · · · ..

13.4 Infinitesimal canonical transformation
A canonical transformation (𝑞, 𝑝) → (𝑄,𝑃 ) is said to be an infinitesimal canonical
transformation, if 𝑄− 𝑞 and 𝑃 − 𝑝 are infinitesimal.

Let 𝐺 be its generator:
𝑑𝐺 = 𝑝𝑑𝑞 +𝑄𝑑𝑃 (13.12)

Notice that
𝑑(𝐺− 𝑞𝑃 ) = (𝑝− 𝑃 )𝑑𝑞 + (𝑄− 𝑞)𝑑𝑃, (13.13)

so 𝐺 − 𝑞𝑃 may be written as 𝜀𝑆, where 𝜀 is an infinitesimal parameter. Therefore,
any infinitesimal canonical transformation has the following generator

𝐺(𝑞, 𝑃 ) = 𝑞𝑃 + 𝜀𝑆(𝑞, 𝑝), (13.14)

where 𝑃 in 𝑆 has been replaced by 𝑝 because of 𝜀 in front of it. 𝑆 is called the
generator of the infinitesimal canonical transformation. We have

𝑝 =
𝜕𝐺

𝜕𝑞
= 𝑃 + 𝜀

𝜕𝑆

𝜕𝑞
, (13.15)

𝑄 =
𝜕𝐺

𝜕𝑃
= 𝑞 + 𝜀

𝜕𝑆

𝜕𝑝
. (13.16)

That is,

𝑄 = 𝑞 + 𝜀
𝜕𝑆

𝜕𝑝
, 𝑃 = 𝑝− 𝜀

𝜕𝑆

𝜕𝑞
. (13.17)

13.5 Infinitesimal canonical transformation of mechanical variables
A mechanical variable 𝐹 = 𝐹 (𝑞, 𝑝) changes, according to the infinitesimal canonical
transformation with generator 𝑆, as

𝐹 (𝑄,𝑃 )− 𝐹 (𝑞, 𝑝) = 𝜀

(︂
𝜕𝐹

𝜕𝑞

𝜕𝑆

𝜕𝑝
− 𝜕𝐹

𝜕𝑝

𝜕𝑆

𝜕𝑞

)︂
= 𝜀[𝐹, 𝑆]𝑃𝐵. (13.18)
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13.6 Time evolution is canonical transformation
We know the time evolution of a mechanical variable according to the natural motion
of the system obeys

𝑑𝐹

𝑑𝑡
= [𝐹,𝐻]𝑃𝐵. (13.19)

𝜀 → 𝛿𝑡 and 𝑆 → 𝐻 in (13.18) just gives this equation. Thus we may conclude that
time evolution is a canonical transformation.

13.7 One form of Noether’s theorem
Suppose the Hamiltonian is invariant under the infinitesimal canonical transforma-
tion with the generator 𝑊 that changes a mechanical variable 𝑓 → 𝑓 + 𝑑𝑓 . Then
(13.18) implies

𝑑𝐻 = 𝑑𝑓 [𝐻,𝑊 ] = 0. (13.20)

That is, 𝑊 is an invariant of motion.

13.8 What is the relation between classical canonical and quantum uni-
tary transformations?
As point transformations tell us, any coordinate transformation is canonical classi-
cally. However, it is well known that the canonical quantization using the correspon-
dence between the commutator and the Poisson bracket must choose (basically) the
Cartesian coordinates; if the formalism is naively applied to the system described
with the aid of the spherical coordinates, the resultant quantum mechanics are not at
all equivalent. Thus, it is clear that the usual canonical quantization and canonical
transformations are usually not compatible.

If a transformation gives an equivalent quantum mechanical system, and if there is
a corresponding classical system, there is a corresponding canonical transformation.
However, the converse is not usually true.

13.9 Lagrange bracket
Let 𝑓 and 𝑔 be differentiable mechanical quantities. The Lagrange bracket between
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them is defined as

(𝑓, 𝑔) =
𝜕𝑞

𝜕𝑓

𝜕𝑝

𝜕𝑔
− 𝜕𝑞

𝜕𝑔

𝜕𝑝

𝜕𝑓
. (13.21)

13.10 Poisson vs Lagrange brackets
Let 2𝑛 canonical variables be denoted as {𝑢𝑗}2𝑛𝑗=1. Then∑︁

𝑘

[𝑢𝑘, 𝑢𝑖]𝑃𝐵(𝑢𝑘, 𝑢𝑗) = 𝛿𝑖𝑗. (13.22)

This is shown by explicit calculation:153∑︁
𝑘

(︂
𝜕𝑢𝑘
𝜕𝑞

𝜕𝑢𝑖
𝜕𝑝

− 𝜕𝑢𝑘
𝜕𝑝

𝜕𝑢𝑖
𝜕𝑞

)︂(︂
𝜕𝑞

𝜕𝑢𝑘

𝜕𝑝

𝜕𝑢𝑗
− 𝜕𝑝

𝜕𝑢𝑘

𝜕𝑞

𝜕𝑢𝑗

)︂
=
𝜕𝑢𝑖
𝜕𝑝

𝜕𝑝

𝜕𝑢𝑗
+
𝜕𝑢𝑖
𝜕𝑞

𝜕𝑞

𝜕𝑢𝑗
=
𝜕𝑢𝑖
𝜕𝑢𝑗

.

(13.23)

13.11 Integral invariant
Take a smooth closed curve 𝐶 in the phase space (𝑞, 𝑝). If a canonical transformation
(𝑞, 𝑝) → (𝑄,𝑃 ) is applied to this curve, we get a closed curve 𝐶 ′ in the phase space

153If you do not like the following shorthand, do explicit calculation with summation convention.
For example, one cross term reads

𝜕𝑢𝑘
𝜕𝑝𝑓

𝜕𝑢𝑖
𝜕𝑞𝑓

𝜕𝑞𝑔
𝜕𝑢𝑘

𝜕𝑝𝑔
𝜕𝑢𝑗

=
𝜕𝑞𝑞
𝜕𝑝𝑓

𝜕𝑢𝑖
𝜕𝑞𝑓

𝜕𝑝𝑔
𝜕𝑢𝑗

= 0

The surviving terms read

𝜕𝑢𝑘
𝜕𝑞𝑓

𝜕𝑢𝑖
𝜕𝑝𝑓

𝜕𝑞𝑔
𝜕𝑢𝑘

𝜕𝑝𝑔
𝜕𝑢𝑗

+
𝜕𝑢𝑘
𝜕𝑝𝑓

𝜕𝑢𝑖
𝜕𝑞𝑓

𝜕𝑝𝑔
𝜕𝑢𝑘

𝜕𝑞𝑔
𝜕𝑢𝑗

=
𝜕𝑞𝑔
𝜕𝑞𝑓

𝜕𝑢𝑖
𝜕𝑝𝑓

𝜕𝑝𝑔
𝜕𝑢𝑗

+
𝜕𝑝𝑔
𝜕𝑝𝑓

𝜕𝑢𝑖
𝜕𝑞𝑓

𝜕𝑞𝑔
𝜕𝑢𝑗

= 𝛿𝑓𝑔

(︂
𝜕𝑢𝑖
𝜕𝑝𝑓

𝜕𝑝𝑔
𝜕𝑢𝑗

+
𝜕𝑢𝑖
𝜕𝑞𝑓

𝜕𝑞𝑔
𝜕𝑢𝑗

)︂
That is, ∑︁

𝑓

(︂
𝜕𝑢𝑖
𝜕𝑝𝑓

𝜕𝑝𝑓
𝜕𝑢𝑗

+
𝜕𝑢𝑖
𝜕𝑞𝑓

𝜕𝑞𝑓
𝜕𝑢𝑗

)︂
=
𝜕𝑢𝑖
𝜕𝑢𝑗

.

which is the sum over all the independent variables (recall 𝑢 are understood as a function of (𝑞, 𝑝);

just as 𝜕𝐹 (𝐺𝑖(𝑥))
𝜕𝑥 = 𝜕𝐹

𝜕𝐺𝑖

𝜕𝐺𝑖

𝜕𝑥 )
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spanned by (𝑄,𝑃 ). Since 𝑝𝑑𝑄− 𝑃𝑑𝑄 = 𝑑𝐹 ,154∮︁
𝐶

𝑝𝑑𝑞 −
∮︁
𝐶′
𝑃𝑑𝑄 = 0. (13.24)

This is called a relative integral invariant. Applying the Stokes’ theorem, we get∫︁
𝐴

𝑑𝑞𝑑𝑝 =

∫︁ ′

𝐴

𝑑𝑄𝑑𝑃 (13.25)

where 𝜕𝐴 = 𝐶 and 𝜕𝐴′ = 𝐶 ′. This is called the absolute integral invariant. This is
true for any area 𝐴 floating in the phase space.

Suppose 𝐴 has a coordinate system (𝑢, 𝑣). Then, on 𝐴 𝑞 and 𝑝 are functions of
(𝑢, 𝑣). After the canonical transformation 𝑄 and 𝑃 depend on (𝑢, 𝑣) through the
original variable, so (13.26) reads (with the summation convention)∫︁

𝐴

𝜕(𝑞𝑟, 𝑝𝑟)

𝜕(𝑢, 𝑣)
𝑑𝑢𝑑𝑣 =

∫︁ ′

𝐴

𝜕(𝑄𝑟, 𝑃 𝑟)

𝜕(𝑢, 𝑣)
𝑑𝑢𝑑𝑣 (13.26)

This is true for any 𝐴, so we must conclude that

𝜕(𝑞𝑟, 𝑝𝑟)

𝜕(𝑢, 𝑣)
(13.27)

is invariant (do not forget the summation convention).

13.12 Lagrange brackets are invariant of canonical transformation
The invariance of (13.27) implies

𝜕(𝑞𝑟, 𝑝𝑟)

𝜕(𝑢, 𝑣)
𝑑𝑢𝑑𝑣 = 𝑑𝑞𝑟𝑑′𝑝𝑟 − 𝑑′𝑞𝑟𝑑𝑝𝑟 (13.28)

is invariant. Here, 𝑑 and 𝑑′ are independent infinitesimal changes. Therefore, La-
grange brackets are invariant.

As we will see soon the converse is true: if a transformation keeps Lagrange brack-
ets invariant, it is a canonical transformation.

154𝑝𝑑𝑄 is a shorthand notation of
∑︀

𝑟 𝑝𝑟𝑑𝑄𝑟 as usual.
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13.13 Poisson brackets are invariant of canonical transformation
(13.22) implies that if Lagrange bracket is invariant, then so is Poison bracket. Thus,
a necessary and sufficient condition for (𝑞, 𝑝) → (𝑄,𝑃 ) is canonical is that

[𝑃, 𝑃 ]𝑃𝐵 = [𝑄,𝑄]𝑃𝐵 = 0, [𝑄,𝑃 ]𝑃𝐵 = 1. (13.29)

13.14 Invariance of Lagrange bracket implies canonical nature of the
transformation
Looking at 13.11, we see we have only to show that 𝑝𝑑𝑞 − 𝑃𝑑𝑄 is exact. That is,
there is a function 𝑊 such that

𝑑𝑊 = 𝑝𝑑𝑞 − 𝑃𝑑𝑄. (13.30)

If there is such 𝑊 , it must satisfy, as a function of 𝑃 and 𝑄

𝜕𝑊

𝜕𝑃
= 𝑝

𝜕𝑞

𝜕𝑃
,
𝜕𝑊

𝜕𝑄
= 𝑝

𝜕𝑞

𝜕𝑃
− 𝑃. (13.31)

Also we need 𝜕2𝑊/𝜕𝑃𝜕𝑄 = 𝜕2𝑊/𝜕𝑄𝜕𝑃 : we have

𝜕2𝑊

𝜕𝑄𝜕𝑃
=

𝜕𝑝

𝜕𝑄

𝜕𝑞

𝜕𝑃
+ 𝑝

𝜕2𝑞

𝜕𝑄𝜕𝑃
, (13.32)

𝜕2𝑊

𝜕𝑃𝜕𝑄
=

𝜕𝑝

𝜕𝑃

𝜕𝑞

𝜕𝑄
+ 𝑝

𝜕2𝑞

𝜕𝑃𝜕𝑄
− 1. (13.33)

Equating these formulas, we get

(𝑄,𝑃 ) = 1. (13.34)

That is,155 if we have the invariance of Lagrange’s brackets, then (𝑞, 𝑝) → (𝑄,𝑃 ) is
canonical.

13.15 Liouville’s theorem
The phase volume is invariant under canonical transformations. That is∫︁

𝑉

𝑑𝑛𝑝𝑑𝑛𝑞 =

∫︁
𝑉 ′
𝑑𝑛𝑃𝑑𝑛𝑄, (13.35)

155Needless to say, we must also demand (𝑃, 𝑃 ) = (𝑄,𝑄) = 0 as well for 𝑑𝑊 to be exact. Check
this.
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where 𝑉 is a (2𝑛-)subset of the phase space, and 𝑉 ′ its image due to the canonical
transformation (𝑞, 𝑝) → (𝑄,𝑃 ). To demonstrate this we have only to show that
following Jacobian to be ±1:

𝐽 =
𝜕(𝑞, 𝑝)

𝜕(𝑄,𝑃 )
. (13.36)

We compute this as

𝐽 =
𝜕(𝑞, 𝑝)

𝜕(𝑄, 𝑝)

𝜕(𝑄, 𝑝)

𝜕(𝑄,𝑃 )
=

𝜕𝑞

𝜕𝑄

⃒⃒⃒⃒
𝑝

𝜕𝑝

𝜕𝑃

⃒⃒⃒⃒
𝑄

=
𝜕𝑝

𝜕𝑃

⃒⃒⃒⃒
𝑄

⧸︃
𝜕𝑄

𝜕𝑞

⃒⃒⃒⃒
𝑝

. (13.37)

Now, in terms of the generator 𝑑𝐺 = 𝑝𝑑𝑞 −𝑄𝑑𝑃 , we have

𝜕𝑄

𝜕𝑞

⃒⃒⃒⃒
𝑝

=
𝜕2𝐺

𝜕𝑞𝜕𝑃
, (13.38)

𝜕𝑝

𝜕𝑃

⃒⃒⃒⃒
𝑄

=
𝜕2𝐺

𝜕𝑃𝜕𝑞
. (13.39)

Thus, 𝐽 = 1.
13.6 implies that the phase volume is invariant of motion.

13.16 Integration by quadratures
Integration by quadrature is the search of the solutions by a finite number of alge-
braic operations (including inversion of functions) and ‘quadratures’ = calculation
of integrals of known functions. T

If 𝑛 first integrals are commutative (the classical involution case), the system is solv-
able by quadrature.

13.17 Jacobi’s method of complete integral156

Jacobi showed that for a system with 𝑛 degrees of freedom of motion if we can find a
complete solution (solution with 𝑛+ 1 arbitrary and independent constants) for the
Hamilton-Jacobi equation, we can determine the motion completely.

The Hamilton-Jacobi equation has the following form

𝜕𝐴

𝜕𝑡
+𝐻 = 0, (13.40)

156See Landau-Lifshitz Section 47.
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so a complete solution can have the form 𝐴 = 𝐶 + 𝑓(𝑞, 𝛼, 𝑡), where C and 𝛼 (𝑛-
vector) are the arbitrary constants. We can introduce a canonical transformation
whose generator is 𝑓 that makes 𝛼 as the new momentum (𝑓 corresponds to 𝐺)

𝑝𝑖 =
𝜕𝑓

𝜕𝑞𝑖
, 𝛽𝑗 =

𝜕𝑓

𝜕𝛼𝑗
, 𝐾 =

𝜕𝑓

𝜕𝑡
+𝐻 =

𝜕𝐴

𝜕𝑡
+𝐻 = 0. (13.41)

Thus, the new coordinates are 𝛽. Since the Hamiltonian in this coordinate system
vanishes, the canonical equation of motion tells us that 𝛽 are constants. Solving 𝑛
equations 𝛽 = 𝜕𝑓

𝜕𝛼
, we can determine 𝑞 as a function of 𝑡.

13.18 Separation of variables
If the action 𝐴 (or called Hamilton’s principal function) may be written as a sum of
two functions without common coordinates: 𝐴 = 𝐴1(𝑎1, 𝑡) + 𝐴2(𝑞2, 𝑡), we can sepa-
rately find complete solutions. Especially when 𝐴2 depends only on one coordinate
𝑞𝑛, we say this coordinate is separated from the rest, and the 1D problem may be
solved.
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14 Lecture 14. Celestial mechanics

14.1 Two-body summary
Everybody should be very familiar with the two celestial body dynamics. Here I
mention some topics that may not appear in elementary expositions.

⟨⟨Bertrand’s theorem⟩⟩ Suppose 𝑈 is a spherically symmetric potential. For a
motion with non-zero angular momentum close to a circle to have a closed orbit, 𝑈
must be harmonic or gravitational.157

⟨⟨Collision and extension⟩⟩ If the angular momentum is zero, the particles can
collide. The orbit may be, however, uniquely extended beyond collision.158

14.2 Necessary condition for stability
The general 𝑛-body problem consists of 𝑛 point masses (𝑚1, 𝑟1), · · ·, (𝑚𝑛, 𝑟𝑛) at-
tracting one another according to the law of gravity. The total kinetic energy is

𝐾 =
1

2

∑︁
𝑖

𝑚𝑖𝑟̇
2
𝑖 , (14.1)

and the potential energy 𝑈 is

𝑈 = −
∑︁
𝑖<𝑗

𝑚𝑖𝑚𝑗

|𝑟𝑖 − 𝑟𝑗|
. (14.2)

We describe the system from the inertial frame and the origin of the position coor-
dinates is the center of mass.

We say the system is stable, if
(a) No collision: |𝑟𝑖 − 𝑟𝑗| > 0 for all 𝑖 and 𝑗 for all 𝑡.
(b) No escape: there is 𝑐 > 0 such that |𝑟𝑖| < 𝑐 for all 𝑖 and 𝑡.

The fate of a three body system is very hard to predict (Fig. 14.1)

14.3 Jacobi’s necessary condition for non-escape159

If there is no escape nor collisions, the total energy of the system must be negative.

157S. A. Chin, A truly elementary proof of Bertrand’s theorem, arXiv:1411.7057 [physics.class-ph]
(2014).

158Arnold III p56
159Arnold III p59
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t = 0, 1, ... , 10

t = 40, 41, ... , 50
= 50, 41, ... , 60t = 60, 41, ... , 70t

Figure 14.1: Fate of a three body system [Fig. 12-15 of Arnold III ]

Remark For 𝑛 > 2, this is not sufficient as seen in Fig. 14.1.
[Demo]
We use Lagrange’s formula:*160 for 𝐼 =

∑︀
𝑚𝑖𝑟

2
𝑖 (the moment of inertia) and the total

energy 𝐸
𝐼 = 4𝐸 − 2𝑈. (14.3)

Since 𝑈 < 0, 𝐸 ≥ 0 implies 𝐼 > 0, so 𝐼(𝑡) must be convex. Therefore, it cannot be

160

𝐼 =
∑︁
𝑖

𝑚𝑖(2𝑟̇
2
𝑖 + 2𝑟𝑖𝑟𝑖) = 4𝑇 − 2

∑︁
𝑖

𝑟𝑖
∑︁
𝑗 ̸=𝑖

𝑚𝑖𝑚𝑗

|𝑟𝑖 − 𝑟𝑗 |3
(𝑟𝑖 − 𝑟𝑗)

(Note that ∇(1/|𝑥|) = −(1/|𝑥|2)(𝑥/|𝑥|), because ∇|𝑥|2 = 2|𝑥|∇|𝑥| = 2𝑥). Therefore,

𝐼 = 4𝑇 −
∑︁
𝑖

𝑟𝑖
∑︁
𝑗

𝑚𝑖𝑚𝑗

|𝑟𝑖 − 𝑟𝑗 |3
(𝑟𝑖 − 𝑟𝑗)−

∑︁
𝑗

𝑟𝑗
∑︁
𝑖

𝑚𝑖𝑚𝑗

|𝑟𝑖 − 𝑟𝑗 |3
(𝑟𝑗 − 𝑟𝑖)

= 4𝑇 − 2
∑︁
𝑖,𝑗

𝑚𝑖𝑚𝑗

|𝑟𝑖 − 𝑟𝑗 |3
(𝑟𝑖 − 𝑟𝑗)

2 = 4𝑇 + 2𝑈 = 4𝐸 − 2𝑈.
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bounded from above. Note that*161

𝐼
∑︁
𝑖

𝑚𝑖 =
∑︁
𝑖<𝑗

𝑚𝑖𝑚𝑗|𝑟𝑖 − 𝑟𝑗|2 +

(︃∑︁
𝑖

𝑚𝑖𝑟𝑖

)︃2

. (14.4)

The center of mass is fixed (say, 0), so the unbounded 𝐼 means the increase of the
mutual distance without bound.

If there is no collision and 𝑈 is bounded from below, the virial theorem162 may be
applied to the time average of 𝑈 : ⟨𝑈⟩ = 2𝐸. Therefore, 𝐸 < 0.

14.4 Collisions163

If there is a simultaneous 𝑛-body collision 𝐼 vanishes. If 𝐼(𝑡) → 0 as 𝑡→ 𝑡0, the the
total angular momentum must be zero.

For binary collisions the motion can be smoothly extended beyond collisions. This
means that for a three body problem with nonzero angular momentum, the motion
is well defined for all 𝑡.164

14.5 Three-body problem and its reduction
For the 𝑛 = 3 case (the three-body problem case) the original equation of motion is
3× 3× 2 = 18 first order equations. The problem can be reduced to a problem of 6
first order differential equations (Lagrange 1772).
(i) The location and the velocity of the center of mass are cyclic coordinates (= the
coordinate that do not explicitly appear in the equations), so we may regard them

161

𝐼
∑︁
𝑖

𝑚𝑖 =
∑︁
𝑖,𝑗

𝑚𝑖𝑚𝑗𝑟
2
𝑖 =

1

2

∑︁
𝑖,𝑗

𝑚𝑖𝑚𝑗(𝑟
2
𝑖 + 𝑟2𝑗 ) =

1

2

∑︁
𝑖,𝑗

𝑚𝑖𝑚𝑗 [(𝑟𝑖 − 𝑟𝑗)
2 + 2𝑟𝑖𝑟𝑗 ].

162 ⟨⟨Virial theorem⟩⟩ Notice that the long-time average of the derivative of a bounded function

f(t) vanishes: (1/𝑇 )
∫︀ 𝑇

0
𝑓 ′(𝑠)𝑑𝑠 → 0. Consider 𝑝𝑞. If the phase space for the system is bounded,

then the time average of 𝑑(𝑝𝑞)/𝑑𝑡 vanishes. Therefore, for 𝑈 which is a homogenous function of
degree −1

𝑝𝑞 + 𝑞𝑝̇ = 2𝑇 − 𝑞
𝜕𝑈

𝜕𝑞
= 2𝑇 + 𝑈 = 2𝐸 − 𝑈.

Therefore, ⟨𝑈⟩ = 2𝐸.
163Arnold III p59
164details can be found on p60-61 of Arnold III.
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to be known. Thus 12 equations remain.
(ii) The total angular momentum is conserved. Thus 9 equations remain.
(iii) We perform the elimination of the nodes. The rotation as a whole may be re-
garded as known; actually this is done with (ii). Thus, 8 equations remain.
(iv) The total energy is conserved: 7 equations now.
(v) Now, eliminate 𝑡 from the equation. The resultant set contains 6 first order
equations.

The actual procedures and formulas are explained in detail on p343-347 of Whit-
taker.

14.6 Restricted problem of three body
If the third body (planetoid P) has an infinitesimal mass moving in the plane of the
motion of the other two bodies S (Sun) and J (Jupiter) under their influence, the
three-body problem is called the restricted problem of three bodies. The Hamiltonian
governing the motion of P is given by

𝐻 =
1

2
(𝑈2 + 𝑉 2)− 𝑚1

SP
− 𝑚2

JP
. (14.5)

SP ad JP are time-dependent, so 𝐻 is not a constant of motion.
We introduce a moving coordinate system Fig. 14.2 whose origin is the CM of S

and J and whose 𝑥-axis is from O to J. 𝑂-𝑥 is chosen to span the plane on which S
and J always sit. Let 𝑛 be the angular speed of SJ.

o

J

x
y

Figure 14.2: Moving coordinates for the restricted problem

Then, the original position coordinates (𝑋, 𝑌 ) of P may be related to (𝑥, 𝑦) as

𝑋 = 𝑥 cos𝑛𝑡− 𝑦 sin𝑛𝑡 (14.6)

𝑌 = 𝑥 sin𝑛𝑡+ 𝑦 cos𝑛𝑡. (14.7)

Now, we wish to canonical transform the coordinate system from the inertial (𝑋, 𝑌 )
(the old (𝑞, 𝑝)) to the moving (𝑥, 𝑦) (the new (𝑄,𝑃 )). We use 𝑊 = 𝑝𝑞−𝐹 , where 𝐹
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is the ‘most’ standard one introduced in 13.1

𝑑𝑊 = 𝑃𝑑𝑄−𝐾𝑑𝑡+ 𝑞𝑑𝑝+𝐻𝑑𝑡 = 𝑢𝑑𝑥+ 𝑣𝑑𝑦 +𝑋𝑑𝑈 + 𝑌 𝑑𝑉 + (𝐻 −𝐾)𝑑𝑡. (14.8)

Since 𝑑𝑊 is exact, we can integrate this as𝑊 = 𝑝𝑞 (i.e., in terms of the old variables).
Expressing 𝑞 in terms of the new coordinates, we get

𝑊 = 𝑈(𝑥 cos𝑛𝑡− 𝑦 sin𝑛𝑡) + 𝑉 (𝑥 sin𝑛𝑡+ 𝑦 cos𝑛𝑡). (14.9)

Note that

𝑋 =
𝜕𝑊

𝜕𝑈
, 𝑌 =

𝜕𝑊

𝜕𝑉
, 𝑢 =

𝜕𝑊

𝜕𝑥
, 𝑣 =

𝜕𝑊

𝜕𝑦
. (14.10)

Since our new coordinates are time-dependent, the new Hamiltonian ahas an extra
term:*165

𝜕𝑊

𝜕𝑡
= 𝐻 −𝐾, or 𝐾 = 𝐻 − 𝜕𝑊

𝜕𝑡
=

1

2
(𝑢2 + 𝑣2) + 𝑛(𝑢𝑦 − 𝑣𝑥)− 𝐹, (14.11)

where
𝐹 =

𝑚1

SP
+
𝑚2

JP
(14.12)

is a function of 𝑥 and 𝑦 only, so note that 𝐾 is time independent. 𝐾 = const is an
integral and called the Jacobian integral. If the sum of the masses of S and J to be
chosen unity, we may rewrite 𝐹 as

𝐹 =
1− 𝜇

SP
+

𝜇

JP
. (14.13)

If 𝜇 = 0, we ignore the effect of J. Thus, 𝜇 could be regarded as a perturbation
parameter.

A nice restricted three-body simulation video is:
https://www.youtube.com/watch?v=jarcgP1rRWs

165

𝜕𝑊

𝜕𝑡
= 𝑈(−𝑛𝑥 sin𝑛𝑡− 𝑛𝑦 cos𝑛𝑡) + 𝑉 (𝑛𝑥 cos𝑛𝑡− 𝑛𝑦 sin𝑛𝑡).

Also we have

𝑢 =
𝜕𝑊

𝜕𝑥
= 𝑈 cos𝑛𝑡+ 𝑉 sin𝑛𝑡, 𝑣 =

𝜕𝑊

𝜕𝑦
= −𝑈 sin𝑛𝑡+ 𝑉 cos𝑛𝑡. (*)

Therefore,

𝜕𝑊

𝜕𝑡
= 𝑥(−𝑛𝑈 sin𝑛𝑡+ 𝑛𝑉 cos𝑛𝑡) + 𝑦(−𝑛𝑈 cos𝑛𝑡− 𝑛𝑉 sin𝑛𝑡) = 𝑛(𝑥𝑣 − 𝑦𝑢).

Obviously, 𝑈2 + 𝑉 2 = 𝑢2 + 𝑣2, since (*) is an orthogonal transformation.

https://www.youtube.com/watch?v=jarcgP1rRWs
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14.7 Bruns’ theorem
Theorem [Bruns 1887] The classical integrals (energy, momentum and angular mo-
mentum) are the only independent algebraic integrals of the problem of three bodies.

A proof can be found on p359-377 of Whittaker. The proof fully utilizes the pe-
culiarity of the three-body problem.

14.8 Poincare’s theorem ‘denying’ integrability of perturbed systems
Suppose we have a completely integrable system, whose Hamiltonian is given in
terms of action variables only as 𝐻0(𝐼) (with non-resonance condition satisfied, i.e.,
the Hessian of 𝐻0(𝐼) is non-singular). The perturbation term 𝐻1(𝜃, 𝐼) is analytic in
𝐼 and the angle variable 𝜃. The total Hamiltonian reads

𝐻(𝜃, 𝐼, 𝜇) = 𝐻0(𝐼) + 𝜇𝐻1(𝜃, 𝐼). (14.14)

Then, under a natural condition, there is no first integral of motion other than 𝐻
itself that are analytic in 𝜇.

Poincare proved in 1889 this theorem for the system with two degrees of freedom
(as in the restricted three-body problem).

Suppose there is a first integral of motion Φ

Φ = Φ0 + 𝜇Φ1 + 𝜇2Φ2 + · · · . (14.15)

The key observation is that Φ0 must be a function of 𝐻0, which follows from the
observation that Φ0 is a function of 𝐼 only. If Φ depends on 𝜇 smoothly, perhaps
it is not a wild guess that this structure must be preserved for Φ (i.e., Φ must be a
function of 𝐻 only). A proof is given in 14.10-14.12.166

14.9 Significance of Poincare’s negative result
Bruns proved167 in 1887 that for the three-body problem algebraic integrals of motion
are exhausted by the classical integrals of motion (3 CM coordinates− 𝑡 × veloc-
ity, 3 angular momentum components, 3 momentum components and energy), so no
simplification further than accomplished by Lagrange long ago (see 14.5). Then,

166based on H. Yoshida 5.1 in Y. Ohnuki and H. Yoshida, Mechanics (Iwanami 1994).
167E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies (Cambridge,

1937 [4th edition]) p358-377.
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Poincare proved even for the restricted simpler problem there is no generally smooth
(wrt 𝜇) integration possible. Thus, almost all the people lost hope in solving the
celestial mechanics in a closed form.

However, do not forget that Poincare did not show that for fixed values of 𝜇 ana-
lytic Φ exists (a less smooth Φ may exist).

14.10 Φ0 is a function of 𝐼 only
Let us Fourier-expand Φ0:

Φ0(𝜃, 𝐼) =
∑︁
𝑘∈Z2

𝜑𝑘(𝐼)𝑒
𝑖𝑘·𝜃. (14.16)

The Fourier expansion of [𝐻0(𝐼),Φ0]𝑃𝐵 = 0 reads

𝜕

𝜕𝐼
𝐻0(𝐼) ·

𝜕

𝜕𝜃
Φ0 = ∇𝐻0(𝐼) ·

∑︁
𝑘∈Z2

(𝑖𝑘)𝜑𝑘(𝐼)𝑒
𝑖𝑘·𝜃 = 0. (14.17)

Therefore, for all 𝑘
∇𝐻0(𝐼) · 𝑘𝜑𝑘(𝐼) = 0. (14.18)

This must be true for any 𝐼, so its derivative wrt 𝐼 must vanish. Thus,

Hess(𝐻0(𝐼))𝑘𝜑𝑘(𝐼) +∇𝐻0(𝐼) · 𝑘∇𝜑𝑘(𝐼) = 0. (14.19)

If 𝜑𝑘(𝐼) ̸= 0, then (14.18) implies ∇𝐻0(𝐼) ·𝑘 = 0, so Hess(𝐻0(𝐼))𝑘 must vanish.
But since the Hessian is non-singular, this is true only for 𝑘 = 0. Thus, only
𝜑0(𝐼) ̸= 0. That is, Φ0 cannot depend on 𝜃.

14.11 Φ0 is a function of 𝐻0 only
This is demonstrated under a complicated condition whose significance is un-
clear to me. So let us assume this. That is (recall that our system has 2 degrees
of freedom),

𝜕(𝐻0,Φ0)

𝜕(𝐼1, 𝐼2)
= 0. (14.20)

This implies168 the existence of a function 𝜓 such that Φ0 = 𝜓 ∘𝐻0.

168This conclusion follows from (14.20) if everything is smooth enough; of course, we have assume
everything is holomorphic, so the argument is OK. Since Jacobian is the volume ratio of 𝑑𝐼1𝑑𝐼2
and 𝑑𝐻0𝑑Φ0, (14.20) implies 𝑑𝐻0 and 𝑑Φ0 are parallel.
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14.12 Conclusion of proof: Φ is a function of 𝐻 only
Take 𝜓 in 14.11 and make Φ − 𝜓(𝐻). This is Φ0 − 𝜓(𝐻0) = 0 for 𝜇 = 0.
Therefore, we may write

Φ(𝜃, 𝐼;𝜇)− 𝜓(𝐻(𝜃, 𝐼;𝜇)) = 𝜇Φ(1)(𝜃, 𝐼;𝜇), (14.21)

which is an integral of motion as well. Expanding this,

Φ(1) = Φ
(1)
0 + 𝜇Φ

(1)
1 + · · · , (14.22)

we see that Φ
(1)
0 is a function of 𝐻0 (a function of 𝐼 only is a function of 𝐻0):

Φ
(1)
0 = 𝜓(1)(𝐻0), (14.23)

so we can repeat that argument as

Φ(1) − 𝜓(1)(𝐻) = 𝜇Φ(2)(𝜃, 𝐼;𝜇). (14.24)

Thus,

Φ = 𝜓(𝐻) + 𝜇Φ(1) (14.25)

= 𝜓(𝐻) + 𝜇(𝜓(1)(𝐻) + 𝜇Φ(2)) (14.26)

= 𝜓(𝐻) + 𝜇𝜓(1)(𝐻) + 𝜇2Φ(2) (14.27)

· · · (14.28)

= 𝜓(𝐻) + 𝜇𝜓(1)(𝐻) + 𝜇2𝜓(2)(𝐻) + · · · (14.29)

This implies that if Φ can be obtained perturbatively, it is not an independent
invariant of motion.

14.13 Asteroids and gaps
Due to Jupiter they could not form a planet (inside the so-called frost line). The
total mass is about 4% of Moon and 40% of the total mass is concentrated in Ceres
and Vesta.
Introductory video (this is for kids, but good)

https://www.youtube.com/watch?v=iy19nHTVLEY

All known asteroids
https://www.youtube.com/watch?v=vfvo-Ujb_qk

There are several major gaps in the distribution of asteroids called Kirkwood gaps
(discovered 1866 by D Kirkwood 1814-1895). He correctly explained their origin in
terms of motional resonance with Jupiter (e.g., 3:1 at 2.5 AU; see Fig. 14.3).

https://www.youtube.com/watch?v=iy19nHTVLEY
https://www.youtube.com/watch?v=vfvo-Ujb_qk
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Figure 14.3: Asteroid belt and Kirkwood gaps

14.14 Special solutions of restricted three-body problem
Needless to say, many people tried to find special solutions (orbits) for the restricted
three-body problem. There are 5 equilibrium points in the moving coordinate system
(𝑥, 𝑦). Three of them are along the SJ axis (Euler’s linear solutions), but they are
not stable. The remaining two are Lagrange’s regular triangle solutions: the points
are at the apexes of the regular triangles on the rotational plane (the plane spanned
by (𝑥, 𝑦)) whose one edge is the SJ segment.

Are the Lagrange points stable? For this to be stable it is not very hard to show
that 𝜇(1 − 𝜇) < 1/27 (or 𝜇 < 0.0385 · · ·). To show the stability actually, we must
show the existence of small invariant tori surrounding these orbits. Thus, it is related
to KAM and highly nontrivial, but except for three values of 𝜇 < 0.0385 · · · their
stability was shown by Arnold.

Figure 14.4: A gravitational potential contour plot showing Earth’s Lagrangian points; L4 and
L5 are above and below the planet, respectively. [Wikipedia: Jupiter Trojan]
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The equilibrium points may not be so hard to find from the gravitational potential
plot (Fig. 14.4, although this is for the earth). Lagrange’s points are potential max
points. Then, how can a particle stay near the hill tops? Physically speaking, this
is due to Coriolis’ force.

We actually observe asteroids around Lagrange’s equilibrium points along Jupiters
orbit (the so-called Trojan and Greek asteroid groups; the Trojan ‘camp’ trails
Jupiter). The Hilda group asteroids are strong resonance with Jupiter. A good
illustration of Trojan (green), Greek (red), and Hilda (white) families of asteroids is:

https://people.duke.edu/~ng46/borland/hilda%20family.gif.
169

Here the Hilda is separated:
https://www.youtube.com/watch?v=yt1qPCiOq-8

14.15 Lagrange points for Earth and Moon collect dust particles (Ko-
rdylewski dust cloud)170

The L4 and L5 points of the Earth and Moon might be empty due to the gravita-
tional perturbation of the Sun. However, in 1961, the Polish astronomer, Kazimierz
Kordylewski found two bright patches near the L5 point, which might refer to an
accumulation of interplanetary particles. However, many astronomers assume that
these dust clouds do not exist, because the gravitational perturbation of the Sun,
solar wind, and other planets may disrupt the stabilizing effect of the L4 and L5
Lagrange points of the Earth and Moon.

Using ground-born imaging polarimetry, the paper II presents new observational
evidence for the existence of the KDC around the L5 point of the Earth-Moon system.

14.16 Did asteroids cause mass extinctions?
The biggest mass extinction (the end Permian MS) is certainly not due to asteroids.
I am not so convinced by the physicists’ asteroid theory of the KPg mass extinction
(65.5 MaBP; Cretaceous-Paleogene mass extinction ‘due to’ an impact at Chicxu-
lub). It is sure that an asteroid hit had a severe effect. However, this does not mean
the asteroid hit was the main cause; it could well be the last straw. Remember that
big scale mass extinctions are always with drastic sea level changes as seen in Fig.

169from DrBill’s Astronomy Web Site http://hildaandtrojanasteroids.net
170J. Sliz-Balogh, A. Barta and G. Horvath, Celestial mechanics and polarization optics of the

Kordylewski dust cloud in the Earth-Moon Lagrange oint L5 Pat I and II, Month Notices R.
Astronom Soc, 480 5550, 482 762 (2018).

https://people.duke.edu/~ng46/borland/hilda%20family.gif
https://www.youtube.com/watch?v=yt1qPCiOq-8
http://hildaandtrojanasteroids.net
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14.5. How can asteroid hit be predicted by the sea level changes? It should be fair to
claim that an asteroid can cause havoc only when the biosphere is strained severely
already.

Figure 14.5: Mass extinctions and see level changes

14.17 Rings
Saturn detail:

https://www.youtube.com/watch?v=ENwQ7-qLlrA

https://www.youtube.com/watch?v=ENwQ7-qLlrA
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15 Lecture 15. Siegel and KAM

There is almost no hope to solve celestial 𝑛 (𝑛 > 2) body problem analytically in
closed forms, the only remaining analytic hope is perturbative. Perturbative ap-
proaches generally have a grave difficulty called the small divisor problem. If the
unperturbed periodic orbit is sufficiently ‘irrational’ (the Diophantine condition),
this difficulty may be overcome. How to do this systematically is the key issue and
is the core of its solution is proposed by Kolmogorov.

Here, (1) we consider perturbation around a center: when are the majority of
invariant periodic orbits survive? [Poincaré-Siegel problem], then go to (2) the
Kolmogorov-Arnold-Moser (KAM) theorem, asserting the survival of numerous in-
variant tori under perturbation. (1) is given with full demonstration details to taste
the strategy used in (2). (2) is complicated, so only an outline of the demonstration
is given.

15.1 Perturbative solution of motion
We know what we mean by solving the motion of a Hamiltonian system. It is to
devise a smooth canonical transformation that ‘linearizes the equation of motion (see
11.1). What happens if the system is not solvable in the sense we already discussed?
If the nonlinear part of the dynamics is small (only a perturbation), a natural idea
is to construct a transformation near identity to get rid of this nonlinearity. This is
the basic idea of perturbation. Especially because the results due to Poincare and
others (24.4, 14.8) that (almost) dashed the hope of solving celestial mechanics by
quadrature, we desperately need perturbative approaches.

If we try to implement this strategy, we almost immediately encounter a grave
difficulty called the problem of small divisors. Thus, first let us taste the difficulty
and how to overcome it with a ‘simple’171 complex map problem: Find 𝑥 → 𝑦 that
can linearize the original ODE in terms of 𝑥 that has small nonlinear term 𝑔 (that
is 𝑑𝑔/𝑑𝑥|𝑥=0 = 0):

𝑥̇ = 𝐴𝑥+ 𝑔(𝑥) ⇒ 𝑦 = 𝐴𝑦, (15.1)

where 𝐴 is a diagonal matrix (for simplicity). This is the famous Poincaré-Siegel
linearization problem (answers are 15.8 and 15.12).

171The map problem is simple, but the solution is anything but simple as you will see.
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15.2 Formal linearization around singular point
Consider an ode (if needed let us complexify it 4.7)

𝑥̇ = 𝑓(𝑥), (15.2)

where 𝑥 ∈ R𝑛 and 𝑓 is real analytic with 𝑓(0) = 0. The linear term is assumed to
be diagonalized as 𝐴𝑥, where 𝐴 = [𝛼1, · · · , 𝛼𝑛].

Let us consider the formal power series transformation

𝑥 = 𝑢(𝑦) = 𝑦 + 𝑢2(𝑦) + · · ·+ 𝑢𝑘(𝑦) + · · · , (15.3)

where 𝑢𝑘 is a degree 𝑘 homogeneous polynomial of 𝑦. (15.2) reads componentwisely
as

𝑥̇𝑗 = 𝛼𝑗𝑥𝑗 +
∑︁
|𝑘|≥2

𝑓𝑘𝑗 𝑥
𝑘. (15.4)

We have used the Hadamard notation.172 (15.3) reads in this notation

𝑥𝑗 = 𝑦𝑗 +
∑︁
|𝑘|≥2

𝑢𝑘𝑗𝑦
𝑘. (15.5)

15.3 Formal transformation to the second order
If we solve (15.3) of (15.5) for 𝑦 we obtain

𝑦𝑗 = 𝑥𝑗 −
∑︁
|𝑘|=2

𝑢𝑘𝑗𝑥
𝑘 + · · · . (15.6)

Here the higher order terms are very complicated and are suppressed. The original
ODE in terms of 𝑦 can be obtained by differentiating this as173

𝑦̇𝑗
(15.6)
= 𝑥̇𝑗 −

∑︁
|𝑘|=2

𝑢𝑘𝑗 (𝑘 · 𝛼)𝑥𝑘 + · · · (15.7)

172⟨⟨Hadamard notation⟩⟩ For 𝑥 = (𝑥1, · · · , 𝑥𝑛) and 𝛼 = (𝛼1, · · · , 𝛼𝑛), 𝑥
𝛼 =

∏︀𝑛
𝑗=1 𝑥

𝛼𝑗

𝑗 . Also

we write for 𝑘 = (𝑘1, · · · , 𝑘𝑛) ∈ N𝑛, 𝑘! =
∏︀𝑛

𝑗=1 𝑘𝑗 !. Very often |𝑘| =
∑︀

𝑗 𝑘𝑗 . If 𝑓 : R𝑛 → R and
differentiable, the multivariate Taylor expansion reads

𝑓(𝑥+ 𝑦) =
∑︁
𝑘∈N𝑛

1

𝑘!
𝑦𝑘

𝑑𝑘

𝑑𝑥𝑘
𝑓(𝑥).

173𝑑𝑥𝑘 = 𝑑(
∑︀

𝑗 𝑥
𝑘𝑗

𝑗 ) =
∑︀

𝑗 𝑘𝑗𝑑𝑥𝑗(𝑥
𝑘𝑗−1
𝑗 ) =

∑︀
𝑗 𝛼𝑗𝑥𝑗𝑘𝑗(𝑥

𝑘𝑗−1
𝑗 )𝑑𝑡 =

∑︀
𝑗 𝛼𝑗𝑘𝑗(𝑥

𝑘𝑗

𝑗 )𝑑𝑡 = (𝑎 · 𝑘)𝑥𝑘𝑑𝑡.
More formally, 𝑑𝑥𝑘 = (𝑘 · 𝑑𝑥)𝑥𝑘−1 = (𝐴𝑘)𝑥𝑘.
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(15.4)
=

∑︁
𝑗

𝛼𝑗𝑥𝑗 +
∑︁
|𝑘|=2

𝑓𝑘𝑗 𝑥
𝑘 −

∑︁
|𝑘|=2

𝑢𝑘𝑗 (𝑘 · 𝛼)𝑥𝑘 + · · · (15.8)

(15.5)
=

∑︁
𝑗

𝛼𝑗

⎛⎝𝑦𝑗 + ∑︁
|𝑘|=2

𝑢𝑘𝑗𝑦
𝑘

⎞⎠+
∑︁
|𝑘|=2

𝑓𝑘𝑗 𝑦
𝑘 −

∑︁
|𝑘|=2

𝑢𝑘𝑗 (𝑘 · 𝛼)𝑦𝑘 + · · · (15.9)

=
∑︁
𝑗

𝛼𝑗𝑦𝑗 +
∑︁
|𝑘|=2

[︀
𝛼𝑗𝑢

𝑘
𝑗 + 𝑓𝑘𝑗 − 𝑢𝑘𝑗 (𝑘 · 𝛼)

]︀
𝑦𝑘 + · · · (15.10)

=
∑︁
𝑗

𝛼𝑗𝑦𝑗 +
∑︁
|𝑘|=2

{︀
𝑓𝑘𝑗 + [𝛼𝑗 − (𝑘 · 𝛼)]𝑢𝑘𝑗

}︀
𝑦𝑘 + · · · . (15.11)

Therefore, if we can set
𝑢𝑘𝑗 = 𝑓𝑘𝑗 /(𝑘 · 𝛼− 𝛼𝑗), (15.12)

the second order terms have been eliminated. For this to be possible we need a
non-resonance condition for |𝑘| = 2

𝛼𝑗 − 𝑘 · 𝛼 ̸= 0. (15.13)

15.4 Non-resonance condition
As we will see the non-resonance condition is crucial, so let us state the condition
clearly:

For 𝛼 ∈ C𝑛 If the following set Γ(𝛼) = ∅, we say 𝛼 is non-resonant:

Γ(𝛼) = {𝑗 ∈ {1, 2, · · · , 𝑛}, 𝑘 ∈ N𝑛 |𝛼𝑗 − 𝑘 · 𝛼 = 0}. (15.14)

15.5 Formal transformation to order 𝑘
Replacing ‘2’ with 𝐾 in (15.5) as

𝑥𝑗 = 𝑦𝑗 +
∑︁
|𝑘|=𝐾

𝑢𝑘𝑗𝑦
𝑘 + · · · , (15.15)

we can repeat the computation in 15.3 to get the following instead of (15.11)

𝑦̇𝑗 =
∑︁
𝑗

𝛼𝑗𝑦𝑗 +
∑︁

2≤|𝑘|<𝐾

𝑓𝑘𝑗 𝑦
𝑘
𝑗 +

∑︁
|𝑘|=𝐾

[︀
𝑓𝑘𝑗 + (𝛼𝑗 − (𝑘 · 𝛼))𝑢𝑘𝑗

]︀
𝑦𝑘 + · · · (15.16)
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Therefore, under the non-resonance condition (15.13), we can eliminate the order 𝐾
terms.

Notice that in (15.15) · · · terms are not needed. Thus we can get the following
obvious theorem:

15.6 Finite order elimination of nonlinear terms
For any 𝑀 ∈ N+ we can make a polynomial transformation of order 𝑀

𝑥 = 𝑢(𝑦) = 𝑦 + 𝑢2(𝑦) + · · ·+ 𝑢𝑀(𝑦) (15.17)

such that the original ODE (15.2) with the non-resonance condition 15.4 can be
transformed into the following form:

𝑦̇𝑗 = 𝛼𝑗𝑦𝑗 +
∑︁
|𝑘|>𝑀

𝑔𝑘𝑗 𝑦
𝑘. (15.18)

15.7 What happens if |𝑘| is very large?
If |𝑘| is very large, then 𝛼𝑗 − 𝑘 · 𝛼 can be very close to zero (imagine a lattice and
then try to draw a line not hitting any lattice point).

Figure 15.1: Suppose 𝛼1 > 0 and 𝛼2 < 0. 𝛼1𝑘1 + 𝛼2𝑘2 = 0 (red line) can be very close to a
positive integer lattice points for large |𝑘| even if 𝛼1/𝛼2 ̸∈ Q. In this case Poincaré’s condition is
trivially violated.

Thus, non-resonance alone cannot guarantee that 𝑢𝑗𝑘 is of manageable size. Poincaré
proved that if the convex hull of {𝛼1, · · · , 𝛼𝑛} does not contain the origin on the
complex plane, and if 𝛼 satisfies the non-resonance condition, then we can iterate
the procedure in 15.6 indefinitely. That is,

15.8 Poincaré’s lemma
For an ODE with the linear portion diagonalized and the nonlinear part denoted as
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𝑔:
𝑥̇ = 𝐴𝑥+ 𝑔(𝑥), (15.19)

if the convex hull of the eigenvalues do not contain the origin, and the non-resonance
condition is satisfied, then there is an analytic transformation 𝑥 = 𝑦 + 𝑢(𝑦) with
𝑑𝑢/𝑑𝑦|𝑦=0 = 0 such that

𝑦̇ = 𝐴𝑦. (15.20)

Its proof is through an ‘honest’ construction of the majorizing series that is con-
vergent (tedious but straightforward).

15.9 Significance of the convex hull condition
Let 𝛼1, · · · , 𝛼𝑛 ∈ C and its convex hull [𝛼1, · · · , 𝛼𝑛] does not contain the origin. Then,
for any 𝛼 in this convex hull there is 𝛿 > 0 such that |𝑘 · 𝛼| ≥ 𝛿|𝑘| for any 𝑘 ∈ N𝑛.
Thus, what we worried in 15.7 never happens.

This is easy to see. Consider a unit vector 𝑘/|𝑘|. Then |𝑘 · 𝛼|/|𝑘| is the length
of the projection of the vector (𝛼1, · · · , 𝛼𝑛) onto 𝑘/|𝑘|. Thus, this cannot be smaller
than the distance between [𝛼1, · · · , 𝛼𝑛] and the origin.

15.10 What happens if Poincare condition fails?
Siegel demonstrated the following theorem:
Theorem [Siegel] For

𝑥̇ = 𝐴𝑥+ 𝑓(𝑥), (15.21)

where (as above) 𝐴 = [𝛼1, · · · , 𝛼𝑛] is diagonal and 𝑓 is analytic and 𝑓 ′(0) = 0. If
there is 𝛾 > 0 such that for any 𝑘 ∈ Z𝑛 (|𝑘| ≠ 0)

|𝑘 · 𝛼| > 𝛾|𝑘|−𝑛, (15.22)

then (15.21) is analytically transformed to 𝑦 = 𝐴𝑦.
Notice (see 15.11) that {𝛼1, · · · , 𝑎𝑛} satisfying (15.22) is with full measure (ex-

ception is measure zero) wrt the usual Lebesgue measure 𝑚 on R2𝑛 when we identify
C𝑛 with R2𝑛.

15.11 Diophantine approximation
Lemma. For almost all 𝛼 ∈ C𝑛174 we can take a positive number 𝛾 such that for all

174This means: regarding 𝛼 as a 2𝑛-real vector, it is almost sure with respect to the Lebesgue
measure 𝑚 on R2𝑛.
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𝑘 ∈ Z𝑛 (|𝑘| ≠ 0)
|𝑘 · 𝛼| > 𝛾/|𝑘|𝑛. (15.23)

[Demo]
Choose an arbitrary 𝑅 > 0. Consider the totality Σ𝛾 of 𝛼 for which (15.23) does not
hold (i.e., (15.23) is untrue for any choice of 𝛾 > 0) and |𝛼𝑖| < 𝑅 for 𝑖 ∈ {1, · · · , 𝑛}.
To estimate 𝑚(Σ𝛾) we consider the condition for 𝛼:

|𝑘 · 𝛼| ≤ 𝛾/|𝑘|𝑛 (15.24)

for each shell of 𝑘: 𝐾 ≤ |𝑘| < 𝐾 + 1; it is an 𝑛 − 1-sphere of radius 𝐾 with shell
thickness 1. There are ∼ (2𝐾)𝑛−1 vectors. For each such 𝑘, the projection of 𝛼
must be smaller than ∼ 1/𝐾𝑛+1 according to (15.24), so the 𝛼 must be in the slab
of thickness ∼ 2𝛾/𝐾𝑛+1 perpendicular to 𝑘 and the remaining 𝑛− 1 dimensions are
with span 2𝑅. Thus, the total number of 𝛼 satisfying (15.24) for |𝑘| ∼ 𝐾 is bounded
by

∼ (𝐾)𝑛−1 × 2𝛾/𝐾𝑛+1 × (2𝑅)𝑛−1 = 𝐶(𝑅)𝛾/𝐾2, (15.25)

where 𝐶(𝑅) is an 𝑅 dependent constant. Thus, we have an upper bound

𝑚(Σ𝛾) ≤ 𝐶(𝑅)𝛾
∑︁
𝐾

𝐾−2. (15.26)

Therefore, the infimum of this wrt 𝛾 is zero. Since 𝑅 is arbitrary, we have shown the
lemma.

k

R

K2γ/ 
n+1

K

k

Figure 15.2: (15.25) illustrated

15.12 Siegel’s stability theorem for conformal maps
We should continue to study the ODE considered by Poincaré, but here, we go to a
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simpler problem with the same difficulty.175

Let 𝑆 : C → C be defined as 𝑧 → 𝑓(𝑧):

𝑓(𝑧) = 𝜆𝑧 + 𝑔(𝑧), (15.27)

where 𝜆 ̸= 0, 𝑔(0) = 0 which is holomorphic in 𝑧 < 𝑟
We say the origin is stable for the system 𝑆, if and only if for any neighborhood

of the origin 𝑈 , there is a neighborhood of the origin 𝑉 ⊂ 𝑈 such that 𝑆𝑛𝑉 ⊂ 𝑈 for
all 𝑛 ∈ Z.

Siegel proved:
Theorem: If |𝜆| = 1 and |𝜆𝑞 − 1|−1 < 𝐶0𝑞

2 for 𝐶0 > 0 and for any 𝑞 ∈ N+ (the
Diophantine condition), then 𝑆 is stable.

15.13 Strategy to demonstrate Siegel’s theorem
The strategy of the proof here (due to Moser) following Kolmogorov’s idea is as fol-
lows:
First we show
Lemma: 𝑆 is stable iff
(1) |𝜆| = 1,
(2) There is a holomorphy 𝑢 in a neighborhood of the origin such that lim|𝑧|→0 𝑢(𝑧)/𝑧 →
1 (asymptotically an identity) and

𝑢(𝜆𝜁) = 𝑓(𝑢(𝜁)). (15.28)

That is, the variable change due to 𝑧 = 𝑢(𝜁) converts the original into 𝜆𝜁:

𝑧 𝑓(𝑧)

𝜁 𝜆𝜁.

𝑆

𝑢 𝑢 (15.29)

Thus, the theorem requires to solve (15.28). Instead of solving this, that is,

𝑢(𝜆𝜁) = 𝜆𝑢(𝜁) + 𝑔(𝑢(𝜁)) (15.30)

at once, we solve a partially linearized version:

𝑢1(𝜆𝜁) = 𝜆𝑢1(𝜁) + 𝑔(𝜁). (15.31)

175Polya said: if you cannot understand a problem, there must be a simpler problem you cannot
understand. Find it.
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This 𝑢1 cannot render the original equation to 𝜆𝜁1 even if 𝑧 = 𝑢1(𝜁1); actually,

𝑢1(𝜆𝜁1 + Φ(1)(𝜁1)) = 𝑓(𝜆𝑢1(𝜁1)). (15.32)

That is,

𝑧 𝑓(𝑧)

𝜁1 𝜆𝜁1 + Φ(1)(𝜁1).

𝑆

𝑢1 𝑢1 (15.33)

Rewrite the original equation in terms of the new variable 𝜁1 = 𝑢1(𝑧). The nonlinear
term is reduced. That is, if 𝑔 < 𝜀, then, roughly speaking, |Φ(1)| < 𝜀2. Repeating
this procedure rapidly decreases the size of the nonlinear term.

𝑧 𝑓(𝑧)

𝜁1 𝜆𝜁1 + Φ(1)(𝜁1)

𝜁2 𝜆𝜁2 + Φ(2)(𝜁2)

... ....

𝑆

𝑢1

𝑆1

𝑢1

𝑢2

𝑆2

𝑢2

𝑢3 𝑢3

(15.34)

Thus, 𝑢 = · · · ∘ 𝑢𝑛 ∘ 𝑢𝑛−1 ∘ · · · ∘ 𝑢2 ∘ 𝑢1.

15.14 Preparatory lemma
𝑆 : C → C is stable iff for ∀𝑈 neighborhood of 𝑧 = 0 there is a simply connected
neighborhood 𝑉 (⊂ 𝑈) of origin such that 𝑆𝑉 = 𝑉 .

[Demo] ⇐ Trivial.
⇒ According to the definition of stability ∃𝑊 −∈𝑆𝑛𝑊 ⊂ 𝑈 for ∀𝑛 ∈ Z. Define

𝑉 = ∪𝑛∈Z𝑆𝑛𝑊. (15.35)

Take a connected component 𝑉 of 𝑉 containing 𝑧 = 0. Then, any curve 𝐶
connecting any point in 𝑉 and the origin inside 𝑉 satisfies 𝑆𝑛𝐶 ⊂ 𝑉 (i.e.,
different connected components do not map between them by 𝑆). Therefore,
𝑆𝑉 = 𝑉 .

If 𝑉 is not simply connected, repeat the above procedure all over starting
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from a smaller 𝑈 . Suppose the resultant 𝑉 is not simply connected even if 𝑈
is very small. This, however, contradicts the assumption that 𝑆 is holomorphic
around 𝑧 = 0, because there must be a neighborhood on which 𝑆 looks very
close to a rigid rotation (= linearized version). Thus, we can get the desired
𝑉 .

15.15 Poof of Lemma in 15.13
Our key lemma already mentioned in 15.13 is:
Lemma: 𝑆 is stable iff
(1) |𝜆| = 1
(2) There is a holomorphy 𝑢 in a neighborhood of the origin such that lim|𝑧|→0 𝑢(𝑧)/𝑧 →
1 (asymptotically an identity) and

𝑢(𝜆𝜁) = 𝑓(𝑢(𝜁)). (15.36)

[Demo]
⇐ is obvious. Take a small disk 𝐷 and 𝑢(𝐷) = 𝑉 .
⇒ According to the preparatory lemma 15.14, stability implies the existence
of 𝑉 −∈𝑆𝑉 = 𝑉 ∋ 0, where 𝑉 is simply connected (i.e., topologically equivalent
to a disk). Then the Riemann mapping theorem guarantees the existence of a
conformal map 𝑢 from 𝑉 to a disk 𝐷 of radius 𝜌 such that 𝑢(0) = 0 and

𝑢(𝜁) = 𝜁 + 𝑏2𝜁
2 + · · · . (15.37)

𝑢−1 ∘ 𝑆 ∘ 𝑢 : 𝐷 → 𝐷 must be a rigid rotation of 𝐷, so there is 𝜇 (|𝜇| = 1) and

𝑢−1 ∘ 𝑆 ∘ 𝑢(𝜁) = 𝜇𝜁. (15.38)

𝜇 = 𝜆, so |𝜆| = 1.
Now, we can start the strategy outlined in 15.13.

15.16 If 𝑔 is small, 𝑢1(𝑧) − 𝑧 must be small
If 𝑔, which satisfies 𝑔(0) = 𝑔′(0) = 0, in (15.27) is small in a neighborhood of
the origin, 𝑢1 constructed as an approximation to 𝑢 should not be very far from
the identity. This is shown in the Lemma below.

More precisely,
Lemma: Let 𝑔 be holomorphic on a disk |𝜁| < 𝑟 and |𝑔| < 𝜀 with 𝑔(0) =
𝑔′(0) = 0. Define 𝑢1 as the solution to

𝑢1(𝜆𝜁) = 𝜆𝑢(𝜁) + 𝑔(𝑢1(𝜁)). (15.39)

Then, 𝑢1 is holomorphic in |𝜁| < 𝑟 and on |𝜁| < 𝑟(1− 𝜃) (𝜃 ∈ (0, 1))

|𝑢1(𝜁)− 𝜁| < 2𝐶0𝜀/𝜃
3, (15.40)
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where 𝐶0 is a positive constant.

Technically, to show that 𝑢𝑛 are all close to identity, we must show Φ(𝑛) are all small.

It is more convenient to show that 𝑢1 solving (15.39) should not be very far from the

identity, if 𝑔′, instead of 𝑔, is small. This is given as a corollary 15.17.

[Demo of Lemma]
Since 𝑔 is holomorphic in |𝜁| < 𝑟, we can expand it as

𝑔(𝜁) =
∑︁
𝑘≥2

𝑔𝑘𝜁
𝑘 (15.41)

with |𝑔𝑘| < 𝜀/𝑟𝑘 (the Cauchy bound). Let us formally expand 𝑢1 as

𝑢1 = 𝜁 +
∑︁
𝑘≥2

𝑢𝑘𝜁
𝑘. (15.42)

Putting this into (15.39), we obtain∑︁
𝑘≥2

𝑢𝑘[(𝜆𝜁)
𝑘 − 𝜆𝜁𝑘] =

∑︁
𝑘≥2

𝑔𝑘𝜁
𝑘. (15.43)

Thus, we must solve
[𝜆𝑘 − 𝜆]𝑢𝑘 = 𝑔𝑘. (15.44)

That is (notice that we potentially have a small denominator difficulty, which
is overcome by the Diophantine condition),

𝑢𝑘 = 𝑔𝑘/[𝜆
𝑘 − 𝜆]. (15.45)

We can show that 𝑢1 is well defined and its deviation from the identity is
bounded by 𝜀 by an explicit calculation as follows.

|𝑢1(𝜁)− 𝜁| =

⃒⃒⃒⃒
⃒∑︁
𝑘≥2

[𝜆𝑘 − 𝜆]−1𝑔𝑘𝜁
𝑘

⃒⃒⃒⃒
⃒ ≤∑︁

𝑘≥2

|𝜆𝑘−1 − 1|−1|𝑔𝑘||𝜁|𝑘 (15.46)

≤
∑︁
𝑘≥2

𝐶0(𝑘 − 1)2𝜀𝑟−𝑘|𝜁|𝑘 <
∑︁
𝑘≥2

𝐶0(𝑘 − 1)2𝜀(1− 𝜃)𝑘,(15.47)

where we have used the Cauchy bound for 𝑔𝑘 and the Diophantine condition.
Notice that∑︁

𝑘≥2

(𝑘 − 1)2𝑥2 ∼ 𝑑2

𝑑𝑥2

∑︁
𝑥𝑘 ∼ 𝑑2

𝑑𝑥2
1

1− 𝑥
∼ (1− 𝑥)−3, (15.48)
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so (set 𝑥 = 1− 𝜃 to use this identity)

|𝑢1(𝜁)− 𝜁| < 𝜀𝛼𝐶0/𝜃
3, (15.49)

where 𝛼 is a positive constant (which can be chosen as 2 with a bit more de-
tailed calculation).

15.17 If 𝑔′ is small, 𝑢1(𝑧) − 𝑧 must be small
If 𝑔, which satisfies 𝑔(0) = 𝑔′(0) = 0, in (15.27) and if its derivative 𝑔′ is small in
a neighborhood of the origin, 𝑢1 constructed as an approximation to 𝑢 should
not be very far from the identity.

More precisely,
Lemma: Let 𝑔 be holomorphic on a disk |𝜁| < 𝑟 and |𝑔′| < 𝜀 with 𝑔(0) =
𝑔′(0) = 0. Define 𝑢1 as the solution to

𝑢1(𝜆𝜁) = 𝜆𝑢(𝜁) + 𝑔(𝑢1(𝜁)). (15.50)

Then, 𝑢1 is holomorphic in |𝜁| < 𝑟 and in |𝜁| < 𝑟(1− 𝜃) (𝜃 ∈ (0, 1))

|𝑢1(𝜁)− 𝜁| < 2𝐶0𝜀𝑟/𝜃
3, (15.51)

where 𝐶0 is a positive constant.
[Demo]
This should not be hard to guess, since |𝑔| must be of order 𝑟 × |𝑔′| < 𝑟𝜀. A
formal demonstration may be as follows. From (15.50) we get

𝜆𝑢′1(𝜆𝜁) = 𝜆𝑢′1(𝜁) + 𝑔′(𝜁). (15.52)

Let 𝑣 = 𝜁𝑢′1(𝜁). We have

𝜆𝑣(𝜆𝜁) = 𝜆𝑣(𝜁) + 𝜁𝑔′(𝜁). (15.53)

Since |𝜁𝑔′(𝜁)| < 𝜀|𝜁| in |𝜁| < 𝑟, the lemma in 15.16 tells us that in |𝜁| < 𝑟(1−𝜃)

|𝑣(𝜁)− 𝜁| < 2𝐶0|𝜁|/𝜃3. (15.54)

That is,
|𝑢′1 − 1| < 2𝐶0𝜀/𝜃

3. (15.55)

Thus,

|𝑢1 − 𝜁| =
⃒⃒⃒⃒∫︁ 𝜁

0

(𝑢′1 − 1)𝑑𝜁

⃒⃒⃒⃒
< 2𝐶0𝑟𝜀/𝜃

3. (15.56)
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15.18 (15.34) is a commutative diagram
To construct 𝑢 we must be able to show that all the ‘squares’ in (15.34)
must commute. That is, for example, 𝑢1 and 𝑢−1

1 must be well defined in a
neighborhood of the origin. We have already shown that 𝑢1 is well defined in
|𝜁| < 𝑟(1− 𝜃).

To demonstrate 𝑢−1
1 is well-defined, we show that 𝑢1(𝜁) is topologically the

same as 𝜁. To show this we use Rouche’s theorem:176

Lemma. Choose 𝜀 small enough to satisfy for 𝜃 ∈ (0, 1/4)

2𝐶0𝜀 < 𝜃4. (15.57)

Then, 𝑢−1
1 is well defined in |𝑧| < 𝑟(1− 2𝜃) and

𝑢−1
1 ({𝑧 | |𝑧| < 𝑟(1− 2𝜃)}) ⊂ {𝜁 | |𝜁| < 𝑟(1− 𝜃)}. (15.58)

[Demo]
(15.57) and (15.56) tells us that for 𝑣(𝜁) = 𝑢1(𝜁)− 𝜁

|𝑣(𝜁)| ≤ 𝑟𝜃. (15.59)

If |𝑧| < 𝑟(1− 2𝜃) and |𝜁| < 𝑟(1− 𝜃), then this implies that

|𝑣(𝜁)| ≤ |𝜁| − |𝑧| ≤ |𝜁 − 𝑧|. (15.60)

Since |𝜆| = 1, this implies that the equations 𝜆𝜁 + 𝑣(𝜁) = 𝑢1(𝜁) = 𝑧 and 𝜁 = 𝑧
have the same zeros. Thus, 𝑢−1

1 is well defined in |𝑧| < 𝑟(1− 2𝜃) and its image
is in |𝜁| < 𝑟(1− 𝜃).

15.19 𝑆1 is well defined close to the origin
We can show
Lemma: 𝑆1(𝜁) = 𝑢−1

1 ∘ 𝑓 ∘ 𝑢1 = 𝜆𝜁 + Φ(1)(𝜁) in (15.34) is well defined in
|𝜁| < 𝑟(1− 4𝜃) if 𝜀 < 𝜃.

[Demo]
Since |𝑓 | ≤ |𝜁|+ |𝑔| and |𝑔| < 𝑟𝜀, if |𝑔′| < 𝜀

|𝑓 | ≤ |𝜁|+ |𝑔| ≤ |𝜁|+ 𝑟𝜀 ≤ |𝜁|+ 𝑟𝜃, (15.61)

because we assume 𝜀 < 𝜃.
The image of 𝑓 must be in the domain of 𝑢−1

1 , i.e., |𝑧| < 𝑟(1−2𝜃). Therefore,

176⟨⟨Rouche’s theorem⟩⟩ Let 𝐷 be a simply connected open set. Suppose 𝑓 and 𝑔 are non-
constant holomorphic functions on [𝐷] (closure), and |𝑓 | > |𝑔| on 𝜕𝐷. Then, the number of zeros
of 𝑓 and 𝑓 + 𝑔 agree in 𝐷.
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the domain of 𝑓 must be restricted to |𝑧| < 𝑟(1 − 3𝜃). Then, (15.58) implies
that the domain of 𝑢1 must be restricted to |𝜁| < 𝑟(1− 4𝜃).

15.20 Φ(1) is small and we can iterate the above argument indefi-
nitely
If we can show that Φ(1) is sufficiently small, we can repeat the above argument
for 𝑢2, and ad infinitum. We can show (we wish to use an analogue of 15.17
to show that 𝑢2 is close to identity)

Lemma: |Φ(1)′(𝜁)| < 𝐶1𝜀
2/𝜃4, where 𝐶1 < 3𝐶0 in |𝜁| > 𝑟(1 − 5𝜃) with

0 < 𝜀 < 𝜃 < 1/5.

[Demo]
𝑢1(𝜆𝜁 + Φ(1)) = 𝑓(𝑢1) = 𝜆𝑢1(𝜁) + 𝑔(𝑢1), (15.62)

so (recall 𝑣 = 𝑢1 − 𝜁 and 𝑣(𝜆𝜁) = 𝜆𝑣(𝜁) + 𝑔(𝜆𝜁))

𝜆𝜁 + Φ(1) + 𝑣(𝜆𝜁 + Φ(1)) = 𝜆𝜁 + 𝜆𝑣(𝜁) + 𝑔(𝜆𝜁 + 𝑣(𝜁)). (15.63)

Therefore,
Φ(1) = 𝜆𝑣(𝜁)− 𝑣(𝜆𝜁 + Φ(1)) + 𝑔(𝜆𝜁 + 𝑣(𝜁)), (15.64)

but 𝜆𝑣(𝜁) = 𝑣(𝜆𝜁)− 𝑔(𝜆𝜁) gives

Φ(1) = 𝑣(𝜆𝜁)− 𝑣(𝜆𝜁 + Φ(1)) + 𝑔(𝜆𝜁 + 𝑣(𝜁))− 𝑔(𝜆𝜁). (15.65)

Using the mean value theorem

|𝑣(𝜆𝜁)−𝑣(𝜆𝜁+Φ(1))| ≤ sup |𝑣′| sup |Φ(1)| ≤ 2𝜀𝐶0

𝜃3
sup |Φ(1)| < 𝜃 sup |Φ(1)| < 1

5
sup |Φ(1))|.

(15.66)
From this and (15.65)

|Φ(1)| ≤ 1

5
sup |Φ(1)|+ |𝑔(𝜆𝜁 + 𝑣(𝜁))− 𝑔(𝜆𝜁)| (15.67)

or
4

5
sup |Φ(1)| ≤ sup |𝑔(𝜆𝜁 + 𝑣(𝜁))− 𝑔(𝜆𝜁)|. (15.68)

Again we use the mean-value theorem

4

5
sup |Φ(1)| ≤ sup |𝑔′| sup |𝑣(𝜁)| < 𝜀

2𝐶0𝜀

𝜃3
𝑟. (15.69)

Thus we get for |𝜁| < 𝑟(1− 4𝜃)

sup |Φ(1)| < 5𝐶0𝜀
2

2𝜃3
𝑟. (15.70)
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Its derivative may be estimated following Cauchy in a somewhat smaller domain
|𝜁| < 𝑟(1− 5𝜃) as

|Φ(1)′(𝜁)| < 𝐶1𝜀
2/𝜃4. (15.71)

15.21 Summary of a recursion step
Thus we have completely constructed the single step for the recursion scheme
((15.33) realized) [Please ignore strange arrowheads at the ends of the formulas]

𝑧 𝜆𝑧 + 𝑔(𝑧) |𝑔′(𝑧)| < 𝜀 in |𝑧| < 𝑟

𝜁1 𝜆𝜁1 + Φ(1)(𝜁1) |Φ(1)(𝜁)| < 𝐶1𝜀
2/𝜃4 in |𝜁| < 𝑟(1− 5𝜃).

𝑆

𝑢1

𝑆1

𝑢1

(15.72)
or more generally

𝜁𝑛 𝜆𝜁𝑛 +Φ(𝑛)(𝜁𝑛) |Φ(𝑛)′(𝜁𝑛)| < 𝜀𝑛 in |𝜁𝑛| < 𝑟𝑛

𝜁1 𝜆𝜁𝑛+1 +Φ(𝑛+1)(𝜁𝑛+1) |Φ(𝑛+1)(𝜁𝑛+1)| < 𝐶1𝜀
2
𝑛/𝜃

4
𝑛 = 𝜀𝑛+1 in |𝜁𝑛+1| < 𝑟𝑛(1− 5𝜃𝑛) = 𝑟𝑛+1.

𝑆𝑛

𝑢𝑛+1

𝑆𝑛+1

𝑢𝑛+1

(15.73)

15.22 Convergence of the recursive transformations
For the recursive transformations to converge we must at least demand 𝜀𝑛 → 0
and 𝑟𝑛 → 𝑟∞ > 0. Thus,

∑︀
𝜃𝑛 must be convergent. Moreover,

𝑈𝑛 = 𝑢𝑛 ∘ 𝑢𝑛−1 ∘ · · · ∘ 𝑢1 (15.74)

must be uniformly convergent in |𝜁| < 𝑟∞. Or equivalently

𝑈 ′
𝑛 = 𝑢′𝑛𝑢

′
𝑛−1 · · ·𝑢′1 (15.75)

must be uniformly convergent. Since

|𝑈 ′
𝑛| ≤

𝑛∏︁
𝑘=1

(1 + |Φ(𝑛)′|), (15.76)

if ∑︁
|Φ(𝑛)′| ≤

∑︁
𝜀𝑛 (15.77)
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converges, we are done!
Thus the requirements are ∑︁

𝜀𝑛 < ∞, (15.78)∑︁
𝜃𝑛 < ∞ (15.79)

with 0 < 𝜀𝑛 < 𝜃𝑛 < 1/5. This is satisfied if we choose 𝜃𝑛 = (1/5)𝑐−𝑛 for 𝑐 > 1.
Indeed,

𝜀𝑛+1 =
𝐶1

𝜃4𝑛
𝜀2𝑛 =

𝐶1

5
𝑐4𝑛𝜀2𝑛 < 𝐶𝑛+1

2 𝜀2𝑛 (15.80)

Define 𝜀𝑛 = 𝐶𝑛+2𝜀𝑛. Then 𝜀′𝑛+1 < (𝜀′𝑛)
2, so choose 𝜀′0 ≤ 1 and all the require-

ments for 𝜃𝑛 are met.

15.23 Setup of the simplest version of KAM theorem
Let 𝐻(𝜃, 𝐼, 𝜀) be a near integrable Hamiltonian; for 𝜀 = 0

𝐻0(𝐼) = 𝐻(𝜃, 𝐼, 0). (15.81)

That is, 𝐼 is invariant, and determines an invariant 𝑇 𝑛 as asserted by the Liouville-
Arnold theorem. We wish to see whether the invariant 𝑇 𝑛 with 𝐼 = 𝐼0 survives the
perturbation. Since we may add any constant to 𝐼, we choose 𝐼0 = 0. We consider
𝐼 close to 𝐼0 = 0: 𝐵 = {𝐼 | |𝐼| < 𝑏} for some small 𝑏 > 0. We assume 𝐻(𝜃, 𝐼, 𝜀) is
holomorphic on ℳ× (−𝜀0, 𝜀0). We write the zeroth and the first order terms as

𝐻(𝜃, 𝐼, 0) = 𝐸 + 𝜔 · 𝐼 +𝑄(𝐼), (15.82)

where 𝑄 = 𝑂[𝐼2] in the 𝐼 → 0 limit.
We assume

(1) 𝜔 satisfies a Diophantine condition 15.11

|𝑘 · 𝜔| ≥ 𝛼

|𝑘|𝜏
(15.83)

with 𝜏 > 𝑛− 1.
(2) 𝐻(𝜃, 𝐼, 0) is non-degenerate in the sense that det(𝜕2𝑄/𝜕𝐼𝑖𝜕𝐼𝑗) ̸= 0.

15.24 KAM theorem
With the setup 15.23 there is a holomorphic canonical transformation 𝜑 : 𝑇 𝑛 ×
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𝐵* × (−𝜀*, 𝜀*) → ℳ, where 𝐵* ⊂ 𝐵 and 0 < 𝜀* < 𝜀0, such that the canonical
transformation (𝜃, 𝐼) → (𝜃′, 𝐼 ′) transforms 𝐻(𝜃, 𝐼, 𝜀) as

𝐾(𝜃′, 𝐼 ′.𝜀) = 𝐸*(𝜀) + 𝜔 · 𝐼 ′ +𝑄*(𝜃
′, 𝐼 ′, 𝜀), (15.84)

where 𝑄* = 𝑂[𝐼 ′2] in the 𝐼 ′ → 0 limit. Here, 𝜑 is an identity for 𝜀 = 0.

This implies that the canonical equation of motion reads

𝑑𝜃′

𝑑𝑡
=

𝜕𝐾

𝜕𝐼 ′
= 𝜔 +

𝜕𝑄*

𝜕𝐼 ′
, (15.85)

𝑑𝐼 ′

𝑑𝑡
= −𝜕𝐾

𝜕𝜃′
= −𝜕𝑄*

𝜕𝜃′
. (15.86)

Notice that the derivatives of 𝑄* for 𝐼 ′ = 0 vanish because 𝑄* = 𝑂[𝐼 ′2]. This means
that the ‘holomorphically deformed’ 𝐼 = 0 torus survives and the motion on it is just
the original (almost) periodic flows. This torus is called a KAM torus.

15.25 Strategy of proof of KAM
The idea is just as explained for Siegel’s theorem. Let the perturbed Hamiltonian
reads

𝐻 = 𝐻0 + 𝜀𝑃 − 0, (15.87)

where 𝐻0 = 𝐸0 + 𝜔𝐼 +𝑄(𝐼) with 𝑄 = 𝑂[𝐼2].
We construct a canonical transformation 𝜑1 : (𝜃, 𝐼) → (𝜃′, 𝐼 ′) such that

𝐻1 = 𝐻 ∘ 𝜑1 = 𝐾1 + 𝜀2𝑃1, (15.88)

where

𝐾1 = 𝐸1(𝜀) + 𝜔𝐼 ′ +𝑄1(𝜃
′, 𝐼 ′, 𝜀), (15.89)

with 𝑄1 = 𝑂[𝐼 ′2].
This is accomplished by removing the 𝜃-dependent constant portion and the first

order in 𝐼 of 𝑃0 of order 𝜀 choosing 𝜑1.
If we repeat the same strategy, we get

𝐻2 = 𝐻1 ∘ 𝜑2 = 𝐾2 + 𝜀4𝑃2. (15.90)

Of course we must show that 𝜑𝑛 ∘ · · · ∘ 𝜑2 ∘ 𝜑1 converges.
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15.26 Canonical transformation that can remove 𝑂[𝜀] terms
We introduce (𝜃, 𝐼) → (𝜃′, 𝐼 ′) with the generator 𝐺(𝜃, 𝐼 ′)

𝑑𝐺 = 𝐼𝑑𝜃 + 𝜃′𝑑𝐼 ′ + (𝐾 −𝐻)𝑑𝑡, (15.91)

but 𝐺(𝜃, 𝐼 ′) is time independent, so 𝐾 = 𝐻(𝐼(𝜃′, 𝐼 ′), 𝜃(𝜃′, 𝐼 ′)).
We wish to remove 𝐼 ′-independent 𝜃′ dependence (to keep 𝐼 ′ invariant) and the

𝑂[𝐼 ′] terms that cannot be written as 𝜔 ·𝐼 ′ to order 𝜀. We assume the following form:

𝐼 =
𝜕𝐺

𝜕𝜃
= 𝐼 ′ + 𝜀𝛽(𝜃, 𝐼 ′), (15.92)

𝜃′ =
𝜕𝐺

𝜕𝐼 ′
= 𝜃 + 𝜀𝑎(𝜃). (15.93)

If 𝜀 is sufficiently small, we can invert the second equation as

𝜃 = 𝜙(𝜃′, 𝜀). (15.94)

Thus we may set (𝑏 is a constant vector)

𝐺 = 𝜃 · 𝐼 ′ + 𝜀[𝜃 · 𝑏+ 𝑠(𝜃) + 𝑎(𝜃) · 𝐼 ′] (15.95)

We see that

𝛽(𝜃, 𝐼 ′) = 𝑏+
𝜕

𝜕𝜃
𝑠(𝜃) +

𝜕𝑎

𝜕𝜃
𝐼 ′. (15.96)

Notice that we can choose 𝑠 and 𝑎 integration over 𝑇 𝑛 to vanish (by subtracting
appropriate constants tat we can ignore from 𝐺).

15.27 Transformation of Hamiltonian
Let us write

𝐻(𝜃, 𝐼, 𝜀) = 𝐻(𝜃, 𝐼, 0) + 𝜀𝑃 (𝜃, 𝐼, 𝜀) = 𝐸 + 𝜔 · 𝐼 +𝑄(𝐼) + 𝜀𝑃 (𝜃, 𝐼, 𝜀). (15.97)

First, we change 𝐼 → 𝐼 ′:

𝐻(𝜃, 𝐼, 𝜀) = 𝐻(𝜃, 𝐼 ′ + 𝜀𝛽(𝜃, 𝐼 ′), 𝜀) (15.98)

= 𝐸 + 𝜔 · 𝐼 ′ +𝑄(𝜃, 𝐼 ′) + 𝜀

[︂
𝜔 · 𝛽 +

𝜕𝑄

𝜕𝐼 ′
𝛽 + 𝑃 (𝜃, 𝐼 ′, 0)

]︂
+ 𝜀2𝑃 ′(𝜃, 𝐼 ′, 𝜀),

(15.99)
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where 𝑃 ′ denotes all the remaining terms.
Since we do not care for 𝑂[𝐼 ′2], but we wish to rewrite the rest of 𝑂[𝜀] as constant.

Let us expand 𝑂[𝜀] in powers of 𝐼 ′:

𝜔 · 𝛽 +
𝜕𝑄

𝜕𝐼 ′
𝛽 + 𝑃 (𝜃, 𝐼 ′, 0) = 𝜔 ·

(︂
𝑏+

𝜕𝑠

𝜕𝜃
+
𝜕𝑎

𝜕𝜃
𝐼 ′
)︂
+
𝜕𝑄

𝜕𝐼 ′

(︂
𝑏+

𝜕𝑠

𝜕𝜃
+
𝜕𝑎

𝜕𝜃
𝐼 ′
)︂
+ 𝑃 (𝜃, 𝐼 ′, 0)

(15.100)

= 𝜔 · (𝑏+ 𝜕𝑠

𝜕𝜃
) + 𝑃 (𝜃, 0, 0) (15.101)

+

[︂
𝜔 · 𝜕𝑎

𝜕𝜃
+ (𝑏+

𝜕𝑠

𝜕𝜃
)
𝜕2𝑄

𝜕𝐼 ′𝐼 ′
+
𝜕𝑃

𝜕𝐼 ′

]︂
𝐼 ′ +𝑂[𝐼 ′2] (15.102)

15.28 Removing 𝜃-dependence from energy
The 𝐼 ′ independent term in (15.102) is

𝜔 · 𝑏+𝐷𝜔𝑠(𝜃) + 𝑃 (𝜃, 0, 0), (15.103)

where

𝐷𝜔 = 𝜔 · 𝜕
𝜕𝜃
. (15.104)

Therefore, to remove the 𝜃 dependence, we must choose 𝑠 so that

𝜔 · 𝑏+𝐷𝜔𝑠(𝜃) + 𝑃 (𝜃, 0, 0) = 𝜔 · 𝑏+ 𝑃0 (15.105)

where 𝑃0 is the average value of 𝑃 (𝜃, 0, 0). Thus, we must solve

𝐷𝜔𝑠(𝜃) = −(𝑃 (𝜃, 0, 0)− 𝑃0), (15.106)

or we must show the well-definedness of 𝐷−1
𝜔 . Here, we encounter the small devisor

problem.
As shown below 15.31-15.33, since the average of 𝑃 (𝜃, 0, 0)−𝑃0 over 𝑇

𝑛 vanishes,
𝑠 is well-defined.

15.29 Removing the 𝑂[𝐼 ′] term
We wish to eliminate

𝐷𝜔𝑎+ (𝑏+
𝜕𝑠

𝜕𝜃
)
𝜕2𝑄

𝜕𝐼 ′𝐼 ′
+
𝜕𝑃

𝜕𝐼 ′
. (15.107)
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Since we wish to determine 𝑎 the average of the terms other than 𝐷 + 𝑤𝛼 over 𝑇 𝑛

must vanish. First, we choose 𝑏 to satisfy this condition. This is possible due to the
non-degeneracy condition (Hess ̸= 0). Then, 𝑎 can be computed just as 𝑠.

15.30 Full transformation
The remaining task is to replace 𝜃 in 𝐻(𝜃, 𝐼 ′ + 𝜀𝛽(𝜃, 𝐼 ′), 𝜀) with 𝜃′ (see (15.94)).

15.31 Well-definedness of 𝐷−1
𝜔 : formal solution

We wish to solve

𝐷𝜔𝑢 = 𝜔 · 𝜕𝑢
𝜕𝜃

= 𝑓. (15.108)

To solve this formally, 𝑢 and 𝑓 are Fourier expanded as

𝑢(𝜃) =
∑︁
𝑘∈R𝑛

𝑢𝑘𝑒
𝑖𝑘𝜃, 𝑓(𝜃) =

∑︁
𝑘∈R𝑛

𝑓𝑘𝑒
𝑖𝑘𝜃, (15.109)

where

𝑢𝑘 =
1

(2𝜋)𝑛

∫︁
𝑇𝑛
𝑑𝜃 𝑢(𝜃)𝑒−𝑖𝑘𝜃, 𝑓𝑘 =

1

(2𝜋)𝑛

∫︁
𝑇𝑛
𝑑𝜃 𝑓(𝜃)𝑒−𝑖𝑘𝜃. (15.110)

Therefore, (15.108) gives
𝑖𝑘𝜔𝑢𝑘 = 𝑓𝑘 (15.111)

For this to be solvable 𝑓0 = 0 (i.e., 𝑓 averaged over 𝑇 𝑛 is zero. Therefore, the
general solution to (15.108) is given be

𝑢(𝜃) = 𝑢0 +
∑︁

𝑘∈R𝑛∖{𝑜}

𝑓𝑘
𝑖𝜔𝑘

𝑒𝑖𝑘𝜃. (15.112)

Thus, if the average of 𝑢 over 𝑇 𝑛 vanishes (i.e., 𝑢0 = 0), the solution to (15.108)
is formally unique.

15.32 Well-definedness of 𝐷−1
𝜔 : convergence of formal solution

We assume that the real analytic function on 𝑇 𝑛 is analytic in a ‘strip’ 𝑇 𝑛𝜉
containing the real axis:

𝑇 𝑛𝜉 = {𝜃 ∈ C𝑛 | |Im𝜃𝑗| < 𝜉}/(2𝜋Z)𝑛 (15.113)

If 𝑓 is analytic on 𝑇 𝑛𝜉 , then

|𝑓𝑘| ≤ ‖𝑓‖𝑒−|𝑘𝜉, (15.114)
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where ‖𝑓‖ is the max of |𝑓 on 𝑇 𝑛𝜉 . Its demonstration is in 15.33.
Now, we assume the Diophantine condition

|𝑘𝜔| ≥ 𝛼|𝑘|𝜏 . (15.115)

Then,

|𝑢𝑘| =
⃒⃒⃒⃒
𝑓𝑘
𝑖𝜔𝑘

⃒⃒⃒⃒
≤ 𝛼−1‖𝑓‖𝑒−|𝑘|𝜉|𝑘|𝜏 . (15.116)

Using this estimate the maximal convergence of 𝑢 is shown.

15.33 Cauchy estimate of |𝑓𝑘|

𝑓𝑘 =
1

(2𝜋)𝑛

∫︁
𝑇𝑛
𝑑𝜃 𝑓(𝜃)𝑒−𝑖𝑘𝜃 (15.117)

The integration path may be shifted to the imaginary direction so that 𝑗th
component is shifted by 𝑖𝜉sgn(𝑘𝑗) (𝜃𝑗 → 𝜃𝑗+𝑖𝜉sgn(𝑘𝑗)). Then, 𝑖𝑘𝜃 → 𝑖𝑘𝜃−𝜉|𝑘|
(we stick to the Hadamard notation).

𝑓𝑘 =
1

(2𝜋)𝑛

∫︁
𝑇𝑛
𝑑𝜃 𝑓(𝜃)𝑒−𝑖𝑘𝜃 (15.118)

=
1

(2𝜋)𝑛

∫︁
𝑇𝑛
𝑑𝜃 𝑓(𝜃𝑗 + 𝑖𝜉sgn(𝑘𝑗))𝑒

−𝑖𝑘𝑗(𝜃𝑗+𝑖𝜉sgn(𝑘𝑗)) (15.119)

=
1

(2𝜋)𝑛

∫︁
𝑇𝑛
𝑑𝜃 𝑓(𝜃𝑗 + 𝑖𝜉sgn(𝑘𝑗))𝑒

−𝑖𝑘𝜃−𝜉|𝑘|. (15.120)

Therefore,

|𝑓𝑘| = 𝑒−𝜉|𝑘|
⃒⃒⃒⃒

1

(2𝜋)𝑛

∫︁
𝑇𝑛
𝑑𝜃 𝑓(𝜃𝑗 + 𝑖𝜉sgn(𝑘𝑗))𝑒

−𝑖𝑘𝜃
⃒⃒⃒⃒

(15.121)

≤ 𝑒−𝜉|𝑘|
1

(2𝜋)𝑛

∫︁
𝑇𝑛
𝑑𝜃
⃒⃒
𝑓(𝜃𝑗 + 𝑖𝜉sgn(𝑘𝑗))𝑒

−𝑖𝑘𝜃 ⃒⃒ (15.122)

≤ 𝑒−𝜉|𝑘|
1

(2𝜋)𝑛

∫︁
𝑇𝑛
𝑑𝜃 ‖𝑓‖ = ‖𝑓‖𝑒−|𝑘|𝜉. (15.123)



188

16 Lecture 16. General picture of Hamiltonian

systems

16.1 Completely integrable systems
We know the Liouville-Arnold theorem (11.6): if a system is completely integrable,
we have a canonical transformation converting it to a system described by the action-
angle variables that parameterize ‘orderly’ trajectories on 𝑇 𝑛.
Example: the Toda system: three point masses interacting with the Toda potential
(12.3)177,

𝐻 =
1

2
(𝑝2𝑥 + 𝑝2𝑦) +

1

24

[︁
exp(2𝑦 + 2

√
3𝑥) + exp(27− 2

√
3𝑥) + exp(−4𝑦)

]︁
− 1

8
. (16.1)

We know how to convert this into the Lax pair representation All the trajectories
are periodic or almost periodic (see Fig. 16.1178).

y

p

p

y

y

y

Figure 16.1: Left: A surface of section for the Toda Hamiltonian (16.1) at energy 𝐸 = 𝑙. The
scales on both axes are the same. The outermost oval crosses the positive 𝑝𝑦-axis at 1.3 and the
positive 𝑦-axis at 1.4; Right: At energy 𝐸 = 256. Here the scales on two axes are not the same.
The outermost oval crosses the positive 𝑦-axis at 𝑦 = 4 and the positive 𝑝𝑦-axis at 𝑝𝑦 = 22.6. All
the allowed phase space is surveyed in these figures, because outside the outermost curves 𝑝2𝑥 < 0.
[Fig. 1,2 of FORD et al., PTP 50 1547 (1973)]

177Its polynomial expansion truncated at the third order (the Henon system) is not integrable.
178Joseph FORD, Spotswood D. STODDARD and Jack S. Turner, “On the Integrability of the

Toda Lattice,” Prog Theor Phys 50 1547 (1973).
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16.2 Near integrable systems
The Henon system is obtained by expanding and truncating the Toda Hamiltonian
(16.1) as

𝐻 =
1

2
(𝑝2𝑥 + 𝑝2𝑦) +

1

2
(𝑥2 + 𝑦2) + 𝑥2𝑦 − 1

3
𝑦3. (16.2)

This describes a motion in the potential that is something like a symmetric monkey
saddle. A perturbative approach dissects 𝐻 into 𝐻0 and 𝐻1 as

𝐻0 =
1

2
(𝑝2𝑥 + 𝑝2𝑦) +

1

2
(𝑥2 + 𝑦2), (16.3)

𝜀𝐻1 = = 𝜀

(︂
𝑥2𝑦 − 1

3
𝑦3
)︂
. (16.4)

Comparison between the formal perturbation series (truncated at third order) and
numerical results is in Fig. 16.2.179

Figure 16.2: Perturbation fails even for small nonintegrable perturbation: [Figs originally from
Gustavson Ast J 71 670 (1966).]

The comparison tells us that perturbation series fail to converge.

179F. G. Gustavson “On Constructing Formal Integrals of a Hamiltonian System Near an Equi-
librium Point,” Astronom. J 71 670 (1966). Here, the figure is from A J Lichtenberg andL A
Lieberman, Regular and Stochastic motion (Springer, Applied Mathematical Science 38, 1983).
Fig. 1.13.
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16.3 What Poincaré realized when perturbation changes systems quali-
tatively
The picture Poincaré conceived may look like Fig. 16.3.

Figure 16.3: What Poincaré conceived (after Arnold) [Fig. 8.3.3 of ]

“On January 21, 1889, King Oscar II turned 60. On the same day, the king announced the

winner of the mathematics prize that had been established in his name. All treatises had

been submitted anonymously, supplied with a title and an envelope containing the author’s

name, The envelops were now opened with great ceremony. The winner was Henri Poincaré.”

(p377180)

“Poincaré’s treatise was a comprehensive attempt to answer the question: “Is the solar

system stable?” ”(p378) However, he discussed the restricted three-body problem. “Mittag-

Leffler had informed Hermite that he and Weierstrass thought Poincaré should be awarded

the prize... Hermite, who had received copies of the various submissions, agreed. But even

though they could immediately see and acknowledge the quality of Poincaré’s work, not

everything was equally easy to understand. Weierstrass had sought clarification on several

points, and Poincaré had sent several extensive addenda. Hermite remarked that, as usual,

it was difficult to understand Poincaré—that it was his style to spring over details and leave

the reader to fill in the gaps. · · · According to Hermite, Poincaré was a seer to whom the

truth revealed itself in a brilliant light.

Mittag-Leffler’s plan was to present the winning submissions in Acta181 in October 1889,

180A. Stubhaug,Gösta Mittag-Leffler, a man of conviction (translated by Tiina Nunnally, Springer
2010; Norwegian original 2007).

181Acts Mathematica
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and Phragmén, who acted as the editorial secretary, was handed the big job of editing the

treatise. When printing began in July, Phragmén discovered several passages in Poincaré’s

work that seemed quite obscure. Mittag-Leffler immediately pointed this out in a letter to

Poincaré, who upon further study found that in another place in the treatise he had made

more serious errors. But Poincaré did not report this to Mittag-Leffler until December, and

by that time fifty copies of Acta had already been printed. These were sent out to subscribers

and booksellers, mostly in the Nordic countries, but also to England, France, and Germany.

Mittag-Leffler feared that the error would prove ruinous for the reputation of both Poincaré

and the journal, as well as Oscar II’s entire involvement. He immediately sent a letter to all

of these subscribers and booksellers, asking them to return the copies they had received. He

explained that certain corrections were necessary.” (p379)

Mittag-Leffler “asked Poincaré to pay for the already printed treatise. Poincaré agreed

without protest, and his total cost for the new printing was eventually calculated to be 3,500

kronor—1,000 kronor more than the prize money he had received.” (p380)

“Poincaré’s work totaled 270 pages—the note and addenda filled 93 pages. What was

new and brilliant about Poincaré’s work eventually overshadowed any talk of errors or cor-

rections.” (p380).

16.4 Resonance vs nonresonance
The following example is related to heating ions in confined plasmas (Fig. 16.4).182

A constant magnetic field and a perpendicularly propagating electrostatic wave with
frequency several times the ion cyclotron frequency are applied to charged particles.

Consider a single ion with mass 𝑚 and charge 𝑞 in the fields

𝐵 = 𝐵0𝑒𝑧, 𝐸 = 𝐸0𝑒𝑦 cos(𝑘𝑦 − 𝜔𝑡). (16.5)

These fields are given by the potentials

𝐴 = −𝐵0𝑦𝑒𝑥, 𝜑 = −(𝐸0/𝑘) sin(𝑘𝑦 − 𝜔𝑡); (16.6)

thus the Hamiltonian 𝐻 is given by

𝐻 =
1

2𝑚
[(𝑝𝑥 + 𝑞𝐵0𝑦)

2 + 𝑝2𝑦]−
𝑞𝐸0

𝑘
sin(𝑘𝑦 − 𝜔𝑡). (16.7)

182Original: C F F Karney Princeton thesis: Stochastic Ion Heating By a Lower Hybrid Wave
(1978). See C F F Karney and A Ber, Stochastic Ion Heating by a Perpendicularly Propagating
Electrostatic Wave, PRL 39, 550 (1977): “The motion of an ion in the presence of a constant
magnetic field and a perpendicularly propagating electrostatic wave with frequency several times
the ion cyclotron frequency is shown to become stochastic for fields satisfying ...”. The exposition
here follows C. F. F. Karney, “Stochastic ion heating by a lower hybrid wave” Phys. Fluid 21, 1584
(1978).
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Figure 16.4:

Scaling variables appropriately,183 the Hamiltonian reads

𝐻 =
1

2
[(𝑝𝑥 + 𝑦)2 + 𝑝2𝑦]− 𝛼 sin(𝑦 − 𝑣𝑡), (16.8)

where 𝑣 = 𝜔/Ω and 𝛼 = 𝑞𝑘𝐸0/𝑚Ω2 = (𝐸0/𝐵0)/(Ω/𝑘).
Next, we wish to remove the time dependence. The canonical transformation with

the following generator for (𝑥, 𝑝) → (𝑋,𝑃 )

𝐺 = (𝑃𝑥 − 𝑣𝑡)𝑥+ 𝑃𝑦(𝑦 − 𝑣𝑡+ 𝑃𝑥) (16.9)

would do this:

𝑋 = 𝑥+ 𝑝𝑦, 𝑃𝑥 = 𝑝𝑥 + 𝑣𝑡, 𝑌 = 𝑦 + 𝑝𝑥, 𝑃𝑦 = 𝑝𝑦, (16.10)

and the new Hamiltonian 𝐾 is given by

𝐾 = 𝐻 − 𝑣𝑋 +
1

2
(𝑌 2 + 𝑃 2

𝑦 )− 𝑣𝑋 − 𝛼 sin(𝑌 − 𝑃𝑥). (16.11)

Note that 𝑌 − 𝑦 is a constant of motion 𝑝𝑥, since (16.8) does not depend on 𝑥. From
(16.8) 𝑥̇ = 𝑝𝑥 + 𝑦 and 𝑝𝑥 is invariant, so we may set 𝑥̇ = 𝑦.

Finally, we introduce the action-angle variables through the following generating
function

𝐹 =
1

2
𝑌 2 cot𝜑1 +𝑋𝜑2. (16.12)

Thus, (cf 11.9)

𝑃𝑥 =
𝜕𝐹

𝜕𝑋
, 𝑃𝑦 =

𝜕𝐹

𝜕𝑌
, 𝐼1 = − 𝜕𝐹

𝜕𝜑1

, 𝐼2 = − 𝜕𝐹

𝜕𝜑2

(16.13)

183𝑡→ Ω𝑡, 𝑥→ 𝑘𝑥, 𝑝→ 𝑝𝑘/𝑚Ω, where Ω = 𝑞𝐵0/𝑚.
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or

𝑃𝑥 = 𝜑2, 𝑃𝑦 = 𝑌 cot𝜑1, 𝐼1 = 𝑌 2/ sin2 𝜑1, 𝐼2 = −𝑋. (16.14)

Thus, we get

𝑃𝑥 = 𝜑2, 𝑋 = −𝐼2, 𝑃𝑦 = (2𝐼1)
1/2 cos𝜑1, 𝑌 = (2𝐼1)

1/2 sin𝜑1. (16.15)

The Hamiltonian reads

𝐾 = 𝐼1 + 𝑣𝐼2 − 𝛼 sin[(2𝐼1)
1/2 sin𝜑1 − 𝜑2]. (16.16)

Depending on the amplitude of the perturbation 𝛼, we see what can happen in
Fig. 16.5.

Figure 16.5: [Fig. 2.4, 2.5 of LL p83,4; originals from Karney’s thesis]

As can be seen from the figure, if there is no resonance or near resonance in the
system analytic results are reliable, but the analytically obtained invariant curves
are actually non-existence globally. This causes the ions to heat up.



194

16.5 Hamiltonian systems and area preserving maps
The Poincaré map of a Hamiltonian system is area preserving. This is due to the
invariance of the integral of PdQ under a canonical transformation (see 13.11), esp.,
under dynamics. Therefore, it is highly interesting to study an area preserving map
from R2 into itself.

16.6 Twist map
If the system is integrable, the trajectories are on 𝑇 2, so the map reads

𝜃𝑛+1 = 𝜃𝑛 + 2𝜋𝛼(𝐽), (16.17)

where 𝐽 is the action variable specifying a torus (integral of motion). The map gen-
erally twists the cross section because of 𝛼(𝐽).

16.7 General observation about perturbation results
The twist map need not be in terms of 𝐽 and 𝜃. We can use the usual 𝑥𝑦-coordinates
as

𝑥𝑛+1 = 𝑥𝑛 cos𝜓 − 𝑦𝑛 sin𝜓, (16.18)

𝑦𝑛+1 = 𝑥𝑛 sin𝜓 + 𝑦𝑛 cos𝜓, (16.19)

where 𝜓 = 2𝜋𝛼, 𝛼 being the rotation number. If 𝛼 = 𝑟/𝑠, where 𝑟, 𝑠 ∈ N and 𝑟 and
𝑠 are mutually incongruent, then any point on the circle 𝛼(𝐽) = 𝑟/𝑠 is on a periodic
orbit with period 𝑠.

If 𝛼 is irrational, then the circle is filled with a dense orbit.
The KAM-type theorem tells us that the orbits with the rotation number ‘irra-

tional enough’ survive, but rational orbits are destroyed.

16.8 Poincaré-Birkhoff’s theorem
If, in 16.7, 𝛼 = 𝑟/𝑠, after perturbation, most point on the circle is no more periodic,
but there still remain even multiple of 𝑠 fixed points (that is, the 𝑠-periodic orbit
bifurcates into a period 2𝑛𝑠 for some 𝑛 ∈ N+) orbit (See Fig. 16.6).

[Demo] We assume the original unperturbed circle is bounded from inside and from
outside by KAM curves (surfaces). Between these two KAM curves lies the rational
circle for 𝛼 = 𝑟/𝑠. This curve is deformed by perturbation, but after 𝑠 iterations the
angular coordinate is unchanged, so it can deform in the radial direction. However,
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the map is area preserving (16.5), so the deformed curve must have even crossings
with the unperturbed circle.

Figure 16.6: For the case 𝑠 = 3 six (6) fixed points could exist after perturbation. [Fig. 3.3 of
LL p169]

16.9 Newly formed elliptic and hyperbolic fixed points
As can be seen from Fig. 16.6, a multiple of 𝑠 of new hyperbolic and elliptic fixed
points are formed.

We have 𝑛𝑠 chain of hyperbolic fixed points. If integrable, we have heteroclinic
orbits connecting them, and the remaining orbits are just ‘laminar.’ as we see for
harmonic oscillators.

However, generally, we cannot avoid heteroclinic crossing, causing horseshoes as
illustrated in Fig. 16.7.

An actual illustration is furnished by Henon’s quadratic twist map:

𝑥𝑛+1 = 𝑥𝑛 cos𝜓 − (𝑦𝑛 − 𝑥2𝑛) sin𝜓, (16.20)

𝑦𝑛+1 = 𝑥𝑛 sin𝜓 + (𝑦𝑛 − 𝑥2𝑛) cos𝜓. (16.21)
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Figure 16.7: Generally we cannot avoid heteroclinic orbits, leading to horseshoe dynamics. [Fig.
3.4a of LL p171 ]

In Fig. 16.8 𝜓 = 2𝜋𝛼 with 𝛼 = 0.2114. The first island or heteroclinic chain is
exhibited.

Figure 16.8: Henon quadratic twist map [Fig. 3.6 of LL ]

16.10 Standard map or Chirikov-Taylor map
If a completely integrable system is perturbed as

𝐻(𝐽, 𝜃) = 𝐻0(𝐽) + 𝜀𝐻1(𝐽, 𝜃). (16.22)

The Poincaré map corresponding to (16.17) must have the following form:

𝐽𝑛+1 = 𝐽𝑛 + 𝜀𝑓(𝐽𝑛, 𝜃𝑛), (16.23)
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𝜃𝑛+1 = 𝜃𝑛 + 2𝜋𝛼(𝐽𝑛) + 𝜀𝑔(𝐽𝑛, 𝜃𝑛). (16.24)

For many interesting cases 𝑓 does not depend of 𝐽 and 𝑔 may be ignored, if 𝐽𝑛 in 𝛼
is replaced by 𝐽𝑛+1:

𝐽𝑛+1 = 𝐽𝑛 + 𝜀𝑓(𝜃𝑛), (16.25)

𝜃𝑛+1 = 𝜃𝑛 + 2𝜋𝛼(𝐽𝑛+1). (16.26)

Introducing 2𝜋𝛼(𝐽) = 𝐼, assuming that the torus does not warp too much and then
expanding 2𝜋𝛼(𝐽𝑛 + 𝜀𝑓) around 𝜀 = 0, ignoring the 𝐽 dependence of the derivative,
we have a linearized equation:

𝐼𝑛+1 = 𝐼𝑛 +𝐾𝑓(𝜃𝑛), (16.27)

𝜃𝑛+1 = 𝜃𝑛 + 𝐼𝑛+1, (16.28)

where 𝐾 is called the stochastic parameter. If we assume further 𝑓(𝜃) = sin 𝜃, we
get the standard map (or the Chrikov-Taylor184 map)

𝐼𝑛+1 = 𝐼𝑛 +𝐾 sin 𝜃𝑛, (16.29)

𝜃𝑛+1 = 𝜃𝑛 + 𝐼𝑛+1, (16.30)

This may be interpreted as a simplified model of particle accelerator by a localized
oscillating electric field.185

𝐾 dependence overview:
https://www.youtube.com/watch?v=PgBzZ6CcyPY

16.11 Fermi acceleration problem
The problem of a ball bouncing between a fixed and an oscillating wall is called the
Fermi acceleration problem (Fog. 16.9L), because it was first examined by Fermi as
a possible mechanism of accelerating cosmic ray particles.

The original moving wall problem can be solved completely, but the problem can be
simplified without spoiling its essence by assuming that the wall does not move but

184Chirikov (see Phys. Rep. 50 263 (1979)) and Greene used this from to stud the transition to
chaos.

185𝐾 = (
√
5− 1)/2 gives the last KAM surface.

https://www.youtube.com/watch?v=PgBzZ6CcyPY
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Figure 16.9: Left: Fermi acceleration problem; Right: Phase space (𝜓, 𝑢) and velocity distribu-
tion 𝑃 (𝑢). 𝑀 = 10 in (16.32) with 7 typical initial conditions. The broken ellipse is the result of
secular perturbation theory. [Fig. 3.11a, 3.12 of LL]

somehow gives a kick to the ball. The successive normalized ball speed 𝑢𝑛 and the
wall phase 𝜓𝑛 (Sawtooth-like oscillation assumed) obey

𝑢𝑛+1 = |𝑢𝑛 + 𝜓𝑛 − 0.5|. (16.31)

𝜓𝑛+1 = 𝜓𝑛 +𝑀/𝑢𝑛 (mod 1). (16.32)

where 𝑀 = 𝑙/16𝑎 and 𝑢 = 𝑀𝑇𝑣/2𝑙, where 𝑙 is the wall space, 𝑎 the oscillation am-
plitude, 𝑇 the wall oscillation period in the original problem before simplification.
The absolute sign corresponds to the velocity reversal due to reflection. The phase
portrait is in Fig. 16.9R.186

Saw-tooth standard map:
http://demonstrations.wolfram.com/TheSawtoothStandardMap/

16.12 Fermi problem and standard map
If the wall moves sinusoidally, then (16.32) now becomes the following form (the
period of the wall is now scaled to 2𝜋)

𝑢𝑛+1 = |𝑢𝑛 + sin𝜓𝑛|, (16.33)

186MA Lieberman and A J Lichtenberg, Stochastic and adiabatic behavior of particles accelerated
by periodic forces, Phys Rev A 5 1872 (1978).

http://demonstrations.wolfram.com/TheSawtoothStandardMap/
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𝜓𝑛+1 = 𝜓𝑛 + 2𝜋𝑀/𝑢𝑛. (16.34)

Then, we linearize the above equation near the fixed point. Such a fixed point is
given by 2𝜋𝑀/𝑢1 being 2𝜋 times positive integers. Introduce Δ𝑢𝑛 = 𝑢𝑛 − 𝑢1. The
second equation of (16.34) becomes

𝜓𝑛+1 = 𝜓𝑛 +
2𝜋𝑀

𝑢1
− 2𝜋𝑀

𝑢21
Δ𝑢𝑛. (16.35)

Here, 2𝜋𝑀/𝑢1 may be ignored. 𝜃𝑛 = 𝜓𝑛 − 𝜋 is used to rewrite the equations as

Δ𝑢𝑛+1 = Δ𝑢𝑛 − sin 𝜃𝑛, (16.36)

𝜃𝑛+1 = 𝜃𝑛 −
2𝜋𝑀

𝑢21
Δ𝑢𝑛. (16.37)

Then, introduce 𝐼𝑛 = −2𝜋𝑀Δ𝑢𝑛/𝑢
2
1, and setting 𝐾 = 2𝜋𝑀/𝑢21, we have arrived at

the standard map:

𝐼𝑛+1 = 𝐼𝑛 +𝐾 sin 𝜃𝑛, (16.38)

𝜃𝑛+1 = 𝜃𝑛 + 𝐼𝑛. (16.39)

As can be seen from the derivation, the standard map with various 𝐾 can mimic
the original system around various fixed points as illustrated in Fig. 16.10:

16.13 Arnold diffusion
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Figure 16.10: Fermi model-standard map corresponodence [Fig. 4,1, 2 of LL ]
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Figure 16.11: Arnold diffusion can be seen away from the fixed point [Fig. 4.4 of LL]
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17 Lecture 17. Billiards

N. Chernov and R. Markarian, Chaotic Billiards (Mathematical Surveys and Mono-
graph 127, AMS, 2006).

17.1 Billiard
Let 𝑄 be a compact subset of 𝐸𝑑 (𝑑-Euclidean space)187 with piecewise smooth
boundary. The time evolution 𝑇 𝑡 of a particle traveling according to the following
rules is called a billiard in 𝑄:
(1) A single particle moves with speed 1 along the geodesic (= straight line) if it is
away from 𝜕𝑄.
(2) When the particle hits the boundary, the specular reflection is assumed.
Technically, we assume that at almost all points in 𝑄 the particle hits 𝜕𝑄 within a
finite time except for zero measure direction subsets of 𝑆𝑑−1.188

The phase space of the system is 𝑀 = {(𝑞, 𝑣) | 𝑞 ∈ 𝑄, 𝑣 ∈ 𝑆𝑑−1}. The ordinary
𝑑-Lebesgue measure × the Riemann volume of 𝑆𝑑−1 is an invariant measure (= phase
volume) of the billiard.

You could imagine 𝑄 as a room whose wall(s) 𝜕𝑄 is made of mirrors. The dy-
namics we wish to study is the geometrical optics i the room.
cf. Illumination problem:

https://www.youtube.com/watch?v=xhj5er1k6GQ&frags=wn

17.2 Ambrose-Kakutani representation
Since the particle of a billiard travels at speed 1 between collisions with 𝜕𝑄, we can
describe the dynamics of the particle with the initial condition 𝑥 = (𝑞, 𝑛) (𝑞 ∈ 𝜕𝑄
and 𝑛 ∈ 𝑆𝑑−1) as a sequence of collisions with 𝜕𝑄. Thus we can describe the dy-
namics by a map 𝑇 from 𝜕𝑀 (= 𝜕𝑄× 𝑆𝑑−1) into itself and the needed time for the
travel between successive collisions: 𝜏(𝑥). Here, 𝑇 is defined by 𝑥𝑘+1 = 𝑇𝑥𝑘, where
𝑥𝑘 = (𝑞𝑘, 𝑛𝑘) (𝑞𝑘 ∈ 𝜕𝑄, 𝑛𝑘 ∈ 𝑆𝑑−1) is the position and the velocity immediately after

187A mathematically more general definition uses 𝑑-Riemannian manifold, instead.
188𝜕𝑄 can contain non-differentiable subsets (called the singular components of the boundary),

but we ignore them. We will not define dynamics if the particle hits these subsets.

https://www.youtube.com/watch?v=xhj5er1k6GQ&frags=wn
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the 𝑘-th collision (see Fig. 17.1).
Notice that this representation corresponds to the suspension of the Poincaré map.

q

n

τ(x
)

x = (q,n)

T(x)
just after the next collision

just after collision

τ(x)

x = (q,n)xT(x) T (x)2

Figure 17.1: Ambrose-Kakutani representation

17.3 Polygonal or polyhedral billiards
If 𝑄 is a polygon, then we can consider a map 𝜎 : 𝑆1 → 𝑆1, the directional portion of
the Ambrose-Kakutani representation of the billiard. We can define a reflection at the
𝑖-th boundary component (edge or surface hyperplane) as a map 𝜎𝑖 : 𝑆

𝑑−1 → 𝑆𝑑−1.
𝑛 collisions may be expressed as a map 𝜎𝑖𝑛𝜎𝑖𝑛−1 · · ·𝜎𝑖2𝜎𝑖1 . The totality of such chains
define a subgroup 𝐺𝑄 of the isometry of 𝑆𝑑−1. If this is a finite group, the system
is not ergodic. For example, if 𝑄 is a triangle and all the angles are commensurate,
then 𝐺𝑄 is finite.189 If 𝐺𝑄 is finite, the billiard is not ergodic (because 𝑆𝑑−1 will
never be densely traversed).

17.4 Billiards in polyhedra cannot be chaotic
If 𝑄 is a polyhedron, there cannot be any exponential spreading of the trajectories,
so it cannot be chaotic (its Kolmogorov-Sinai entropy is zero as we will see later).

For an arbitrary polyhedron (or even polygon) the ergodicity of billiards is not
generally understood.
Periodic orbits?: https://www.youtube.com/watch?v=AGX0cLbHaog

17.5 Square billiard
Suppose 𝑄 is a square (or a flat 𝑇 2). Then, we can visualize the motion with a line

189An analogous assertion holds for any polygon.

https://www.youtube.com/watch?v=AGX0cLbHaog
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on the universal covering space (Fig. 17.2)

Figure 17.2: A trajectory of a square billiard on the universal covering space

Thus, if the slope is rational, the trajectory is periodic, but if irrational, the trajec-
tory densely cover 𝑄 (Weyl’s theorem), BUT it is not ergodic, since the velocities
make a finite point set.

17.6 Billiards with smooth 𝜕𝑄
If 𝑄 is a 2-disk (thus, 𝜕𝑄 = 𝑆1), then all the successive reflection points are equally
spaced and the angle of reflection is constant. There is a caustic (Fig. 17.3): a caus-
tics is a smooth closed curve 𝛾 such that if one segment of the trajectory is tangent
to 𝛾 all other segments of the same trajectory are also tangent to 𝛾.

Figure 17.3: A caustic of a circular billiard

Lazutkin showed that if 𝜕𝑄 is convex and smooth enough (say, 𝐶5), then the to-
tality of caustics is with positive measure (and obviously the system is not ergodic).

Remark If there is a caustics, then there is Dirichlet eigenvalues for Δ𝜓 = 𝜆𝜓
that are localized near the caustic (e.g., whisper modes). Shnirelman proved that 𝜓
spreads all over 𝑄 in the 𝜆→ ∞ limit, if the billiard is ergodic.190

Fun video: Elliptic pool table https://www.youtube.com/watch?v=3WHBlPvK3Ek&

190Bunimovich p156.

https://www.youtube.com/watch?v=3WHBlPvK3Ek&frags=wn
https://www.youtube.com/watch?v=3WHBlPvK3Ek&frags=wn
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frags=wn

In general anything seems to happen:
cardioid billiard: https://www.youtube.com/watch?v=eQfh0gaU4NE

17.7 Dispersing or Sinai billiards191

If the boundary 𝜕𝑄 is inwardly convex at its regular points, the billiard is called a
dispersing (or Sinai) billiard.
How dispersive can be seen from:

https://www.youtube.com/watch?v=C1iuNH_99v8 .

Its comparison with a circular billiard is interesting: https://www.youtube.com/

watch?v=dI4WuafBF-w&index=4&list=PL2wfI-9_pR8AvNGxOwpfEO7fyS-giW2Ob&frags=wn

The simplest example is 𝑄 = 𝑇 2∖ 2-disk (Fig. 17.4)

Figure 17.4: Sinai billiard table

Unfortunately, there is no good video for the simplest billiard.

Theorem. Sinai billiards are ergodic and K.

What is K? Roughly,....
There is a finite partition of its phase space {𝐴𝑖} such that almost all the points in
𝑀 and their coding 𝑥→ {𝑥𝑘} according to the rule 𝑇 𝑛(𝑥) ∈ 𝐴𝑖𝑎𝑠𝑥𝑛 = 𝑖 is one-to-one
correspondent, the system is called a K-system.

17.8 Why Sinai billiards are chaotic
Here, we use the word ‘chaotic’ intuitively to mean that the spread of the velocity
vectors increases exponentially in time on the average. At each reflection with 𝜕𝑄

191B. A. Friedman, The Billiard Problem (UIUC Physics Thesis, 1985) contains a friendly intro-
duction to the topic.

https://www.youtube.com/watch?v=3WHBlPvK3Ek&frags=wn
https://www.youtube.com/watch?v=3WHBlPvK3Ek&frags=wn
https://www.youtube.com/watch?v=eQfh0gaU4NE
https://www.youtube.com/watch?v=C1iuNH_99v8
https://www.youtube.com/watch?v=dI4WuafBF-w&index=4&list=PL2wfI-9_pR8AvNGxOwpfEO7fyS-giW2Ob&frags=wn
https://www.youtube.com/watch?v=dI4WuafBF-w&index=4&list=PL2wfI-9_pR8AvNGxOwpfEO7fyS-giW2Ob&frags=wn
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spread the directions, and, generically speaking, the number of collisions increases
linearly with time, so we can expect exponential spreading of the propagation direc-
tions on the average in time. Thus, we can expect the system is chaotic.

We can be more quantitative.

17.9 Local time evolution of velocity curvature by propagation
Take a smooth curve passing through 𝑥0 ∈ 𝑄 and assume it is the curve per-
pendicular to the trajectories. The curvature 𝜅(𝑥0) = 𝑑𝜙/𝑑𝑟 describes how
spread the velocities are (notice that 1/𝜅 is the curvature radius).

t

1/κ
1/κ

0

t

Figure 17.5: A propagation front and the velocities; here 𝛾 is a curve in 𝑀 (not in 𝑄) consisting
of a curve 𝛾 in 𝑄 + the unit velocities in ther normal directions

If there is no collision between time 0 and 𝑡,

1

𝜅(𝑥𝑡)
= 𝑡+

1

𝜅(𝑥0)
, (17.1)

so

𝜅(𝑥𝑡) =
𝜅(𝑥0)

1 + 𝑡𝜅(𝑥0)
. (17.2)

The expansion rate of the base curve 𝛾 is 1 + 𝑡𝜅(0).

17.10 Local time evolution of velocity curvature by collision
If there is a collision at time 𝜏 , this curvature changes discontinuously between
𝜏 − 0 and 𝜏 + 0:

𝜅(𝑥𝜏+0) = 𝜅(𝑥𝜏−0) +
2𝑘

cos𝜙𝜏
, (17.3)

where 𝑘 is the curvature of the colliding surface and 𝜙𝜏 is the incidence angle.
This may be derived as explained below, but it is basically the well-known
lens formula 1/𝑓 = 1/𝑑o + 1/𝑑i. For the near optical axis rays, 𝜙 = 0 and
𝑓 = −2(1/𝑘) (the twice radius of the mirror; − because the mirror is convex);
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1/𝑑o = 𝜅(𝑥𝜏−0) (real object) and 1/𝑑i = −𝜅(𝑥𝜏+0) (virtual image).

td
α

Figure 17.6: A propagation front and the velocities

In Fig. 17.6 the relation between 𝑑𝛽 and 𝑑𝛼 is

1

𝑘
𝑑𝛽 = 𝑑𝑟 =

𝑡(−𝑑𝛼)
cos𝜙𝜏

, (17.4)

where 𝛼 is measured clockwisely while 𝛽 counterclockwisely, so we need the
minus sign. We see

𝑑𝜙 = 2𝑑𝛽 − 𝑑𝛼, (17.5)

because (i) if 𝑑𝛼 = 0, then changing the mirror direction by 𝑑𝛽 changes the
reflection angle by 2𝑑𝛽, (ii) if 𝑑𝛽 = 0, changing the incidence angle by 𝑑𝛼 the
reflection angle changes by −𝑑𝛼. Therefore,

𝑑𝜙 = 2
𝑘𝑡(−𝑑𝛼)
cos𝜙

− 𝑑𝛼. (17.6)

We know

𝜅(𝑥𝜏−0) = 1/𝑡 =
−1

cos𝜙

𝑑𝛼

𝑑𝑟
, 𝜅(𝑥𝜏+0) =

1

cos𝜙

𝑑𝜙

𝑑𝑟
, 𝑘 =

𝑑𝛽

𝑑𝑟
. (17.7)

Thus, (17.6) reads
𝑑𝜙 = 2𝑘𝑑𝑟 − 𝑑𝛼, . (17.8)

so we finally obtain (17.3).
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17.11 Expansion between successive collisions
The expansion rate of the curve 𝛾 is, as already seen in 17.9, 1 + 𝜏(𝑥𝑛)𝑘(𝑥𝑛),
where 𝜏(𝑥𝑛) is time between 𝑛th and 𝑛 + 1th collisions, and 𝑘(𝑥𝑛) is the cur-
vature just after the 𝑛th collision. Notice that from (17.3),

17.12 Relation to geodesics on negative curvature surfaces
The geodesic trajectories near the saddle spread, as is illustrated in

https://www.youtube.com/watch?v=3u2SJKxJhh8&frags=wn after about 11:20
Thus, the geodesic trajectories in the negative curvature Riemannian manifold are
exponentially spreading.

Sinai billiards are without any curvature, but what happens at the collision points
is just what happens at saddles as illustrated in Fig. 17.7

a

A B

C

Figure 17.7: ‘Saddle’ dynamics near 𝜕𝑄; here the illustration uses the ‘standard’ Sinai billiard.
A is the torus with a disk scatterer. You can imagine that the particle goes to the ‘backside’ of
the torus upon collision. At the next collision the particle reappears to this side of the world. B:
Then, take out the second surface, and connect them to make a ‘coupled’ 𝑇 2. The particles moves
‘straight’ until it hits the connection ring R; if the ring is ‘mollified a bit, it is just a saddle.

17.13 Billiards with focusing elements
Bunimovich proved that billiards on 𝑄 ⊂ R2 are K, if
(1) 𝜕𝑄 consists of line segments and parts of circles.
(2) There is no pair of focusing components that are a part of the same circle.
(3) For each circular segment, its completed circle must be in 𝑄.

For example, 𝑄s illustrated in Fig. 17.8 satisfy the above conditions:”

The most famous example is the Bunimovich stadium:

https://www.youtube.com/watch?v=3u2SJKxJhh8&frags=wn
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Figure 17.8: Examples of chaotic focusing billiard tables

https://blogs.ams.org/visualinsight/2016/11/15/bunimovich-stadium/.

Remark: the eigenfunction of Δ𝜓 on 𝑄 are illustrated as
Quantum: https://www.dhushara.com/DarkHeart/QStad/QStad.htm
Bunimovich mitosis http://community.wolfram.com/groups/-/m/t/977013
First 500 eigenmodes: https://youtu.be/3voKV4az0Sk

17.14 Invariant measure of billiards
Since billiards were motivated by Krylov to understand the foundation of statistical
mechanics, their probabilistic properties have been of their main interest. There are
many different invariant measures (the probability law preserved by dynamics), but
the most interesting one is the ones absolutely continuous wrt the Lebesgue measures
on the phase space.

Here, I do not discuss what the measure is: it is roughly something like volume.
‘Absolute continuity’ of a measure 𝜈 wrt 𝜇 means 𝜈(𝐴) = 0 whenever 𝜇(𝐴) = 0 for
any (measurable) set.

From now on we discuss only billiards on 2-dimensional tables 𝑄. The phase space
is Γ = 𝑄× 𝑆1, where 𝑄 ⊂ R2. Let us introduce the position coordinates (𝑞1, 𝑞2) on
𝑄 and the angle variable 𝜙 to specify the particle velocity during its free time. It
should be clear that

𝑑𝜇 =
1

2𝜋|𝑄|
𝑑𝑞1𝑑𝑞2𝑑𝜙 (17.9)

is invariant; this is simply a classical particle system with a constant speed.

17.15 Invariant measure for Ambrose-Kakutani representation
We could introduce an invariant measure on the space shaded in Fig. 17.1 Right. The
coordinates we use are 𝑞, 𝑛 and 𝜎, where 𝜎 is the vertical coordinate (expressing the

https://blogs.ams.org/visualinsight/2016/11/15/bunimovich-stadium/
https://www.dhushara.com/DarkHeart/QStad/QStad.htm
http://community.wolfram.com/groups/-/m/t/977013
https://youtu.be/3voKV4az0Sk
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travel distance between successive collisions). Here 𝑞 may be the coordinate along
𝜕𝑄 and 𝑛 may be represented by an angle 𝜙 wrt the outward normal on 𝜕𝑄. The
case of the single disk Sinai billiard on 𝑇 2 is illustrated in Fig. 17.9.
Here the small box represents 𝑑𝑞1𝑑𝑞2. From Fig. 17.9 we see

d
r

d
σ

φ

d
r

tangent

inward
 norm

altr
aj

ec
to

ry

φ

Figure 17.9: The coordinates of the Ambrose-Kakutani representation of ‘the’ Sinai billiard;
notice that 𝜙 ∈ [−𝜋/2, 𝜋/2].

𝑑𝑞1𝑑𝑞2 = 𝑑𝜎𝑑𝑟 cos𝜙. (17.10)

Therefore,

𝑑𝜇 ∝ cos𝜙𝑑𝜙𝑑𝜎𝑑𝑟. (17.11)

We must compute the normalization constant, if 𝜇 is a probability measure. For the
standard Sinai billiard, the phase volume is 2𝜋|𝑄| (|𝑄| = 1 − 𝜋𝑟2, if the torus area
is 1 and the disc radius is 𝑟), so this is the normalization constant.

17.16 Mean free time
The average of 𝜏(𝑥) for 𝑥 ∈ Γ is the mean free time. Notice that integral of 𝑑𝜎
between successive collisions is the free time 𝜏(𝑞, 𝑛). Therefore, for the standard
Sinai billiard

2𝜋|𝑄| =
∫︁ |𝜕𝑄|

0

𝑑𝑟

∫︁ 𝜋/2

−𝜋/2
cos𝜙𝑑𝜙

∫︁ 𝜏(𝑟,𝜙)

0

𝑑𝜎 =

∫︁ |𝜕𝑄|

0

𝑑𝑟

∫︁ 𝜋/2

−𝜋/2
cos𝜙 𝜏(𝑟, 𝜙)𝑑𝜙 (17.12)
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The mean free time is192

⟨𝜏⟩ =

∫︀ |𝜕𝑄|
0

𝑑𝑟
∫︀ 𝜋/2
−𝜋/2 | cos𝜙|𝜏(𝑟, 𝜙)𝑑𝜙∫︀ |𝜕𝑄|

0
𝑑𝑟
∫︀ 𝜋/2
−𝜋/2 | cos𝜙|𝑑𝜙

(17.13)

The denominator is 2𝜕𝑄. Therefore, we have arrived at

⟨𝜏⟩ = 2𝜋|𝑄|/2|𝜕𝑄| = (1− 𝜋𝑟2)/2𝑟. (17.14)

17.17 Abramov formula for the loss of information The Kolmogorov-Sinai
entropy (information loss rate per time) ℎ of a billiard may be expressed as

ℎ = 𝐻/⟨𝜏⟩, (17.15)

where 𝐻 is the entropy change per collision, and ⟨𝜏⟩ is the mean free time. The
formula is called the Abramov formula. That is, a mean field idea works.

It is not hard to see why (17.15) holds. Notice that between collisions there is
no loss of information; information is lost only at collisions. Let 𝐻𝑗 be the loss of
information at the 𝑗th collision. Then, its average is 𝐻. Let 𝜏𝑗 be the free time
before the 𝑗th collision. Then, 𝑇 =

∑︀
𝜏𝑗 is needed for the information loss of

∑︀
𝐻𝑗,

so

ℎ =

∑︀
𝐻𝑗∑︀
𝜏𝑗

=
𝐻

⟨𝜏⟩
. (17.16)

17.18 Loss rate of information of billiards
Take a small square as in Fig. 17.10 Left. Suppose the length of its edge is the
minimum length that we can discern. Thus we can tell whether a point is in it or
not: this answer can be obtained by a single yes-no question. Thus, we get one bit
of information.

After a single application of the map 𝑇 (in our context 𝑇 ) the square is stretched
in the unstable manifold direction and compressed in the stable manifold direction.

If we know that the system is in the square now, after applying 𝑇 we know the
system point is near the unstable manifold; more precisely, we know the system is

192Here, we assume that the particle can go any where on the table = ergodicity; this needs a
proof.
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Figure 17.10: Local loss of information due to expansion

in one box which cover the stretched square as in Fig. 17.10 Right. To locate the
system as accurately as one time step before, we should choose one box out of 8
boxes. We need 3 bits of information. That is, 𝑇 dissipated 3 bits of information;
our knowledge about the system is lost by 3 bits per one mapping step.

Thus, the log (or log2) of the expansion rate of the unstable manifold must be
the information loss rate, whose ‘ensemble average’193 is called the Kolmogorov-Sinai
(KS) entropy ℎ𝑇 , as we will see later.

17.19 Kolmogorov-Sinai entropy of Sinai billiard: introduction
Let 𝑟 = 𝜓(𝜙) be the unstable manifold. This is mapped by 𝑇 : (𝑟, 𝜙) → (𝑟1, 𝜙1) to
𝜙1 = 𝜓1(𝑟1). Then, the expansion rate 𝑚 can be computed as

𝑚 =
‖(𝑑𝑟1, 𝑑𝜙1)‖
‖(𝑑𝑟, 𝑑𝜙)‖

=

⃒⃒⃒⃒
𝜕𝑟1
𝜕𝑟

⃒⃒⃒⃒
‖(1, 𝜕𝜙1/𝜕𝑟1)‖
‖(1, 𝜕𝜙/𝜕𝑟)‖

. (17.17)

Let us write 𝜇 as the normalized phase volume (invariant measure) (??) in 17.14.
Then,

ℎ𝑇 =

∫︁
𝑑𝜇 log𝑚 (17.18)

=

∫︁
𝑑𝜇 log

⃒⃒⃒⃒
𝑑𝑟1
𝑑𝑟

⃒⃒⃒⃒
+

∫︁
𝑑𝜇 log ‖(1, 𝜕𝜙1/𝜕𝑟1)‖ −

∫︁
𝑑𝜇 log ‖(1, 𝜕𝜙/𝜕𝑟)‖

(17.19)

193average over the invariant probability measure.
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=

∫︁
𝑑𝜇 log

⃒⃒⃒⃒
𝑑𝑟1
𝑑𝑟

⃒⃒⃒⃒
. (17.20)

We must calculate the derivative: note, however, 𝑑𝑟1/𝑑𝑟 is the derivative along
the unstable manifold (i.e., 𝜙 also changes, when 𝑟 is changed according to 𝑑𝜙 =
(𝑑𝜓/𝑑𝑟)𝑑𝑟.

To calculate ℎ𝑇 , we need much more details of the Sinai billiard. See calculations
up to 17.19.

17.20 Domain of 𝑇
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Figure 17.11: The ‘Poincaré’ map 𝑇 for the Sinai billiard.

Fig. 17.11 The ‘Poincaré’ map 𝑇 for the Sinai billiard.

Right: The rectangle shows the boundary 𝜕𝑀 of the phase space (i.e., 𝜕𝑄 and the velocity vectors

(just after collisions into 𝑄 direction) there in 𝑆1. The pink band is the domain for 𝑇 hitting ‘2’

(from ‘1’, ‘1’ and ‘2’ may be the same disk (different sides) shown Left; the colored dots correspond

to the starting sites on ‘1’.

The purple strip is the domain of 𝑇−1 coming back to ‘1’ from ‘2’.

The green strip is the domain of 𝑇−1 from ‘1’, which is definable by the pink strip with the mirroring

its velocities with respect to the normal directions (time reversal transformation).

The green arrow 𝑥 denotes point in 𝜕𝑀 indicated by the green dot (∈ 𝜕𝑄) and the direction de-

noted by the green arrow on Left.

The invariant curve going through 𝑥 in Fig. 17.11



214

17.21 How 𝑇 transforms curves in 𝜕𝑄
Consider a curve 𝜙 = 𝜓(𝑟) in 𝜕𝑀 to understand how 𝑇 maps this. After 𝑇 let us
write this curve becomes 𝜙1 = 𝜓1(𝑟1). We can write

𝜙1(𝑟, 𝜙) = 𝜓1(𝑟1(𝑟, 𝜙)), (17.21)

Its derivatives are obtained easily with the chain rule and the results summarized
in 17.25 must lie in the strips. One in the pink strip must be the unstable mani-
fold of 𝑇 through 𝑥 (i.e., 𝑊+(𝑥)) and that in the green strip the stable manifold of 𝑥.

17.22 Unstable manifold of 𝑇
In contrast to the smooth dynamical systems, billiards are riddled with breaking due
to collisions.194 There is a transversal stable manifold that looks similar.

Figure 17.12: Unstable manifold of a Sinai billiard; the left figure explains why there are break
points. [Fig. 7, 8 of DS II Bunimovich]

17.23 Change of the next collision by position change
Let us calculate one step 𝑥→ 𝑥1 in detail.

First, let us study the changes in 𝑟1 and 𝜙1 when 𝑟 is changed by 𝑑𝑟 (Fig. 17.13).
If we keep 𝜙 and change the first collision position slightly by 𝑑𝑟, due to the

change of the normal directions of the reflecting surface, the direction of the reflected

194Actually, it is usually made of many continuous components. Here, only one such component
is illustrated.
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dr

φ φ1

dr1

Figure 17.13: A propagation front and the velocities: change due to 𝑟

trajectory changes its angle by 𝑘𝑑𝑟 (the purple angle). It takes 𝜏 fo the particle to
reach the next collision point from the last collision, so

𝑘𝑑𝑟𝜏, (17.22)

where 𝑘 is the curvature of the boundary at the first collision point, is the displace-
ment of the collision point perpendicular to the incidence direction. However, this
direction makes angle 𝜙1 with the tangent direction of the new colliding surface.
Thus, we need the length of te orange segment, which is

𝑘𝑑𝑟𝜏/ cos𝜙1. (17.23)

𝑑𝑟1 has the green portion due to ther simple parallel displacement of the trajectory
due to 𝑑𝑟. The displacement distance is 𝑑𝑟 cos𝜙. Thus, when this is projected on
the second surface the displacement must be

𝑑𝑟
cos𝜙

cos𝜙1

. (17.24)

Thus the answer for 𝑑𝑟1 is the green and orange segments added, but we must worry
about the sign. If 𝑑𝑟 is in the counterclockwise direction, 𝑑𝑟1 must be clockwise, so
they should have opposite signs:

𝑑𝑟1 = −𝑑𝑟
(︂

cos𝜙

cos𝜙1

+
𝜏𝑘

cos𝜙1

)︂
. (17.25)
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The change of the incidence angle to the second body consists of two parts: the
blue angle due to the change of the normal direction due to displacement 𝑑𝑟1 and
the purple angle due to the change of the direction of the incidence ray (due to 𝑑𝑟 on
the first body). The former is 𝑘1𝑑𝑟1, where 𝑘1 is the curvature at the new collision
point. The purple portion is obviously 𝑘𝑑𝑟, which reduces 𝜙1. Therefore,

𝑑𝜙1 = −𝑘1𝑑𝑟
(︂

cos𝜙

cos𝜙1

+
𝜏𝑘

cos𝜙1

)︂
− 𝑘𝑑𝑟. (17.26)

We also should consider the change in 𝜏 . This is clearly

𝑑𝜏 = 𝑑𝑟1 sin𝜙1 − 𝑑𝑟 sin𝜙. (17.27)

17.24 Change of the next collision by angle change
Next, let us study the changes in 𝑟1 and 𝜙1 when 𝜙 is changed by 𝑑𝜙 (Fig. 17.14).

If we keep 𝑟 and change the first collision incidence angle slightly by 𝑑𝜙, the
direction of the reflected trajectory changes with the same amount but in the opposite
direction. It takes 𝜏 fo the particle to reach the next collision point from the last
collision, so the particle to reach the next collision point from the last collision, so 𝑑𝜙𝜏
is the displacement of the collision point perpendicular to the incidence direction.
However, this direction makes angle 𝜙1 with the tangent direction of the new colliding
surface. Thus, the green length = 𝑑𝑟1 is

𝑑𝑟1 = −𝜏𝑑𝜙/ cos𝜙1. (17.28)

The incidence angle to the new boundary changes by the red angle due to the
change of the direction of the trajectory, but the collision point is displaced by 𝑑𝑟1,
so the normal direction changes by the orange angle: 𝑘1𝑑𝑟1. Both contribute in the
same direction, so

𝑑𝜙1 =
𝑘1𝜏

cos𝜙1

𝑑𝜙− 𝑑𝜙 = −𝑑𝜙
(︂
1 +

𝑘1𝜏

cos𝜙1

)︂
. (17.29)

We also have
𝑑𝜏 = tan𝜙1𝑑𝜙. (17.30)
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d

φ

φ1
dr

φ

dφ1

Figure 17.14: A propagation front and the velocities: change due to 𝑟

17.25 Summary of derivatives
We may summarize the results of 17.23 and 17.24 as follows:(︃

𝜕𝑟1
𝜕𝑟

𝜕𝑟1
𝜕𝜙

𝜕𝜙1

𝜕𝑟
𝜕𝜙1

𝜕𝜙

)︃
=

⎛⎝ −
[︁
1 + 𝜏𝑘

cos𝜙

]︁
cos𝜙
cos𝜙1

− 𝜏
cos𝜙1

−𝑘1
[︁
1 + 𝜏𝑘

cos𝜙

]︁
cos𝜙
cos𝜙1

+ 𝑘 −
[︁
1 + 𝜏𝑘1

cos𝜙1

]︁ ⎞⎠ . (17.31)

17.26 Kolmogorov-Sinai entropy of Sinai billiard: calculation
To compute ℎ𝑇 we need 𝜕𝑟1/𝜕𝑟. We differentiate 𝑟1 = 𝑟1(𝑟, 𝜓(𝑟)) (recall the remark
at the end of 17.19. Since 𝑟1 = 𝑟1(𝑟, 𝜓(𝑟)):

𝑑𝑟1
𝑑𝑟

=
𝜕𝑟1
𝜕𝑟

+
𝜕𝑟1
𝜕𝜙

𝑑𝜓

𝑑𝑟
. (17.32)

Also, since
𝜙1(𝑟, 𝜓(𝑟)) = 𝜓1(𝑟1(𝑟, 𝜓(𝑟))), (17.33)
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𝜕𝜙1

𝜕𝑟
+
𝜕𝜙1

𝜕𝜓

𝑑𝜓

𝑑𝑟
=
𝑑𝜓1

𝑑𝑟1

(︂
𝜕𝑟1
𝜕𝑟

+
𝜕𝑟1
𝜕𝜓

𝑑𝜓

𝑑𝑟

)︂
. (17.34)

Therefore, we can solve

𝑑𝜓1

𝑑𝑟1
=

𝜕𝜙1

𝜕𝑟
+ 𝜕𝜙1

𝜕𝜙
𝑑𝜓
𝑑𝑟

𝜕𝑟1
𝜕𝑟

+ 𝜕𝑟1
𝜕𝜙

𝑑𝜓
𝑑𝑟

. (17.35)

(17.32) reads with (17.25) and (17.28)

𝑑𝑟1
𝑑𝑟

= −
(︂

cos𝜙

cos𝜙1

+
𝜏𝑘

cos𝜙1

)︂
+

𝜏

cos𝜙1

𝑑𝜓

𝑑𝑟
(17.36)

= − cos𝜙

cos𝜙1

(︂
1 +

𝜏

cos𝜙

(︂
𝑘 +

𝑑𝜓

𝑑𝑟

)︂)︂
. (17.37)

We must compute 𝑑𝜓/𝑑𝑟.

𝑑𝜓1

𝑑𝑟1
=

−𝑘1
(︁

cos𝜙
cos𝜙1

+ 𝜏𝑘
cos𝜙1

)︁
− 𝑘 −

(︁
1 + 𝑘1𝜏

cos𝜙1

)︁
𝑑𝜓
𝑑𝑟

−
(︁

cos𝜙
cos𝜙1

+ 𝜏𝑘
cos𝜙1

)︁
− 𝜏

cos𝜙1

𝑑𝜓
𝑑𝑟

(17.38)

= 𝑘1 +
𝑘 + 𝑑𝜓

𝑑𝑟(︁
cos𝜙
cos𝜙1

+ 𝜏𝑘
cos𝜙1

)︁
+ 𝜏

cos𝜙1

𝑑𝜓
𝑑𝑟

(17.39)

= 𝑘1 +
𝑘 + 𝑑𝜓

𝑑𝑟
cos𝜙
cos𝜙1

+ 𝜏
cos𝜙1

(︀
𝑘 + 𝑑𝜓

𝑑𝑟

)︀ (17.40)

= 𝑘1 +
cos𝜙1

cos𝜙

𝑘 + 𝑑𝜓
𝑑𝑟

1 + 𝜏
cos𝜙

(︀
𝑘 + 𝑑𝜓

𝑑𝑟

)︀ (17.41)

= 𝑘1 +
cos𝜙1

cos𝜙

1
𝜏

cos𝜙
+ 1

𝑘+ 𝑑𝜓
𝑑𝑟

. (17.42)

Notice that this is a recurrence relation:

𝑑𝜓𝑛
𝑑𝑟𝑛

= 𝑘𝑛 +
cos𝜓𝑛
cos𝜓𝑛−1

1
𝜏𝑛−1

cos𝜓𝑛−1
+ 1

𝑘𝑛−1+
𝑑𝜓𝑛−1
𝑑𝑟𝑛−1

. (17.43)

The result of this recursion gives a continued fraction expression of 𝑑𝜓/𝑑𝑟 required
in (17.32). We can fairly accurately evaluate this numerically.
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17.27 𝐻 in the small 𝑅 limit
Friedman et al.195 actually evaluated and conjectured −𝐻/ log𝑅 → 2 in the small
𝑅 limit. Actually, they proved this value to be in (1.5, 2] and numerically obtained
the upper limit value 2.196

17.28 Billiards with scatterers with finite potentials or soft billiards
Baldwin197 considered an ‘optical’ system or the muffin-tin potential system with
potential 𝑈 (measured in kinetic energy):

R

U
R

U

0.5

1

0
ergodic

ergodic

NOT

ergodic

Figure 17.15: The table with 𝑈 and the phase diagram; the non-ergodicity of the colored region
is proved, but ergodicity of the remaining regions is a conjecture based on simulations. The lower
bondary curve of the colored region is 𝑈 = 1− 1/(1− 2𝑅)2.

In the nonergodic region we see elliptic fixed points.

195B. A. Friedman, Y. Oono and I. Kubo, PRL 52 709 (1984). See B. A. Friedman, UIUC Physics
thesis 1985.

196 𝑑(𝑑− 1) is the general formula: N Chernov, Entropy Values and Entropy Bounds (2006) is a
good review): people.cas.uab.edu/~mosya/papers/hb.pdf.

197P. R. Baldwin, Soft billiard system, Physica D 29, 321 (1988). See P. R. Baldwin, UIUC
Physics thesis 1987.

people.cas.uab.edu/~mosya/papers/hb.pdf
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18 Lecture 18. Introductory examples of chaos

18.1 K. Ito’s model of great earthquakes
Island arcs such as the Japanese Archipelago consist of blocks spaced by faults. Each
block is being pulled down by a subducting ocean plate and accumulates strain en-
ergy (Fig. 18.1). When this energy reaches a threshold, the block breaks (a great

Block1

Block 2
Ocean Plate

Figure 18.1: The great earthquake model. The subducting ocean plate pulls two blocks down.
The blocks accumulate strain energy and at some point they break apart from the plate and
earthquakes occur. Then, the blocks return to the original positions.

periodic oscillation

Figure 18.2: If there is only one block, it is a simple model of the relaxation oscillator.

earthquake occurs) and the stored strain energy is quickly reset to its lowest value;
the model chooses this value as the energy origin.

If there is no interaction among blocks, earthquakes occur periodically (Fig. 18.2).
This is probably the simplest model of the relaxation oscillator. See a traditional
example https://www.youtube.com/watch?v=JU0mNSRtHMM&frags=pl%2Cwn. Periodic earth
quakes do exist.198

If there are more than one blocks, the earthquake occurring in one block must
affect the surrounding blocks. Ito thought that the earthquake produces cracks in
the neighboring blocks that decelerate the accumulation rate of the strain energy.

The simplest nontrivial case is the two-block case. The following rules of time
evolution can model the idea depicted above. Let 𝑢𝑖 be the strain energy stored in
block 𝑖 (𝑖 = 1, 2).
(1) The rate of increase of the strain energy is initially 𝑏, which is assumed to be a
positive number.

198Kelvin R. Berryman et al. Major Earthquakes Occur Regularly on an Isolated Plate Boundary
Fault, Science 336 1690 (2012.

https://www.youtube.com/watch?v=JU0mNSRtHMM&frags=pl%2Cwn


18. LECTURE 18. INTRODUCTORY EXAMPLES OF CHAOS 221

(2) If 𝑢𝑖 reaches 1, an earthquake occurs in block 𝑖. Subsequently,
(2a) 𝑢𝑖 is reset to 0, and the rate of increase of strain energy is also reset to 𝑏.
(2b) The rate of increase of the strain energy in the other block without the oc-

currence of the earthquake becomes 𝑏−1; if the rate is already with this value, it is
maintained as 𝑏−1.

u

u

1

2

Figure 18.3: A typical behavior of stored energies 𝑢1 and 𝑢2 in two coupled blocks 1 and 2,
respectively. This is the case of mutual hindrance 𝑏 > 1. The earthquake in one block decelerates
the energy increase in the other block. Vertical arrows denote hindering effects on strain energy
accumulation. (Except for the beginning stage of the system behavior, the rates of energy increase
of the blocks never coincide.)

A typical behavior under the above rule is in Fig. 18.3. If the rate of increase of the
strain energy 𝑏 > 1, we see apparently complicated behavior.

18.2 Trajectories on 𝑇 2

The time evolution of the two blocks can be illustrated as a trajectory on 𝑇 2 =
[0, 1]× [0, 1] (with periodic boundary conditions), if we plot 𝑢1 on the horizontal axis
and 𝑢2 at the same moment on the vertical axis (Fig. 18.4).
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Figure 18.4: The typical time dependence of the stored energy in the blocks may be depicted
as a trajectory on [0, 1]× [0, 1]. Horizontal jumps correspond to the earthquakes in block 1 and the
vertical jumps those in block 2.

The rule of the game may be illustrated as in Fig. 18.5. We can write the rules in
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formulas, but no new insight is obtained by doing so. For example, a portion of the
trajectory with slope less than 1 on the square implies that the energy increase rate
in block 1 is larger than that for block 2.

C L

L

1

2

b
b
-2

slopes
2

u

u

2

1

Figure 18.5: The rules for the motion: after a jump how the slope changes is specified. If the
point reaches L1 (the top edge; an earthquake in block 2), it jumps down to the point following
the broken line, and then start running with slope 𝑏2 (because 𝑢2 increases at rate 𝑏 and 𝑢1 at rate
𝑏−1); If the point reaches L2 (the right edge), it jumps to the left according to the broken line and
start running with slope 𝑏−2 (𝑏 > 1 assumed). If the opposite edges of the square are glued, we can
make a torus, and we obtain a continuous trajectory on the torus (as seen in Fig. 18.4).

18.3 Trajectories on universal covering space of 𝑇 2

Instead of gluing the opposite edges of the square to make the torus, we may tessel-
late many copies of the square to make the so-called universal covering space.199 In
this space (i.e., instead of returning to itself, moving on to next tiles) we can clearly
see what is going on (Fig. 18.6).

In Fig. 18.6 Right three trajectories starting from closely located initial points are
depicted.200 Earthquakes occur in block 1 (resp. block 2) when the trajectory crosses
the vertical (resp. horizontal) lines. If 𝑏 > 1, two initially close trajectories come
apart exponentially in time. The great earthquake model is with 𝑏 > 1, so according
to this model long time prediction of earthquakes is impossible.

199To obtain elementary knowledge of topology I. M. Singer and J. A. Thorpe, Lecture Notes on
Elementary Topology and Geometry (Undergraduate Texts in Mathematics) (Springer 1976; original
1967) is the best.

200The distance between the two adjacent points increases as 𝑒𝑡𝜆 as a function of time on the
average, where 𝜆 is called the Lyapunov exponent (will be discussed in a later lecture). In the present
example, it can be computed as 𝜆′/𝜏 , where 𝜆′ is the exponent defined for the corresponding discrete
system in Fig. 18.11 and 𝜏 is the average sojourn time on a single tile. To estimate 𝜆′ may not be
easy, but it is obviously positive as can be trivially seen from the reduced map in Fig. 18.12.
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Figure 18.6: Left: A typical trajectory on the so-called universal covering space that is made by
tessellating the squares instead of forming a torus. The crossings with the vertical lines correspond
to earthquakes in block 1 and those with the horizontal lines to those in block 2. Right: Locally,
trajectories depart from each other exponentially in time. (Around the lattice points something
complicated may happen, but this is a global problem.) (To prove that the trajectories separate
from each other exponentially on the average, the easiest way is to use the one-dimensional map
shown Fig. 18.12.)

18.4 As a vector field on two 𝑇 2

If Fig. 18.4 is understood as a description of a two-dimensional motion, we must
conclude that the trajectory follows the vector field 𝑣1 in Fig. 18.7 at one time, and
then 𝑣2 at another. The history up to the point determines on which flow (vector
field) the trajectory follows. A two-valued vector field dependent on the history is
not a very convenient object.

v v
1

2

Figure 18.7: In Fig. 18.4 at a particular point on the torus the trajectory runs in one of the
two directions depending on the history up to the point. That is, the trajectory runs on the torus
according to one of the two vector fields, 𝑣1 or 𝑣2, depending on the history.
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To avoid this we prepare two tori, on one of which is 𝑣1 and on the other 𝑣2, and
then connect these two tori according to the connection rule consistent with Fig. 18.5
as shown in Fig. 18.8.

v

v

1

2

Figure 18.8: The univalent vector field independent of the history on the connected two copies of
the original torus. The two vector fields prepared in Fig. 18.7 are connected according to the rules
consistent with the trajectory connection rules in Fig. 18.5(i). How to glue the tori is shown by
straight colored arrows with large arrowheads (the directions denote correct orientations to glue).

18.5 Why unpredictability?
As can be seen from Fig. 18.8, something special happens when a crossover between
two tori occurs. To understand what happens there, it is convenient to glue only the
edges connected by broken arrow curves in Fig. 18.8 as A to B in Fig. 18.9 instead of
completing the two tori. The trajectories coming into the connection edge from left
in Fig. 18.8 (along the short horizontal arrow) have smaller angles with the connec-
tion edge than the ones going out to right as clearly illustrated in Fig. 18.9C, so we
see the trajectories are spread and then are inserted into the trajectories on the right
cylinder. That is, the event happening at the connection is akin to card shuffling.
Thus, we understand intuitively why the system ‘produces randomness’ despite its
deterministic nature.

It is clear that the apparently random behavior observed in Fig. 18.3 is caused by
the intrinsic nature of this deterministic dynamical system (= a system whose behav-
ior is uniquely determined if its past is known) and that external noise has nothing
to do with it. If we knew the trajectory precisely without any error, we would not
lose any information even if there is an expansive tendency of the trajectory bundle.
However, we can never know very small scales. This unknowable is amplified by the
expansion of the trajectory bundle and then is fixed into the system behavior by
the insertion occurring at the connection to the other cylinder, as illustrated in Fig.
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v v
1 2

v
1

v
2

v
1

v
2

A

B

C

Figure 18.9: Let us pay attention to the connection from 𝑣1 to 𝑣2 only (the broken arrows in A,
which is almost a copy of Fig. 18.8). Gluing only one pair of edges in A, we obtain B. The ‘screw’
part of B corresponds to the inside of the squares in A, where the trajectories run parallelly. In
order to make easy to observe the crossover from the left to the right square (or torus), a cut is
introduced in the left cylinder that does not affect the parallel trajectories and the edge to be glued
is made straight. What happens at the connection between 𝑣1 and 𝑣2 is equivalent to spreading
out the trajectory spacings and then inserting trajectories into the right cylinder as illustrated in
C; it reminds us of shuffling cards.

18.9C. Consequently, we feel the behavior of this system random;201 Recall the KS
entropy computation in the Sinai billiard in ??.

18.6 Another illustration of randomization
If we deform the system slightly further, we can map it to a system that must be
familiar to chaos aficionados. If we squish the cylinders in Fig. 18.9B on which the
motion is ‘spiral,’ we obtain Fig. 18.10.

The figure reminds us of the famous Lorenz model that will be discussed in the
two subsequent lectures.

18.7 Correspondence to discrete time system
A trajectory in the universal covering space is piecewise linear as we have seen in Fig.

201As can be seen from this example, nonlinearity is not needed to expand small scales. Nonlin-
earity is, however, usually needed to contain the system within a finite range despite local linear
expansion. Therefore, if the phase space is intrinsically compact, then we might be able to say
nonlinearity is not absolutely necessary for chaos. Actually, a typical chaotic system is given by
linear maps from a torus onto itself. The decisive paper on this topic is R. L. Adler and B. Weiss,
“Similarity of automorphisms of the torus,” Memoir. Am. Math. Soc. 98 (1970).
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T
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1
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2

Figure 18.10: Further topological acrobat. The portions where the cylinders are connected are
the same as Fig. 18.9B, but the ways to extend the trajectory ends are different. After running the
spiral portion, trajectories are inserted into the other spiral. If we dovetail these two sheets with
spiral trajectories, we obtain the rightmost figure. T1, and T2 correspond to the tori and R1 and R2

are connecting edges, where insertion and fixation of the expansion outcomes occur. The difference
from Fig. 18.9B is only that the spiral on the cylinders becomes that on the disks, so, similarly
as before, we can see how expanded microscopic details influence decisively the world around our
scale.

18.6, so we must be able to record a trajectory only by recording its breaking points.
We have only to pay attention to the points where the trajectory crosses the lattice
lines in the universal covering space, and convert the continuous time system to a
discrete time system (however, it is not a simple discretization such as observing a
system periodically with stroboscopic light). More explicitly, in Fig. 18.5(i) (copied
in Fig. 18.11) if we record the distance 𝑥 measured along the edges from the corner
C when the trajectory crosses L1 or L2, we can map a trajectory to a sequence {𝑥𝑖}.
This correspondence is one to one.202 That is, from {𝑥𝑖} we can reconstruct the
original continuous trajectory, because we know the speed of the point along the
trajectory.

If the sequence {𝑥𝑖} can be reconstructed by a certain recursive rule, the system
may be described more simply. Here, a ‘recursive rule’ means a rule that can give the
next time state in terms of the current state (corresponding to the equation of motion
in classical mechanics). Actually, this sequence {𝑥𝑖} is determined as a solution to
an initial value problem of a (nonlinear) difference equation

𝑥𝑛+1 = 𝜑(𝑥𝑛), (18.1)

where 𝜑 : [0, 2] → [0, 2] is given by the graph in Fig. 18.11
This discrete model can be, as explained in Fig. 18.12, folded into a unimodal

202Here we ignore the ‘loose ends’ of the trajectories between the lattice crossings.
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Figure 18.11: If the successive lattice crossing positions of a trajectory is described in terms
of the distance measured along the edges of the square from the top left corner C, we obtain a
one-dimensional map [0, 2] → [0, 2]: 𝑥𝑖+1 = 𝜑(𝑥𝑖).

piecewise linear map from [0, 1] into itself.203 Folding implies identifying two points
in [0, 2]. Therefore, the original behavior cannot be reconstructed from the reduced
system. However, the correspondence is simple, so we can learn various things about
the original system from the simplified system.

0 1

1

0 1 2

2

1

Figure 18.12: A reduced discrete map may be constructed by ‘folding’ the original map. Such
unimodal piecewise linear maps are mathematically thoroughly understood. On the left the way to
chase a discrete history is illustrated

203Unimodal piecewise linear maps are thoroughly studied in the following papers: Sh. Ito, S.
Tanaka and H. Nakada, “On unimodal linear transformations and chaos I, II,” Tokyo J. Math. 2,
221, 241 (1979).
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19 Lecture 19. Lorenz system: Introduction

Warning
After switching the OS (to Mojave) perhaps security has become tighter, and I can-
not run many of the copied demos (due to ‘unsupported plug-in’).

Introductory video
The following video is an leisurely introduction to the Lorenz system (Chaos Chapter
7), giving a nice overview of what we should understand mathematically:

https://www.youtube.com/watch?v=aAJkLh76QnM&frags=pl%2Cwn

We look at the key portions of Lorenz’s historic paper, “Deterministic nonperiodic
flow” (1963); here the basic equation derived by Saltzman is outlined 19.2. Lorenz
numerically established his system is intrinsically nonperiodic. We watch various
behaviors of the Lorenz equation. Notice that to reduce the original system to a
simpler system (e.g., time discrete dynamical system) is crucial (Fig. 19.3). You
see very similar structures we already encountered in a simpler Ito’s system in the
preceding Lecture. Then, we see a similar system describing magnetic reversal of the
earth (the Rikitake model 19.7).

19.1 Lorenz’s motivation

Certain hydrodynamical systems exhibit steady-state flow patterns, while oth-
ers oscillate in a regular periodic fashion. Still others vary in an irregular,
seemingly haphazard manner, and, even when observed for long periods of
time, do not appear to repeat their previous history.

This is the first paragraph of Introduction to “Deterministic nonperiodic flow” by E
N Lorenz.204

The short-range weather forecaster, however, is forced willy-nilly to predict the
details of the large scale turbulent eddies—the cyclones and anticyclones which
continually arrange themselves into new patterns. Thus there are occasions
when more than the statistics of irregular flow are of very real concern.

204J Atmos Sci., 20, 130 (1963).

https://www.youtube.com/watch?v=aAJkLh76QnM&frags=pl%2Cwn


19. LECTURE 19. LORENZ SYSTEM: INTRODUCTION 229

As a system to study Lorenz chose a fluid layer heated from below (the Rayleigh-
Benard convection problem):

Rayleigh (1916) studied the flow occurring in a layer of fluid of uniform depth
𝐻, when the temperature difference between the upper and lower surfaces is
maintained at a constant value Δ𝑇 . Such a system possesses a steady-state
solution in which there is no motion, and the temperature varies linearly with
depth. If this solution is unstable, convection should develop: In the case where
all motions are parallel to the 𝑥𝑧-plane, and no variations in the direction of
the 𝑦-axis occur, the governing equations may be written (see Saltzman, 1962):

𝜕

𝜕𝑡
∇2𝜓 = −𝜕(𝜓,∇

𝑠𝜓)

𝜕(𝑥, 𝑧)
+ 𝜈∇4𝜓 + 𝑔𝛼

𝜕𝜃

𝜕𝑥
. (19.1)

𝜕

𝜕𝑡
𝜃 = −𝜕(𝜓, 𝜃)

𝜕𝑥, 𝑧)
+

Δ𝑇

𝐻

𝜕𝜓

𝜕𝑧
+ 𝜅∇2𝜓. (19.2)

Here 𝜓 is a stream function for the two-dimensional motion, 𝜃 is the departure of
temperature from that occurring in the state of no convection, and the constants
𝑔, 𝛼, 𝜈, and 𝜅 denote, respectively, the acceleration of gravity, the coefficient of
thermal expansion, the kinematic viscosity, and the thermal conductivity.

Here, let us try to understand Saltzman’s equation from basic physics.

19.2 Saltzman’s equation205

For the system considered in 19.1 the basic equations are the incompressible
Navier-Stokes equation

𝜕

𝜕𝑡
𝑣 + (𝑣 · ∇)𝑣 = −∇𝑃 + 𝑔𝛼𝑇𝑒𝑧 + 𝜈∇2𝑣 (19.3)

with ∇ · 𝑣 = 0 and the equation governing the thermal advection for 𝑇 (tem-
perature departure)

𝜕

𝜕𝑡
𝑇 + (𝑣 · ∇)𝑇 = 𝜅∇2𝑇. (19.4)

From (19.3) we can derive the vorticity equation (vorticity 𝜔 = curl𝑣) as

𝜕𝜔

𝜕𝑡
+ (𝑣 · ∇)𝜔 = (𝜔 · ∇)𝑣 + 𝑔𝛼

𝜕𝑇

𝜕𝑥
+ 𝜈∇2𝜔. (19.5)

205B. Saltzman, “Finite amplitude free convection as an initial value problem-I,” J. Atmos. Sci.,
19, 329 (1962). From the Acknowledgement of Lorenz’s paper, “The writer is indebted to Dr.
Barry Saltzman for bringing to his attention the existence of nonperiodic solutions of the convection
equations.”
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Here, we assume the flow is translationally symmetric along the 𝑦-axis, so
𝑣 = (𝑢,𝑤) is a 2-vector. The incompressibility means there is 𝜓 (streaming
function) such that curl𝜓 = (𝑢,𝑤)206

𝑢 = −𝜕𝜓
𝜕𝑧
, 𝑤 =

𝜕𝜓

𝜕𝑥
. (19.6)

The vortex equation (19.5) reads, since

𝜔 = (0, 𝜕𝑥𝑤−𝜕𝑧𝑢, 0) = (0,∇2𝜓, 0), 𝑣·∇(𝐴,𝐵) = −𝜕𝜓
𝜕𝑧

𝜕𝐴

𝜕𝑥
+
𝜕𝜓

𝜕𝑥

𝜕𝐵

𝜕𝑧
=
𝜕(𝐴,𝐵)

𝜕(𝑥, 𝑧)
,

(19.7)
𝜕

𝜕𝑡
∇2𝜓 − 𝜕(𝜓,∇2𝜓)

𝜕(𝑥, 𝑧)
= 𝑔𝛼

𝜕𝑇

𝜕𝑥
+ 𝜈∇4𝜓. (19.8)

Now, 𝑇 = 𝜃+ Δ𝑇
𝐻
𝑧 is introduced to (19.8) and (19.4), and we get the equations

in 19.1.

19.3 ‘Derivation’ of Lorenz equation
Saltzman derived a set of ODE by expanding 𝜓 and 𝜃 in Fourier series. Solving
the ODE (quoted from Lorenz, ibid.):

He then obtained time-dependent solutions by numerical integration. In
certain cases all except three of the dependent variables eventually tended
to zero, and these three variables underwent irregular, apparently nonpe-
riodic fluctuations.

Lorenz then thought that if only the three surviving coefficients are kept from
the start by ‘drastically’ truncating the expansion as

𝑎(1 + 𝑎2)−1𝜅−1𝜓 = 𝑋
√
2 sin(𝜋𝑎𝑥/𝐻) sin(𝜋𝑧/𝐻), (19.9)

𝜋𝑅−1
𝑐 Δ𝑇−1𝜃 = 𝑌

√
2 cos(𝜋𝑎𝑥/𝐻 sin(𝜋𝑧/𝐻)− 𝑍 sin(2𝜋𝑧/𝐻),

(19.10)

the same results should be obtained. The outcome is the Lorenz equation:

𝑋̇ = −𝜎𝑋 + 𝜎𝑌, (19.11)

𝑌̇ = 𝑟𝑋 − 𝑌 −𝑋𝑍, (19.12)

𝑍̇ = 𝑋𝑌 − 𝑏𝑧, (19.13)

206Let 𝜔 = −𝑢𝑑𝑧 + 𝑤𝑑𝑥. Then, incompressibility means 𝑑𝜔 = 0, so the converse of Poincaré’s
lemma (= closedness means exactness) means there is 𝜓 such that 𝜔 = 𝑑𝜓.
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where 𝑟, 𝜎, 𝜏 are positive constants and ‘dot’ means the derivative wrt the di-
mensionless time 𝜏 .207

Remark: How ‘qualitatively’ good is (19.12) for understanding the original
system? This is not a very relevant question in the present conceptual study,
but if you can solve a PDE as a set of a small number of ODEs, it is numerically
still very advantageous. This question is related to various ‘finite dimensional
attractors’ of PDE systems. See (??) as a general approach.

19.4 What Lorenz established
The phase volume of the space spanned by (𝑋, 𝑌, 𝑍) shrinks (i.e., div 𝑣 < 0):

𝜕𝑋̇

𝜕𝑋
+
𝜕𝑌̇

𝜕𝑌
+
𝜕𝑍̇

𝜕𝑍
= −(𝜎 + 𝑏+ 1). (19.14)

The origin is a fixed point. If 𝑟 < 1 it is a sink. Note that 𝑟 = 1 means 𝑅𝑎 = 𝑅𝑐

where the advection starts. If 𝑟 > 1 it is a hyperbolic saddle with one unstable
direction.

For 𝑟 > 1 there are two more fixed points: 𝑋 = 𝑌 = ±
√︀
𝑏(𝑟 − 1), 𝑍 = 𝑟 − 1. If

𝜎 < 𝑏 + 1 they are still sinks (one stable direction + two more stable but spiraling
plane), corresponding to steady convections. If 𝜎 > 𝑏 + 1, then it has a plane of
instability (Fig. 19.1).

Fig. 19.1 What Lorenz observed numerically

Fig. 1. Numerical solution of the convection equations. Graph of 𝑌 as a function of time for the

first 1000 iterations (upper curve), second 1000 iterations (middle curve), and third 1000 iterations

(lower curve).

Fig. 2. Numerical solution of the convection equations. Projections on the 𝑋𝑌 -plane and the

𝑌 𝑍-plane in phase space of the segment of the trajectory extending from iteration 1400 to iteration

1900. Numerals “14,” “15,” etc., denote positions at iterations 1400, 1500, etc. States of steady

convection are denoted by 𝐶 and 𝐶 ′.

Fig. 3. Isopleths of X as a function of Y and Z (thin solid curves), and isopleths of the lower of

two values of X, where two values occur (dashed curves), for approximate surfaces formed by all

points on limiting trajectories. Heavy solid curve, and extensions as dotted curves, indicate natural

boundaries of surfaces.

Let us see the actual solution.
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.

207𝜏 = 𝜋2(1 + 𝑎2)𝜅𝑡/𝐻, 𝜎 = 𝜈/𝜅 (the Prandtl number), 𝑟 = 𝑅𝑎/𝑅𝑐 and 𝑏 = 4/(1 + 𝑎2). 𝑅𝑎 =
𝑔𝛼𝐻3Δ𝑇/𝜈𝜅 is the Rayleigh number, and 𝑅𝑐 = 𝜋4𝑎−2(1 + 𝑎2)2 is the critical Rayleigh number.

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
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Fig. 1

Fig. 2
Fig. 3

Figure 19.1: What Lorenz found numerically [Fig. 1-3 of Lorenz JAS 20 130 (1963).]

html

The initial demo uses the initial conditions in the paper. You can see the solutions
sensitively depend on the initial choices. After that you can choose the intial 𝑥 by
tapping the panel (Fig. 19.2).

As to the global feature about Fig. 3 in Fig. 19.1 Lorenz said:

Thus, within the limits of accuracy of the printed values, the trajectory is
confined to a pair of surfaces which appear to merge in the lower portion of
Fig. 3. The spiral about C lies in the upper surface, while the spiral about C’
lies in the lower surface. Thus it is possible for the trajectory to pass back and
forth from one spiral to the other without intersecting itself.

He observes further

Returning to Fig. 2, we find that the trajectory apparently leaves one spiral only
after exceeding some critical distance from the center. Moreover, the extent to
which this distance is exceeded appears to determine the point at which the
next spiral is entered; this in turn seems to determine the number of circuits
to be executed before changing spirals again.

Therefore, he collected successive local max values {𝑀𝑛} of 𝑍 and plotted 𝑀𝑛+1

against 𝑀𝑛 (Fig. 19.3).

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzdscv.html
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Figure 19.2:

Figure 19.3: Lorenz map [Fig. 4,5 of Lorenz JAS 20 130 (1963).]

Fig. 19.3 Lorenz map

Left: Corresponding values of relative maximum of 𝑍 (abscissa) and subsequent relative maximum

of 𝑍 (ordinate) occurring during the first 6000 iterations. The right figure (the tent map) is proposed

to understand the system conceptually.

Lorenz discussed the sensitive dependence of the system to disturbance with the aid
of the tent map.

In Conclusion of his paper Lorenz writes:

When our results concerning the instability of nonperiodic flow are applied
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to the atmosphere, which is ostensibly nonperiodic, they indicate that pre-
diction of the sufficiently distant future is impossible by any method, unless
the present conditions are known exactly. In view of the inevitable inaccuracy
and incompleteness of weather observations, precise very-longrange forecasting
would seem to be non-existent.

Let us watch a live Lorenz map. You must be a bit patient:
Lorenz map:

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzzmax.

html (Fig. 19.4).

Figure 19.4:

The 𝑟 dependence of the phase portrait discussed a bit above may be glimpsed
from the following panels:

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzpgrd.

html (Fig. 19.5).

19.5 Illustration of Lorenz system behaviors
Now, you can scan 𝑟 to watch what happens (see Fig. 19.6L):

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzphsp.

html

For wider range of 𝑟 (𝑋𝑍-view is popular):
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzr320.

html

You can slide the 𝑟 scale to choose its value, and then tap the panel. The intial

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzzmax.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzzmax.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzpgrd.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzpgrd.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzphsp.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzphsp.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzr320.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lrnzr320.html
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Figure 19.5: “𝜔-limit set(s) may be guessed. You can choose the intial condition on the panel

position is where you tap the panel.

Figure 19.6: Right: wider range.

The following is an interactive visualization in which you can change 𝑟, 𝜎 and 𝑏:
http://www.malinc.se/m/Lorenz.php

You can watch basically all the behaviors in Fig. 19.5. To see how the system at-
tractors evolve you may have to be very patient.

A 3D trajectory is visualized with a stereoplot:
https://www.youtube.com/watch?v=-tpRZCnoih0

Fate of small change in the initial conditions:

http://www.malinc.se/m/Lorenz.php
https://www.youtube.com/watch?v=-tpRZCnoih0
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https://www.youtube.com/watch?v=FYE4JKAXSfY 3 point animation (esp.
after 50 sec)

You can zoom in:
https://www.ibiblio.org/e-notes/webgl/lorenz_model.html

19.6 Physical model mimicking Lorenz
Watch Chaos Chapter 8 beyond about 6 min:

https://www.youtube.com/watch?v=SlwEt5QhAGY&frags=wn

A schematic model is here:
https://www.youtube.com/watch?v=M-94UxoZD2M&frags=pl%2Cwn

19.7 Earth dynamo reversal
The magnetic field of the earth reverses from time to time, and gave a decisive proof
of plate tectonics.

A simple model to explain this reversal is the Rikitake model:
Rikitake, T., Oscillations of a system of disk dynamos, Proc. Cambr. Phil. Soc.,

54 89 (1958).
Tsuneji Rikitake, Nonsteady Geomagnetic Dynamo Models, Geophys J Internat

35 277 (1973).

𝑥̇ = −𝜈𝑥+ 𝑧𝑦, (19.15)

𝑦̇ = −𝜈𝑦 + (𝑧 − 𝑎)𝑥, (19.16)

𝑧̇ = 1− 𝑥𝑦. (19.17)

This system exhibits just the Lorenz-like attractors.

http://demonstrations.wolfram.com/RikitakeModelOfGeomagneticReversal/

What is a lesson to learn as a researcher? Whatever a model or a system you study
is, study it throughly with conceptual questions.

https://www.youtube.com/watch?v=FYE4JKAXSfY
https://www.ibiblio.org/e-notes/webgl/lorenz_model.html
https://www.youtube.com/watch?v=SlwEt5QhAGY&frags=wn
https://www.youtube.com/watch?v=M-94UxoZD2M&frags=pl%2Cwn
http://demonstrations.wolfram.com/RikitakeModelOfGeomagneticReversal/
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Figure 19.7: magnetic reversals recorded near Iceland
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20 Lecture 20. Lorenz system: Advanced top-

ics

20.1 Knotted orbits208,209

Periodic orbits need not be without any knot. The Lorenz model exhibits tons of
such orbits.210

Figure 20.1: Schematic representation of coexisting knotted orbits [Fig. 1.1 of BIRMAN and
WILLIAMS, Topology 22 47 (1983)]

Theorem [Franks and Williams]211A smooth flow on 𝑆3 with positive topological
entropy212 must possess periodic closed orbits in infinitely many different knot type
equivalence classes.

Actually, Ghrist213 proved that there is a structurally stable flow on 𝑆3 that con-

208⟨⟨Knot⟩⟩ A knot is am embedding of 𝑆1 into R3. It is knotted if the image is not homotopic
to 𝑆1.

209Incidentally, if a protein is stretched by pulling both the ends in th opposite direction, generally,
the resultant polypeptide chain should be knotted. It is known that actually, knotted proteins are
very rare.

210JOAN S. BIRMAN and R. F. WILLIAMS, KNOTTED PERIODIC ORBITS IN DYNAMI-
CAL SYSTEMS I: LORENZ’S EQUATIONS, Topology 22 47 (1983).

211J. Franks and R. F. Williams, Entropy and knots, TAMS 291 241 (1985).
212Topological entropy is, practically, the largest KS entropy allowed to the system.
213R. Ghrist, Branched two-manifolds supporting all links, Topology 36 423 (1997).
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tains all knot types as periodic orbits.

If the Lorenz system is periodically perturbed, we can even have links of periodic
orbits.214

20.2 Geometrical Lorenz model215

A very fruitful approach was undertaken, independently, by V. Afraimovich, V.
Bykov, L. Shirnikov [2], and by J. Guckenheimer and R. Williams [3, 4]. Based
on the behavior observed in the previous Lecture (Fig. 20.2 Leftmost216), they ex-
hibited a list of geometric properties such that any flow satisfying these properties
must contain a “strange attractor,”217 with orbits converging to it being sensitive
to initial conditions. Most important for the general theory, they proved that such
flows do exist in any manifold with dimension 3. These examples came to be known
as geometric Lorenz models.

P

foliation

Figure 20.2: Geometric Lorenz model. The return map 𝑃 maps Σ ∖ Γ to Σ. 𝐼 is the bottom
segment (the green segment) of Σ. [Fig. 6, 8 of Viana Math Intel. 22(3) 7 (2000)]

In the above figure 𝛾± (and {𝑂} (fixed point)) combined is the unstable manifold.
The vertical direction is the (strong) stable direction. The weak stable direction is

214Y. Aizawa and T. Uezu, Topological aspects in chaos and in 2𝑘-period doubling cascade, Prog.
Theor. Phys. 67 982 (1982).

215M Viana, “What’s new on Lorenz strange attractors?” Math Intel. 22(3) 7 (2000).
216From https://ubisafe.org/explore/attractor-clipart-lorenz-attractor/.
217Here, the word is merely used to indicate an attracting set containing non-periodic orbits.

https://ubisafe.org/explore/attractor-clipart-lorenz-attractor/
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orthogonal to these manifolds. The stable manifold is spanned by these stable direc-
tions close to 𝑂.

The cross section is in the right of Fig. 20.2. We can define a return map 𝑃 which
is strongly contracting because of (19.14).

For the geometrical model, also the following foliation is assumed for 𝑃 : Σ is fo-
liated roughly transversally to 𝐼 such that 𝑃 is compatible with the foliation. That
is, if 𝑧 and 𝑧′ (̸= 𝑧) are on the same leaf, so are 𝑃 (𝑧) and 𝑃 (𝑧′). Furthermore, the
distance between 𝑃 𝑘(𝑧) and 𝑃 𝑘(𝑧′) shrinks to zero as 𝑘 → ∞. This means a leaf 𝛾1
is mapped inside some leaf 𝛾2. Since we can specify a leaf by its ‘𝑥’ coordinate of the
crossing point with 𝐼, 𝑃 defines a map 𝑓 from 𝐼 into itself: 𝑓 : 𝐼 → 𝐼. We assume

|𝑓(𝑥)− 𝑓(𝑥′)| ≥ 𝜏 |𝑥− 𝑥′| (20.1)

with 𝜏 > 1. The graph of 𝑓 looks like Fig. 20.3 (cf. Fig. 18.11).

Figure 20.3: Interval maps related to the geometrical Lorenz model. Recall Fig. 18.11. [Fig. 10
of Viana Math Intel. 22(3) 7 (2000)]

The existence of a strange attractor containing 𝑂 was proved for the geometric
model. It has a topologically transitive orbit (if 𝜏 >

√
2).

[1] V. S. Afraimovich, V. V. Bykov, and L. P. Shil’nikov. On the appearance and structure of the

Lorenz attractor. Dokl. Acad. Sci. USSR, 234 336 (1977).

[2] J. Guckenheimer and R. F. Williams. Structural stability of Lorenz attractors. Publ. Math.

IHES, 50 59-72 (1979).

[3] R.F. Williams. The structure of the Lorenz attractor. Publ Math. IHES, 50 73 (1979).

20.3 Lorentz attractor exists218

Theorem [Tucker 1998] For the classical parameters, the Lorenz equations (19.12)

218W. Tucker, The Lorenz attractor exists. PhD thesis, Univ. Uppsala, 1998. Text and program
codes available at www.math.uu.se/~warwic/.; W. Tucker, The Lorenz attractor exists. C. R.
Acad. Sci. Paris, 328, Serie I, Mathematique: 1197-1202 (1999).

www.math.uu.se/~warwic/
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support a robust strange attractor.

Tucker’s computer-assisted proof is a combination of two main ingredients:219

(I) He uses rigorous numerics to find a cross-section Σ and a region 𝑁 in Σ such
that orbits starting in 𝑁 always return to it in the future. After choosing reasonable
candidates, Tucker covers 𝑁 with small rectangles, as in Figure 20.4, and estimates
the forward trajectories of these rectangles numerically, until they return to Σ. His
computer program also provides rigorous bounds for the integration errors, good
enough so that he can safely conclude that all of these rectangles return inside 𝑁 .
This proves that the equations do have some sort of attractor.

Figure 20.4: Attractor construction by Tucker [Fig. 4 of of Viana Math Intel. 22(3) 7 (2000)]

(II) Normal form theory comes in to avoid the accumulation of integration errors
when trajectories are close to the equilibrium sitting at the origin.

20.4 Pseudo-orbit tracing property220

Here we consider a map 𝑇 :𝑀 →𝑀 , where𝑀 is a metric space. {𝑥𝑛} is a 𝛿-pseudo-
orbit if

‖𝑇𝑥𝑛 − 𝑥𝑛+1‖ < 𝛿. (20.2)

We say the orbit {𝑇 𝑛𝑥} 𝜀-traces the pseudo-orbit {𝑛𝑛}, if

‖𝑇𝑛𝑦 − 𝑥𝑛‖ < 𝜀. (20.3)

We say 𝑇 has a pseudo-orbit tracing property (POTP), if for any 𝜀 (> 0) we can
find 𝛿 (> 0) such that 𝛿-pseudo-orbit can be 𝜀-traced by an orbit {𝑇 𝑛𝑦}.

219M Viana, “What’s new on Lorenz strange attractors?” Math Intel. 22(3) 7 (2000).
220There is a general theorem that only the B systems can have POTP. That is, only if the system

is very chaotic, POTP holds. [A necessary and sufficient condition for a system to have POTP is
that it is isomorphic to a Markov subshift (Kubo Th 3.16). A Markov subshift is isomorphic to a
Bernoulli shift (essentially the Ornstein theorem to be discussed later).]
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δ-pseudo orbit

ε-tracing orbit

δ

ε

Figure 20.5: A pseudo orbit with a tracing property

This property is practically important. Pseudo-orbit tracing property implies that
for a numerically obtained orbit with error 𝛿 there is a true orbit close to it for all
time. If a system lacks POTP, then it is questionable that numerical simulation can
always tell something correct about the system.

POTP for continuous dynamical system can be defined similarly (actually, the
illustration in Fig. 20.5 is for this case).

We know chaotic billiards have POTP. Thus, if you make a reasonable numerical
simulation, there is a true orbit starting somewhere. However, POTP never guaran-
tees that pseudo orbits correctly sample the true orbits, so if you are interested in
the statistical behavior of chaotic systems, you must not rely on POTP.

20.5 Lorenz system is not 𝜀-traceable
The precise statement is that the geometrical Lorenz model lacks POTP. This is
proved by showing the map 𝑓 : 𝐼 → 𝐼 defined in 20.2 lacks POTP. 𝑓 satisfies (see
Fig. 20.3)

𝑓(𝑐+ 0) = 0, 𝑓(𝑐− 0) = 1, (20.4)

𝑓 ′ > 𝜆 ≥ 1, (20.5)

𝑓(0) < 𝑐 < 𝑓(1), (20.6)

lim
𝑥→𝑐

𝑓 ′(𝑥) → ∞. (20.7)

Theorem [Komuro]221 𝑓 : 𝐼 → 𝐼 has the POTP if and only if 𝑓(0) = 0 and 𝑓(1) = 1.

The above theorem means that

221M. Komuro, Lorenz attractor do not have the pseudo-orbit tracing property, J Math Soc Jpn
37 489 (1985).
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Theorem. Let 𝑀 be a 3-dimensional compact manifold. Then the set of vector
fields with the strong222 POTP is not dense in 𝒳 2(𝑀).

It is worth noting the following empirical fact. Usually, if a system exhibits ‘chaotic
behavior’ in a certain parameter range, increasing the numerical accuracy in simu-
lating the system shrinks the chaotic parameter range. The Lorenz system is known
to be the opposite (at least in certain parameter ranges).223

20.6 Lorenz template
A template is the union of strips, and each strip is a copy of the standard 2-flow box
[0, 1]× [0, 1] with flow parallel to the 𝑧 edge. Where the strips meet, along branches,
the vectors coincide so that a unique semi-flow is determined. The copying home-
omorphism stretches the 𝑥 = 1 end so that the resulting flow, where defined, is
expanding. Two or more of these strips are assembled into a template, so that the
resulting flow is well defined in the positive direction(, but at the branches it is not
well defined for the negative time direction).224

An example is the Lorenz template (Fig, 20.6). We can understand the periodic
orbits of the Lorenz system.

Figure 20.6: Lorenz template [Fig. 2 of Williams BAMS 35 145 (1998)]

In figure 20.6, the template consists of two strips, 𝑥 and 𝑦, so that the flow on the
left side passes around to the left and back down to the branch. Similarly, the flow
on the right passes around to the right behind the strip 𝑥 and back down to the
branch. There is a middle portion at each branch, called a gap, at which the orbits
leave the template. Orbits which leave are no longer of interest to us. Note that the
periodic orbits never leave. The dark horizontal line is a branch; above it two planar

222For time continuous systems monotone time variable change is also allowed for the definition
of POTP. If this time ‘dilation is restricted to the scale range between 1 ± 𝜀 globally, we say it is
the strong POTP. Thus, numerically, we need strong POTP.

223M. Komuro, private communication (1979).
224 R. F. Williams, The universal template of Ghrist, Bull AMS 35 145 (1998).
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pieces come together where they are tangent to each other. Thus each point on a
branch lies in two smooth disks which coincide below the branch, but are disjoint
above. Each branch in a template is homeomorphic to the unit interval [0,1] and
called a branch line.

As can be seen from Fig. 18.10, if there is no gap, the Lorenz template is exactly
the spiral figure in this figure. For example, there is a one-to-one correspondence
between periodic orbits of the two templates.

20.7 Shimada’s Ising representation of Lorenz attractor225

The Lorenz attractor has two wings, so one rotation in one wing is assigned +1 spin
and the other −1 to code the sequence. Since the orbits are deterministic, this coding
may be interpreted as the coding of the initial position:

𝑥→ 𝑠1𝑠2 · · · , 𝑠𝑛 · · · , where 𝑠𝑖 ∈ {−1, 1}. (20.8)

This map can also be understood as a map from 𝑥 to 𝑏 ∈ [0, 1], if we regard (−1 as
0 and +1 as 1 and read the sequence as the binary expansion of a number in [0, 1])

𝑏 =
∞∑︁
𝑘=1

(︂
𝑠𝑘 + 1

2

)︂
2−𝑘. (20.9)

This is illustrated in Fig. 20.7
The spin configuration converges to a stationary distribution (Fig. 20.8 Left) which

exhibits a self-similar structure due to the translational symmetry (time-stationarity)
of the original system and the coding scheme. We can construct a 1D Ising Hamil-
tonian to reproduce this distribution as

𝐻 = −
∑︁
𝑖,𝑗

𝐽(|𝑖− 𝑗|)𝑠𝑖𝑠𝑗. (20.10)

The coupling constant decays exponentially as in Fig.20.8Right.

The entropy per spin mus t be the KS entropy of the Poincarémap . The lat-
ter may be estimated from the expansion rate of the nearby orbits (= Lyapunov
characteristic number; we will discuss later). Numerically, Shimada confirmed the
agreement.

225I Shimada, Gibbsian distribution on the Lorenz attractor,” Prog Theor Phys 62 61 (1979).
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Figure 20.7: Correspondence 𝑥→ 𝑏 [Fig. 1 of Shimada PTP 62 61 (1979)]

Figure 20.8: Left 9 spin stationary configuration distribution; spin configurations are described
as 𝑏. Right: The coupling constant corresponding to the configurations (𝛾 is our 𝑟) [Fig. 2 of
Shimada PTP 62 61 (1979)]
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20.8 Galerkin method
Reduction of PDE to a finite number of coupled ODEs may be very useful numerically
as well as summarizing the system behavior in a finite dimensional space. A popular
strategy is to use an appropriate orthogonal function set.

Consider a functional equation in a ‘spatial domain’ 𝐷:

𝑑

𝑑𝑡
𝑢 = 𝑁 [𝑢], (20.11)

where 𝑁 is a general nonlinear operator that can contain spatial derivatives. Take
an appropriate orthonormal basis ℬ = {𝜑𝑛(𝑥)} (assumed as a real function set) for
the set of functions on 𝐷 (considered as a Hilbert space). Expand 𝑢 as

𝑢(𝑡, 𝑥) =
∑︁
𝑗

𝑐𝑗(𝑡)𝜑𝑗(𝑥), (20.12)

and introduce it into (20.11)

∑︁
𝑗

𝜕𝑐𝑗
𝜕𝑡
𝜑𝑗(𝑥) = 𝑁

[︃∑︁
𝑗

𝑐𝑗(𝑡)𝜑𝑗(𝑥)

]︃
. (20.13)

Then, project this onto 𝜑𝑘:

𝜕𝑐𝑘
𝜕𝑡

=

∫︁
𝐷

𝑑𝑥 𝜑𝑘(𝑥)𝑁

[︃∑︁
𝑗

𝑐𝑗(𝑡)𝜑𝑗(𝑥)

]︃
. (20.14)

To make this system manageable, we choose a finite subset ℬ′ of ℬ. The resultant
set of (generally nonlinear) ODEs defines a Galerkin approximation to (20.11).226

One practical approach is to Fourier expand physically convenient ON function set
{𝜑𝑘} and use the result to compute (20.14). For example, Yahata used this method
to reduce the Taylor flow problem to 32 dimensions.227

226This is related to the principal component analysis.
227H. Yahata, Temporal Development of the Taylor Vortices in a Rotating Fluid, PTP Supp 64

176 (1978); he chose the number of functions to reproduce experimental results (say, bifurcations
given by Harry Swinney). Some people try to choose ℬ′ (or ℬ) to minimize the errors, but they
actually use heavy numerical solutions. However, you might have to do this optimization for only
one state (or a parameter set) of the system and could use the result for ‘neighbor’ states, so
one-time heavy investment may pay.
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20.9 Use of inertial manifold in conjunction with Galerkin method228

To be added (maybe).

228C. FOIAS, M. S. JOLLY, I. G. KEVREKIDIS, G. R. SELL and E. S. TITI, ON THE COM-
PUTATION OF INERTIAL MANIFOLDS PL A131 433 (1988).
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21 Lecture 21. Strange attractors

21.1 Landau’s view of turbulence
Turbulence in fluid dynamics is a phenomenon in which all the space-time scales
of apparently random fluctuations simultaneously appear in the fluid motion. It
is believed that this is governed by the (incompressible) Navier-Stokes equation, a
deterministic system.229 Naturally, Landau considered the problem as the couplings
between numerous destabilized modes (Fourier components of the velocity vector).
Let 𝐴 be a complex mode. It obeys a time-dependent Landau-Ginzburg equation

𝑑𝐴

𝑑𝑡
= 𝛾𝐴− 𝑎𝐴|𝐴|2 +𝑄, (21.1)

where 𝛾 changes its sign when the mode linearly destabilizes, 𝑎 is a positive constant
and 𝑄 denotes the mode coupling terms. Thus, Landau and many statistical physi-
cists thought the problem is closely related to critical phenomena, only the cascade
of the driving proceed in the opposite direction, from large (stirring scale) to small
(viscous dissipation scale).230 The resultant quasi periodic motion with numerous
modes of different frequencies is Landau’s interpretation of turbulence.

21.2 Ruelle and Takens point of view231

Ruelle and Takens pointed out that quasi periodic motion is not the usual ‘chaotic’
motion we observe in dissipative systems, so Landau’s picture must be wrong. They
pointed out that if the dimension of dynamics is too low, no complicated motion is
generically possible (quoting Peixoto’s theorem which will be discussed later). They
pointed out that in any neighborhood of a parallel flow on 𝑇 4 (i.e., 4 mode quasi
periodic motion) there is a flow with a ‘strange attractor.’232 An example may be

229We will not discuss this equation. Its derivation from particle mechanics is not mathematically
justifiable generally, and we do not know whether the equation is well-posed or not. Furthermore,
its mathematical nature is quite sensitive to seemingly benign modifications. For example, if the
viscosity is velocity gradient dependent (as physically natural), then the unique existence of the
solution of the modified Navier-Stokes equations may be proved almost trivially.

230It turned out that the energy flow in the opposite direction (causing intermittency) turned out
to be crucial as well.

231D Ruelle and F Takens, On the nature of turbulence, CMP 20 167 (1971). D. Ruelle, Chance
tells us that they could not publish the paper (by rejections), so he decided to publish it to the
journal for which he was on the editorial board.

232The original proposal is an attractor that is not a manifold, and its cross section is a Cantor
set.
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constructed as follows.
Make a diffeomorphism that maps a solid 2-torus (donut) into itself as illustrated

in Fig. 21.1.

endomorphism

Figure 21.1:

Then, we can suspend (recall Ambrose-Kakutani 17.2) this diffeomorphism as a flow
in 4-space. By a local surgery of the parallel flow on 𝑇 4, we can embed this sus-
pended flow into the flow on 𝑇 4 smoothly. Notice that this surgery can be as local as
one wishes (i.e., the donut in Fig. 21.1 can be indefinitely small). We may conclude
that in any neighborhood of 𝑇 4 quasi periodic flow is a flow with an attractor that
is neither a fixed point nor a periodic orbit.

21.3 3-flow is enough to have “strange attractors”233

If a surgery of 𝑇 3 parallel flow (3-mode quasi periodic flow) exists, then strange
attractors can exist in 3-space flows. Therefore, to show this, the key point is to
make a 2D ‘analogue’ of Fig. 21.1, say, from a disk into itself. Such a map had been
constructed by Plykin234 (Fig. 21.2235):

233S Newhouse, D Ruelle, and F Takens, Occurrence of strange axiom A attractors near quasi
periodic flows on 𝑇𝑚, 𝑚 ≥ 3, CMP 64 35 (1978).

234R V Plykin Source and sink of A-diffeomorphism of surfaces, Math Sbor 94 233 (1974).
235Newhouse et al., proposed different examples as well in their paper.
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Figure 21.2: Plykin’s map from a disk into itself [Fig. 1 of Plykin S Math Sbor 94 233 (1974) ]

21.4 Can we really find ‘chaos’ indefinitely close to 3 or 4 mode quasiperi-
odic systems?
After reading Ruelle-Takens, I numerically studied whether it is easy to find an ex-
ample, and did not see any positive result (before 1979). Later Grebogi, Ott and
Yorke did an extensive study:236

“The results reported here suggest that if arbitrarily small smooth perturbations
exist which destroy three-frequency quasiperiodicity, then they must have to be very
delicately chosen and are thus unlikely to occur in practice. In particular, we believe
that for a fixed typical.”

21.5 Strange attractors
Here, a definition by Palis and Takens237 is given.

For a diffeomorphism 𝜑 :𝑀 →𝑀 a positive orbit {𝜑𝑛(𝑥)}𝑛∈N (𝑥 ∈𝑀) is sensitive
or chaotic, if there is a positive constant 𝐶 (> 0) such that for any 𝑞 ∈ 𝜔(𝑥) and
for any 𝜀 > 0 ∃𝑛1, 𝑛2, 𝑛 ∈ N+ such that ‖𝜑𝑛1(𝑥) − 𝑞‖ < 𝜀, ‖𝜑𝑛2(𝑥) − 𝑞‖ < 𝜀 and
‖𝜑𝑛1+𝑛(𝑥)− 𝜑𝑛2+𝑛(𝑥)‖ > 𝐶.

A compact set 𝐴 ⊂ 𝑀 is a strange attractor, if there is an open set 𝑈 with a
measure zero subset 𝑁 ⊂ 𝑈 such that ∀𝑥 ∈ 𝑈 ∖ 𝑁 , 𝜔(𝑥) = 𝐴 and its positive orbit

236C Grebogi, E Ott and J A Yorke, Are Three-Frequency Quasiperiodic Orbits to Be Expected
in Typical Nonlinear Dynamical Systems?, PRL 51 339 (1983)

237J Palis and F Takens, Hyperbolicity & sensitive chaotic dynamics at homoclinic bifurcations
(Cambridge studies in advanced mathematics 35, Cambridge UP, 1993) p8-9. A more general
discussion can be found in Section 7.2 of this book.
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is chaotic.238

Perhaps, however, Bunimovich’s definition may be easier to understand, although
he does not call it a strange attractor and his definition is measure-theoretic:
(1) An invariant set 𝐴 is an attractor, if there exists a neighborhood 𝑈0 of 𝐴 (⊂ 𝑈0)
such that 𝑈𝑡 = 𝑇𝑡𝑈0 ⊂ 𝑈0 for 𝑡 > 0 and ∩𝑡𝑈𝑡 = 𝐴.
(2) For any absolutely continuous measure 𝜇0 on 𝑈0, its time evolved version 𝜇𝑡
weakly converges to an invariant measure 𝜆 on 𝐴 that does not depend on 𝜇0, and
{𝑇𝑡, 𝜆, 𝐴} is mixing.

238That is, almost surely the points in 𝑈 are attracted to 𝐴, and their orbits are chaotic. The
exception set 𝑁 is required because even for hyperbolic attractors dense set of points are attracted
to periodic orbits.
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22 Lecture 22. Interval maps

22.1 Interval maps = interval endomorphism
Let 𝐼 be an interval (often closed). A map 𝑓 : 𝐼 → 𝐼 is called an interval map, or
an interval endomorphism. Starting from 𝑥 ∈ 𝐼, we can define (at least a one-sided)
sequence {𝑓𝑛(𝑥)}𝑛∈N.footnote𝑓𝑛(𝑥) = (𝑓 ∘ 𝑓 ∘ · · · ∘ 𝑓)(𝑥) = 𝑓(𝑓(𝑓 · · · (𝑓(𝑥)) · · ·)).
𝑛 𝑓 ’s show up in each expression. We have already encountered with a nontrivial
examples in Figs. 18.12, 19.4 and 20.3. In these cases the relations of these maps
to the original higher dimensional (often time continuous) systems are ‘natural’ (not
very artificially contrived), so from the maps we can learn a lot about the original
systems as Lorenz demonstrated.

The word ‘chaos’ was introduced into mathematics (and subsequently into physics)
by Li and Yorke (see 22.2). The simplest nontrivial example may be 𝑥𝑛+1 = 2𝑥𝑛
(mod 1) defined on [0, 1] (see 22.4).

Utida239 used such a discrete systems to describe the population dynamics of
insects (although empirically ‘cyclic fluctuations’ were observed, no simulation results
were reported):

𝑃𝑛+1 = 𝑃𝑛

(︂
1

𝑏+ 𝑐𝑃𝑛
− 𝜎

)︂
, (22.1)

where 𝑃𝑛 is the population of the generation 𝑛 and 𝑏, 𝑐, 𝜎 are non-negative param-
eters. The existence of complicate behavior in nonlinear difference equations was
reviewed by May240, who discussed

𝑃𝑛+1 = 𝜆𝑃𝑛(1 + 𝑃𝑛)
−𝛽 (22.2)

and compared with some experimental and observational results (Fig. 22.1).

239S Utida, Population fluctuation, an experimental and theoretical approach, Cold Spring Harbor
Symposia on Quantitative Biology, 22 139 (1957).

240RMMay Simple mathematical models with very complicated dynamics, Nature 261 459 (1976)
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Figure 22.1: The solid lines demarcate the stability domains for the density dependence param-
eter 𝛽 and the population growth rate 𝜆 in (22.2); the dashed line shows where 2-point cycles give
way to higher cycles of period 2𝑛. The solid circles come from analyses of life table data on field
populations, and the open circles from laboratory populations [Fig. 6 of May N 261 459 (1976)]

22.2 Period three implies ‘chaos’241

Stimulated by Lorenz’s map 19.3, Li and Yorke proved the following famous theorem.
Theorem. Let 𝐽 be an interval and let 𝐹 : 𝐽 → 𝐽 be continuous. Assume there is
a point 𝑎 ∈ 𝐽 for which the points 𝑏 = 𝐹 (𝑎), 𝑐 = 𝐹 2(𝑎) and 𝑑 = 𝐹 3(𝑎), satisfy

𝑑 ≤ 𝑎 < 𝑏 < 𝑐 (or 𝑑 ≥ 𝑎 > 𝑏 > 𝑐).

Then

T1: for every 𝑘 = 1, 2, · · · there is a periodic point in 𝐽 having period 𝑘.

Furthermore,

T2: there is an uncountable set 𝑆 ⊂ 𝐽 (containing no periodic points), which satisfies
the following conditions:
(A) For every 𝑝, 𝑞 ∈ 𝑆 with 𝑝 ̸= 𝑞,

lim sup
𝑛→∞

|𝐹 𝑛(𝑝)− 𝐹 𝑛(𝑞)| > 0 (22.3)

and
lim inf
𝑛→∞

|𝐹 𝑛(𝑝)− 𝐹 𝑛(𝑞)| = 0. (22.4)

241T-Y Li and J A Yorke, Period three implies chaos. Amer Math Month 82 985 (1975).
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(B) For every 𝑝 ∈ 𝑆 and periodic point 𝑞 ∈ 𝐽 ,

lim sup
𝑛→∞

|𝐹 𝑛(𝑝)− 𝐹 𝑛(𝑞)| > 0. (22.5)

The authors added:
REMARKS. Notice that if there is a periodic point with period 3, then they will be
satisfied.

The uncountable set 𝑆 is called a ‘scrambled set.’ Their definition of chaos is the
existence of a scrambled set:

A system exhibits the Li-Yorke chaos, if the system has a scrambled set.

We know 𝑆 is generally non-measurable, and if measurable, it is measure zero
(i.e., the inner measure of 𝑆 is always zero).242

Thus, observable chaos (numerically detectable chaos) cannot be characterized as
LI-Yorke chaos. Therefore, in these lecture notes, we do not demonstrate the theo-
rem and will adopt a more natural definition of chaos.

22.3 Observability
Definition [Observability] We say a set 𝐵 is observable with respect to a given dy-
namical system (𝑓,𝑀), if the totality of the points on the trajectories that can reach
𝐵 has a positive Lebesgue measure. In other words, 𝐵 is observable, if 𝐵 has a basin
with a positive Lebesgue measure or the set {𝑥 : ∃𝑛 ≥ 0, 𝑓𝑛(𝑥) ∈ 𝐵, 𝑥 ∈ Γ} has a
positive Lebesgue measure.

In short, if you throw at the collection of what you wish to observe, and if you
can hit what you wish to see with a finite probability, it is observable.

242Y Baba, I Kubo and Y Takahashi, Li-Yorke’s scrambled sets have measure zero, Nonlinear
Anal 25 1611 (1996). Smital [A chaotic function with some extremal properties, PAMS 87 54
(1983)] constructed a scrambled set 𝑆 of outer measure 1 for the tent map and mentioned also that
measurable scrambled sets have measure zero for this case.

If a map is only continuous (not differentiable), then there are examples of scrambled sets that
are measurable and with positive measure: see, for example, I. Kan, “A chaotic function possessing a
scrambled set with positive Lebesgue measure,” Proc. Amer. Math. Soc. 92, 45 (1984) or J. Smital,
“A chaotic function with a scrambled set of positive Lebesgue measure,” Proc. Amer. Math. Soc.
92, 50 (1984).
V. J. Lopez, “Paradoxical functions on the interval,” Proc. Amer. Math. Soc., 120, 465 (1994)
proves the following: If a map 𝑓 from an interval 𝐼 to 𝐼 is expansive, then the dynamical system
cannot have a measure positive scrambled set. However, if in 𝐼×𝐼, 𝑥 and 𝑦 are both in the scrambled
set, then the totality Ch(𝑓) of {𝑥, 𝑦} is always measurable. Furthermore, if 𝑓 is expansive and its
derivative is piecewisely Lipshitz, then Ch(𝑓) has a positive measure.
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22.4 The simplest genuine chaotic dynamical system243

The purpose of this unit is to give a preview and outline of our logic with the aid of
perhaps the simplest example of chaos.

A map 𝑇 from [0, 1] into itself is defined as

𝑇𝑥 = 2𝑥 mod 1. (22.6)

If we use the symbol {𝑟} that extracts the fractional part of a real number 𝑟, we
may write 𝑇𝑥 = {2𝑥} (i.e., multiply 2 and then remove the integer part). Important
points are summarized in Fig. 22.2.
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Figure 22.2: A simple map 𝑇𝑥 = {2𝑥} that produces chaos.

Fig. 22.2 A simple map 𝑇𝑥 = {2𝑥} that produces chaos

A: ⟨⟨How to chase history graphically⟩⟩ A method to chase the trajectory which is determined

by the initial condition 𝑥0 on the graph is illustrated. The broken line diagonal denotes 𝑦 = 𝑥

where the values on the horizontal and vertical axes coincide. Oblique thick parallel lines denote

the graph of 𝑦 = 𝑇𝑥. If an initial condition 𝑥0 is given on the horizontal axis, look vertically

upward to find the point on the graph of 𝑇 . Its vertical coordinate is 𝑥1. To find 𝑥2, we must find

𝑥1 on the horizontal axis, and then 𝑇𝑥1 = 𝑥2 may be obtained just as before. To this end, with

the aid of the diagonal, we can fold the vertical axis onto the horizontal axis and locate 𝑥1 on the

latter. Therefore, if we chase the vertical or horizontal lines with an arrow we can successively find

𝑥2, 𝑥3, · · ·.
B: ⟨⟨Exponential separation of nearby trajectories⟩⟩ Doubling of the gap is shown due to each

243YO TNW Appendix 2.1A
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application of 𝑇 between the gray and black trajectories that are initially very close. The positions

after 6 applications of 𝑇 are denoted by the gray and black small disks on the horizontal axis.

C: ⟨⟨Coding of trajectory⟩⟩ How to convert a trajectory into a 01 symbol sequence is illustrated.

The interval [0, 1] is divided into two and each is named [0] or [1]?[0] is further subdivided into [00]

and [01]. 𝑇 maps [00] onto [0] and [01] onto [1]. If the subdivision of [10] is named [100] or [101]

as in the figure, 𝑇 maps [100] onto [00] and [101] onto [01]. If we recursively use this prescription,

each point in [0, 1] becomes correspondent to a particular 01 infinite sequence. This is nothing but

the binary expansion of a number in [0,1] (however, [111· · ·] is not identified with [0]).

⟨⟨History is determined by initial condition⟩⟩ If an initial condition is given,
an indefinitely long sequence {𝑥𝑛} may be constructed as 𝑥1 = 𝑇𝑥0, 𝑥2 = 𝑇𝑥1 =
𝑇 2𝑥0, · · ·; the future is perfectly determined by 𝑥0. How to chase this trajectory
graphically is illustrated in Fig. 22.2A.

⟨⟨Chaos directly connects the unknown world to our world⟩⟩ Fig. 22.2B il-
lustrates how chaos expands the world of microscopic scales and connect it to the
world we can directly observe. In this example, the microscopic world is doubled
every time 𝑇 is applied. Therefore, although the system we consider at present is a
deterministic system, we lose our predictive power. Roughly speaking, for large 𝑛 𝑥𝑛
becomes indistinguishable from a random number.

⟨⟨Coding trajectories or correspondence to number sequence⟩⟩ To see the
random nature of chaotic trajectories more explicitly, their discrete coding 𝑠0, 𝑠1, · · ·
is introduced in terms of symbols 𝑠𝑛 that take 0 or 1. It is a rather obvious trans-
formation in this case; the interval [0, 1] is divided into two intervals, [0, 1/2] and
(1/2, 1], and we call them, [0] and [1], respectively. Generally, [𝑠0𝑠1, · · · 𝑠𝑛] is defined
as a set {𝑥 : 𝑇 𝑘𝑥 ∈ [𝑠𝑘] for 𝑘 = 0, · · ·𝑛}, where 𝑠𝑘 are 0 or 1. In Fig. 22.2C,244 we
see that if we apply 𝑇 once to the interval, say, [011], it is mapped onto [11].
One more application of 𝑇 to it coincide [1] (it is easy to see this, if we chase the end
points as explained in Fig. mod2mapA). That is, [011] is a bundle of trajectories for
which 𝑥0 is in [0], 𝑥1 is in [1] and 𝑥2 is in [1] (Such a bundle of trajectories is called
a cylinder set.).

⟨⟨How prediction becomes difficult⟩⟩ If we follow the way to construct small
intervals in Fig. 22.2C, we see that, for example, the bundle of trajectories named
as [0011010011] (there are 10 digits) is mapped by 𝑇 successively as [011010011] →
[11010011] → [1010011] → [010011] → [10011] → · · · → [011] → [11] → [1](digits are
lost one by one from the left end). One more application of 𝑇 makes the trajectories
‘all over’ [0, 1]. The lesson we have learned is that even if the initial condition is in

244The reader might worry about to which interval the boundary points belong, but in this
example, no careful assignment of symbols is important.
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the interval [0011010011] of width 1/210 ∼ 10−3, after 10 consecutive 𝑇 map applica-
tions we will totally lose the location information. Perhaps, the reader might guess
that we will do much better if we specify the initial point (the cylinder set) more
accurately. If we wish to keep some knowledge of the initial position for 20 seconds,
we need the accuracy of unrealistic 1/220 ∼ 10−6. In short, sooner or later we will
fail to predict the behavior of the system.
Even if we fail to make any prediction, it does not imply the end of the world. Be-
yond the predictable time range what determines 𝑥𝑛? The system is deterministic,
so it is determined by the far right portion of the 01 sequence obtained by coding
of the initial condition, which we can never know beforehand. Isn’t it virtually the
same as an arbitrary 01 sequence? Then, after a while, chaotic behavior would be
indistinguishable from the head-tail sequence obtained by tossing a coin. This is the
intuitive meaning of the definition of chaos given later.

⟨⟨Chaos is a random deterministic behavior⟩⟩ After all, it is a natural idea
that the essence of chaos is randomness with a tint of initial condition effects due to
determinism. However, without carefully reflecting on the concept of randomness,
we cannot express this intuition precisely. After a rather ‘heavy’ preparation, even-
tually we will arrive at the conclusion that chaos is a phenomenon that deterministic
trajectories exhibit randomness.

⟨⟨Quantitative correspondence of chaos and randomness⟩⟩ The reader may
think the above argument provides only a qualitative characterization of chaos. How-
ever, there is a way to quantify randomness, which allows us to make a quantita-
tive correspondence between chaos and randomness. This quantification is realized
through quantifying the needed information to predict the future with a predeter-
mined fixed accuracy. This is not hard in terms of the model being considered. How
the information we know at the initial time becomes insufficient to describe the sys-
tem behavior can be seen almost explicitly from Fig. 22.2C and loss of digits from
the ‘cylinder sets’ due to the application of 𝑇 . The information is lost by 1 bit every
time 𝑇 is applied. Suppose we wish to predict the position of the point at time
𝑡 in the future with the same accuracy we describe the system now (𝑡 = 0). The
information we must prepare now increases by 1 bit, if we push the future time 𝑡
further to 𝑡 + 1. The increasing rate of the needed information (1 bit per unit time
in the present example) is called the Kolmogorov-Sinai entropy (already discussed
informally). On the other hand, to describe an arbitrary 01 sequence we of course
need 1 bit per digit. That is, the needed information to describe a trajectory is 1
bit per unit time. This equality of the amounts of information needed to predict
the future and to describe the trajectory is a general assertion of Brudno’s theorem
(24.4). Thus, we may conclude that our definition of chaos is right on the mark.
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22.5 Chaos in the logistic map
The logistic map: [0, 1] → [0, 1] is given by

𝐹 (𝑥) = 4𝑥(1− 𝑥). (22.7)

We can define a dynamical system on [0, 1] as 𝑥𝑛+1 = 𝐹 (𝑥𝑛). Run the system for
some intial conditions 𝑥0. You will find quite erratic sequences {𝑥𝑘}∞𝑘=0.

There is a very important warning: whether we can have an explicit analytical
expression for 𝑥𝑛 as a function of 𝑥0 and 𝑛 and whether the system exhibits chaotic
behaviors are generally not logically related. Indeed, for the logistic map we have an
explicit formula

𝑥𝑛 = sin2[2𝑛Arcsin
√
𝑥0]. (22.8)

You might think that these sequences can be predicted for any far future time thanks
to such analytic expressions, but try to evaluate this for three digits with 𝑛 = 100.

There are many other examples.245

22.6 Coin-tossing, deterministic or not
Throwing a coin many times, we can construct a sequence of heads and tails. If we
denote ‘head’ by 1 and ‘tail’ by 0, we have a 01 sequence. In this case, the phase space
is Γ = {0, 1} and the time set is 𝑇 = N+ ≡ {1, 2, · · ·} (i.e., discrete). As its path
space Ω we may choose the totality of one-sided 01 infinite sequences Ω = {0, 1}N+

,
because heads and tails can appear in any order. The resultant dynamical system
(𝜎,Ω) is called the coin-tossing process. Let 𝜔 ∈ Ω. If 𝜔(𝑛) happens to be 0, this
implies that the 𝑛-th outcome is a tail. Even if we know a history of this system
up to time 𝑛: 𝜔(1), · · · , 𝜔(𝑛), no one can predict anything beyond. Therefore, “the
system is not deterministic.”

22.4 already mentioned that the sequences we can get from ‘the simplest’ chaotic
map 𝑇𝑥 = {2𝑥} correspond (one-to-one) to all the possible outcomes of a ‘coin toss-
ing process.’ You might say one is deterministic, and the other stochastic. However,
there is a basic question: Can you distinguish deterministic and non-deterministic
systems from their trajectories alone?

It is possible to regard the difference between the deterministic and non-deterministic
dynamical systems is due to the difference of view points. Take a discrete dynami-
cal system (one-sided), whose history starting from 𝜔(0) 𝜔 ∈ 𝒟 may be written as

245K. Umeno, “Method of constructing exactly solvable chaos,” Phys. Rev. E 55, 5280 (1997).
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𝜔(0)𝜔(1)𝜔(2) · · ·. 𝜔(𝑡) is the state at time 𝑡. In our simplest example. The whole se-
quence 𝜔(0)𝜔(1)𝜔(2) · · · is just the binary expansion of the initial position 𝑥 ∈ [0, 1],
perfectly deterministic, although, of course, you cannot tell even 𝜔(1) from 𝜔(0)
alone.

Now, let us define the shift operator (or simply, shift) 𝜎 : 𝒟 → 𝒟 as

(𝜎𝜔)(𝑡) = 𝜔(𝑡+ 1). (22.9)

The shift is a vehicle to experience the history in the chronological order. Suppose,
for example, the phase space is Γ = {0, 1} and its one possible history 𝜔 starting
from 𝜔(0) = 0: 001010011101001101 · · ·, where the leftmost number is interpreted
as the state we observe at present. Its time evolution is

𝜔 = 001010011101001101 · · · (22.10)

𝜎𝜔 = 010100111010011010 · · · (22.11)

𝜎2𝜔 = 101001111100110101 · · · . (22.12)

The currently observed state evolves step by step. The state 𝜔(𝑡 + 1) may not be
determined by the states up to time 𝑡: · · · , 𝜔(𝑡− 1), 𝜔(𝑡), so for the observer who is
observing the current and the (recorded) past states only the system behavior does
not look deterministic.

Instead of interpreting the shift as a vehicle to experience a history chronologically,
however, if we interpret 𝜔 as a whole history (chronicle), the shift maps one chronicle
to another: 𝜎𝜔 = 𝜔1, where 𝜔1 gives the chronicle one time unit ahead of 𝜔; indeed,
for all time 𝑡 ∈ 𝑇 𝜔1(𝑡) = 𝜔(𝑡 + 1). 𝜎 is understood as a map from 𝒟 into itself;
it defines a discrete dynamical system on the path space: (𝜎,𝒟). (22.10)-(22.12)
illustrated its time evolution. Here, we observe the history not around present, but
observe histories from God’s point of view. Notice that 𝜔 completely determines 𝜔1.
The dynamical system (𝜎,𝒟) is obviously deterministic.

22.7 Actual coin tossing
J. STRZALKO, J. GRABSKI, A. STEFANSKI, P. PERLIKOWSKI AND T.
KAPITANIAK, Understanding coin-tossing, Math Intel 32(4), 54 (2010) illus-
trates the basin of attraction of the actual coin.

Fig. 22.3 Basins of attraction indicating the face of the coin which is up after the n-th col-

lision: (a) n = 0, (b) n = 3, (c) n = 10, heads and tails are indicated in black and white,

respectively. The initial conditions are 𝑥0 = 𝑦0 = 0; 𝑥̇0 = 𝑦̇0 = 𝑧̇0 = 0; 𝜙0 = 𝜓0 = 0; 𝜃0 = 7

deg, 𝜔𝜁0 = 0, 𝜔𝜂0 = 40.15 rad/s.

Right: 3-dimensional model of the coin and its orientation in space.
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Figure 22.3: [Fig. 1,3 of STRZALKO et al., Math Intel 32(4), 54 (2010)]

22.8 No true randomness without quantum mechanics?
As you have realized, the randomness in a deterministic systems is totally in
the initial conditions. Therefore, whether we can sample the intial condition
‘totally randomly’ or not is a crucial question as to the (un)predictability of
chaos. Some people246 assert that without quantum mechanics (so, essentially,
the Born rule) there cannot be any true randomness.

Is this assertion meaningful?

22.9 Use of ‘symbolic dynamics’
As we will discuss later we study a dynamical system with the aid of a certain cod-
ing system for the system *(called a symbolic dynamics). {𝜎, {0, 1}} is the symbolic
dynamical expression (in this case very faithful: isomorphic) of {𝑇, [0, 1]}, where
𝑇𝑥 = {2𝑥}. Thus, we study symbol sequences, so the relevance of information coded
in the history is obvious. In our simple example, all the symbols are equally proba-
ble, so are all the words (finite sequences of symbols). However, this is not generally
the case, so we must consider ‘natural’ probabilities associated with words. Thus,
we are injecting a new ingredient in our study of nonlinear systems, measures.

22.10 Definition of chaos247

Let 𝑓 be a map from the phase space 𝑀 into itself (i.e., an endomorphism of Γ).248

246For example, T. Sagawa (of (quantum) information thermodynamics). When I heard this
assertion from him for the first time, I thought it is a deep idea. Is it really so?

247The following several units are taken from TNW Chapter 2.
248In this definition, maps are not understood measure-theoretically; they are pointwise transfor-
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Choose 𝑛 ∈ N and construct 𝑓𝑛 that applies 𝑓 𝑛-times,249 and restrict it to its
invariant set 𝐴 ⊂𝑀 (𝑓−𝑛(𝐴) = 𝐴). If it is isomorphic to the shift dynamical system
(𝜎, {0, 1}N), then we say the dynamical system (𝑓,𝑀) exhibits chaos (or the system
is chaotic). That is, if 𝜙 is a one to one map and the following diagram becomes
commutative,250 we say the dynamical system (𝑓,𝑀) exhibits chaos.

𝐴
𝑓𝑛−→ 𝐴⎮⎮⌄𝜙 ⎮⎮⌄𝜙

{0, 1}N 𝜎−→ {0, 1}N

In words, if an appropriate one-to-one coding scheme 𝜙 of points (i.e., states) in 𝐴
(we can decode uniquely the sequences) allows to transform the original dynamical
system (restricted to 𝐴) into the full shift on two symbols, we say the dynamical
system is chaotic.

Roughly speaking, if the behavior of a dynamical system (restricted on an invari-
ant set) is coded with symbols 0 and 1, and the result cannot be distinguished from
the totality of the outcomes of the coin-tossing process, we wish to say the system
is chaotic or is a chaotic dynamical system.

A continuous time dynamical system is chaotic, if a discrete dynamical system
constructed from the original system in a ‘natural’ fashion is chaotic in the above
sense.

The chaos defined here is sometimes called formal chaos, because there is no
guarantee of its observability 22.3. For chaos of one-dimensional map systems, the
observability of chaos and the existence of an absolutely continuous invariant mea-
sure seem to be equivalent.

22.11 How good is the definition of chaos given above?
It is not easy to find criteria for a definition to be good, but consistency with in-
tuition, close connection to fundamental concepts, equivalence to definitions based
on very different points of view, etc., may be counted among them. Our definition
relies on our intuition: as long as we assume that “(apparent) random behavior is
fundamentally important characteristic of chaos,” consistency with intuition is built
into the definition. Randomness must be a fundamental concept, so the definition

mations.
249𝑓𝑛(𝑥) = (𝑓 ∘ 𝑓 ∘ · · · ∘ 𝑓)(𝑥) = 𝑓(𝑓(𝑓 · · · (𝑓(𝑥)) · · ·)). 𝑛 𝑓 ’s show up in each expression.
250This means in the present context that the results obtained by following various combinations

of arrows never yield different results.
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has a close connection with a fundamental concept. This can be seen further from
the theorem we demonstrate later. It is also important to check the consistency and
relations with other definitions of chaos to confirm the naturalness of the definition.

22.12 Sensitive dependence on initial conditions
As can be seen from (22.8) and as emphasized by Ruelle, Guckenheimer251 and oth-
ers, magnification of small effects was regarded as a fundamental significance of chaos
(the “butterfly effect”). Intuitively, this is easy to understand in terms of (one-sided)
shifts, because, in contrast to the digits on the far right that describes minute differ-
ences in states, the digits near the left end correspond to global differences. Thus,
movement of the digits to the left by shift corresponds to magnification of small
structures. Two initial states whose codes are different only in digits on the far right
are very close in the phase space, and time evolution magnifies the difference.

Sensitive dependence on initial conditions, however, does not necessarily imply
that the dynamical system is chaotic. This must be obvious to those who know the
roulette; the ball jumps around awhile, but eventually it settles down to a fixed point
(the system is a multiply stable system). If several attractors coexist, the ultimate
fate of the system is determined by which basin its initial condition lies. Even if the
long-time (eventual) behavior of the system is not chaotic, if the boundaries between
basins are extremely complicated, then sensitive dependence on initial conditions can
exist.252 Obviously, roulettes, dice, and coins must be (at least approximately) such
systems. Sensitive dependence on initial conditions is not enough to characterize
chaotic dynamical behavior.253

22.13 Apparently different definitions of chaos
S.-H. Li proposed a revised version of scrambled set called 𝜔-scrambled set to
make the Li-Yorke chaos equivalent to our chaos.254

The most popular definition of chaos at present may be due to Devaney.255

If we take into account S.-H. Li’s result,256 this definition may be stated as

251J. Guckenheimer, “Sensitive dependence on initial conditions for one-dimensional maps,” Com-
mun. Math. Phys., 70, 133 (1979).

252See, for example, H. E. Nusse and J. A. Yorke, “Basin of attraction”, Science 271, 1376 (1996).
253However, if we require sensitivity to perturbation at most instants may characterize chaotic

systems.
254S.-H. Li, “𝜔-chaos and topological entropy,” Trans. Amer. Math. Soc. 339, 243 (1993).
255R. Devaney, An introduction to chaotic dynamical systems (Benjamin/Cummings, 1986).
256S.-H. Li, “Dynamical properties of the shift maps on the inverse limit space,” Ergodic Theor.

Dynam. Syst. 12, 95 (1992). See also J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, “On
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follows. Let (𝑓,𝑋) be a discrete time dynamical system, and 𝐷 (⊂ 𝑋) be a
closed invariant set (i.e., 𝑓−1(𝐷) ⊃ 𝐷). If the following two conditions hold,
the dynamical system exhibits chaos.
(D1) 𝑓 |𝐷 (the restriction of 𝑓 to 𝐷) is topologically transitive on 𝐷 (i.e, 𝑓 |𝐷 is
surjective on 𝐷 and has an orbit dense in 𝐷),
(D2) The totality of the periodic orbit of 𝑓 is dense in 𝐷.
𝐷 is called a chaos set. The set 𝐴 in 22.10 is a chaos set. S.-H. Li showed the
equivalence of this definition and our definition, if the phase space is a compact
metric space.

Already in 1968257 Alekseev defined quasirandom dynamical systems in terms
of a Markov chain with a positive Kolmogorov-Sinai entropy. It is an example
that Russian dynamical systems study was far ahead of the Western counter-
part (actually, the use of entropy to classify dynamical systems was the Russian
starting point of the ‘modern’ dynamical systems study). The term ‘chaos’ may
have been good for popularization of the concept, but the term ‘quasirandom’
summarizes the essence.

22.14 Period ̸= 2𝑛 implies chaos
Theorem258 Let 𝐼 be a finite interval and 𝐹 : 𝐼 → 𝐼 be a continuous endomorphism.
𝐹 exhibits chaos if and only if 𝐹 has a periodic orbit whose period is not equal to
the power of 2.

Remark We have already mentioned the Li-Yorke chaos 22.2, but the chaos in the
above theorem is distinct from the Li-Yorke chaos. The most important distinc-
tion is, as note below, with slight weakening of the ‘one-to-one’ correspondence with
𝐴 chaotic behaviors are observable; we can choose the set 𝐴 in 22.10 observable
(e.g., measure positive). That is, in contradistinction to Li-Yorke chaos whose ‘core
feature’ = the scrambled set is never observable, our chaos is closely tied to observ-
ability, when chaos is observable. We can show that if the system is chaotic in our

Devaney’s definition of chaos,” Am. Math. Month. 99, 332 (1992). In the latter 𝑋 need not be
bounded.

257[1968: Prague Spring, The Tet Offensive, Down to the Countryside Movement, Nuclear non-
proliferation treaty, Assassinations of Rev. M. L. King and Senator R. F. Kennedy.]

258Y. Oono, Period ̸= 2𝑛 implies chaos, Prot. Theor. Phys., 59, 1029 (1978). “In the present
Letter, we give another definition of chaos which is not directly related to the nonperiodicity of
the solution, and sketch the proof of the theorem asserting that period other than 2” implies chaos
(Theorem 1). The assertion also holds even if the definition of chaos by Li, Yorke and Nathanson
[J. Combinatorial Theor. (A) 22 61 (1977)] is adopted (Theorem 2).” However, the proof in this
letter is not very elegant.
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sense, the system is also Li-Yorke chaotic, BUT the converse is not generally true.
Furthermore, even when chaos is observable, it is not on the scrambled set.

We will show the following theorem:

22.15 General theorem for chaos of 𝐶0-endomorphisms of intervals
Theorem259 Let 𝐼 be a finite interval and 𝐹 : 𝐼 → 𝐼 be a continuous endomorphism.
Then, the following (1)-(4) are equivalent.260

(1) 𝐹 exhibits chaos.
(2) 𝐹 has a periodic orbit whose period is not equal to the power of 2.
(3) There is a positive integer 𝑚 such that 𝐹𝑚 has a mixing invariant measure.
(4) 𝐹 has an invariant measure whose Kolmogorov-Sinai entropy is positive.

An intuitive explanation of the theorem is given here.
“Invariant measure” is a steady distribution.
“Mixing” implies that the system relaxes toward some steady state.
“Kolmogorov-Sinai entropy” is the required extra information to predict the next

time step state as accurately as the current state. Its positivity implies that (since
more information is needed to determine the future state) the system behavior in
the future becomes increasingly difficult to predict as the future is further away.

Practically, the following Proposition equivalent to (1)-(4) in the theorem is use-
ful:
(5) There are two closed intervals 𝐽1 and 𝐽2 in 𝐼 that share at most one point such
that 𝑓𝑝(𝐽1) ∩ 𝑓 𝑞(𝐽2) ⊃ 𝐽1 ∪ 𝐽2 holds for some positive integers 𝑝 and 𝑞.

That Ito’s earthquake model in Section 2.1 exhibits chaos is immediately seen
from the ‘folded paper’ model (Fig. 18.12). We may draw a periodic orbit whose
period is not a power of 2, but to check (5) may be the easiest.

Is 𝐴 observable? The set 𝐴 constructed in the proof is not observable, since it is
measure zero and not attractive. However, if we ignore the 1 to 1 correspondence
on a measure zero set, we can make 𝐴 to be an interval (very often, especially when
chaos is observable).

22.16 (2) implies (5)

259M. Osikawa and Y. Oono, “Chaos in 𝐶0-diffeomorphism of interval,” Publ. RIMS 17, 165
(1981); Y. Oono and M. Osikawa, “Chaos in nonlinear difference equations. I,” Prog. Theor. Phys.
64, 54 (1980) (There is no part II, since the author was ‘expelled’ from Japan in 1979). Also see:
L. Block, “Mappings of the interval with finitely many periodic points have zero entropy,” Proc.
Amer. Math. Soc. 67, 357 (1978); “Homoclinic points of mappings of the interval,” ibid. 72, 576
(1978).

260(1) ⇒ (2), (3), (4) is trivial. (4) ⇒ (1) is also almost trivial.
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If 𝐹 has a periodic orbit whose period is not equal to the power of 2, then there
are two closed intervals 𝐼0 and 𝐼1 in 𝐼 that share at most one point such that
𝐹 𝑝(𝐼0) ∩ 𝐹 𝑞(𝐼1) ⊃ 𝐼0 ∪ 𝐼1 holds for some positive integers 𝑝 and 𝑞.

[Demo]261
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Figure 22.4: Illustrated proof of (2) ⇒ (5). (Due to possible folding, the open of kernels of the
images of the intervals may well contain 𝐼0 ∪ 𝐼1.)

𝐺 ≡ 𝐹 2𝑛 has a periodic orbit with odd periodicity 𝑝: 𝑂𝑝 = {𝑥0, 𝑥1, · · · , 𝑥𝑝−1},
where 𝑥0 < 𝑥1 < · · · < 𝑥𝑝−1 (Needless to say, the orbit is not necessarily
chronologically in this order).

Let 𝐼0 = [𝑥0, 𝑥1] and 𝐼1 = [𝑥1, 𝑥2]. There must be an integer 𝑛 (0 < 𝑛 < 𝑝)
such that 𝐺𝑛(𝑥1) = 𝑥0. For this 𝑛 𝐺

𝑛(𝑥0) ̸= 𝑥1; otherwise, 𝐺
2𝑛(𝑥1) = 𝑥1, that

is, 𝑝 = 2𝑛.262 Therefore, 𝐺𝑛(𝑥0) ≥ 𝑥2. That is, 𝐺
𝑛(𝐼0) ⊃ 𝐼0 ∪ 𝐼1.

There must be an integer 𝑚 (0 < 𝑚 < 𝑝) such that 𝐺𝑚(𝑥2) = 𝑥0. For
this 𝑚 obviously 𝐺𝑚(𝑥1) ̸= 𝑥0 nor 𝐺𝑚(𝑥1) ̸= 𝑥1, so 𝐺

𝑚(𝑥1) ≥ 𝑥2. That is,
𝐺𝑚(𝐼1) ⊃ 𝐼0 ∪ 𝐼1.

22.17 (5) implies (1)
If there are two closed intervals 𝐼0 and 𝐼1 in 𝐼 that share at most one point
such that 𝐹 𝑝(𝐼0) ∩ 𝐹 𝑞(𝐼1) ⊃ 𝐼0 ∪ 𝐼1 holds for some positive integers 𝑝 and 𝑞,
then 𝐹 exhibits chaos.
[Demo]
The key to this assertion consists of two parts:
(i) If there are two disjoint closed intervals 𝐼0 and 𝐼1 in 𝐼 such that 𝐹 𝑛(𝐼0) ∩
𝐹 𝑛(𝐼1) ⊃ 𝐼0 ∪ 𝐼1 for some positive integer 𝑛, then 𝐹 exhibits chaos.
(ii) (5) implies the existence of 𝐼0 and 𝐼1 required by (i).

Let us prove (i) first. Set 𝐺 = 𝐹 𝑛.

261Proof due to Hamachi.
262Note that 2𝑛 < 2𝑝, the smallest even number that is a multiple of 𝑝.
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First we note the following elementary fact: (ia) Let 𝐼0 be a closed interval,
and 𝐺(𝐼) ⊃ 𝐼0 for a continuous function 𝐺. There there is a closed interval
𝑄 ⊂ 𝐼 such that 𝐺(𝑄) = 𝐼0. It is essentially the intermediate value theorem.

Next, we note that (ib) if 𝐺(𝐼) ⊃ 𝐼0, 𝐼1, which are disjoint closed intervals,
then we can find 𝐺(𝑄𝑖) = 𝐼𝑖 (𝑖 = 1 or 2) such that 𝑄𝑖 ⊂ 𝐼 and 𝑄1 ∩ 𝑄2 = ∅.
The existence of 𝑄1 and 𝑄2 in 𝐼 follows from the preceding elementary fact. If
𝑄1 ∩𝑄2 were not empty and had 𝑥 in it, then 𝑓(𝑥) ∈ 𝐼0 ∩ 𝐼1, contradicting the
disjointness of 𝐼0 and 𝐼1

We can recursively construct a closed interval sequence {𝐼𝑎1𝑎2···𝑎𝑛}∞𝑛=1 where
𝑎𝑖 ∈ {0, 1} as

𝐺(𝐼𝑎1𝑎2···𝑎𝑛) = 𝐼𝑎2···𝑎𝑛 , (22.13)

where

𝐼𝑎1𝑎2···𝑎𝑛−1𝑎𝑛 ⊂ 𝐼𝑎1𝑎2···𝑎𝑛−1 (22.14)

with the aid of (ia).
If 𝑠 and 𝑠′ (̸= 𝑠) are the length 𝑛 01 sequences. Then (ib) tells us 𝐼𝑠∩𝐼𝑠′ = ∅.
Let 𝑏 ∈ [0, 1) and its binary expansion 𝑏 = 0.𝑎1𝑎2 · · · 𝑎𝑛 · · ·. We can define

𝐼𝑏 as

𝐼𝑏 = ∩∞
𝑛=1𝐼𝑎1𝑎2···𝑎𝑛 , (22.15)

which is closed nonempty set thanks to (22.14) and if 𝑏 ̸= 𝑏′, 𝐼𝑏 ∩ 𝐼𝑏′ = ∅.
Thanks to (22.13)

𝐺(𝐼𝑏) = 𝐼{2𝑏}, (22.16)

where {𝑥} is the fractional portion of a real 𝑥 (i.e., 2𝑏 = 𝑎1.𝑎2 · · · 𝑎𝑛 · · ·, so
{2𝑏} = 0.𝑎2𝑎2 · · · 𝑎𝑛 · · ·)

Define 𝐴 = ∪𝑏∈[0,1)𝐼𝑏. Introduce an equivalence relation ∼ on 𝐴 as 𝑥 ∼ 𝑥′ iff
𝑥, 𝑥′ ∈ 𝐼𝑏 for some 𝑏 ∈ [0, 1). Then, there is a standard surjection 𝜏 : 𝐴→ 𝐴/ ∼,
and if we define 𝐺* = 𝜏 ∘𝐺 ∘ 𝜏−1 : 𝐴/ ∼→ 𝐴/ ∼, it is isomorphic to the (one-
sided) Bernoulli shift on {0, 1} of the coin-tossing process.

We must prove (ii). Let us take an inelegant but the simplest path. If we
take 𝑚 = 𝑝𝑞, obviously

𝐹 𝑛(𝐼0) ∩ 𝐹 𝑛(𝐼1) ⊃ 𝐼0 ∪ 𝐼1. (22.17)

Let 𝐺 = 𝐹𝑚 and construct 𝐼𝑎1𝑎2 as in the proof of (i). They must be on 𝐼, so
we can always choose a pair 𝐼𝑎10 = 𝐽0 and 𝐼𝑎′11 = 𝐽1, where 𝑎1, 𝑎

′
1 ∈ {0, 1}m,

such that they are not adjacent. Then, if we choose 𝐺2 = 𝐹 2𝑚 (i.e, 𝑛 = 2𝑝𝑞)

𝐺2(𝐽0) ∩𝐺2(𝐽1) ⊃ 𝐽0 ∪ 𝐽1. (22.18)
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Remark Actually, we can prove the odd periodicity lemma:
If 𝐺 has a periodic orbit of odd periodicity, then there exists two disjoint closed
intervals 𝐼0 and 𝐼1 such that 𝐺2(𝐼0) ∩𝐺2(𝐽1) ⊃ 𝐼0 ∪ 𝐽1.

Therefore, if 𝐹 has a periodic orbit of period 2𝑛𝑝, 𝐹 2𝑛+1
has such intervals.

22.18 (1) (2) and (5) are equivalent
This is shown via (1) ⇒ (2). Then, 22.16 closes the demonstration with 22.17.

22.19 (1) and (3) are equivalent
There is an 𝐹𝑚 invariant mixing measure 𝜇 for some positive integer 𝑘:

lim
𝑛→𝑖𝑛𝑓𝑡𝑦

𝜇(𝐴 ∩ 𝐹−𝑛𝑚𝐵) = 𝜇(𝐴)𝜇(𝐵), (22.19)

if and only if 𝐹 is chaotic.263

22.20 (1) and (4) are equivalent
(4) ⇒ (1) is shown via (2). The converse is generally hard to prove (proved
with H Takahashi’s results with his help).

22.21 Time correlation function of chaos
Let 𝑥𝑛 be the state at time step 𝑛. The, the time correlation function is defined as
(here we assume the time average of 𝑥𝑛 vanishes or 𝑥𝑛 − ⟨𝑥𝑛⟩ is considered)

𝑐(𝑛) =
1

𝑁

𝑁−1∑︁
𝑘=0

𝑥𝑛+𝑘𝑥𝑘. (22.20)

We are interested in this quantity when the system allows a steady state.
If the map (or dynamics) allows an ergodic invariant measure 𝜇,264,

𝑐(𝑛) =

∫︁
𝑑𝜇(𝑥0)𝑥𝑛𝑥0

[︀
or =

∫︀
𝑑𝜇(𝜔)𝑥𝑛(𝜔)𝑥0(𝜔) is better

]︀
. (22.21)

𝑐(𝑛) ≤ 𝑐(0), because the average of (𝑥𝑛− 𝑥0)
2 must be non-negative (use station-

ality). Therefore, we often normalize this with 𝑐(0):

𝐶(𝑛) =
⟨𝑥𝑛𝑥0⟩
⟨𝑥20⟩

. (22.22)

263This is a special assertion generally true for 𝐶0-endomorphism of an interval.
264We assume it is observable; thus, it is almost surely an absolutely continuous invariant measure.
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If 𝐶(𝑛) → 0 in the large 𝑛 limit, we say the system is mixing,265 where ⟨ ⟩ implies
time or invariant measure average.

We usually think that the faster the time correlation function decays, the more
irregular/disordered/chaotic is the dynamical system. However, the situation is not
that simple, because isomorphisms of dynamical systems can change the decay rate
(or even its algebraic nature), but the KS entropy stays the same.266

For the standard tent map its time correlation decays to zero at time 1 (!), but for
the logistic map, its decay is not that quick (though exponential). Both are mixing
and the KS entropy is log 2, the same.

22.22 Power spectrum
Experimentally (and practically), the time correlation function is computed via its
Fourier transform called the power spectrum:

𝜎(𝜈) =
∑︁
𝑛

𝐶(𝑛)𝑒−2𝜋𝑖𝑛𝜈 . (22.23)

This strategy is advantageous, because the Fourier transform 𝑥̂(𝜈) of a signal can
be efficiently computed with the aid of the Fast Fourier Transform algorithm. The
square (average) of the |𝑥̂(𝜈)|2 is the power spectrum, and its inverse Fourier trans-
form is the time correlation function thanks to the Wiener-Khinchin theorem 22.23.

22.23 Wiener-Khinchine theorem267

Let 𝑥𝑛(𝜔) be a sampled trajectory with summable stationary time correlation
function 𝐶(𝑛) = ⟨𝑥𝑛𝑥0⟩ (we normalize the signal). Let us compute its power
spectrum 𝜎(𝜈).

We compute the Fourier transform of the signal as

𝑥̂(𝜈) =
∞∑︁
−∞

𝑥𝑛𝑒
−2𝜋𝑖𝑛𝜈 . (22.24)

Let us compute

⟨𝑥̂(𝜈)𝑥̂(𝜈 ′)⟩ =
∑︁
𝑛

∑︁
𝑚

𝐶(𝑛−𝑚)𝑒−2𝜋𝑖𝑛𝜈−2𝜋𝑖𝑚𝜈′ , (22.25)

265A more official definition of mixing will be given later, when we discuss ergodicity.
266The mixing property is isomorphism invariant, so the correlation is guaranteed to decay even-

tually to zero.
267The needed normalization is not carefully traced.
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=
∑︁
𝑚

∑︁
𝑝

𝐶(𝑝)𝑒−2𝜋𝑖(𝜈+𝜈′)𝑚−2𝜋𝑖𝜈𝑝, (22.26)

= 𝛿𝜈,𝜈′
∑︁
𝑝

𝐶(𝑝)𝑒−2𝜋𝑖𝜈𝑝 = 𝛿𝜈,𝜈′𝜎(𝜈). (22.27)

That is,

𝐶(𝑛) =
∑︁

𝜎(𝜈)𝑒2𝜋𝑖𝑛𝜈 . (22.28)

This is called Wiener-Khinchine’s theorem.
This is a practically very important theorem, because the equality (22.28)

is the most convenient method to compute the correlation function: the power
spectrum is easy to compute numerically from the original data thanks to the
fast Fourier transformation (FFT). If you have never heard of the FFT, study
the Cooly-Tukey algorithm.268 32B.12 of

https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.

pdf

explains the principle of FFT.

Note that the time correlation function is positive definite in the sense ap-
pearing in Bochner’s theorem 22.25). This implies that if the correlation func-
tion is continuous at the origin and if normalized as 𝐶(0) = 1, it is a charac-
teristic function of a certain probability distribution.

We know that this ‘certain function’ is the corresponding power spectrum.
Therefore, the power spectrum may be interpreted as a probability distribution
function (of a certain quantity). Then, the information minimization technique
may be used to infer or model the time correlation function.

22.24 Long correlation means sharp spectrum
As we have learned, the power spectrum is easy to observe,269 so it is advan-
tageous to have some ‘feeling’ about the relation between correlation functions
and power spectra.

A summary statement is:
“A signal that has a short time correlation has a broad band.”
This is intuitively obvious, because short time correlation means rapid changes
that must have high frequency components.

There may be several mathematical statements that are related to the above
assertion. Perhaps the most elementary is to look at

𝐶(𝑡) = 𝑒−𝛼|𝑡| ↔ 𝜎(𝜔) =
2𝛼

𝜔2 + 𝛼2
. (22.29)

268As usual, Gauss used this method long before Cooly and Tukey.
269Simply turn on a spectrum analyzer.

https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.pdf
https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.pdf
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That is, the half-width of the power spectrum is the reciprocal of the ‘life-time’
of the signal. (The power spectrum with the Cauchy distribution is often called
the Lorentzian spectrum)

The result can be understood intuitively with the aid of dimensional analysis
𝜏𝜔 ∼ 1.
Exercise 1. The Riemann-Lebesgue lemma tells us that lim|𝜔|→∞ 𝜎(𝜔) = 0
for time-continuous signals. Learn about this lemma. A related statement was
used in the demo of the KAM theorem.⊓⊔
Exercise 2. The Riemann-Lebesgue lemma also tells us that the decay rate
of the power spectrum for large |𝜔| gives information about the smoothness of
the signal.

Demonstrate that if the signal is 𝑚-times continuously differentiable with
respect to time, 𝜎(𝜔) = 𝑜(𝜔−2𝑚) for large 𝜔.

22.25 Bochner’s theorem.
A positive definite function 𝜙 on 𝑅𝑛 that is continuous at the origin and 𝜙(0) =
1 is a characteristic function of some probability measure on 𝑅𝑛.⊓⊔

Here, ‘positive definite’ means the following: for any 𝑛 ∈ N, for any 𝑎𝑖 ∈ C
(𝑖 = 1, · · · , 𝑛) and for any ‘time points’ 𝑡𝑖 ∈ R∑︁

𝑖,𝑗≤𝑛

𝑎𝑖𝑎𝑗𝜙(𝑡𝑖 − 𝑡𝑗) ≥ 0. (22.30)

22.26 Sarkovskii’s theorem270

Sharkovsky ordering of the set of natural numbers is given by the following or-
dering

3 ≺ 5 ≺ 7 ≺ 9 ≺ · · · ≺ 3 · 2 ≺ 5 · 2 ≺ 7 · 2 ≺ 9 · 2 ≺
· · · ≺ 3 · 22 ≺ 5 · 22 ≺ 7 · 22 ≺ 9 · 22 ≺ · · · ≺ 23 ≺ 22 ≺ 2 ≺ 1. (22.31)

Let 𝐼 be either the real line or an interval and 𝑓 : 𝐼 → 𝐼 be a continuous map. Let
us say 𝑎 ≺ 𝑏, if 𝑎 precedes 𝑏 in the Sharkovskii ordering. The three parts of the full
Sharkovsky Theorem are:

270A. N. Sarkovskii, “Coexistence of cycles of a continuous map of a line into itself,” Ukr. Mat.
Z. 16, 61-71 (1964) [See P. Stefan, “A theorem of Sarkovski on the existence of periodic orbits of
continuous endomorphisms of the real line,” Commun. Math. Phys. 54, 237 (1977) as well]. M.
Misiurevicz, “Remarks on Sharkovsky’s theorem,” Am. Math. Month. 104 864 (1997) is a good
summary. Here, the summary follows the third paper.
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Theorem 1. Let 𝑓 : 𝐼 → 𝐼 be a continuous map. If 𝑓 has a cycle of period 𝑛 and
if 𝑛 ≺ 𝑘, then 𝑓 has a cycle of period 𝑘.
Theorem 2. For every 𝑘 there exists a continuous map 𝑓 : 𝐼 → 𝐼 that has a cycle
of period 𝑘, but has no cycles of period 𝑛 for any 𝑛 ≺ 𝑘.
Theorem 3. There exists a continuous map 𝑓 : 𝐼 → 𝐼 that has a cycle of period
2𝑛 for every 𝑛 and has no cycles of any other periods (the existence of the critical
map). [This part is actually included in Theorem 2.]

Sharkovskii’s theorems are beautiful theorems, and tell us clearly the existence of
the critical map. Also they tell us that having a periodic orbit of odd period is the
essence of the complicated trajectories as Hamachi’s proof of the key lemma 22.16
exploits. However, the theorems tell us virtually nothing about chaos, so I will not
give a proof.
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23 Lecture 23. Randomness

23.1 Summary so far
Chaos, according to my definition, is characterized (defined) by its ‘close relation’
to randomness. How ‘good’ is this characterization? Consistency with intuition,
close connection to fundamental concepts, equivalence to definitions based on very
different points of view, etc., may be signs of goodness. As long as we assume that
“(apparent) random behavior is fundamentally important characteristic of chaos,”
consistency with intuition is captured. Randomness must be a fundamental concept,
so the characterization has a close connection with a fundamental concept.271

What is then ‘randomness’?

23.2 Random number table that is not so random
To have some ‘feeling’ about ‘randomness’, let us look at the random number table.

What is a random number table? Intuitively, it is a table on which numbers are
arranged without any regularity. Whether there is regularity or not is checked ac-
tually by various statistical tests, so a random number table is a table tabulating a
number sequence that is recognized to have no regularity, passing all the statistical
tests.272

As an example, take the well-known Kitagawa random number table.273 The
Kitagawa table was constructed as follows:274

(i) On each page of the random number table of R. A. Fisher and F. Yates, Statistical
Tables for Biological, Agricultural and Medical Research (Oliver and Boyd, 1938),275

271It is also important to check the consistency and relations with other definitions of chaos to
confirm the naturalness of the definition. The comparison is already summarized in 22.13.

272For example, see A. L. Rukhin, “Testing randomness: a suite of statistical procedures,”
Theory Probab. Appl., 45, 111 (2001). The author’s math mentor Professor H. Watanabe once
said,“Random number is like God. Its existence might be admissible, but, if you are shown ‘this is
Him,’ it is quite doubtful.”

273See T. Kitagawa, Statistical Inference (Suisoku-Tokei Gaku) (Iwanami, 1958).
274in O. Miyataka and T. Nakayama, Monte Carlo Method (Nikkan-Kogyo, 1960)
275The Fisher-Yates table was constructed as follows: from the 20 digit logarithm table (of A.

J. Thompson, Logarithmetica Britannica: Logarithms to 20 Decimal Places 10,000-100,000 (This
work of Dr. Thompson’s is an attempt to commemorate in a worthy manner the first great table
of common logarithms, which was computed by Henry Briggs and published in London in 1624.
It brings together the series of nine separate parts, issued between 1924 and 1952 from University
College, London, in Karl Pearson’s Tracts for Computers series; reprinted from Cambridge Uni-
versity Press, 2008), 15,000 digits were selected randomly, and then they were randomly arranged.
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two consecutive numbers are paired, and
(ii) The resultant 25 × 50 pairs were scrambled.
(iii) Then, the columns on different pages of the resultant scrambled table were ex-
changed.
(iv) Then, the following statistical tests were performed to each page, and the best
4 pages were kept:

(1) Frequency test: using the 𝜒2-test, to check whether all the digits appear equally
frequently,

(2) ‘Pair’ test: the table is considered as the table of two consecutive number
pairs, and the frequencies of the pairs were tested just as in (1).

(3) Poker test: the frequencies of the various patterns of the consecutive, e.g., 5
digit blocks (say, abcde, abacd, aabac, etc.) were tested.

(4) Gap test: Reading the table column-wisely, the spacing between consecutive
identical digits were tested.

Is the Kitagawa table random? As illustrated in Fig. 23.1 it fails a simple test:
numbers tend to change oscillatingly:

a

a
n
+

n

1

0 100

Figure 23.1: Shown on the Left is the first 5 rows of the Kitagawa table converted into a sequence
of two digit number sequence 𝑎1, 𝑎2, · · ·, and then 𝑎𝑛+1 is plotted against 𝑎𝑛. The square is divided
into 100 square boxes of 10 × 10, and the numbers found in each square is counted as shown in the
Right. If the sequence is random, the points must be distributed uniformly on the square, so in the
right figure, we expect 79 points inside the square and 45 on the periphery. Actually, there are 65
inside and 59 outside, failing the uniformity test with the P value less than 0.5 %. In short, {𝑎𝑛}
HAS a tendency to change in an oscillatory fashion.

Incidentally, it is said that, when a person is asked to write down as random a
number sequence as possible, the randomness of the produced number sequence and

However, the digit 6 appeared slightly more frequently than others, so 50 of them were randomly
selected and replaced with other digits randomly.
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the intelligence of its writer are positively correlated.

The best random number is supposedly the natural random number that can be
made by counting the number of, e.g., 𝛽-decay. Thus, we might say that without
quantum phenomena there is no truly random numbers.

23.3 Featurelessness = randomness?
Statistical tests check the non-existence of particular patterns in the number se-
quence. The Kitagawa table was disqualified, because it has a significant (or de-
tectable) pattern. Therefore, it seems to be a good idea to declare that the sequence
without any feature (lawlessness) is a random number sequence. However, within
our usual logical system that admits the exclusion of middle (i.e., there are only two
possibilities 𝐴 or non-𝐴), ‘that there is no feature’ becomes a respectable feature;276

we fall into an impasse that the random number sequence is a sequence with a char-
acteristic that it has no characteristics.

von Mises (1883-1953) wanted to systematize probability theory based on ran-
domness, but it was difficult because formalizing featurelessness or lawlessness was
difficult. However, if we could positively characterize the feature that there is no
feature, in other words, if we can define ‘being without features’ by an explicitly
specifiable property, then ‘there is no characteristic feature’ is no more the negation
of ‘there are characteristic features.’ Still, the characteristics such as ‘lawlessness’ or
‘featurelessness” are ambiguous, allowing various interpretations.

23.4 Featurelessness = incompressibility?
Suppose we can find a feature (regularity) in a number sequence, we could save the
phone charge by exploiting the regularity when we wish to send it to the second
person. For example, if we wish to send 10101010· · ·10101010 that has one million
10’s, it is far better to send the message, “repeat 10 1,000,000 times,” than to send
the raw sequence itself. The number of digits required to describe a number 𝑁 is
asymptotically proportional to log𝑁 , so such a regular sequence may be sent with
the cost proportional to the logarithm of the original message length.277 This is, of
course, far more money-saving than the raw message.

276Of course, we must understand what ‘features’ mean.
277A student suggested that to send the number log𝑁 , we could take its logarithm to compress

it further and save money. Is it a good idea, or what is wrong?
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Let us consider another example:

0273900749 7297363549 6453328886 9844061196 4961627734 4951827369 5588220757 3551766515

8985519098 6665393549 4810688732 0685990754 0792342402 3009259007 0173196036 2254756478

9406475483 4664776041 1463233905 6513433068 4495397907 0903023460 4614709616 9688688501

4083470405 4607429586 9913829668 2468185710 3188790652 8703665083 2431974404 7718556789

3482308943 1068287027 2280973624 8093996270 6074726455 3992539944 2808113736 9433887294

0630792615 9599546262 4629707062 5948455690 3471197299 6409089418 0595343932 5123623550

This sequence may look random, but it is the 480 digits starting from the 10,501st
digit of 𝜋. If we wish to send this sequence, we can send a message, “the 480 digits
starting from the 10,501st digit of 𝜋,” and it is already shorter than the original
message.278 In this case as well, the message we must send is asymptotically propor-
tional to the length of the part specifying the length of the sequence (the underlined
part).

If we can compress the message, it is obviously non-random. Therefore, can we
characterize the randomness of a message by the fact that it cannot be compressed
(made shorter for communication) however we may try?

23.5 Algorithmic randomness
To compress a given sequence of symbols we must use its regularity and meaning,
so whether we can recognize them or not is the key issue of the randomness of the
sequence.279 However, by whom should the regularities be recognized?

The basic idea of the algorithmic randomness due to Solomonov (1926-), Kol-
mogorov and Chaitin (1947-) is that this recognition should be done by the most
powerful computer. Then, basic questions arise such as ‘What is the most powerful
computer?” and, in the first place, “What is a computer?”

A computer is a machine to perform computation. For this statement to make
sense, we must know what ‘computation’ is.280 Computation is to process a num-
ber into another number. The process of computation is not haphazard, but is
understood to obey strictly certain rules. Therefore, we may say intuitively that

278However, the receiver of the message must perform a considerable procedure to obtain the
message actually. Compressed information is often costly to expand. An interesting topic related
to this is D. Bailey, P. Borwein and S. Plouffe, “On the rapid computation of various polylogarith-
mic constants,” Math. Computat. 66, 903 (1997) (http://www.cecm.sfu.ca/ pborwein/) and V.
Adamchik and S. Wagon, “𝜋: a 2000-year search changes direction,” Mathematica in Education
and Research, 5(1) 11 (1996), D. H. Bailey, J. M. Borwein, P. B. Borwein, and S. Plouffe, “The
quest for Pi,” Math. Intelligencer 19(1) 50 (1997).

279However, we do not discuss the vague concept called ‘meaning.’
280What is a ‘machine’?
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computation is to transform one finite number sequence into another, using finitely
many definite procedures.

23.6 Church’s characterization of computation in plain terms
If we use the expression everyone understands by now, Church(1903-1995)’s pro-
posal is essentially as follows. A function whose program can be accepted by a
digital computer is a “partial recursive function,”and if the computation specified
by the program is guaranteed to be completed within a finite time, the function is a
‘recursive function’ = computable function. Computation is a process to obtain the
value of a computable function.

23.7 Number-theoretical functions
We consider only computation of a number with finitely many digits without any
roundoff errors. Consequently, we can understand computation as a map: N𝑘 → N
(𝑘 ∈ N+). Such a map is called a number-theoretic function or arithmetic function.
We consider only the computation of number-theoretic functions.

23.8 Church’s basic idea
First, take a few functions that everyone intuitively accepts to be obviously com-
putable as the starting point (see 23.10). The totality of computable functions is
constructed from these starting functions with a finite number of applications of the
procedures that everyone agrees to be executable (see 23.11).

To obtain values of the computable functions is called computation.
Thus, we need a characterization of ‘computable functions.’281

23.9 Partial and total functions
In the theory of computation in contrast to the ordinary analysis, when we speak of a
function, it need not be a map but can be a partial function. That is, 𝑓(𝑥1, · · · , 𝑥𝑛),
where 𝑥1, · · · , 𝑥𝑛 are nonnegative integers (i.e., 𝑥𝑖 ∈ N), need not be meaningful (need
not be defined) for all the 𝑛-tuples {𝑥1, · · · , 𝑥𝑛} of nonnegative integers (that is, the

281A classic introduction to the topic is M. Davis, Computability and Unsolvability (Dover, 1982).
Newer textbooks include D. S. Bridges, Computability, a mathematical sketchbook (Springer, Grad-
uate Texts in Mathematics 146, 1994), for example.
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domain is not specified beforehand). For those tuples for which 𝑓 is not defined, 𝑓 is
not evaluated. If 𝑓 is defined on the totality of {𝑥1, · · · , 𝑥𝑛} ∈ N𝑛, it is called a total
function.

23.10 Obviously computable functions
As the functions to start with, which everyone must agree to be computable, the
following three functions 𝑆, 𝑃 and 𝐶 are adopted:
(A) 𝑆(𝑥) = 𝑥+ 1,
(B) 𝑃 𝑛

𝑖 (𝑥1, · · · , 𝑥𝑛) = 𝑥𝑖,
(C) 𝐶𝑛

𝑚(𝑥1, · · · , 𝑥𝑛) = 𝑚.
𝑆 is a function to give the successor of 𝑥 in N. 𝑃 𝑛

𝑖 is a ‘projection operator’ to read
the 𝑖-th variable out of 𝑛 variables. 𝐶𝑛

𝑚 is a constant function assigning a constant
𝑚 to all the 𝑛-tuples {𝑥1, · · · , 𝑥𝑛}.

23.11 Basic operations
As unambiguous ‘procedures’ (basic operations) that everyone should agree to be
applicable to any function let us accept the following I−III:
I Composition: From functions 𝑔1, · · · , 𝑔𝑚 and ℎ we can make another function

𝑓(𝑥1, · · · , 𝑥𝑛) = ℎ(𝑔1(𝑥1, · · · , 𝑥𝑛), · · · , 𝑔𝑚(𝑥1, · · · , 𝑥𝑛)), (23.1)

where ℎ is an 𝑚-variable function and 𝑔𝑖 (𝑖 = 1, · · · ,𝑚) are 𝑛-variable functions.
II (Primitive) recursion: Starting with 𝑓(𝑥1, · · · , 𝑥𝑛, 0) = 𝑔(𝑥1, · · · , 𝑥𝑛), we can con-
struct 𝑓(𝑥1, · · · , 𝑥𝑛,𝑚) recursively as follows:

𝑓(𝑥1, · · · , 𝑥𝑛,𝑚) = ℎ(𝑥1, · · · , 𝑥𝑛,𝑚− 1, 𝑓(𝑥1, · · · , 𝑥𝑛,𝑚− 1)), (23.2)

where 𝑔 and ℎ are, respectively, 𝑛 and 𝑛+ 2 variable functions.
III Minimalization (or minimization) or unbounded search: Let 𝑓(𝑥1, · · · , 𝑥𝑛) be a
total function. For each {𝑥1, · · · , 𝑥𝑛−1} we can determine the smallest 𝑥𝑛 satisfying
𝑓(𝑥1, · · · , 𝑥𝑛) = 0.282

23.12 Partial recursive function
A function that can be constructed from the basic functions (A)−(C) with a finite

282Here, it is crucial that 𝑓 is a total function. Each step of the algorithm must be guaranteed
to end within a finite number of steps, so 𝑓 must be total.
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number of applications of the basic procedures I−III is called a partial recursive
function.

There is no problem with I being a computable procedure. II is the same. Per-
haps it may be tedious, but applying finitely many steps patiently step by step can
complete the procedure.283.

However, Procedure III (minimalization) is tricky. Since 𝑓 is a total function, for
any {𝑥1, · · · , 𝑥𝑛−1} we can certainly evaluate 𝑓(𝑥1, · · · , 𝑥𝑛−1,𝑚) for any 𝑚 with a
finitely many steps. Therefore, fixing {𝑥1, · · · , 𝑥𝑛−1}, and putting 𝑚 starting with 0
in the ascending order into 𝑓 one by one, we can check whether 𝑓(𝑥1, · · · , 𝑥𝑛−1,𝑚)
is zero or not. If 𝑓 becomes zero for the first time with 𝑚 = 𝑞, then we de-
fine ℎ(𝑥1, · · · , 𝑥𝑛−1) = 𝑞. However, the existence of such a non-negative integer
𝑞 is not known beforehand (in other words, we do not know beforehand whether
ℎ(𝑥1, · · · , 𝑥𝑛−1) is a total function or not). Therefore, we cannot know beforehand
whether the minimalization process even ends or not. Indeed, there is a way to check
whether a given 𝑚 is an answer or not however large it may be, but no one knows
the upper bound of 𝑚 such that if there is no answer up to the value there is really
no answer.

Thus, a partial recursive function is a number-theoretical function which con-
struction procedure can be described unambiguously (i.e., its algorithm is given).
However, whether it can be actually computed (constructed) cannot be known be-
forehand (due to minimalization).284

Suppose we begin evaluating a partial recursive function for variable 𝑥. If we have
not obtained the value after some computation, this may imply that the function
is not defined for this 𝑥 (because the minimalization step does not have a solution)
or it is defined but we must be much more patient. We hesitate to declare such a
function computable.

23.13 Recursive functions
The functions we can really compute must be such that not only its each computa-
tional step is explicitly and unambiguously specifiable, but also the whole compu-
tation is guaranteed to be completed with a finite number of steps. Such functions
are called recursive functions. That is, total partial recursive functions are called

283Functions that can be constructed only with the aid of these two procedures are called primitive
recursive functions. These were defined first by Kleene.

284Informally (but actually in a not very inaccurate way), a function whose procedure to compute
can be programmed on the usual digital computer is a partial recursive function. There is no
guarantee that the program actually completes the computation and produces its value for all the
inputs.
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recursive functions. A recursive function is a function with an algorithm that is
guaranteed to be completed with a finite number of steps for any (admissible) in-
puts.285

Note that there are only countably many recursive functions. All the recursive
functions can be numbered as 𝑓1, 𝑓2. · · ·.

23.14 Computation, the Church thesis
Church defined ‘computation’ as a procedure to evaluate a recursive function.

That is, Church identifies the set of computable functions and the set of recursive
functions. This proposal is called the Church thesis.286 Impeccably unambiguous
computation is possible only when the computational procedures are given purely
syntactically (that is, given just as symbol sequences that do not require any inter-
pretation). This is a sort of ultimate reductionism.

The crucial points of this proposal are that the algorithm is explicitly given and
that the whole process is completed with a finite number of steps.

23.15 Church’s proposal was not easily accepted
When Church’s thesis was proposed, it was not immediately and generally accepted
that being a recursive function is a convincing characterization of any computable
function. The reason was that there was no clear feel for constructive procedures
that may be explicitly written down; aren’t there not recursive (that is, not I-III
above) completely new types of algorithms with which different class of functions
may become computable? Isn’t the above proposal under the restriction of the era
(i.e., the level of mathematics of the day)? Furthermore, since such an intuitively
appealing concept as continuity requires, to be defined clearly, the axioms of the
topological space, it is possible that apparently intuitively obvious basic procedures

285Continuing the above informal expression, we can say that a recursive function is a function
which can be programmed on the usual digital computer, and the program produces a number
(with sufficient but finite computational time and memory) for any (admissible) input.

286The definition here is consistent with M. Davis, Computability and Unsolvability (Dover, 1982).
However, names and definitions are different in different books. In M. Li and P. Vitànyi, An
Introduction to Kolmogorov Complexity and Its Applications (Springer, 1993) and J. E. Hopcroft
and J. D. Ullman, Introduction to Automata Theory, Languages and Computation (Addison Wesley,
1979) Church’s thesis is the proposal that partial recursive functions are computable. Bridges call
them computable partial function. Davis call partial recursive functions as partially computable
functions.
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and basic functions may not be logically simple.287

Subsequently, various definitions of computability were proposed, but interestingly
all the definitions were equivalent to Church’s thesis. That is, it gained a certain
signature of naturalness. Usually, this is the explanation of the relevant history, but
actually, one of the reasons that Church confidently proposed his thesis was that var-
ious definitions were equivalent.288 Still, as mentioned above, the oppositions could
not be quenched.

However, the characterization of computability in terms of the Turing machine ex-
plained below (roughly speaking, a digital computer with indefinitely large memory
capacity) silenced all the oppositions to Church’s proposal. Church himself wrote
that Turing computability did not require any preparation to relate constructibility
and the existence of effective procedures in the ordinary sense. In short, for basic
concepts clear consistency with our intuition is crucial, so the best characterization
of basic concepts is often supplied by explicitly visualizable machineries.

23.16 Basic idea of Turing
If a computer is a machine that performs computation, to characterize computation,
one should formalize/construct a machine that can do all the elementary steps ‘me-
chanical calculation’ can make. This is the basic idea of the Turing machine.289

Turing chose the restrictions built in the basic mechanism/function of the Tur-
ing machine, taking account of the limits of our sensory organs and intelligence.
Our sensory organs can distinguish only finitely many distinct signals, and the
number of distinguishable states of our brain is also finite. The number of
kinds and quantities of tasks our brain and effectors can perform are also fi-
nite. These conclusions may be reasonable, because even if the signals and
states are continuous, they are meaningful only after ‘quantized’ in the actual
noisy world, and because our brain is a finite object. In short, Turing conceived

287See R. Gandy, “The Confluence of Ideas in 1936,” in The Universal Turing Machine, a half-
century survey (Oxford University Press, 1988). Neither Gödel nor Post accepted the proposal.
[1936 was full of disastrous events: remilitarization of the Rhineland, Spanish Civil War started,
X’ian Incident; J. M. Keynes, The general theory of employment, interest, and money].

288The situation is explained in detail in W. Sieg, “Step by recursive step: Church’s analysis of
effective calculability,” Bull. Symbolic Logic 3, 154 (1997).

289C. Petzold, The annotated Turing (a guided tour through Alan Turing’s historic paper on com-
putability and the Turing machine) (Wiley, 2008) is strongly recommended. It includes historical
comments on many related topics, many interesting anecdotes (and gossips). It is a serious book,
but fun to read.
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our brain as a finite automaton = an automaton that relies on finitely many
symbols, finitely many rules and operations, and finitely many internal states.

Thus, he required an ‘artificial brain’ the following:
(i) Only finitely many kinds of symbols can appear on each cell (on the tape).
(ii) It can survey only a finitely many cells at once.
(iii) At each instance, it can rewrite only one cell.
(iv) Only finite range of the whole tape can be used (scanned).
(v) There are only finitely many states of the black box, and there are only
finitely many instructions that can be performed.

The only idealization, from Turing’s point of view, is that there is no mem-
ory capacity limit. However, since computers and our brains can indefinitely
increase their external memory capacity, it is a benign idealization.

23.17 Turing machine290

A Turing machine consists of an infinite tape, a read/write head, and a black box
with a finite number of internal states (Fig. 23.2). The tape is divided into cells.
The read/write head can scan only one cell on the tape at a time. The head position
and what it should do is specified by the Turing program. See 23.18.

TM

blackbox

tapehead

Figure 23.2: A Turing machine consists of an infinite tape that is divided into cells, a read/write
head that can scan a single cell at a time, and a black box with a finite number of the internal
states.

23.18 Turing program
A Turing program is a finite set of four tuples (𝑞, 𝑆, *, 𝑞′), where
(1) 𝑞 and 𝑞′ are the internal states of the black box,

290There are many different versions, e.g., with many tapes or a tape that is only infinite in one
direction, but the reader has only to be able to have a general notion of TM. See J. H. Hopcroft and
J. D. Ullman, Introduction to Automata Theory, Languages, and Computation (Addison Wesley,
1979), for example. The exposition here uses the machine revised by Kleene and M. Davis (who
was in Illinois Math department and is know for his contribution to Hilbert’s tenth problem).



282

(2) 𝑆 is the symbol in the cell being scanned now (it may be 1 or blank 𝐵, or 0, 1,
𝐵, etc., depending on authors, but in any case there are only finitely many of them),
(3) * denotes 𝑅, 𝐿 or 𝑆 ′: 𝑅 (resp., 𝐿) implies that the head moves to the right (resp.,
to the left) in the next time step (or it may be better to say the tape is moved in the
opposite direction); 𝑆 ′ implies that the head does not move but rewrite the symbol
in the cell being scanned as 𝑆 → 𝑆 ′.

The implication of (𝑞, 𝑆, *, 𝑞′) is as follows:
If the internal state of the black box is 𝑞 and if 𝑆 is written in the tape cell being
scanned by the head, then the head performs *, and the internal state of the black
box is changed to 𝑞′.

A Turing machine may be identified with its Turing program.291 That is, the
machine is understood as a single task machine.

The input non-negative integer 𝑥 is written on the tape according to a certain
rule as, e.g., a 01 sequence (there are many different schemes, but here no details
are important). The Turing machine (its black box) is initially in the initial state
𝑞𝐼 , and the head is located at the leftmost non-blank cell on the tape (the portion
where numbers are written is bounded).

The machine has a special final state called the halting state 𝑞𝐻 . The sequence
written on the tape when the machine state reaches 𝑞𝐻 is interpreted as the compu-
tational result 𝑦 of the Turing machine. Thus, the Turing machine defines a function
𝑥 → 𝑦. If the Turing machine halts for any input, it defines a total function. How-
ever, a Turing machine may not define a total function, because it may not halt (𝑞𝐻
may never be reached) for particular inputs.292

23.19 Turing computability
A function defined by a Turing machine that halts for any input is called a Turing
computable function. The fundamental theorem is:

Theorem [Turing] Turing computable functions are computable functions in Church’s
sense and vice versa.

This theorem is proved through demonstrating that the three basic functions 𝑆,
𝑃 and 𝐶 and the fundamental operations I-III can be Turing-programmable. For

291To identify the program and the machine is not as simple as we think. The program lives in
the world of symbols, which is distinct from the real world, so how to specify the correspondence
between the symbols and the actual movements of the parts of the actual machine is nontrivial.
We have already mentioned the concept called ‘adaptors.’ This will be discussed in Chapter 4.

292Will the Turing machine ever halt for input 𝑥? This is the famous halting problem. There is
no algorithm to answer this question. This is a typical decision problem that cannot be decided.
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example, Davis’ textbook explains detailed construction of the programs.293

The equivalence of Church’s computability and Turing’s computability convinced
many people the naturalness of Church’s thesis.294

23.20 Universal Turing machine
Notice that a Turing machine can be encoded as a number sequence (i.e., we can
make an integer that can be deciphered to give a Turing program295, e.g., the Gödel
numbering of the Turing program).296 Now, it is possible to make a machine (=
compiler) that spits the four-tuples of the Turing program upon reading the corre-
sponding Gödel number. Then, if we subsequently feed the ordinary input to this
master Turing machine, it can perform any computation that can be done by any
Turing machine (it is a by-now common programmable digital computer).

A formal proof of this statement may not be simple, but we are not at all surprised
thanks to our daily experience. This machine is called a universal Turing machine.
We may understand it as an ideal digital computer without any memory capacity
limit. Turing demonstrated that everything a machine with constraints (i)-(v) above

293Reading the programs to check their functions (to check that indeed they work) is a matter of
patience; to write such a program is something like writing a program in a machine language (less
efficient, actually), so for the ordinary scientists checking the demonstration is probably useless.
Therefore, no further discussion will be given on the equivalence demonstration. Now that digital
computers are everywhere, the theorem should be almost obvious.

294However, this does not mean the acceptance of Turing’s basic idea, which seems to have mo-
tivated the formulation of Turing machines, that we are finite automata. Gödel (1906-1978) and
Post (1897-1954) always believed that our mathematical intelligence was not mechanical. Espe-
cially, Gödel argued that our capability to manipulate abstract concepts is not restricted by the
finiteness that Turing respected literally; the restrictions apply only when we manipulate (poten-
tially) concrete objects such as symbol sequences; we had to take into account non-finitary creative
thoughts to understand our mathematical capabilities.
⟨⟨Natural intelligence and finiteness constraints⟩⟩ Perhaps, Gödel may have wished to say
that our natural intelligence is not restricted by the finiteness constraints. Our natural intelligence
is ‘embodied.’ It is open to the external physical world through our body. It may be more sen-
sible to idealize our brain as a nonfinitary system. Thus, after all, Gödel’s intuition may well be
correct. Indeed, abstract concepts are much more concretely supported than concrete concepts by
the materialistic basis (or, we could even say, by the molecular biological basis) that is ancient
phylogenetically. That is, abstract concepts are directly connected to our body. Abstract concepts
are more embodied than concrete concepts.

295𝑞, 𝐿, etc., appearing in the Turing program is encoded into numbers.
296⟨⟨Gödel numbering⟩⟩ Assigning positive integers to symbols, we can convert any symbol

sequence into a positive number sequence 𝑛1𝑛2 · · ·𝑛𝑘 · · ·. This is converted into 𝑁(𝑛1𝑛2 · · ·𝑛𝑘 · · ·) =
2𝑛13𝑛2 · · · 𝑝𝑛𝑘

𝑘 · · ·, where 𝑝𝑘 is the 𝑘-th prime. We can decipher 𝑛𝑖 form 𝑁 uniquely.
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can perform can be done by a universal Turing machine. Thus, we may regard a uni-
versal Turing machine as the most powerful computer. If we accept Turing’s analysis
of our intelligence, any intelligent task we can do can be done by a universal Turing
machine (with a suitable input).

A universal Turing machine is not a parallel computer. However, whether a ma-
chine is parallel or not is not fundamental. It is still a finite automaton. Therefore,
the universal Turing machine being not parallel is an unimportant restriction. In
the theory of computation we totally ignore computational speed; what matters is
whether a required computation can be performed within a finite time.297

23.21 All the universal TM are equivalent
Since there are many ways to formulate Turing machines, universal Turing machines
cannot be unique. We wish to have the most powerful computer, so perhaps we have
to look for the most powerful universal Turing machine. Actually, all the universal
Turing machines are equally powerful, so we may choose any of them for our pur-
pose:

Theorem [Solomonov-Kolmogorov] Let 𝑀 and 𝑀 ′ be two universal Turing ma-
chines, and ℓ𝑀(𝑥) (resp., ℓ𝑀 ′(𝑥)) be the length of the shortest program for 𝑀 (resp.,
𝑀 ′) to produce output 𝑥 (measured in, say, bits). Then, we have

ℓ𝑀(𝑥) ⪯ ℓ𝑀 ′(𝑥), ℓ𝑀 ′(𝑥) ⪯ ℓ𝑀(𝑥), (23.3)

where 𝐴(𝑥) ⪯ 𝐵(𝑥) implies that there is a positive constant 𝑐 independent of 𝑥 such
that 𝐴(𝑥) ≤ 𝐵(𝑥) + 𝑐; 𝑐 may depend on 𝐴 and 𝐵.

The key to prove this theorem is that 𝑀 can emulate 𝑀 ′ and vice versa. For
example, the program for 𝑀 to emulate 𝑀 ′ must be finite, however long it may be.
Therefore, if we disregard the length of the program for this overhead (that is, if we
write this length as 𝑐 in the definition of ⪯), the length of the needed program does
not change whether 𝑥 is computed directly on 𝑀 ′ or computed on the emulated 𝑀 ′

on 𝑀 . The meaning of ⪯ is just the inequality disregarding an additive constant
(corresponding to the overhead), so the theorem should hold.

Thus, when we wish to write the shortest program length ℓ𝑀(𝑥) (i.e., when we
wish to compress 𝑥), we will not explicitly specify the universal Turing machine 𝑀
to use and write simply ℓ(𝑥).

297Quantum computers may drastically change the required time, but even they cannot compute
Turing noncomputable functions. Thus, when we ask the fundamental question what computers
can ever do, quantum computers need not be considered.
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23.22 Program length, a preliminary observation
Let 𝜔[𝑛] be the first 𝑛 digits of a binary sequence 𝜔. How does ℓ(𝜔[𝑛]) (see 23.21)
behave generally?

For example, for the uninteresting 1111 · · ·, asymptotically the information re-
quired to specify the number of digits 𝑛 dominates the program, so ℓ(11 · · · [𝑛])
behaves as log 𝑛. For a number sequence 𝜔 with an obvious regularity the shortest
program to specify 𝜔[𝑛] is independent of 𝑛 except for the portion needed to specify
𝑛 itself. There are only countably many such regular sequences.

On the other hand, in the 𝑛→ ∞ limit if ℓ(𝜔[𝑛])/ log 𝑛 can be indefinitely large,
the pattern in the sequence cannot be specified asymptotically by a finite length
program, so it should not be simple. However, such sequences include many subtle
sequences.298

If no regularity is discernible at all in 𝜔, to specify 𝜔[𝑛] requires to specify almost
all the 𝑛 digits, so we expect ℓ(𝜔[𝑛]) ∼ 𝑛. In other words, a typical random sequence
must be such 𝜔 that for infinitely many 𝑛 ℓ(𝜔[𝑛]) ∼ 𝑛.

23.23 Algorithmic randomness
Let us call a sequence 𝜔 such that for infinitely many 𝑛 ℓ(𝜔[𝑛]) ∼ 𝑛 an algorithmically
random sequences.

Definition 2.11.1
𝐾(𝜔) ≡ lim sup

𝑛→∞
ℓ(𝜔[𝑛])/𝑛 (23.4)

is called the randomness of a binary sequence 𝜔 ∈ {0, 1}N. Here, 𝜔[𝑛] is the first
𝑛 digits of 𝜔 and ℓ(𝜔[𝑛]) is the length of the shortest program (written in 01) to
produce 𝜔[𝑛].299

Thanks to Kolmogorov and Solomonov (23.21) the randomness does not depend
on the choice of the universal Turing machine 𝑀 (so it is not written already).

Kolmogorov used the word ‘complexity’ to describe the above quantity. in this
lecture notes the word should be reserved for genuine complex systems, so we use
the word ‘randomness’ instead.300

298This situation is exactly the same as the KS entropy zero dynamical systems.
299The reason why we must use lim sup is, for example, we cannot ignore the appearance of

meaningful sequences occasionally. That is why it was said ℓ(𝜔[𝑛]) ∼ 𝑛 for infinitely many 𝑛
instead of all 𝑛.

300M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications
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23.24 Undecidability of random sequence
Notice that no program can be written to compute 𝐾(𝜔) (there is no algorithm for
it). This should be easily inferred from the appearance of the expression as ‘the
shortest program’ in the definition. For an arbitrarily chosen number sequence, ex-
cept for almost trivial cases, it is hard to show that it is not a random sequence,
because we must write down a short program to produce it. Worse still, it is harder
to claim that a given sequence is random, because we must show that however hard
one tries one cannot write a short program. Therefore, for a given number sequence,
generally we cannot compute its randomness 𝐾 (except for some almost trivial cases
with 𝐾 = 0, it is very hard, if not impossible.)

However, we can say something meaningful about a set of number sequences. For
example, for almost all (with respect to the Lebesgue measure) numbers in [0, 1] their
binary expansion sequences are algorithmically random. All the algebraic numbers301

are not random. In the next section we will discuss the average randomness.302

23.25 Is our characterization of randomness satisfactory?
To make the concept ‘random’ mathematical, we identified it with the lack of any
computable regularity. This identification does not seem to contradict our intuition.
However, is it really true that all the regularities are all those detectable by com-
puters? There can be the following fundamental question: why can we say that if
computers cannot detect any pattern, Nature herself cannot, either? In this char-
acterization don’t we admit that the Turing computer or computation itself is more
fundamental a concept than randomness? Is this consistent with our intuition?

(Springer, 1993) is the standard textbook of the Kolmogorov complexity. The reader will real-
ize that there are many kinds of definitions and concepts, but here, to be simple, the most basic
definition is used. The explanation in this section roughly follows A. K. Zvonkin and L. A. Levine,
“The complexity of finite objects and the development of the concepts of information and random-
ness by means of the theory of algorithms,” Russ. Math. Surveys 25(6), 83 (1970).

301numbers that can be zeros of integer coefficient polynomials.
302There is an attempt to make a computable measure of randomness. One approach is to use

much less powerful computers. However, such an approach appears to be fundamentally off the
mark to characterize the concept of randomness, because ‘randomness’ may well be a transcendental
concept. There can be a point of view that within our mathematics it is natural that we cannot
tell whether a given sequence is random or not in general.
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23.26 Axiomatic approach to randomness
If we consider randomness as a fundamental concept, as long as there is no other
concepts that we can accept as more fundamental, we cannot define it. In the end,
randomness would be formalized only as a primitive concept of an axiomatic system
for randomness, just as points and lines in Euclidean geometry. As far as the author
is aware, the most serious approach in this direction is due to van Lambalgen.303 As
we have seen, randomness is algorithmically characterized by incompressibility. We
needed the theory of computation to define incompressibility unambiguously. The
axiomatic approach may be roughly interpreted as an attempt to axiomatize the
concept corresponding to ‘incompressibility.’304

As we have seen in Chapter 1, randomness is really significant only in nonlinear
systems. We have also seen that the standard axiomatic system of sets is a legitimate
heir of Fourier analysis, so to speak. A wild and heretic guess is that even on the
foundation of mathematics is a shadow of linear systems, so it is not very suitable
to study nonlinear systems and the concept of randomness.

303M. van Lambalgen, “The axiomatization of randomness,” J. Symbolic Logic 55, 1143 (1990).
304This axiomatic system is not compatible with the standard axiomatic system of sets (ZFC).

The author does not understand how serious this incompatibility is. See M. van Lambalgen, “In-
dependence, randomness and the Axiom of Choice,” J. Symbolic Logic 57, 1274 (1992). See also
“Logic: from foundations to applications, European logic colloquium” edited by W. Hodges, M.
Hyland, and J. Truss (Clarendon Press, 1996) Chapter 12 “Independence structures in set theory.”
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24 Lecture 24. Characterization of chaos

24.1 Basic motivation
Chaos is characterized by ‘complicate’ or ‘apparently random’ trajectories. We have
refined the concept of randomness in the preceding section. ‘Algorithmic randomness’
is the refined concept, but, as noted there, there is no general way (no algorithm)
to judge whether a given sample sequence or an object (coded appropriately as a
number sequence) is random or not. However, collectively we can determine whether
a set consists of mostly random numbers or not. We know almost all the binary
expansions of the numbers in [0, 1] are algorithmically random (because there are
only countably many non-random numbers). Therefore, the basic idea to connect
chaos and randomness is to check whether there is a bunch of trajectories that are
‘almost surely’ random or not. Thus, we wish to claim that a dynamical system
which has an invariant set on which most trajectories are algorithmically random
(after appropriate discretization = coding).

24.2 Can we be quantitative?
The claim “a dynamical system which has an invariant set on which most trajectories
are algorithmically random” is actually already built in into my definition of chaos
22.10 through the coin-tossing process, because most numbers in [0, 1] is algorith-
mically random.

We must recall that the definition of algorithmic random numbers is in terms
of complexity 𝐾. We wish to define a corresponding number within the theory of
dynamical systems and compare it with 𝐾 (23.23). Since 𝐾 measures how much
information we need to specify a symbol in the coding sequence, it is a very natural
idea that it must be compared with the Kolmogorov-Sinai entropy, which was in-
tuitively introduced as the information loss rate (or required information to predict
the future; 17.18). The KS entropy ℎ will be discussed in detail later mathemati-
cally (-32.9), but here let us use its intuitive meaning, and actually show 𝐾 = ℎ,
completing our characterization of chaos even quantitatively.

About coding: We have extensively used symbolic dynamics (or shift dynamics) isomorphic

or homomorphic to the original dynamical system to analyze it. Some people bitterly crit-

icize this strategy, saying that this approach does not respect how ‘random sequences’ are

actually produced. We could produce the same ‘01 sequence’ from a black box containing

a person with a coin. Therefore, if one observes only the coded results, one can never infer

the content of the black box (even if it is driven by a tent map). Hence, characterizing the
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dynamical system in terms of the coded result is impossible. A fortiori characterizing chaos

with the randomness of the trajectories is flawed. How do you respond?305

24.3 Randomness of a trajectory
Let ℬ = {𝐵1, · · · , 𝐵𝑘} be a generator (= the best coding scheme; see 32.10) for
a map 𝑇 defined on 𝑀 with an invariant measure (= stationary distribution) 𝜇
(denoted as (𝑇, 𝜇,𝑀) in standard books). We can code a trajectory starting from
𝑥 at time 0 as 𝜔 in terms of 𝑘 symbols with the rule 𝜔𝑛 = 𝑎 if the trajectory goes
through 𝐵𝑎 at time 𝑛 (𝑇 𝑛𝑥 ∈ 𝐵𝑎). Define the randomness of the trajectory starting
from 𝑥 as

𝐾(𝑥, 𝑇 ) ≡ lim sup
𝑛→∞

1

𝑛
ℓ(𝜔[𝑛]), (24.1)

where 𝜔[𝑛] is, as before, the first 𝑛 symbols of 𝜔, and ℓ(𝑧) is the code length of the
minimal program for 𝑧 in terms of 𝑘 symbols as defined in the preceding lecture
(there, 𝑘 was 2).

24.4 Brudno’s theorem306

Brudno’s theorem adapted to the current situation: coding of (𝑇, 𝜇,𝑀) with 𝑘 sym-
bols reads:

For 𝜇-almost all 𝑥 ∈𝑀

𝐾(𝑥, 𝑇 ) = ℎ𝜇(𝑇 )/ log 𝑘.

Here, ℎ𝜇 is the Kolmogorov-Sinai entropy of (𝑇, 𝜇,𝑀) defined (as usual) in
terms of the natural logarithm, but it is divided by log 𝑘, so the right-hand side
gives the entropy defined in terms of the base 𝑘 logarithm.

305Since this is a good discussion topic, no comment should be added, but note that we do
not simply treat dynamical systems as black boxes. The correspondence between a shift and a
dynamical system must be at least homomorphic. There cannot be any deterministic dynamical
system homomorphic to the package of a person + a coin.

306A. A. Brudno, THE COMPLEXITY OF THE TRAJECTORIES OF A DYNAMICAL SYS-
TEM, Russ. Math. Surveys 33 197 (1978); Entropy and the complexity of the trajectories of a
dynamical system. Trans. Moscow Math. Soc., 2 127 (1983). See also H. S. White, Algorithmic
complexity of points in dynamical systems, Ergod. Th. & Dynam. Sys., 13 807 (1993).

The following exposition is taken from TNW Chapter 2, but probably more readable (reader-
friendly).
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What is claimed is, qualitatively, the equality between the amount of the extra
information required for prediction of the state time 𝑡 in the future and the amount
of information to describe the trajectory for the time span 𝑡. It is quite a natural
assertion. To predict a chaotic trajectory for a long time, we need a tremendous
amount of information initially. Since such an amount of information is needed to
single out a trajectory, the coding sequence needed to describe the trajectory cannot
be simple and information compression is out of question. Thus, Brudno’s theorem
confirms the goodness of our definition of chaos.

24.5 Brudno’s theorem for symbolic dynamics
The information needed to describe a trajectory may be considered in terms of the
symbol sequence after coding. Therefore, the core of Theorem in 24.4 is the following
fact about the shift dynamical system (isomorphic to the dynamical system under
consideration):

Theorem. Let (𝜎,Ω) be a certain shift dynamical system with 𝑘 symbols, and 𝜇 its
ergodic invariant measure. Then, for 𝜇-almost all 𝜔 ∈ Ω

𝐾(𝜔) = ℎ𝜇(𝜎)/ log 𝑘,

where ℎ𝜇(𝜎) is the Kolmogorov-Sinai entropy of the measure theoretical dynamical
system (𝜎, 𝜇,Ω), and 𝐾(𝜔) is the randomness defined in (23.4) (as in 24.4, it is
defined for 𝑘-symbol sequences instead of binary sequences and ℎ uses natural log;
that is why log 𝑘 appears).

The above theorem is proved by showing the following two statements:
(i) 𝜔 satisfying 𝐾(𝜔) < ℎ𝜇(𝜎)/ log 𝑘 is 𝜇-measure zero.
(ii) 𝜇-almost surely (= for 𝜇-almost all 𝜔) 𝐾(𝜔) ≤ ℎ𝜇(𝜎)/ log 𝑘.

24.6 Demonstration of (i)
The number of 𝜔[𝑛] satisfying

𝐾(𝜔) ∼ ℓ(𝜔[𝑛])/𝑛 ≤ 𝑠 (24.2)

is no more than 𝑘𝑛𝑠 (in our context 𝜔 is the 𝑘-symbol sequence). On the other
hand, according to the Shannon-McMillan-Breiman theorem 32.13, the measure of
the cylinder set specified by 𝜔[𝑛] is estimated as 𝑒−𝑛ℎ𝜇(𝜎). Therefore, the measure of
all 𝜔 satisfying (24.3)

𝐾(𝜔) < ℎ𝜇(𝜎)/ log 𝑘 (24.3)
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is bounded by 𝑒𝑛(𝑠 log 𝑘−ℎ𝜇(𝜎)). This exponent is negative (𝑠 log 𝑘 < ℎ𝜇(𝜎); do not
forget that ℎ𝜇 is defined with the natural logarithm), so the upper bound converges
to zero in the large 𝑛 limit. Therefore the possibility of (24.3) is almost surely ignored.

24.7 Demonstration of (ii)
Next, we wish to show that 𝜇-almost surely (= for 𝜇-almost all 𝜔)

𝐾(𝜔) ≤ ℎ𝜇(𝜎)/ log 𝑘. (24.4)

If this is demonstrated, then, since we just showed that the cases with 𝐾(𝜔) <
ℎ𝜇(𝜎)/ log 𝑘 may be ignored almost surely, only the equality remains.

Since we have only to estimate the upper limit of 𝐾(𝜔), let us estimate the
upper limit of ℓ(𝜔[𝑛]). 𝜔[𝑛] is decomposed as follows in terms of 𝑞 length-𝑚-symbol-
sequences 𝜔𝑚𝑖 (𝑖 = 1, · · · ,𝑀 , where 𝑀 is the total number of distinct length-𝑚-
symbol-sequences; 𝑛 = 𝑚𝑞 + 𝑟, i.e., 𝑞 = [𝑛/𝑚] and 𝑟 is the residue):

𝜔[𝑛] = 𝜔𝑟0𝜔
𝑚
𝑖1
𝜔𝑚𝑖2 · · ·𝜔

𝑚
𝑖𝑞 . (24.5)

Here, 𝜔𝑚𝑖 is the 𝑖th kind of length-𝑚-symbol-sequence, which is assumed to appear 𝑠𝑖
times. With this representation, 𝜔[𝑛] can be uniquely specified by 𝑟, 𝑚, 𝑠1, · · · , 𝑠𝑀 ,
𝜔𝑟0 and the arrangement of 𝑞 length-𝑚-symbol sequences 𝜔𝑚𝑖1𝜔

𝑚
𝑖2
· · ·𝜔𝑚𝑖𝑞 . Therefore, the

needed information to specify 𝜔[𝑛] is given by (or, the length of the shortest required
program with 𝑘 symbols, or the information measured with the base 𝑘 logarithm is
given by)

ℓ(𝜔[𝑛]) ≤ ℓ(𝑟) +𝑅 + ℓ(𝑚) + ℓ(𝑞) +
𝑀∑︁
𝑗=1

ℓ(𝑠𝑗) +𝐻(𝜔𝑚𝑖1𝜔
𝑚
𝑖2
· · ·𝜔𝑚𝑖𝑞 ), (24.6)

where 𝐻(𝜔𝑚𝑖1𝜔
𝑚
𝑖2
· · ·𝜔𝑚𝑖𝑞 ) is the information needed to specify the arrangement (order-

ing) of 𝑞 length-𝑚-symbol sequences 𝜔𝑚𝑖1𝜔
𝑚
𝑖2
· · ·𝜔𝑚𝑖𝑞 and 𝑅 is the information required

to specify 𝜔𝑟0, which is bounded by a constant independent of 𝑛. That is, except for
the last term, all the terms are 𝑜[𝑛] and unrelated to the randomness. Hence,

𝐾(𝜔) ≤ lim sup
𝑛→∞

𝐻(𝜔𝑚𝑖1𝜔
𝑚
𝑖2
· · ·𝜔𝑚𝑖𝑞 )/𝑛. (24.7)

𝐻(𝜔𝑚𝑖1𝜔
𝑚
𝑖2
· · ·𝜔𝑚𝑖𝑞 ) is bounded by the information (in terms of base 𝑘 logarithm)

carried by the possible sequences under the assumption that all such sequences ap-
pear with equal probability. Therefore, it cannot exceed the logarithm (base 𝑘) of the
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number of sequences that can appear as 𝜔[𝑛]. That is, 𝐾(𝜔) ≤ lim𝑛→∞[log𝑘𝑁(𝑛)]/𝑛.
[Beyond this point you need rudiments of KS entropy: Lecture 31] 𝑁(𝑛) is equal to
the number of non-empty elements ∨𝑛𝑘=0𝜎

−𝑘ℬ for a generator ℬ. According to the
Shannon-McMillan-Breiman theorem, for the cylinder sets contributing to entropy
𝜇(𝜔[𝑛])/𝑒−𝑛ℎ𝜇(𝜎) must not vanish in the 𝑛 → ∞ limit. Therefore, the number of
cylinder sets we must count must be, since the sampling probability of each cylinder
set is 𝑒−𝑛ℎ𝜇(𝜎), the order of its inverse: 𝑁(𝑛) ∼ 𝑒𝑛ℎ𝜇(𝜎). Thus, we can understand
(24.4).

As can be seen from the explanation here, Brudno’s theorem is based on very
crude estimates, so it is a natural theorem. Such a theorem should have been discov-
ered by theoretical physicists without any help of mathematicians. Most physicists
in the US did not know this theorem well into the 1990s.

24.8 What is chaos, after all?
Out conclusion is that chaos is a deterministic dynamical system whose trajectories
are algorithmically random. Actually, equivalently, we can say that a dynamical
system with a positive KS entropy invariant measure is a chaotic dynamical system.

Is this a satisfactory outcome? That a trajectory is random is, with the quantifi-
cation in terms of the Kolmogorov-Sinai entropy, invariant under the isomorphism
of the dynamical systems. Isomorphism is a crude correspondence ignoring even the
topology of the phase space, so the characterization we have pursued has nothing at
all to do with how the correlation function decays or what the shape of the attractor
is. Even the observability of chaos by computer experiments is not invariant under
isomorphism.

Perhaps we should conclude that chaos is very common random phenomenon
exhibited by deterministic dynamical systems and is far more basic than the expo-
nential decay of the correlation function, or the invariant sets being fractal.

24.9 Does chaos exist in Nature?
Since we started this chapter with a simple realizable example, the question whether
there is actually chaos may sound strange. However, it is difficult to tell whether
the actual apparently chaotic phenomenon is really chaos or not due to the existing
noise.307 For example, it is easy to make an example that apparently exhibits ob-
servable chaos, even though there is no observable chaos without noise. It is difficult

307Here, ‘noise’ need not mean the effect of the unknown scale, but any unwanted external dis-
turbance as usual.
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to answer affirmatively the question whether there is really chaos without external
noise in a system for which the existence of chaos is experimentally confirmed (this is
in principle impossible308). Therefore, whether the concept of chaos is meaningful in
natural science or not depends on whether it is useful as an ideal concept to under-
stand the real world just as points and lines in elementary geometry. The relevance
of chaos to the instabilities in some engineering systems or instabilities in numerical
computation shows that it is a useful ideal concept.

For actual systems, what is important is its response to small perturbations. For
a deterministic chaos, its practically important aspect is almost exhausted by the ex-
ponential separation of nearby trajectories. Whether the system is deterministic or
not is unimportant. What is practically important is that the phase space is bounded
and the trajectory itinerates irregularly various ‘key’ points in the phase space that
are crucial to the system behavior. However, in order to model a system that easily
exhibits such trajectories with small external perturbations, use of a chaotic system
is at least metaphorically effective.309

308For example, for a one dimensional map, indefinitely small modification of the map can change
it to have a stable fixed point. Such a system behaves just as before the modification, if a small
noise is added. M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani, “Chaos or noise:
difficulties of a distinction,” Phys. Rev. E 62, 427 (2000) recommend a more practical attitude
toward chaos.

309See for chaotic itinerancy view of brain by I. Tsuda, “Hypotheses on the functional roles of
chaotic transitory dynamics,” Chaos 19, 015113 (2009).
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25 Lecture 25. Computable analysis

An accessible reference is: M. B. Pour-El and J. I. Richards, Computability in Anal-
ysis and Physics (Springer, Perspective in Mathematical Logic, 1987).

25.1 Decision problem
Given a set of problems (or a set of instances of a problem, e.g., whether a polynomial
has 0 as its root or not), we ask whether there is an algorithm to answer all the
problems in the set. This problem is called a decision problem. If there is such an
algorithm, we say the set (or the problem) is decidable. If not, we say it is undecidable.
The word ‘algorithm’ was unclear before Turing, but now we can clearly state that
‘algorithm = existence of Turing program.’

25.2 Remark
If a set is finite, or the problem has only finite instances, then it is trivially decidable,
because we can check all of them one by one blindly. The decision problem becomes
nontrivial only if the problem has infinitely many instances like the one due to
Diophantus in 25.3.

25.3 Decision problem examples.
(1) Hilbert’s 10th problem. Decide whether a polynomial 𝑃 (𝑥1, 𝑥2, · · · , 𝑥𝑛) with
integer coefficients (Diophantine equations) has an integer root. This is decidable if
𝑛 = 2,310 but is undecidable for general 𝑛.311

(2) Is ∃𝑥1∃𝑥2∃𝑥3∀𝑦1 · · · ∀𝑦𝑚𝒰 true (𝑚 ∈ 𝑁 )? Here, 𝒰 is any logical formula within
the first order logic312 without including ∃, ∀ and free object variables. This is
undecidable.

25.4 Halting problem of Turing machine
Suppose we have a Turing machine 𝑇 . We feed a number 𝑛 to it, and ask whether
𝑇 ever stops (that is, the solution is given within a finite time or not). Certainly, we

310A. Baker, Phil. Trans. Roy. Soc. London A 263 (1968).
311Ju. V. Matyasevich, 1970: The theorem is called the Matyasevich-Robinson-Davis-Putnam

(MRDP) theorem. There is a moving short movie of Julia Robinson: “Julia Robinson and Hilbert’s
Tenth Problem” (A film by G Csicsery, Zala Films, 2008).

312I recommend H. D. Ebbinghaus, J. Flum and W. Thomas, Mathematical Logic (Springer
Undergraduate Texts in Mathematics, 1984; there is a new edition).
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can run the program on 𝑇 , but that the machine has not yet stopped does not mean
anything about its final result. Is there any algorithm to judge that 𝑇 halts upon 𝑛?
This is called the halting problem.

25.5 Halting problem is undecidable
We can identify a Turing machine 𝑋 and its program = its Gödel number 𝑛(𝑋).
Since 𝑛(𝑋) is a number, we can feed this into 𝑋. Let us collect all the Turing
machines 𝑋 such that 𝑋[𝑛(𝑋)] (the result of the computation) is computed (that
is, 𝑋 halts on input 𝑛(𝑋)) and make a set 𝐾 of such Turing machines:

𝐾 = {𝑋 |𝑋[𝑛(𝑋)] is well defined.}. (25.1)

If the halting problem is decidable, then, since 𝐾 is a collection of special Turing
machines, in particular, we must have an algorithm to judge whether a given Turing
machine 𝑋 is in 𝐾 or not. Thus, we can make a Turing machine 𝑌 that halts for
any input and gives the following output:

𝑌 [𝑛(𝑋)] =

{︂
𝑋[𝑛(𝑋)] + 1, if 𝑋 ∈ 𝐾,
0, otherwise .

(25.2)

Note that 𝑌 ∈ 𝐾, since it halts for any input.
This 𝑌 is defined for any input Gödel number, so, in particular, we may input

𝑛(𝑌 ). The outcome is
𝑌 [𝑛(𝑌 )] = 𝑌 [𝑛(𝑌 )] + 1, (25.3)

a contradiction; we cannot make such 𝑌 . There is no algorithm to decide the halting
problem.

25.6 Recursive set
A set whose characteristic function is a recursive function (23.13) is called a recur-
sive set.

What this means is: if a set is a recursive set, then we have an algorithm to tell
whether a given number is in the set or not. In this sense, we can tell the member
of the set without referring to how to generate the set.

In other words, a set is a recursive set, if and only if we can construct a Turing
machine (or a program for a universal Turing machine) such that it can print 1 if
the element313 is in the set and 0 otherwise with finite steps.

313Of course, this must be suitably encoded so that the machine can understand it.
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25.7 Recursively enumerable set
A set 𝐴 which is a range of a recursive function 𝑓 is called a recursively enumerable
set. We say 𝑓 enumerates 𝐴.

Hence, if a set is a recursively enumerable set, we know how to produce the set
(there is a computer program which generates the set). We simply feed the elements
in N one by one to the recursive function, and collect its outcomes.314

25.8 Nondeterministic Turing machines
To produce a recursively enumerable set, we feed N one by one into a Turing ma-
chine. Instead, we could prepare infinitely many copies of the Turing machine and
feed N at once. This is an ideal parallel computation, and the infinite bank of the
Turing machine is called a nondeterministic Turing machine.

The output of a nondeterministic Turing machine is a recursively enumerable set.

The index of a recursively enumerable set is partially recursive 23.6, since we can
use its enumerating function (25.7) to make the required index function.

25.9 Existence of recursively enumerable non-recursive set
Theorem: There exists a recursively enumerable but not recursive (RENR) set.
This is important, so a demonstration is given here. You will realize the following is
very similar to the logic in 25.5.

Let 𝜑𝑥(𝑦) be the output (if any) of the Turing machine whose Gödel number is 𝑥
(remember that there are only countably many Turing machines), when its input is
𝑦. Here, both 𝑥 and 𝑦 are in N. Make a set

𝐾 ≡ {𝑥 : 𝜑𝑥(𝑥) is defined}. (25.4)

That is, 𝐾 is the set of all the numbers 𝑥 such that the corresponding Turing machine
halts with the input 𝑥. Certainly, this is a recursively enumerable set, because we
know how to perform each step needed to compute 𝜑𝑥(𝑥), although we do not know
whether it actually gives a number or not. Now define a function 𝑓 such that

𝑓(𝑥) ≡
{︂
𝜑𝑥(𝑥) + 1, if 𝜑𝑥(𝑥) is defined,

0, otherwise.
(25.5)

314In this case it is known that the enumeration can be done without repetition. See e.g., Zvonkin
and Levine, op. cit. Theorem 0.4.
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That is,

𝑓(𝑥) ≡
{︂
𝜑𝑥(𝑥) + 𝜒𝐾(𝑥), if 𝜑𝑥(𝑥) is defined,

𝜒𝐾(𝑥), otherwise,
(25.6)

where 𝜒𝐾 is the characteristic function of 𝐾. If 𝐾 is recursive, then 𝜒𝐾 is recursive,
so there must be a Turing machine which reproduces 𝑓 . However, there cannot be
such a Turing machine; if any, there must be an 𝑥 such that 𝑓(𝑧) = 𝜑𝑥(𝑧) for any
𝑧 ∈ N, but obviously this is untrue for 𝑧 = 𝑥. Thus we cannot assume that 𝜒𝐾 is a
recursive function.

Remark.
(1) I believe most recursive sets are RENR sets, but I do not find any such statement.
(2) Notice that whether RENR or not the totality of recursively enumerable sets is
a countable set, since the number of Turing machines is countable. In contrast, the
totality of algorithmic random numbers is uncountable.

25.10 Condition for recursiveness
Theorem. A set 𝑄 is recursive if and only if both 𝑄 and 𝑄𝑐 are recursively enu-
merable (25.7).

[Demo] We assume 𝑄 and 𝑄𝑐 are non-empty.
(⇒) Let 𝜒 be the index function of 𝑄. Then there is a TM that compute 𝜒 (or 𝜒
is a recursive function 𝑓). Then 1− 𝑓 is also recursive, which is the index of 𝑄𝑐, so
𝑄𝑐 is recursive. A recursive set is recursively enumerable,315 so 𝑄 and 𝑄𝑐 are both
recursively enumerable.
(⇐) Suppose 𝑓 enumerate 𝑄 and 𝑓 𝑐 enumerates 𝑄𝑐. Both are recursive functions.
Therefore, we can make the index function for 𝑄, since we know 𝑄 explicitly.

25.11 Computable rational sequence
We say a rational number sequence {𝑟𝑘} is a computable rational number sequence,
if for any 𝑘 ∈ N there are recursive functions (23.13) 𝑎, 𝑏 and 𝑠 (𝑏 ̸= 0) such that

𝑟𝑘 = (−1)𝑠(𝑘)
𝑎(𝑘)

𝑏(𝑘)
. (25.7)

315If 𝐴 is a recursive set, we have a Turing machine that accepts it; that is 𝑇 (𝑎) = 1 for any
𝑎 ∈ 𝐴 and 𝑇 (𝑏) = 0 for any 𝑏 ̸∈ 𝐴. Make a TM based on 𝑇 such that if 𝑇 (𝑎) = 1, spit 𝑎. For 𝑏 ̸∈ 𝐴,
we could leave this TM not to halt, or to print one known element in 𝐴.
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25.12 Effective convergence
Let {𝑟𝑘} be a computable rational sequence. We say it converges effectively to 𝑥 ∈ R,
if there is a recursive function 𝑒(𝑁) such that

𝑘 ≥ 𝑒(𝑁) ⇒ |𝑟𝑘 − 𝑥| ≤ 2−𝑁 . (25.8)

That is, if {𝑟𝑘} converges to 𝑥 in the ordinary sense of this word and if there is an
algorithm to estimate error, we say {𝑟𝑘} converges effectively to 𝑥.

25.13 Computable real number
𝑥 is a computable real number, if there is a computable rational number sequence
effectively converging to 𝑥.

25.14 Remark: Effectiveness
We say we can do something effectively, if we have an algorithm. We say a concept is
effective, if we can define it with an algorithm (for example, whether it is correct or
not can be decided). An asymptotic object such as irrational numbers is said to be an
effective object when its construction and the distance (error) from the asymptotic
limit can be estimated effectively. Thus, ‘effectiveness’ is a precise formalization of
‘constructibility.’

25.15 How to destroy effectiveness
Let 𝐴 = {𝑎(𝑛)} be a RENR set 25.9 without repetition (i.e., 𝑎(𝑛) ̸= 𝑎(𝑚), if 𝑛 ̸= 𝑚).
We can compute each 𝑎(𝑛), but we cannot effectively tell whether, say, 10 appears
in 𝐴 or not. Hence, if we can construct a procedure whose error estimate is bounded
by 2−𝑎(𝑚), then effective estimation is destroyed.

25.16 Waiting lemma
Let 𝐴 = {𝑎(𝑛)} be a RENR set (25.9) without repetition (i.e., 𝑎(𝑛) ̸= 𝑎(𝑚) if
𝑛 ̸= 𝑚). Let

𝑤(𝑛) ≡ max{𝑚 | 𝑎(𝑚) ≤ 𝑛}. (25.9)
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Then, there is no recursive function (23.13) 𝑐(𝑛) such that

𝑤(𝑛) ≤ 𝑐(𝑛). (25.10)

That is, there is no algorithm to estimate the needed 𝑚 so that {1, · · · , 𝑛} ⊂
{𝑎(1), · · · , 𝑎(𝑚)}.
[Demo]
If 𝑐(𝑛) were recursive, then we could tell whether 𝑛 ∈ 𝐴 or not with a finite number
of steps. First, compute 𝑐(𝑛) = 𝑚, then check all 𝑎(𝑚′) for 𝑚′ up to 𝑚. If we could
find 𝑛 among the output, certainly 𝑛 ∈ 𝐴; if we could not, then 𝑛 ̸= 𝐴. Hence, 𝐴
would be a recursive set, a contradiction.

25.17 Existence of converging noneffectively converging series
Theorem. There is a bounded monotone increasing series consisting of computable
rational numbers that does not converge effectively (that is, although its convergence
is guaranteed in the ordinary mathematics, we have no means to compute its value
for sure).
[Demo]
Take 𝐴 in the above and construct

𝑆 =
∞∑︁
𝑛=0

2−𝑎(𝑛). (25.11)

This is a desired example of the series claimed in the theorem, because 𝐴 is not
repetitive; it is bounded from above and the partial sums are monotone increasing.
Since, for example, we do not know whether 2 is in 𝐴 or not effectively, we cannot
estimate 𝑆 (which must be less than 2) better than the error of 1/4.

𝑆 is not computable according to the expansion (25.11). There must be many
other series converging to the same 𝑆, so you might think the non-computability
of 𝑆 may ‘series expression’-dependent. This is not the case at least if there is a
monotone converging noncomputable series.316

25.18 Computable function
We say a function from R into itself is computable, if its values at computable reals

316Pour-El & Richards p20.
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are computable reals. Pour-El and Richards impose further the following effective
uniform continuity. There is a recursive function 𝑑 such that for any 𝑛 ∈ 𝑁

|𝑥− 𝑦| ≤ 1/𝑑(𝑛) ⇒ |𝑓(𝑥)− 𝑓(𝑦)| < 2−𝑛. (25.12)

25.19 ‘Ordinary functions’ are computable
sin, cos, exp, 𝐽𝑛, etc., are computable. Behind this statement lies the following
‘effective Weierstrass’ theorem.’

If we can find a recursive function 𝐷(𝑛) such that

𝑝𝑛(𝑥) =

𝐷(𝑛)∑︁
𝑖=0

𝑟𝑛𝑗𝑥
𝑗, (25.13)

where 𝑟𝑛𝑗 are computable rationals, we say {𝑝𝑛} is a computable sequence of rational
polynomials.

Effective Weierstrass. If we can find a recursive function 𝑒(𝑛) such that

𝑚 ≥ 𝑒(𝑁) ⇒ |𝑓(𝑥)− 𝑝𝑛(𝑥)| < 2−𝑁 , (25.14)

then 𝑓 is a computable function.317

25.20 Computable operations on functions
Composition 𝑓 ∘ 𝑔, sum 𝑓 ± 𝑔, multiplication 𝑓𝑔, and many other elementary op-
erations preserve computability. Integration also preserves computability. Hence, it
is not hard to guess that the derivatives of computable analytic functions are again
computable. However,

25.21 Myhill’s theorem
Theorem [Myhill]. Even if 𝑓 is a computable 𝐶1 function, 𝑓 ′ may not be com-
putable.

[Demo]

317See Pour-El and Richards, Chapter 0, Section 5 and 7.
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The following is the counterexample. Let

𝜙(𝑥) =

{︂
exp(−𝑥2/(1− 𝑥2)) for |𝑥| < 1,

0 otherwise,
(25.15)

which is a 𝐶∞ function. Let 𝐴 = {𝑎(𝑛)} be the RENR set mentioned before. Define

𝜙𝑛(𝑥) = 𝜙[2𝑛+𝑎(𝑛)+2(𝑥− 2−𝑎(𝑛))]. (25.16)

Construct

𝑓(𝑥) =
∞∑︁
𝑘=0

4−𝑎(𝑘)𝜙𝑘(𝑥). (25.17)

This is computable, but
𝑓 ′(2−𝑚) = 4−𝑚𝜒𝐴(𝑚), (25.18)

where 𝜒𝐴 is the characteristic function of 𝐴, which cannot be computed.

25.22 PDE and computability
(1) Laplace and diffusion equations preserve the computability of the auxiliary con-
ditions.
(2) In 𝑑(≥ 2)-space, the wave equation cannot preserve computability. More explic-
itly, even if the initial data is computable, the solution at time, say, 𝑡 = 1 is not
computable. It is not hard to understand this, if we notice that the Radon trans-
formation formula (𝑑 ≥ 2) involves differentiation. See 32D.9-10 (For the Radon
transformation see 32D.2) of
https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.pdf.

25.23 Real physics implications?
There are uncountably many algorithmically random numbers, but the recursive and
recursively enumerable sets are both only countably many, because all the number
of Turing machines or Turing programs (“Gödel numbers”) is countable.

There is no way to construct a non-computable functions nor RENR sets. How-
ever, it is expected that most recursively enumerable sets are not recursive. There-
fore, if we ‘sample’ a series ‘randomly’, we will hit unpleasant examples easily. [TBC].

https://www.dropbox.com/home/ApplMath?preview=AMII-32+FourierTransformation.pdf
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26 Lecture 26. Symbolic dynamics

26.1 Shift
Let us consider a finite set 𝑆 whose elements we call symbols (thus 𝑆 may be un-
derstood as a set of alphabets). A finite sequence of symbols is called a word. Make
a set Σ consisting of some infinite sequences (both-sided or one-sided) 𝜔 = (𝜔𝑛)𝑛
(𝜔𝑛 ∈ 𝑆). Then we can make a shifted sequence 𝜔′ = 𝜎𝜔 from 𝜔 as 𝜔′ = (𝜔𝑛+1)𝑛:

𝜔 = · · ·𝜔−𝑘𝜔−𝑘+1 · · ·𝜔−1 𝜔0 𝜔1𝜔2 · · ·𝜔𝑘𝜔𝑘+1 · · · , (26.1)

𝜎𝜔 = 𝜔′ = · · ·𝜔−𝑘+1𝜔−𝑘+2 · · ·𝜔0 𝜔1 𝜔2𝜔3 · · ·𝜔𝑘+1𝜔𝑘+2 · · · . (26.2)

or in the one-sided case

𝜔 = 𝜔0 𝜔1𝜔2 · · ·𝜔𝑘𝜔𝑘+1 · · · , (26.3)

𝜎𝜔 = 𝜔′ = 𝜔1 𝜔2𝜔3 · · ·𝜔𝑘+1𝜔𝑘+2 · · · . (26.4)

The operator 𝜎 is called a shift operator or shift.

26.2 Shift dynamical systems
Σ ≡ 𝑆Z (resp. Σ+ = 𝑆N) is the totality of both-side (resp. one-side) infinite symbol
sequences on 𝑆. We can define shift on Σ and is called, as a dynamical system, the
full shift on 𝑆.

A subset𝑀 of Σ is an invariant set if 𝜎𝑀 =𝑀 . Then, we may define a restriction
of 𝜎 to 𝑀 (sometimes, it is written as 𝜎𝑀), which is called a subshift.

For example, we can consider all the sequences 𝑀 ⊂ {0, 1}Z that never contains
11. Needless to say, the shift never changes the sequence structures, so we can define
a shift dynamical system (𝜎,𝑀). This is an example of a Markov subshift.

A finite sequence of symbols is called a word. Thus𝑀 above may be characterized
as a sequence without word 11.

26.3 Topology or metric in symbol sequence space
We wish to compare different sequences. As can be seen from the illustration 22.4
if the length 𝑛 words close to 0 are identical we should regard the sequences close.
Thus, we introduce the following metric in Σ:

𝑑(𝜔, 𝜔′) =
∑︁
𝑛

2−|𝑛|𝛿𝜔𝑛𝜔′
𝑛
. (26.5)
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The full shift (𝜎,ΣZ) (or (𝜎,ΣN)) has dense periodic orbits and topologically mix-
ing 26.4.

26.4 Topological mixing
Let 𝑓 : 𝑀 → 𝑀 be a topological dynamical system (= 𝐶0-endomorphism of a
(smooth) manifold𝑀). For any 𝑈, 𝑉 ⊂𝑀 if 𝑓𝑛(𝑈)∪𝑉 ̸= ∅ for any sufficiently large
𝑛 ∈ N (i.e., there is a positive integer 𝑁(𝑈, 𝑉 ) and for all 𝑛 > 𝑁(𝑈, 𝑉 )), we say this
dynamical system is topologically mixing.

26.5 Cylinder set
A subset of sequence space𝑀 with a particular word at a particular position is called
a cylinder set: for example

{𝜔 |𝜔0 = 𝛼1, 𝜔1 = 𝛼2, · · ·𝜔10 = 𝛼11, 𝜔 ∈𝑀} (26.6)

is a length (or rank) 11 cylinder set consisting of the totality of sequences in 𝑀 such
that

· · ·𝜔−2𝜔−1𝛼1𝛼2 · · ·𝛼10𝛼11𝜔11𝜔12 · · · , (26.7)

where 𝜔𝑘 can be anything as long as 𝜔 ∈𝑀 .

26.6 Markov subshift
Let 𝑆∘ = 𝑛 (the size of the alphabet). Let 𝐴 be a 𝑛× 𝑛 matrix whose elements are
0 or 1. Define

Σ𝐴 = {𝜔 ∈ Σ |𝐴𝜔𝑛,𝜔𝑛+1 = 1, 𝑛 ∈ Z}. (26.8)

Σ+
𝐴 for one-sided systems may be analogously defined by replacing Z with N. (𝜎,Σ𝐴)

is called a Markov subshift whose structure matrix is 𝐴.

26.7 Fixed points of Markov subshift
If there is an orbit starting from symbol 𝑥 that returns to itself after 𝑝 shift, (𝐴𝑝)𝑥𝑥 >
0. This number is actually the number of ways to go from 𝑥 to itself in 𝑝 steps.
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The fixed points of 𝜎𝑝 has the following structure:318

(𝑖1𝑖2 · · · 𝑖𝑝𝑖1𝑖2 · · · 𝑖𝑝 · · ·). (26.9)

Therefore, the total number 𝑁Fix(𝜎
𝑝) of fixed points of 𝜎𝑝 is Tr𝐴𝑝:

𝑁Fix(𝜎
𝑝) = Tr𝐴𝑝. (26.10)

Notice that this is closely related to the number of periodic orbits:

𝑁Fix(𝜎
𝑛) =

∑︁
(𝑘,𝜏):𝑘𝜏=𝑛

𝜏, (26.11)

where 𝜏 is the period of a periodic orbit 𝜏 , and the summation is over all the pairs
(𝑘, 𝜏).

26.8 Zeta function of dynamical system
The zeta function 𝜁𝑓 for a dynamical system 𝑓 ∈ 𝐶𝑟(𝑀) is generally defined as

𝜁𝑓 (𝑠) = exp

[︃
∞∑︁
𝑛=1

𝑁Fix(𝑓
𝑛)

𝑛
𝑠𝑛

]︃
. (26.12)

Using (26.11), we get

= exp

⎡⎣ ∞∑︁
𝑛=1

1

𝑛

∑︁
(𝑘,𝜏):𝑘𝜏=𝑛

𝜏𝑠𝑛

⎤⎦ . (26.13)

Here, all the combinations (𝑘, 𝜏) appear once and only once; the totality of 𝜏 (if
orbits are distinct, even if they have the same 𝜏 they must be counted separately) is
system dependent, but if the system has one 𝜏 , 𝑘𝜏 for all 𝑘 ∈ N+ appear. Thus, for
each 𝜏 the summation over 𝑘 runs from 1 to ∞:

𝜁𝑓 (𝑠) = exp

⎡⎣∑︁
(𝑘,𝜏)

1

𝑘𝜏
𝜏𝑠𝑘𝜏

⎤⎦ (26.14)

= exp

[︃∑︁
𝜏

∞∑︁
𝑘=1

1

𝑘
𝑠𝑘𝜏

]︃
= exp

[︃
−
∑︁
𝜏

log(1− 𝑠𝜏 )

]︃
(26.15)

=
∏︁
𝜏

(1− 𝑠𝜏 ). (26.16)

318Notice that (26.9) and its ‘cyclic permutation’, e.g., (𝑖2𝑖3 · · · 𝑖𝑝𝑖1𝑖2𝑖3 · · · 𝑖𝑝𝑖1 · · ·) are distinct
points.
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Here the summation (or product) over 𝜏 is over all the periods allowed to the system.
This is why it is called the zeta function.

26.9 Zeta function for Markov subshift
Let us compute the zeta function for (𝜎,Σ𝐴) with the structure matrix 𝐴. We have
an explicit formula for 𝑁Fix(𝜎

𝑛), so319

𝜁𝜎(𝑠) = exp

[︃
∞∑︁
𝑛=1

Tr𝐴𝑛

𝑛
𝑠𝑛

]︃
= exp[−Tr log(1− 𝑠𝐴)] = 1/det (1− 𝑠𝐴). (26.17)

Thus, the inverse of the eigenvalue of 𝐴 with the largest modulus gives the conver-
gence radius 𝜌𝐴 for the zeta function.

As we will see, − log 𝜌𝐴 is the topological entropy of the dynamical system (the
sup of the KS entropy). The invariant measure that realizes this sup value (thus,
actually the max value) is the invariant measure of the Markov chain defined by the
transition matrix 𝐴.

26.10 Topologically transitive Markov subshift
If there is 𝑚 ∈ N such that 𝐴𝑛 > 0 (all the elements positive), we say the resultant
Markov subshift is topologically transitive: there is an orbit starting from any sym-
bol to reach any symbols with a finite number of steps.

A topologically transitive Markov subshift is topologically mixing and periodic
orbits are dense in Σ𝐴.

320

The Perron-Frobenius theorem 26.11 tells us that 𝜌𝐴 = 1/𝜆PF, where 𝜆PF is the
Perron-Frobenius eigenvalue of 𝐴.

26.11 Perron-Frobenius theorem
Let 𝐴 be a square matrix whose elements are all non-negative, and there is a positive
integer 𝑛 such that all the elements of 𝐴𝑛 are positive. Then, there is a nondegenerate
real positive eigenvalue 𝜆 such that
(i) |𝜆𝑖| < 𝜆, where 𝜆𝑖 are eigenvalues of 𝐴 other than 𝜆,321

319Recall log det (𝐴) = log(
∏︀

eigenvalue of 𝐴) =
∑︀

log(eigenvalue of 𝐴) = Tr log𝐴.
320P1.9.9 KH p51
321That is, 𝜆 gives the spectral radius of 𝐴.
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(ii) the elements of the eigenvector belonging to 𝜆 may be chosen all positive.
This special real eigenvalue giving the spectral radius is called the Perron-Frobenius
eigenvalue.

For the ‘shortest demonstration’ see 26.13.322

26.12 Preview of thermodynamic formalism
As you realize, thus dynamical systems are closely related to 1D spin systems. Pe-
riodic states correspond to ordered states in spin systems; thus, periodic dynamical
systems correspond to spin systems with long-range interactions. Chaotic states cor-
responds to high-temperature states. Critical phenomena in spin systems correspond
to Feigenbaum critical phenomena 8.7.

Sinai introduced the thermodynamic formalism to understand dynamical systems,
which systematize the ideas above. Invariant measures correspond to Gibbs mea-
sures. Observability of chaos may be characterized by a special temperature.

26.13 Proof of the Perron-Frobenius theorem323

Let us introduce the vectorial inequality notation for 𝑛-column vectors): 𝑥 > 0 (≥ 0)
implies that all the components of 𝑥 are positive (non-negative). Also let us write 𝑥 ≥ (>)
𝑦, if 𝑥− 𝑦 ≥ (>) 0.

We use analogous symbols for 𝑛 × 𝑛 matrices 𝐴, 𝐵, · · · as well. 𝐴 > 0: (≥ 0) implies
that all the components of 𝐴 are positive (non-negative). Also let us write 𝐴 ≥ (>) 𝐵, if
𝐴−𝐵 ≥ (>) 0.

We consider 𝑛 × 𝑛 matrices 𝐴 ≥ 0 for which there is a positive integer 𝑚 such that
𝐴𝑚 > 0.

Let 𝑥 be a vector such that |𝑥| = 1 and 𝑥 ≥ 0. The largest 𝜌 satisfying

𝐴𝑥 ≥ 𝜌𝑥 (26.18)

is denoted by Λ(𝑥): Λ(𝑥) = max{𝜌 |𝐴𝑥 ≥ 𝜌𝑥}.

(o) Note that

Λ(𝑥) = min
𝑖 s.t. 𝑥𝑖 ̸=0

(𝐴𝑥)𝑖
𝑥𝑖

, (26.19)

so it is continuous for 𝑥 > 0.

(o′) 𝐴𝑚 > 0 implies 𝐴𝑚𝑥 > 0 for 𝑥 ≥ 0 ( ̸= 0).

322The newest version, taking account of H Tasaki’s critical comments (April, 2018).
323A standard reference may be E. Seneta, Non-negative matrices and Markov chains (Springer,

1980). The proof here is an eclectic version due to many sources, including N. Iwahori, Graphs
and Stochastic Matrices (Sangyo-tosho, 1974) and S. Sternberg: http://www.math.harvard.edu/
library/sternberg/slides/1180912pf.pdf..

http://www.math.harvard.edu/library/sternberg/slides/1180912pf.pdf
http://www.math.harvard.edu/library/sternberg/slides/1180912pf.pdf
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(i) Define a compact324 set 𝑈 = {𝑥 |𝑥 ≥ 0, |𝑥| = 1} and a continuous map 𝑄 on it as

𝑄𝑥 ≡ 𝐴𝑚𝑥

|𝐴𝑚𝑥|
> 0. (26.20)

Then, Λ(𝑄𝑥) ≥ Λ(𝑥) on 𝑈 .
[Demo] Let 𝐴𝑥 ≥ 𝜆𝑥 for 𝑥 ∈ 𝑈 . Then,

𝐴𝑚𝐴𝑥 = 𝐴𝐴𝑚𝑥 ≥ 𝜆𝐴𝑚𝑥 ⇒ 𝐴𝑄𝑥 ≥ 𝜆𝑄𝑥. (26.21)

Therefore, Λ(𝑄𝑥) ≥ Λ(𝑥) for any 𝑥 ∈ 𝑈 .

(ii) There is a vector 𝑧 ∈ 𝑈 that maximizes Λ(𝑥).
[Demo] Let 𝐶 = 𝑄(𝑈). Notice that

𝐶 ⊂ {𝑥 |𝑥 > 0, |𝑥| = 1}, (26.22)

because for any 𝑥 ∈ 𝑈 𝑥̃ = 𝑄𝑥 satisfies |𝑥̃| = 1 and 𝑥̃ > 0. Thus. 𝐶 ⊂ 𝑈 . Since 𝑄 is
continuous on 𝑈 , 𝐶 is compact. 𝑥 > 0 for any 𝑥 ∈ 𝐶, so Λ(𝑥) is continuous and has a max
value on 𝐶. For any 𝑥 ∈ 𝑈 (i) says Λ(𝑄𝑥) ≥ Λ(𝑥), so Λ defined on 𝑈 is maximum on 𝐶,
since 𝐶 ⊂ 𝑈 .

(iii) Let us write 𝜆(𝐴) = Λ(𝑧). That is, 𝜆(𝐵) = max𝑥∈𝑈{Λ(𝑥) |𝐵𝑥 ≥ Λ(𝑥)𝑥} for any 𝑛× 𝑛
matrix with some positive 𝑚 such that 𝐵𝑚 > 0. 𝜆(𝐴) is an eigenvalue of 𝐴, and 𝑧 belongs
to its eigenspace: 𝐴𝑧 = 𝜆(𝐴)𝑧.
[Demo] Even if not, we have 𝑤 = 𝐴𝑧 − 𝜆(𝐴)𝑧 ≥ 0 (not equal to zero) by definition of 𝜆(𝐴).
Notice that for any vector 𝑥 ≥ 0 𝐴𝑚𝑥 > 0, so unless 𝑤 = 0

𝐴𝑚𝑤 = 𝐴𝐴𝑚𝑧 − 𝜆(𝐴)𝐴𝑚𝑧 > 0. (26.23)

This implies Λ(𝐴𝑚𝑧) > 𝜆(𝐴), but 𝜆(𝐴) is the maximum of Λ, so this is a contradiction.
Therefore, 𝑤 = 0. That is, 𝑧 is an eigenvector belonging to 𝜆.

(iv) 𝑧 > 0 because max of Λ is on 𝐶.

(v) 𝜆 is the spectral radius of 𝐴.
[Demo] Suppose 𝐴𝑦 = 𝜆′𝑦. Let 𝑞 be the vector whose components are absolute values of 𝑦:
𝑞𝑖 = |𝑦𝑖|. Then, 𝐴𝑞 ≥ |𝜆′|𝑞 (as seen from (26.19)). Therefore, |𝜆′| ≤ 𝜆(𝐴).

(vi) The absolute values of other eigenvalues are smaller than 𝜆(𝐴). That is, no eigenvalues
other than 𝜆(𝐴) is on the spectral circle.
[Demo] Suppose 𝜆′ is an eigenvalue on the spectral circle but is not real positive. Let 𝑞 be
the vector whose components are absolute values of an eigenvector belonging to 𝜆′. Since
𝐴𝑞 ≥ |𝜆′|𝑞 = 𝜆(𝐴)𝑞, actually we must have 𝐴𝑞 = 𝜆(𝐴)𝑞. Therefore, the absolute value of
each component of the vector 𝐴𝑚𝑦 = 𝜆′𝑚𝑦 coincides with the corresponding component of
𝐴𝑚𝑞. This implies ⃒⃒⃒⃒

⃒⃒∑︁
𝑗

(𝐴𝑚)𝑖𝑗𝑦𝑗

⃒⃒⃒⃒
⃒⃒ =∑︁

𝑗

(𝐴𝑚)𝑖𝑗 |𝑦𝑗 | =
∑︁
𝑗

|(𝐴𝑚)𝑖𝑗𝑦𝑗 |. (26.24)

324Since we deal with finite-dimensional vector spaces, ‘closed’ can always replace ‘compact.’
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All the components of 𝐴𝑚 are real positive. Therefore, all the arguments of 𝑦𝑗 are identical,
325

so 𝑦 is parallel to 𝑞. Hence, 𝜆′ = 𝜆(𝐴).

(vii) 𝜆(𝐴) is non-degenerate.
We show that 𝜆(𝐴) is a non-degenerate root of the characteristic equation det(𝜆𝐼 −𝐴). We
use
(viia) For any matrix 𝐵 ≥ 0 ( ̸= 0) det(𝜆𝐼−𝐵) > 0 for real 𝜆 > 𝜆(𝐵) (= the spectral radius).
(viib) Let 𝐴(𝑖) be the matrix with the 𝑖th row and 𝑖th column removed from 𝐴. Then,326

𝑑

𝑑𝜆
det(𝜆𝐼 −𝐴) =

∑︁
𝑖

det(𝜆𝐼 −𝐴(𝑖)). (26.25)

Let 𝐴[𝑖] be the matrix with all the elements in 𝑖th row and 𝑖th column of 𝐴 being replaced
with 0. Suppose 𝐴[𝑖]𝑧 = 𝜎𝑧 (𝑧 ̸= 0). Then, for all 𝑖

𝐴|𝑧| ≥ 𝐴[𝑖]|𝑧| ≥ |𝜎||𝑧|. (26.26)

That is 𝜆(𝐴) ≥ |𝜎|. If 𝜆(𝐴) = |𝜎|, then 𝐴|𝑧| = |𝜎||𝑧|, so |𝑧| > 0 and (𝐴 − 𝐴[𝑖])|𝑧| = 0, but
this is impossible. Therefore, the spectral radius of 𝐴[𝑖] is smaller than 𝜆(𝐴) for any 𝑖. Since
𝐴[𝑖] and 𝐴(𝑖) have the same spectral circle, (viia) implies all the terms in (26.25) are positive
for 𝜆 = 𝜆(𝐴), so (viib) implies 𝜆(𝐴) is non-degenerate.

325𝑎, 𝑏 ̸= 0 and |𝑎 + 𝑏| = |𝑎| + |𝑏| imply the real positivity of 𝑎/𝑏. This means inductively that
|
∑︀
𝑎𝑖| =

∑︀
|𝑎𝑖| implies all 𝑎𝑖 must have the same argument.

326Let 𝑋 = 𝑛×𝑛 diagonal matrix with the diagonal 𝑥1, · · · , 𝑥𝑛. Then, expanding the determinant
with respect to the 𝑖th row, obviously,

𝑑

𝑑𝑥𝑖
det(𝑋 −𝐴) = det(𝑋(𝑖) −𝐴(𝑖)),

where 𝑋(𝑖) = (𝑛− 1)× (𝑛− 1) diagonal matrix with the diagonal 𝑥1, · · · , (𝑥𝑖), · · · , 𝑥𝑛 (𝑥𝑖 omitted).
The rest is due to the chain rule.
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27 Lecture 27. Baker’s transformation

27.1 Baker’s transformtion
The baker’s transformation is a one-to-one map 𝑇 : 𝑀 = [0, 1)2 → [0, 1)2 defined as
follows:

𝑇 (𝑥, 𝑦) =

{︂
(2𝑥, 𝑦/2) 𝑥 ∈ [0, 1/2)
(2𝑥− 1, (𝑦 + 1)/2 𝑥 ∈ [1/2, 1)

. (27.1)

The transformation and its inverse are illustrated in Fig. 27.1

inverse transformation

Figure 27.1: Baker’s transformation and its inverse

27.2 Stable and unstable manifolds of baker’s transformation
𝑀 may be decomposed into vertical sets and horizontal sets. The vertical set con-
taining (𝑥, 𝑦) is

𝛾−(𝑥, 𝑦) = {(𝑥, 𝑦1) | 𝑦1 ∈ [0, 1)} (27.2)

and the horizontal set containing (𝑥, 𝑦) is

𝛾+(𝑥, 𝑦) = {(𝑥1, 𝑦) |𝑥1 ∈ [0, 1)}. (27.3)

Since 𝑇 expands 𝛾+(𝑥, 𝑦), it is an (local) unstable manifold of (𝑥, 𝑦); we see 𝛾−(𝑥, 𝑦)
is a (local) stable manifold of (𝑥, 𝑦).327

Notice that this decomposition defines an equivalence relation: If 𝑥 ∈ 𝛾±(𝑦) ⇒
327‘local’ in general, because they may not be continuous.
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𝛾±(𝑥) = 𝛾±(𝑦).

27.3 Invariant measure of baker’s transformation
Obviously the area is preserved, so the usual Lebesgue measure is an invariant mea-
sure.

We can show that the measure is a mixing (of course ergodic) measure.

27.4 Symbolic dynamical expression of baker’s transformation
Let us define the partition 𝒜 = {𝑀0,𝑀1} (see 32.2 for a precise definition): 𝑀 =
𝑀0 ∪𝑀1, where 𝑀0 = [0, 1/2)× [0, 1) and 𝑀1 = [1/2, 1)× [0, 1).

How this partition is transformed according to 𝑇 or 𝑇−1 may be understood easily
from the figure 27.2.

M

M

M

M
M

M

M

M

T

T

T

T

T
T

2

2

-1

-1

0 1

0

1

0

1

1

0

Figure 27.2: The fate of partition 𝑀0 ∨𝑀1

As is clear from the figure ∨∞
𝑛=0𝑇

−𝑛𝒜 consists of the totality of 𝛾+, and ∨∞
𝑛=0𝑇

𝑛𝒜
consists of the totality of 𝛾−. Thus, an element of ∨∞

−∞𝑇
𝑛𝒜 specifies a point in 𝑀 .

This allows us to assign a 01 sequence to each point in𝑀 such that 𝑇𝑀 corresponds
to the shift on {0, 1}Z. The rule may be more explicitly stated as follows: For 𝑥 ∈𝑀
if 𝑇−𝑛𝑥 ∈𝑀𝛼 (𝛼 = 0 or 1) 𝜔(𝑥)𝑛 = 𝛼.

The correspondence is not one to one. 𝑀 → {0, 1}Z is injective. However, for bi-
nary rational numbers its binary expansion is not unique. However, these points are
measure zero, so as a probabilistic system (= measure-theoretical dynamical system)
we may totally ignore them and identify baker’s transformation (with the Lebesgue
measure) and the Bernoulli system 𝐵(1/2, 1/2).
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28 Lecture 28 Horseshoe

28.1 Horseshoe dynamical system
The horseshoe dynamical system is constructed as follows:
First a map 𝑔 : 𝐷 → 𝐷 in Fig. 28.1 is constructed that maps the (yellow) square
ABCD to a horseshoe overlapping the original square (which we will call 𝑅):

AB

C D

AB

C D

B

C

D

A

B

C

D

A

D

R

Figure 28.1: Construction of horseshoe

Then, prepare one more disk and complete 𝑆2. Thus as an example of 𝐶𝑟(𝑆2, 𝑆2)
the horseshoe dynamical system has been constructed. Let us write this (𝜂, 𝑆2).

There is a unique sink in the red semidisk in Fig. 28.1.

The inverse map 𝜂−1 is also a horseshoe map: 𝜂−1(𝑅) (𝑅 = yellow square in Fig.
28.1) has again a horseshoe shape. Can you illustrate this?

28.2 Where do horseshoes appear naturally?
The construction of the horseshoe system might look rather artificial, but horseshoes
appear ‘everywhere’ when we have homoclinic points as illustrated in Fig. 28.2.

28.3 All the nontrivial nonwandering points are in 𝑅
By construction, all the points outside 𝑅 is attracted to the sink of 𝜂. If we reverse
time, all the points outside 𝑅 is attracted to the source in Fig. 28.1. Therefore, all
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Figure 28.2: Horseshoes can appear naturally when there is a homoclinic point, [Fig. 3.32 of AP
]

the other nonwandering points must be in 𝑅.
Therefore, all other nonwandering points must be in

Λ = ∩𝑛∈Z𝜂𝑛(𝑅). (28.1)

28.4 Nontrivial nonwandering set of horseshoe
To understand the structure of Λ let us consider how 𝑅 is successively mapped onto
𝑅. We can understand the preimage of the blue rectangles as follows (Fig. 28.3).

Figure 28.3: 𝜂 on 𝑅. 𝑃𝑎 is mapped to 𝑄𝑎 [Fig. 3.13 of AP ]

If we repeat mapping we have Fig. 28.4.

Thus, ∨𝑛∈N𝑄(𝑛) consists of local unstable manifolds of points in Λ (See Fig. 28.4).

We know 𝜂−1 is also a horseshoe (90∘ rotated). Therefore, we can repeat the above
argument in the reverse time direction to construct (local) stable manifolds of points
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z

W   (z)
u

loc

W  (z)u

R

unstable mfd

Figure 28.4: 𝜂, 𝜂2 and 𝜂3 on 𝑅. Here, 𝑄0∪𝑄1 is 𝑄(1), 𝜂(𝑄0∪𝑄1)∩𝑅 is 𝑄(2) and 𝜂2(𝑄0∪𝑄1)∩𝑅
is 𝑄(3). [Fig. 3.14 of AP ]

in Λ; 𝑄(−1), 𝑄(−2), · · ·, instead (Fig. 28.5)

Figure 28.5: Left: 𝜂−1, 𝜂−2 ... on 𝑅. As Fig. 28.4 we can make 𝑄(−1), 𝑄(−2), · · ·. Right: Λ[Fig.
3.15c of AP, 8.5 of Yano]

The invariant set of the horseshoe consists of a source, a sink (in the red region in
Fig. 28.1) and a Cantor set Λ.
https://www.youtube.com/watch?v=ItZLb5xI_1U&frags=pl%2Cwn illustrates the
horseshoe invariant set (perhaps you feel the pace of explanation a bit too slow).

The horseshoe is structurally stable as can be guessed from the following illustra-
tion (Fig. 28.6)

https://www.youtube.com/watch?v=ItZLb5xI_1U&frags=pl%2Cwn
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Figure 28.6: The structure of the horseshoe is quite stable [Fig. 8.6 of Yano ]

https://www.youtube.com/watch?v=2aeFG5YN_mk&frags=pl%2Cwn Smale talks about
his dynamical system study

28.5 Symbolic dynamics of horseshoe
As can be clear from the structure of Λ and its construction, each point in Λ must
be coded uniquely in terms of an element in {0, 1}Z. Thus 𝜂|Λ is (as a measure-
theoretical dynamical system) isomorphic to 𝐵(1/2, 1/2). Thus the horseshoe system
is not Morse-Smale.

Actually 𝜂|Λ is an Anosov system, so it is Ω-stable.

https://www.youtube.com/watch?v=2aeFG5YN_mk&frags=pl%2Cwn


29. LECTURE 29. MEASURE-THEORETICAL DYNAMICAL SYSTEMS 315

29 Lecture 29. Measure-theoretical dynamical sys-

tems

29.1 Why measure-theoretical dynamical systems?
We have realized that even for a single dynamical system (that is defined by a defi-
nite law or rule) its behavior depends on initial conditions. Thus, even if we are told
that the system exhibit periodic movements or apparently random (that is, chaotic)
behaviors, we may not be lucky enough to observe them. How lucky can we be?
That is a question of probability, and probability is a ‘measure’ of our confidence.

For example, for a continuous time dynamical system 𝒳 𝑟(𝑀) defined on 𝑀 , a
trajectory starting from 𝑥0 ∈ 𝑀 at 𝑡 = 0 𝜙𝑡(𝑥0) depends on 𝑥0. Suppose the sys-
tem exhibits an unstable periodic orbit, you can observe it only when 𝑥0 is on the
orbit. What is your chance to observe it? If we throw a dart ‘randomly’ on 𝑀 , you
would expect that you would never hit the orbit. However, if there is some device
channeling the darts on to the orbit, with probability one, you will observe it. If
𝑥0 is in the basin of attraction of a stable periodic orbit and the basin is of positive
Riemann volume defined on 𝑀 , then we may have a finite (not infinitesimal) chance
to observe the periodic motion. Even in this case if there is a fixed point to whose
basin of attraction all the initial conditions are channelled, there will be no chance
to observe the stable periodic orbit.

These trivial considerations clearly tell us that it is very important (especially for
physicists) to specify how we can sample the initial condition. This is the question
of the sampling measure.

Once the system settles down to a steady state, that is, the system is in a certain
attractor, then we may be interested in its average behavior. For example, in the
case of a chaotic attractor, we could ask how nearby orbits leave each other on the
average (that is, we ask ‘how chaotic’ the system is). Inevitably we need a measure
to average the behavior.

Thus, if we ask about observability and about the average behavior, we need
(probability) measures.

29.2 Measure
What is a measure? See Appendix. You should be able to answer the question:
What is the area?
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29.3 Remark on family of measurable sets
If you read a respectable book on probability you will see a setup of probability space
(𝑀,ℱ , 𝜇), where 𝜇 is a (probability) measure defined on 𝑀 and ℱ is a set of all the
measurable sets on which 𝜇 is defined. Not all the subsets of 𝑀 can be assumed to
have ‘probability.’ This restriction is a must under the usual axioms of mathematics.

Therefore, when we consider a measure-theoretical dynamical system on 𝑀 with
an invariant measure the ‘dynamical rule’ (say, the map defining a discrete time
dynamical system) must be compatible with (preserved) ℱ . When we say two dy-
namical systems are isomorphic (= equivalent), then there must be a correspondence
(modulo 𝜇-measure zero sets) between the families of measurable sets for these dy-
namical systems.

However, in this exposition we will not mention about ℱ .

29.4 Invariant measure: introduction
Prepare numerous clones of the dynamical system under consideration, and plot their
states in the same phase space. Then, we would see a cloud of points that describe
individual clones in the phase space (Fig. 29.1).

Γ

Figure 29.1: Distribution or ensemble. The space is the phase space Γ. Each point represents an
instantaneous state of each system. An invariant measure corresponds to a steady state for which
the cloud as a whole becomes time-independent, although individual points may keep wandering
around.

The distribution described by the cloud, if the total mass is normalized to be
unity, may be understood as a probability measure on the phase space. Following
the time evolution of the system, the cloud may change its shape.

After a sufficiently long time, often the cloud representing an ensemble ceases
to change its shape. Then, we say that the ensemble has reached its steady state.
Individual points corresponding to the members of the ensemble may still keep wan-
dering around in the cloud, but the cloud as a whole is balanced and the distribution
on the phase space becomes invariant. The (probability) distribution corresponding
to this invariant cloud is called an invariant measure of the dynamical system.
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29.5 Invariant measure of dynamical system: discrete time
Discrete time case: Measure 𝜇 on the phase space 𝑀 is an invariant measure of a
dynamical system 𝑇 ∈ 𝐶𝑟(𝑀), if

𝜇 = 𝜇 ∘ 𝑇−1 (29.1)

holds. That is, for an arbitrary (𝜇-measurable) subset 𝐴 ⊂𝑀

𝜇(𝐴) = 𝜇(𝑇−1𝐴) (29.2)

holds, where 𝑇−1𝐴 is the totality of points that comes to 𝐴 after a unit time step
(Fig. 29.2).

T A
A-1

T

T

Figure 29.2: The preimage 𝑇−1𝐴 of 𝐴 by the time evolution operator 𝑇 need not be connected
(in this figure it consists of two connected components). Since 𝑇 (𝑇−1𝐴) = 𝐴, 𝑇−1𝐴 is the totality
of the points that come to 𝐴 after one time step. As you see from the figure, unless 𝑇 is invertible,
𝜇 = 𝜇 ∘ 𝑇 does not guarantee the invariance of 𝜇.

For an arbitrary measurable set 𝐴, if we know 𝑇−1𝐴 at present, we know everything
we can discuss probabilistically that will occur after one time step. (29.2) expresses
the condition that the evaluation of the weights of 𝐴 and 𝑇−1𝐴 by 𝜇 is consistent
with the conservation law of th members of the ensemble.

29.6 Invariant measure of dynamical system: continuous time
Continuous time case: Measure 𝜇 on the phase space 𝑀 is an invariant measure of
a dynamical system 𝜙𝑡 defined by a vector field 𝒳 (𝑀), if

𝜇 = 𝜇 ∘ 𝜙−1
𝑡 (29.3)

holds for all 𝑡. That is, for an arbitrary (𝜇-measurable) subset 𝐴 ⊂𝑀

𝜇(𝐴) = 𝜇(𝜙−1
𝑡 𝐴) (29.4)

holds (quite analogous to the discrete time case).
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29.7 Invariant measures are not unique for a given dynamical system
Generally speaking, an invariant measure for a given dynamical systems is not unique
(as already suggested in 29.1). For example, 𝑇𝑥 = {2𝑥} discussed previously has
actually uncountably many distinct invariant measures.

For a Hamiltonian system we know the phase volume is invariant, but there are
many other invariant measures. Furthermore, not all the invariant measures can
give ‘natural averages’ that agree with averages obtained by continuous even obser-
vations.328

29.8 Measure-theoretical dynamical system
Let 𝜇 be an 𝑇 ∈ 𝐶𝑟(𝑀)-invariant measure on 𝑀 . The triplet (𝑇, 𝜇,𝑀) is called a
measure theoretical dynamical system. This may be interpreted as a mathematical
expression of a steady state allowed to the dynamical system 𝑇 ∈ 𝐶𝑟(𝑀); given
a dynamical system 𝑇 ∈ 𝐶𝑟(𝑀), for each invariant measure 𝜇, a distinct measure
theoretical dynamical system is constructed.

For a continuous time dynamical system defined by 𝑋 ∈ 𝒳 𝑟(𝑀), (𝑋,𝜇,𝑀) may
be understood as a measure-theoretical dynamical system.

29.9 Absolutely continuous invariant measure
If a measure 𝜇 satisfies 𝜇(𝐴) = 0 for any Lebesgue-measure zero set329 𝐴, 𝜇 is called
an absolutely continuous measure. For a dynamical system with an absolutely con-
tinuous invariant measure, chaos may often be observed by numerical experiments.

If a measure is absolutely continuous, its probability density 𝑔 may be defined as
𝑑𝜇 = 𝑔𝑑𝜆, where 𝜆 is the Lebesgue measure.330

Absolutely continuous invariant measures are observable (see 22.3) (e.g., compu-
tationally).

328As we will see later, invariance does not mean ergodicity.
329More precisely, we should say ‘for any set whose Riemann volume is zero.’ Riemann volume is

the volume based on the Riemann metric = the usual length. It seems that the volume based on
the length is the most natural measure for us.

330That is, 𝑔 is the Radon-Nikodym derivative 𝑑𝜇/𝑑𝜆. See, e.g., Kolmogorov and Fomin cited
already.
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29.10 Ergodic measure
For any invariant set 𝐴 ⊂ 𝑀 (that is, any set satisfying 𝐴 = 𝑇−1𝐴331), if 𝜇(𝐴) = 0
or 1, the measure theoretical dynamical system is said to be ergodic.

Note that this is neither the property of the measure nor the property of the dy-
namicarule 𝑇 .

Roughly speaking, if a dynamical system is ergodic, the trajectory starting from
any initial point332 can eventually go into any 𝜇-measure positive set.

In fact, if there is a positive measure set 𝐶 to which any trajectory starting from
a certain positive measure set 𝐷 cannot reach, then there must be an invariant set
𝐵 with 0 < 𝜇(𝐵) < 1 such that 𝐵 ⊃ 𝐶 and 𝐵𝑐 ⊃ 𝐷.

Conversely, if there is an invariant set 𝐵 such that 0 < 𝜇(𝐵) < 1. Then, we can
choose a measure positive set 𝐶 with 𝐵 ∩ 𝐶 = ∅ such that any trajectory starting
from 𝐶 never visits 𝐵 [if possible, 𝜇(∪∞

𝑘=1𝑇
−𝑘𝐵∩𝐶) > 0 (note that 𝑇−𝑘𝐵∩𝐶 means

the points now in 𝐶 and will be in 𝐵 after 𝑘), but 𝑇−1𝐵 = 𝐵, so 𝐵 ∩ 𝐶 ̸= ∅, a
contradiction].

Let Γ be a unit circle, and 𝑓 be a rigid rotation around the center by an angle
that is irrational multiple of 2𝜋. Since the uniform distribution 𝜇𝑈 on the circle is
rotation-invariant, we can make a measure-theoretical dynamical system (𝑓, 𝜇𝑈 ,Γ),
which is ergodic. This not so interesting example illustrates why ergodicity is to-
tally insufficient for modeling irreversible phenomena such as relaxation exhibited by
usual many-body systems.

29.11 Mixing measure
For any sets333 𝐴 and 𝐵 (both ⊂𝑀), if

lim
𝑛→∞

𝜇(𝑇−𝑛𝐴 ∩𝐵) = 𝜇(𝐴)𝜇(𝐵) (29.5)

holds, the measure-theoretical dynamical system is said to be mixing, where 𝑇−𝑛

implies to apply 𝑇−1 𝑛-times. 𝑇−𝑛𝐴 is the set that agrees with 𝐴 after 𝑛 time steps.
𝑇−𝑛𝐴 ∩𝐵 is the totality of the points that is at present in 𝐵 and will be in 𝐴 after
𝑛 time steps. Intuitively, the cloud of points starting from 𝐵 spread over the phase
space evenly if 𝑛 is sufficiently large, so the probability for the cloud to overlap with
𝐴 is proportional to the ‘statistical weight’ of 𝐴. It is obvious that initial conditions

331This condition must be, precisely speaking, the equality ignoring the 𝜇-measure zero difference.
332Precisely speaking, starting from 𝜇-almost all initial points. ‘𝜇-almost all’ implies that all

except for 𝜇-measure zero sets.
333Precisely speaking, any 𝜇-measurable sets. From now on, such statements will not be added.



320

cannot be used to predict the future. Physically, irreversible processes such as re-
laxation phenomena occur. In particular, the time-correlation function eventually
decays to zero.

Appendix: What is measure334

The concept of measure does not appear in elementary calculus, but it is a fundamental and
important concept. It is not very difficult to understand, since it is important. Besides, the
introduction of the Lebesgue measure by Lebesgue is a good example of conceptual analysis,
so let us look at its elementary part. A good introductory book for this topic is the already
quoted Kolmogorov-Fomin. It is desirable that those who wish to study fundamental aspects
of statistical mechanics and dynamical systems have proper understanding of the subject.

29.12 What is the volume?
For simplicity, let us confine ourselves to the two dimension. Thus, the question is: what
is the area? Extension to higher dimensions should not be hard. If the shape of a figure is
complicated, whether it has an area could be a problem,335 so let us begin with an apparently
trivial case.

“The area of the rectangle [0, 𝑎]× [0, 𝑏] is 𝑎𝑏.”
Is this really so? If so, why is this true? Isn’t it strange that we can ask such a question

before defining ‘area’? Then, if we wish to be logically conscientious, we must accept the
following definition:
Definition. The area of a figure congruent to the rectangle ⟨0, 𝑎⟩ × ⟨0, 𝑏⟩ (here, ‘⟨’ implies
‘[’ or ‘(’, ‘⟩’ is ‘]’ or ‘)’, that is, we do not care whether the boundary is included or not) is
defined as 𝑎𝑏.
Notice that the area of a rectangle does not depend on whether its boundary is included or
not. This is already included in the definition.

29.13 The area of a fundamental set
A figure made as the direct sum (that is, join without overlap except at edges and vertices)
of a finite number of rectangles (whose edges are parallel to the coordinate axes and whose
boundaries may or may not be included) is called a fundamental set (Fig. 29.3). It should
be obvious that the join and the product (common set) of two fundamental sets are both
fundamental sets. The area of a fundamental set is defined as the total sum of the areas of
the constituent rectangles.

29.14 How to define the area of more complicated figures; a strategy
For a more complicated figure, a good strategy must be to approximate it by a sequence of

fundamental sets allowing increasingly smaller rectangles. Therefore, following Archimedes,
we approximate the figure from inside and from outside (that is, the figure is approximated
by a sequence of fundamental sets enclosed by the figure and by a sequence of fundamental
sets enclosing the figure). If the areas of the inside and the outside approximate sequences

334Taken from TNW Chapter 2 Appendix
335(Under the usual axioms of mathematics) we encounter figures without areas.
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Figure 29.3: Fundamental set: it is a figure made of a finite number of rectangles whose edges
are parallel to a certain Cartesian coordinate axes and the rectangles do not overlap except at edges
and vertices. Its area is the total sum of the areas of the constituent rectangles.

agree in the limit, it is rational to define the area of the figure by the limit.
Let us start from outside.

29.15 Outer measure
Let 𝐴 be a given bounded set (that is, a set that may be enclosed in a sufficiently large

disk). Using a finite number of (or countably many) rectangles 𝑃𝑘 (𝑘 = 1, 2, · · ·), we cover
𝐴, where the boundaries of the rectangles may or may not be included, appropriately. If
𝑃𝑖 ∩ 𝑃𝑗 = ∅ (𝑖 ̸= 𝑗) and ∪𝑃𝑘 ⊃ 𝐴, 𝑃 = {𝑃𝑘} is called a finite (or countable) cover of 𝐴
by rectangles (Fig. 29.4O). Let the area of the rectangle 𝑃𝑘 be 𝑚(𝑃𝑘). We define the outer
measure 𝑚*(𝐴) of 𝐴 as follows:

𝑚*(𝐴) ≡ inf
∑︁
𝑘

𝑚(𝑃𝑘). (29.6)

Here, inf336 is taken over all the possible finite or countable covers by rectangles.

O I

A A A

X

E

Figure 29.4: Let 𝐴 be the set enclosed by a closed curve. O denotes a finite cover by rectangles. If
there is an area of 𝐴, it is smaller than the sum of the areas of these rectangles. The outer measure
is defined by approximating the area from outside. In contrast, the inner measure is computed by
the approximation shown in I by the rectangles included in the figure 𝐴. In the text, by using
a large rectangle 𝐸 containing 𝐴, 𝐸 ∖ 𝐴 is made and its outer measure is computed with the aid
of finite covers; the situation is illustrated in X. The relation between I and X is just the relation
between negative and positive films. If the approximation O from outside and the approximation I
from inside agree in the limit of refinement, we may say that 𝐴 has an area. In this case, we say 𝐴
is measurable, and the agreed area is called the area of 𝐴.

336The infimum of a set of numbers is the largest number among all the numbers that are not
larger than any number in the set. For example, the infimum of positive numbers is 0. As is
illustrated by this example, the infimum of a set need not be an element of the set. When the
infimum is included in the set, it is called the minimum of the set. The above example tells us that
the minimum need not exist for a given set.
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29.16 Inner measure
For simplicity, let us assume that 𝐴 is a bounded set. Take a sufficiently large rectangle

𝐸 that can enclose 𝐴. Of course, we know the area of 𝐸 is 𝑚(𝐸). The inner measure of 𝐴
is defined as337

𝑚*(𝐴) = 𝑚(𝐸)−𝑚*(𝐸 ∖𝐴). (29.7)

It is easy to see that this is equivalent to the approximation from inside (Fig. 29.4I). Clearly,
for any bounded set 𝐴 𝑚*(𝐴) ≥ 𝑚*(𝐴) holds.

29.17 Area of figure, Lebesgue measure
Let 𝐴 be a bounded set. If 𝑚*(𝐴) = 𝑚*(𝐴), 𝐴 is said to be a measurable set (in the

present case, a set for which its area is definable) and 𝜇(𝐴) = 𝑚*(𝐴) is called its area (2-
dimensional Lebesgue measure).

At last the area is defined. The properties of a fundamental set we have used are the
following two:
(i) It is written as a (countable) direct sum of the sets whose areas are defined.
(ii) The family of fundamental sets is closed under ∩, ∪ and ∖ (we say that the family of the
fundamental sets makes a set ring.338)
An important property of the area is its additivity: If 𝑃𝑖 are mutually non-overlapping rect-
angles, 𝜇(∪𝑃𝑖) =

∑︀
𝜇(𝑃𝑖). Furthermore, the 𝜎-additivity for countably many summands

also holds.339

Notice that such a summary as that the area is a translationally symmetric 𝜎-additive
set-theoretical function which is normalized to give unity for a unit square does not work,
because this does not tell us on what family of sets this set-theoretical function is defined.340

The above summary does not state the operational detail about how to measure the areas
of various shapes, so no means to judge is explicitly given what figures can be measurable.
Lebesgue’s definition of the area outlined above explicitly designates how to obtain the area
of a given figure.

29.18 General measure (abstract Lebesgue measure)
The essence of characterization of the area is that there is a family of sets closed under certain
‘combination rules’ and that there is a 𝜎-additive set-theoretical function on it. Therefore, we
start with a 𝜎-additive family ℳ consisting of subsets of a set 𝑋: A family of sets satisfying
the following conditions is called a 𝜎-additive family:
(s1) 𝑋, ∅ ∈ ℳ,
(s2) If 𝐴 ∈ ℳ, then 𝑋 ∖𝐴 ∈ ℳ,

337𝐴 ∖𝐵 in the following formula denotes the set of points in 𝐴 but not in 𝐵, that is, 𝐴 ∩𝐵𝑐.
338More precisely, that a family 𝒮 of sets makes a ring implies the following two:

(i) 𝒮 includes ∅,
(ii) if 𝐴,𝐵 ∈ 𝒮, then both 𝐴 ∩𝐵 and 𝐴 ∪𝐵 are included in 𝒮.

339Indeed, if 𝐴 = ∪∞
𝑛=1𝐴𝑛 and 𝐴𝑛 are mutually exclusive (i.e., for 𝑛 ̸= 𝑚 𝐴𝑛 ∩ 𝐴𝑚 = ∅), for an

arbitrary positive integer 𝑁 𝐴 ⊃ ∪𝑁
𝑛=1𝐴𝑛, so 𝜇(𝐴) ≥

∑︀𝑁
𝑛=1 𝜇(𝐴𝑛). Taking the limit 𝑁 → ∞, we

obtain 𝜇(𝐴) ≥
∑︀∞

𝑛=1 𝜇(𝐴𝑛). On the other hand, for the external measure 𝑚*(𝐴) ≤
∑︀∞

𝑛=1𝑚
*(𝐴𝑛),

so 𝜇(𝐴) ≤
∑︀∞

𝑛=1 𝜇(𝐴𝑛).
340If we assume that every set has an area, under the usual axiomatic system of mathematics, we

are in trouble. See Banach-Tarski’s theorem (Discussion 2.4A.1).
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(s3) If 𝐴𝑛 ∈ ℳ (𝑛 = 1, 2, · · ·), then ∪∞
𝑛=1𝐴𝑛 ∈ ℳ.

(𝑋,ℳ) is called a measurable space. A nonnegative and 𝜎-additive set-theoretical function
𝑚 defined on a measurable set that assigns zero to an empty set is called a measure, and
(𝑋,ℳ,𝑚) is called a measure space. Starting with this measure 𝑚, we can define the outer
measure on a general set 𝐴 ⊂ 𝑋, mimicking the procedure already discussed above. The
inner measure can also be constructed. When these two agree, we can define a set-theoretical
function 𝜇 as 𝜇(𝐴) = 𝑚*(𝐴), and we say 𝐴 is 𝜇-measurable. Thus, we can define 𝜇 that
corresponds to the Lebesgue measure explained above in the context of the area. 𝜇 is called
the Lebesgue extension of 𝑚 (this is called an abstract Lebesgue measure, but often this is
also called a Lebesgue measure). This construction of 𝜇 is called the completion of 𝑚. In
summary, if (𝑋,ℳ,𝑚) is a measure space, we define a new family of subsets of 𝑋 based on
ℳ as

ℳ = {𝐴 ⊂ 𝑋 : ∃𝐵1, 𝐵2 ∈ ℳ where 𝐵1 ⊂ 𝐴 ⊂ 𝐵2,𝑚(𝐵2 ∖𝐵1) = 0}, (29.8)

and if 𝜇 is defined as 𝜇(𝐴) ≡ 𝑚(𝐵2) for 𝐴 ∈ ℳ, (𝑋,ℳ, 𝜇) is a measure space, and is called
the completion of (𝑋,ℳ,𝑚).341

The final answer to the question, “What is the area?” is: the area is the completion of the
Borel342 measure, where the Borel measure is the 𝜎-additive translation-symmetric measure
that gives unity for a unit square and is defined on the Borel family of sets which is the
smallest 𝜎-additive family of sets including all the rectangles. Generally speaking, a measure
is something like a weighted volume. However, there is no guarantee that every set has a
measure (𝜇-measurable). It is instructive that a quite important part of the characterization
of a concept is allocated to an ‘operationally’ explicit description (e.g., how to measure, how
to compute). Recall that Riemann’s definition of the integral was based on this operational
spirit, so it can immediately be used to compute integrals numerically.

341The completion is unique. In a complete measure space, if 𝐴 is measure zero (𝜇(𝐴) = 0),
then its subsets are all measure zero. Generally, a measure with this property is called a complete
measure. Completion of (𝑋,ℳ,𝑚) may be understood as the extension of the definition of measure
𝑚 on the 𝜎-additive family generated by all the sets in ℳ + all the measure zero set with respect
to 𝑚.

342E. Borel (1871-1956)
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30 Lecture 30 Ergodic theorems

This section is based on I KuboDynamical systems I (Iwanami 1997) Section 2.2.

30.1 Measure preserving transformation
Let (𝑀,ℱ , 𝜇) be a probability space (but we will ‘ignore ℱ .’ See 29.3). A map
𝑇 :𝑀 →𝑀 preserves 𝜇 if 𝜇 = 𝜇 ∘ 𝑇−1. In this case 𝜇 is said to be 𝑇 -invariant. For
any 𝜇-integrable function 𝑓∫︁

𝑀

𝑓(𝑇𝑥)𝑑𝜇(𝑥) =

∫︁
𝑀

𝑓(𝑥)𝑑𝜇(𝑥). (30.1)

This can be shown easily if we note343 for any 𝐴 ⊂𝑀344∫︁
𝑀

𝜒𝐴(𝑇𝑥)𝑑𝜇(𝑥) =

∫︁
𝑀

𝜒𝐴(𝑥)𝑑𝜇(𝑥), (30.2)

because ∫︁
𝑀

𝜒𝐴(𝑇𝑥)𝑑𝜇(𝑥) =

∫︁
𝑀

𝜒𝐴(𝑦)𝑑𝜇(𝑇
−1𝑦) =

∫︁
𝑀

𝜒𝐴(𝑦)𝑑𝜇(𝑦). (30.3)

30.2 Poincare’s recurrence theorem
Consider a measure-theoretical dynamical system (𝑇, 𝜇,𝑀).

Theorem. Let 𝐵 ⊂ 𝑀 with 𝜇(𝐵) > 0. Then, 𝜇-almost all 𝑥 ∈ 𝐵 (i.e., 𝜇-∀̃𝑥 ∈ 𝐵)
𝑇 𝑘𝑥 ∈ 𝐵 for infinitely many 𝑘 ∈ N.
[Demo] We show that the totality of the points 𝑥 ∈ 𝐵 that do not return to 𝐵
infinitely many times is 𝜇-measure zero. Since 𝑥 does not return to 𝐵 infinitely
many times, there must be 𝑛 ∈ N such that 𝑇 𝑘𝑥 ∈ 𝐵𝑐 (i.e., 𝑥 ∈ 𝑇−𝑘𝐵𝑐) for ∀𝑘 > 𝑛.

Let 𝐸𝑛 = ∩𝑘≥𝑛𝑇−𝑘𝐵𝑐 (the totality of points that stays in 𝐵𝑐 after time 𝑛; i.e.,
points that never return to 𝐵 after time 𝑛− 1). 𝑇−1𝐸𝑛 consists of points going into
𝐸𝑛 by one time step, that is, points that do not return after time 𝑛−1 + one. Thus,
𝑇−1𝐸𝑛 = 𝐸𝑛+1 ⊃ 𝐸𝑛. 𝐸 = ∪∞

𝑛=0𝐸𝑛 is the totality of the points never returns to 𝐵

343Integrals are all Lebesgue integrals, so 𝑓 is considered as a limit of simple functions (= piecewise
constant functions).

344𝐴 ∈ ℱ , precisely speaking, but as announced, I will not mention such a thing again.
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or never in 𝐵 (that is 𝐸0). Suppose for some 𝑛 𝜇(𝐸𝑛+1 ∖ 𝐸𝑛) > 0. Then, this holds
for all 𝑛, because 𝜇 is 𝑇 -invariant:

𝜇(𝐸𝑛+1 ∖𝐸𝑛) = 𝜇(𝑇−1[𝐸𝑛+1 ∖𝐸𝑛]) = 𝜇(𝑇−1𝐸𝑛+1 ∖𝑇−1𝐸𝑛) = 𝜇(𝐸𝑛+2 ∖𝐸𝑁+1). (30.4)

Therefore,

𝜇(𝐸) = 𝜇[∪∞
𝑛=1(𝐸𝑛+1 ∖ 𝐸𝑛) + 𝐸0] =

∞∑︁
𝑛=1

𝜇(𝐸𝑛+1 ∖ 𝐸𝑛) + 𝜇(𝐸0) ↗ ∞. (30.5)

Thus, 𝜇(𝐸 ∖ 𝐸0) = 0, but 𝐸0 is the set of points never touching 𝐵, so 𝐸0 ∩ 𝐵 = ∅.
Therefore,

0 = 𝜇(𝐵 ∩ (𝐸 ∖ 𝐸0)) = 𝜇(𝐸 ∩𝐵). (30.6)

There is almost no points in 𝐵 that cannot return to 𝐵 infinitely often.

Remark: Note that 𝑄𝑛 = 𝐸𝑛+1 ∖ 𝐸𝑛 is the totality of points in 𝐵 that returns to
𝐵 at time 𝑛 and stays in 𝐵 ever since. Thus, 𝑇−1𝑄𝑛 = 𝑄𝑛+1. All have the same
measure and disjoint and in 𝐵𝑐 =𝑀 ∖𝐵. All 𝑄𝑛 must stay in 𝐵𝑐 without overlap, so
𝜇(𝑄𝑛) must be zero. As is clear from this what matters is that 𝜇 is normalizable.
Whether 𝑀 is bounded or not (as a metric space) is irrelevant. Thus, this theorem
can be used to destroy Boltzmann’s logic.

30.3 Zermelo’s Wiederkehreinwand345,346

This theorem played an important role when Zermelo347 pointed out Boltzmann’s
logical error. Boltzmann claimed that (after responding to the criticism Umkehrein-
wand348 by Loschmidt just after the Boltzmann equation paper) his approximate
dynamical system explains irreversibility: due to approximation irreversibility en-
sues. Zermelo (1895) pointed out still reversibility occurs indefinitely accurately due
to this theorem (published in 1890); recurrence is not due to any property of the
dynamics, but merely due to the finiteness of the total mass of the relevant invariant
measure. He was confident because of the correct math and the moral support of his
boss M. Planck.

345‘Wiederkehr’ = recurrence, ‘Einwand’ = objection.
346H.-D. Ebbinghaus, Ernst Zermelo, an approach to his life and work (Springer, 2007) p15-26

1.4 Boltzmann Controversy.
347A road in Freiburg was named in his honor in 2017 (Wikipedia).
348‘Umkehr’ = turning back.
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30.4 Birkhoff’s individual ergodic theorem
Theorem. Under the same condition as 30.5
(i) The time average exists for 𝜇-∀̃𝑥 ∈𝑀

𝑓(𝑥) = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥). (30.7)

(ii) This convergence is also in 𝐿1.
(iii) For any invariant set 𝐵∫︁

𝐵

𝑓(𝑥)𝑑𝜇(𝑥) =

∫︁
𝐵

𝑓(𝑥)𝑑𝜇(𝑥). (30.8)

Remark: Notice that for this theorem to hold whether 𝜇 is ergodic or not does not
matter. We need ergodicity to reduce (iii) to our familiar formula (see 30.8):

Time average of 𝑓 =

∫︁
𝑀

𝑓(𝑥)𝑑𝜇(𝑥). (30.9)

We demonstrate these below 30.6-30.7. The maximal ergodic theorem 30.5 dras-
tically simplifies the original almost unreadable proof.

30.5 Maximal ergodic theorem
Let 𝑇 :𝑀 →𝑀 preserves a measure 𝜇. For 𝜇-integral function 𝑓 define the following
functiions for 𝑛 ∈ N

𝑆𝑛(𝑓 ;𝑥) =
𝑛−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥), 𝑆0(𝑓 ;𝑥) = 0. (30.10)

Notice that
𝑆𝑛(𝑓 ;𝑇𝑥) = 𝑆𝑛+1(𝑓 ;𝑥)− 𝑓(𝑥). (30.11)

Theorem ∫︁
{𝑥 | sup𝑛≥0 𝑆𝑛(𝑓 ;𝑥)>0}

𝑓(𝑥)𝑑𝜇(𝑥) ≥ 0. (30.12)

[Demo]349

Wemake a ‘finite approximation’ of𝐵 = {𝑥 | sup𝑛≥0 𝑆𝑛(𝑓 ;𝑥) > 0} as𝐵𝑛 = {𝑥 |𝑀𝑛(𝑥) >
0}:

𝑀𝑛(𝑥) = max{0, 𝑆1(𝑓 ;𝑥), · · · , 𝑆𝑛(𝑓 ;𝑥)}. (30.13)

349All the detailed are filled in, so you should be able to follow the proof without pencil.



30. LECTURE 30 ERGODIC THEOREMS 327

Note 𝑆0(𝑓 ;𝑥) = 0. Since (30.11)

𝑀𝑛(𝑇𝑥) = max{0, 𝑆2(𝑓 ;𝑥)− 𝑓(𝑥), · · · , 𝑆𝑛+1(𝑓 ;𝑥)− 𝑓(𝑥)}. (30.14)

We also introduce
𝑀*

𝑛(𝑥) = max{𝑆1(𝑓 ;𝑥), · · · , 𝑆𝑛(𝑓 ;𝑥)}. (30.15)

This means (notice that 𝑆1(𝑓 ;𝑥) = 𝑓(𝑥) from (30.10))

𝑀*
𝑛+1(𝑥) = max{𝑆1(𝑓 ;𝑥), · · · , 𝑆𝑛+1(𝑓 ;𝑥)} = max{𝑓(𝑥), 𝑆2(𝑓 ;𝑥), · · · , 𝑆𝑛+1(𝑓 ;𝑥)}.

(30.16)
Since max{𝑥𝑛 + 𝑐} = max{𝑥𝑛}+ 𝑐,

𝑀𝑛(𝑇𝑥) + 𝑓(𝑥) =𝑀*
𝑛+1(𝑥). (30.17)

That is, (note that 𝑀*
𝑛(𝑥) is an increasing sequence in 𝑛)

𝑓(𝑥) =𝑀*
𝑛+1(𝑥)−𝑀𝑛(𝑇𝑥) ≥𝑀*

𝑛(𝑥)−𝑀𝑛(𝑇𝑥). (30.18)

We make an approximation of the integral (recall 𝐵𝑛 = {𝑥 |𝑀𝑛(𝑥) > 0})∫︁
𝐵𝑛

𝑓(𝑥)𝑑𝜇(𝑥) ≥
∫︁
𝐵𝑛

[𝑀*
𝑛(𝑥)−𝑀𝑛(𝑇𝑥)]𝑑𝜇(𝑥). (30.19)

If 𝑥 ∈ 𝐵𝑛, then you can ignore 0 in the definition of 𝑀𝑛(𝑥), so 𝑀
*
𝑛(𝑥) = 𝑀𝑛(𝑥).

Therefore, ∫︁
𝐵𝑛

𝑀*
𝑛(𝑥)𝑑𝜇(𝑥) =

∫︁
𝐵𝑛

𝑀𝑛(𝑥)𝑑𝜇(𝑥). (30.20)

Therefore, (30.19) reads∫︁
𝐵𝑛

𝑓(𝑥)𝑑𝜇(𝑥) ≥
∫︁
𝐵𝑛

𝑀𝑛(𝑥)𝑑𝜇(𝑥)−
∫︁
𝐵𝑛

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥). (30.21)

Since 𝑀𝑛 = 0 oputside 𝐵𝑛, we have∫︁
𝐵𝑛

𝑓(𝑥)𝑑𝜇(𝑥) ≥
∫︁
𝑀

𝑀𝑛(𝑥)𝑑𝜇(𝑥)−
∫︁
𝐵𝑛

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥). (30.22)

Since 𝑀𝑛(𝑇𝑥) ≥ 0, ∫︁
𝐵𝑛

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥) ≤
∫︁
𝑀

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥). (30.23)
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Therefore, we have obtained∫︁
𝐵𝑛

𝑓(𝑥)𝑑𝜇(𝑥) ≥
∫︁
𝑀

𝑀𝑛(𝑥)𝑑𝜇(𝑥)−
∫︁
𝑀

𝑀𝑛(𝑇𝑥)𝑑𝜇(𝑥). (30.24)

Now, take the 𝑛→ ∞ limit, and the right-hand side vanishes to reach (30.12).

30.6 Existence of time average
Notice that (i) in ?? is a generalization of the (weak) law of large numbers.

We wish to show that 𝑆𝑛(𝑓 ;𝑥)/𝑥 converges almost 𝜇-surely. If this does not
converge lim sup and lim inf must be different. Therefore, there must be reals 𝑎 < 𝑏
such that the following set has a positive measure:

𝐵(𝑎, 𝑏) =

{︂
𝑥

⃒⃒⃒⃒
lim inf

1

𝑛
𝑆𝑛 < 𝑎 < 𝑏 < lim sup

1

𝑛
𝑆𝑛

}︂
. (30.25)

Since 𝐵(𝑎, 𝑏) is an invariant set with a positive measure, let us confine ourselves
to 𝐵(𝑎, 𝑏) and apply the maximal ergodic theorem to 𝑎 − 𝑓(𝑥) and 𝑓(𝑥) − 𝑏. For
example, for 𝑔(𝑥) = 𝑎− 𝑓(𝑥) the maximal ergodic theorem reads:

𝑆𝑛(𝑔;𝑥) = 𝑛𝑎−
𝑛−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥). (30.26)

and∫︁
{𝑥 | sup𝑛≥0 𝑆𝑛(𝑔;𝑥)>0}∩𝐵(𝑎,𝑏)

𝑔(𝑥)𝑑𝜇(𝑥) =

∫︁
{𝑥 | 𝑎>sup𝑛≥0 𝑆𝑛(𝑓 ;𝑥)/𝑛}∩𝐵(𝑎,𝑏)

(𝑎−𝑓(𝑥))𝑑𝜇(𝑥) ≥ 0.

(30.27)
However, {𝑥 | sup𝑛≥0 𝑆𝑛(ℎ;𝑥) > 0} ⊃ 𝐵(𝑎, 𝑏), so this means

𝑎𝜇(𝐵(𝑎, 𝑏))−
∫︁
𝐵(𝑎,𝑏)

𝑓(𝑥)𝑑𝜇(𝑥) ≥ 0. (30.28)

Analogously, for ℎ(𝑥) = 𝑓(𝑥)− 𝑏

0 ≤
∫︁
𝐵(𝑎,𝑏)

ℎ(𝑥)𝑑𝜇(𝑥) =

∫︁
𝐵(𝑎,𝑏)

𝑓(𝑥)𝑑𝜇(𝑥)− 𝑏𝜇(𝐵(𝑎, 𝑏)). (30.29)

Hence,

𝑎𝜇(𝐵(𝑎, 𝑏)) ≥
∫︁
𝐵(𝑎,𝑏)

𝑓(𝑥)𝑑𝜇(𝑥) ≥ 𝑏𝜇(𝐵(𝑎, 𝑏)), (30.30)

a contradiction.
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30.7 𝐿1 convergence and (iii)
First we show (ii) to guarantee the commutativity of the integration and limit in
(30.31).

If 𝑓 is bounded as |𝑓(𝑥)| ≤ 𝐾, |𝑆𝑛/𝑛| ≤ 𝐾, so |𝑓(𝑥)| ≤ 𝐾. Therefore, we
may apply Lebesgue’s bounded convergence theorem, implying the 𝐿1-convergence
of the time average. For general 𝑓 we 𝐿1-approximate 𝑓 with a sequence of bounded
functions to complete the proof. Thus (ii) holds.

If 𝑔 is integrable on 𝑀 , then (ii) allows

∫︁
𝑀

𝑔(𝑥)𝑑𝜇(𝑥) = lim
𝑁→∞

∫︁
𝑀

1

𝑁

𝑁−1∑︁
𝐾=0

𝑔(𝑇 𝑘𝑥)𝑑𝜇(𝑥) =

∫︁
𝑀

𝑔(𝑥)𝑑𝜇(𝑥), (30.31)

Now let 𝑔(𝑥) = 𝜒𝐵(𝑥)𝑓(𝑥). Since 𝐵 is invariant, 𝑔(𝑥) = 𝜒𝐵(𝑥)𝑓(𝑥), which concludes
the demonstration.

Notice that the above theorem holds for any invariant measure.

30.8 Time average and phase average
If 𝜇 is an ergodic invariant measure, then the time average agrees with the phase
average (or the ensemble average):

∫︁
𝑀

𝑓(𝑥)𝑑𝜇 = lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥). (30.32)

Notice that 𝑓(𝑥) is time independent: 𝑓(𝑇𝑥) = 𝑓(𝑥). Then, 𝑓(𝑥) must be 𝜇-almost
surely constant: Let 𝐴(𝑐) = {𝑥 | 𝑓(𝑥) = 𝑐}. It is an invariant set, so its measure is 0
or 1. (iii) in ?? tells us 𝑐 = the phase average value.

30.9 von Neumann’s mean ergodic theorem
Before Birkhoff von Neumann proved the 𝐿2 convergence

lim
𝑁→∞

∫︁
𝑀

⃒⃒⃒⃒
⃒ 1𝑁

𝑁−1∑︁
𝑘=0

𝑓(𝑇 𝑘𝑥)− 𝑓(𝑥)

⃒⃒⃒⃒
⃒
2

𝑑𝜇 = 0. (30.33)
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No proof will be given, but if 𝑓 is bounded, then 𝐿1 and 𝐿2 convergence on 𝑀 is
equivalent.

30.10 Weyl’s equidistribution theorem
Historically, the first ergodic theorem is the following:

Theorem. For an integrable function 𝑓 defined on a unit circle

lim
𝑁→∞

1

𝑁

𝑁−1∑︁
𝑘=0

𝑓(2𝜋𝑘𝛾+̇𝜃) =

∫︁
𝑓(𝑥)𝑑𝜇(𝑥), (30.34)

where +̇ is the sum mod 2𝜋, 𝛾 an irrational number and 𝜇 the uniform probability
measure on the unit circle.
𝜇 is an ergodic invariant measure for rotation. A more direct proof (e.g., using

Fourier expansion) may be a good exercise.

30.11 Tragicomical history of ergodicity350

The word ‘ergode’ was used to specify the microcanonical ensemble. Maxwell in
his “On Boltzmann’s theorem on the average distribution of energy in a system of
material points,”351 he clarified the logic of Boltzmann’s attempt (his second paper
written at age 22) to derive equipartition of energy and the second law from me-
chanics, saying “The only assumption which is necessary for the direct proof is that
the system, if left to itself in its actual state of motion, will, sooner or later, pass
through every phase which is consistent with the equation of energy.” Maxwell then
considered an ensemble of systems having this property to develop a statistical the-
ory. Actually Boltzmann adopted the idea of ‘ensemble’ and introduced his ‘ergodic
ensemble.’

Lord Kelvin on April 27, 1900 gave a talk on the clouds over the dynamical the-
ory of heat and light352 The second cloud he mentioned was the anomaly of the
specific heat ratio 𝛾 = 𝐶𝑃/𝐶𝑉 . “Spectrum analysis showing vast numbers of lines
for each gas makes it certain that the numbers of freedoms of the constituents of each
molecule is enormously greater than those which we have been counting,” 𝛾 should

350Based, in part, on I. Kubo’s article on the history of ergodic theory (1982 September-December
351Cambridge Phil. Soc. Trans. 7 547 (1979). This is his last paper.
352“Nineteenth century clouds over the dynamical theory of heat and light,” Phil. Mag. Series 6,

2: 7, 1-40 (1901). ‘Cloud II’ starts at Section 12. The outline I give here should be regarded as a
hasty one by a very impatient theoretical physicist.
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be very close to 1 in contrast to empirical results. Since Maxwell and Boltzmann
premised “that the mean kinetic energies with which the Boltzmann-Maxwell doc-
trine (=equipartition of energy) is concerned are time integrals of energies divided
by totals of the times,” their hypothesis (ergodic hypothesis) should be questioned.
The, he goes on to the study of ergodicity of simple dynamical systems—billiards!
He studies an elliptic billiard and says, “It seems not improbable that if the figure
deviates by ever so little from being exactly ellipsoidal, Maxwell’s condition might be
fulfilled.” “the meaning of the doctrine is that a single geodesic drawn long enough
will not only fulfil Maxwell’s condition of passing infinitely near to every point of
the surface in all directions.” “I have made many efforts to test it for the case in
which the closed surface is reduced to a plane with other boundaries than an exact
ellipse.’ He studied (not convex) polygons and ‘experimentally’ (by the assistant Mr
Anderson with a straight rule) studied the equipartition: after 600 collisions ⟨𝐾𝑥⟩ =
⟨𝐾𝑦⟩ was not fulfilled with an error of 7.5 %. He also studied a converging billiard
as well (see Fig. 30.1; even he studied the ice cream cone!).

Figure 30.1: Kelvin’s ‘simulation’ for this failed to demonstrate ergodicity

Thus Lord Kelvin extremely seriously cast doubt on ergodicity.
A and T Ehrenfest clearly formulated ‘ergodic hypothesis’ in their encyclopedia

article:353 according to their definition, ‘ergodic’ means, as Maxwell said, a trajectory

353P. Ehrenfest & T. Ehrenfest (1911) Begriffliche Grundlagen der statistischen Auffassung in der
Mechanik, in: Enzyklopdie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen.
Band IV, 2. Teil ( F. Klein and C. Mller (eds.). Leipzig: Teubner, pp. 390. Translated as The
conceptual Foundations of the Statistical Approach in Mechanics, New York: Cornell University
Press, 1959. ISBN 0-486-49504-3.
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passes every point energetically allowed and ‘quasiergodic’ means, as formulated by
Lord Kelvin, a trajectory passes any neighborhood of any point energetically allowed.
Then, ‘ergodic hypothesis’ means that the time average along an ergodic trajectory
is identical to the microcanonical average.

This hypothesis was immediately shot down by Plancherel and by Rosenthal (in-
dependently in 1913): there cannot be such an orbit; simply topologically impossible.
In those days, physicists realized that Gibbs’ statistical mechanics is practically us-
able, so the interest in ergodicity faded, and the topic came to be considered as a
pure mathematical question.

Then, in 1914 Weyl proved his theorem 30.10, showing that quasiergodicity may
be enough. His theorem is about 𝑇 𝑛. von Neumann extended this to a general do-
main354:355

Theorem [Mean ergodic theorem] If 𝑓 is 𝐿2(𝑋), then a function 𝑓(𝑥) exists such
that

lim
𝑡→∞

∫︁
𝑋

⃒⃒⃒⃒
1

𝑡

∫︁ 𝑡

0

𝑓(𝑇𝑡𝑥)− 𝑓(𝑥)

⃒⃒⃒⃒2
𝑑𝜇(𝑥) = 0. (30.35)

This means

Corollary. 𝜇-almost every 𝑥 there is an increasing time sequence {𝜏𝑛} such that

𝑓(𝑥) = lim
𝑛→∞

1

𝜏𝑛

∫︁ 𝜏𝑛

0

𝑓(𝑇𝑡𝑥)𝑑𝑡. (30.36)

This is basically what physicists ‘needed.’
On Oct 22, 1931, Birkhoff received von Neumann’s letter on the proof of the

mean ergodic theorem, and started his study vehemently.356 He declared that the
quasiergodic hypothesis was now replaced by its modern version: measure-theoretical
transivity.

Has Birkhoff unraveled or resolved the secret of statistical mechanics? Simply,
the question becomes whether the Liouville measure (i.e., the Lebesgue measure on
the phase space) is ergodic or not. For almost all systems of interest, this has never
been proved.

We now clearly recognize that ergodicity cannot found statistical mechanics; er-
godicity has been a big red herring.

3541932
355This possibility was suggested to him by Koopman (in 1930) and by A Weil (in 1931).
356You must learn a great lesson from this episode; you should not tell even what you are studying.
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31 Lecture 31 Information loss rate

31.1 Observation with finite resolution
When a dynamical system is given, we wish to describe its state at each instant with
a constant precision. Suppose the data with information357𝐻 is required to describe
the current state with a prescribed precision. If we could predict the state with the
same precision after one unit time with the aid of this initial data, all the states in
any future can be predicted with the same precision in terms of the information 𝐻
contained in the initial data. However, for chaotic systems the cloud of the ensemble
is scrambled and the precise locations of the individual points in the phase space are
lost. If we wish to locate the state of the system after one time unit as precisely as
we can locate it now, we have to augment 𝐻 with more information to counter the
‘information-dissipating’ tendency of chaotic dynamical systems. Thus:
(1) We need extra information Δ𝐻 to describe time one future as accurately as the
present. That is, we need more information than 𝐻 required at present to maintain
the precision of the description.
(2) To describe a state at any given time in the steady state we need the same amount
𝐻 to have ‘equi-precision’ description. Therefore, Δ𝐻 means the loss of information
due to time evolution.

Let us try to quantify the information loss per time.

31.2 Interval map information loss rate
Consider a discrete measure-theoretical dynamical system (𝐹, 𝜇, 𝐼) on the interval 𝐼
with a piecewise continuous and differentiable map358 𝐹 with an absolutely continu-
ous (29.9) invariant measure 𝜇. The average amount ℎ𝜇(𝐹 ) of the extra information
required for the equi-precise description of the states is given by the following for-
mula:

ℎ𝜇(𝐹 ) =

∫︁
𝐼

𝜇(𝑑𝑥) log |𝐹 ′(𝑥)|. (31.1)

Henceforth, we will often write 𝜇(𝑑𝑥) = 𝑑𝜇(𝑥).359 The generalized form that is also

357What is information? We only ask how we quantify it. An explanation is given in terms of
‘surprisal’ in ?? and 31.9.

358‘piecewise continuous’ implies that a map consists of a several continuous pieces. ‘Piecewise
continuously differentiable’ implies that each piece is differentiable inside, and, at its ends, one-sided
derivatives from inside are well-defined.

359Here, a formal calculation is explained as given in Y. Oono, “Kolmogorov-Sinai entropy as
disorder parameter for chaos,” Prog. Theor. Phys. 60, 1944 (1978). The formula had been obtained
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correct for non-absolutely continuous invariant measures is (31.3).360

31.3 Derivation of Rokhlin’s formula
For simplicity, let us assume that 𝐹 is unimodal (its graph has only one peak and
no valley; Fig. 31.1).

dx dxdx
1 2

F

dx dxdx
1 2

F

Figure 31.1: An explanation of (31.2). The points in a small interval 𝑑𝑥 was in 𝑑𝑥1 or in 𝑑𝑥2 one
time step ago. These intervals are stretched and superposed onto 𝑑𝑥. The right figure illustrates
(31.2).

The invariance condition (29.2) for the measure 𝜇 reads, in this case (see Fig. 31.1),

𝜇(𝑑𝑥1) + 𝜇(𝑑𝑥2) = 𝜇(𝑑𝑥). (31.2)

Here, 𝑑𝑥 denotes a small interval and its preimage (the set mapped to 𝑑𝑥 by 𝐹 )
is written as 𝑑𝑥1 ∪ 𝑑𝑥2 (𝐹−1(𝑑𝑥) = 𝑑𝑥1 ∪ 𝑑𝑥2). For example, if 𝐹 is applied once
to 𝑑𝑥1, it is stretched and mapped onto 𝑑𝑥, so without any doubt the precision to
specify the location is reduced. That is, with the equal probability 𝜇(𝑑𝑥1)/𝜇(𝑑𝑥) =
𝜇(𝑑𝑥1)/𝜇(𝐹 (𝑑𝑥1)) they are spread over 𝑑𝑥. Consequently, the information was lost
by − log(𝜇(𝑑𝑥1)/𝜇(𝑑𝑥)). We must also do an analogous calculation for 𝑑𝑥2.

Therefore, the expectation value of information deficit required to predict one
time step later with the same precision as the current state must be obtained by

by Rohlin, “Lectures on the entropy theory of transformations with an invariant measure,” Russ.
Math. Surveys 22(5), 1 (1967), so let us call it Rohlin’s formula. Note that most important theorems
of measure theoretical dynamical systems had been obtained by the Russian mathematicians long
before chaos became popular among the US physicists in the 1980s.

360F. Ledrappier, “Some properties of absolutely continuous invariant measures on an interval,”
Ergodic Theor. Dynam. Syst. 1, 77 (1981) proved the following theorem for 𝐶2-maps (actually, for
𝐶1-maps with some conditions):
Theorem Let 𝑓 be a 𝐶2-endomorphism on an interval. A necessary and sufficient condition for
an ergodic invariant measure to be absolutely continuous is that the Kolmogorov-Sinai entropy is
given by Rohlin’s formula (31.4).
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averaging this over 𝑥1 with the aid of the (probability) measure 𝜇. Consequently,
the rate of information deficit is written as

ℎ𝜇(𝐹 ) = −
∫︁
𝐼

𝜇(𝑑𝑥) log
𝜇(𝑑𝑥)

𝜇(𝐹 (𝑑𝑥))
. (31.3)

This loss must be compensated with the extra information (Δ𝐻 in the above) for
equi-precise description of the system.

If 𝜇 is absolutely continuous, we can introduce the invariant density 𝑔 as 𝑔(𝑥)𝜆(𝑑𝑥) =
𝜇(𝑑𝑥), where 𝜆 is the Lebesgue measure. Hence,

𝜇(𝑑𝑥𝑖)

𝜇(𝑑𝑥)
=
𝜇(𝑑𝑥𝑖)

𝜆(𝑑𝑥𝑖)

𝜆(𝑑𝑥)

𝜇(𝑑𝑥)

𝜆(𝑑𝑥𝑖)

𝜆(𝑑𝑥)
=

𝑔(𝑥𝑖)

𝑔(𝑥)|𝐹 ′(𝑥𝑖)|
. (31.4)

Noting that 𝐹 (𝑥𝑖) = 𝑥 with the aid of (31.4), we may rewrite (31.3) as

ℎ𝜇(𝐹 ) =

∫︁
𝐼

𝜆(𝑑𝑥)𝑔(𝑥) log
𝑔(𝐹 (𝑥))|𝐹 ′(𝑥)|

𝑔(𝑥)
. (31.5)

Here, the integral with respect to the Lebesgue measure is explicitly written as∫︀
𝜆(𝑑𝑥), but it is simply

∫︀
𝑑𝑥 with the usual notation.

If we apply the Perron-Frobenius equation 31.4, we see∫︁
𝐼

𝑑𝑦 𝑔(𝑦) log 𝑔(𝐹 (𝑦)) =

∫︁
𝐼

𝑑𝑦

∫︁
𝐼

𝑑𝑧 𝑔(𝑦)𝛿(𝑧 − 𝐹 (𝑦)) log 𝑔(𝑧) =

∫︁
𝐼

𝑑𝑧 𝑔(𝑧) log 𝑔(𝑧),

(31.6)
so indeed (31.3) is nothing but (31.1) under the absolute continuity assumption.

31.4 Perron-Frobenius equation
If 𝜇 is absolutely continuous, we may introduce the density 𝑔 = 𝑑𝜇/𝑑𝑥 ≡ 𝜇(𝑑𝑥)/𝜆(𝑑𝑥).
Then, the invariance condition (31.2) for measure 𝜇 reads

𝑔(𝑥1)𝑑𝑥1 + 𝑔(𝑥2)𝑑𝑥2 = 𝑔(𝑥)𝑑𝑥. (31.7)

Here, 𝐹−1(𝑥) = {𝑥1, 𝑥2} and 𝐹 (𝑑𝑥𝑖) = 𝑑𝑥 (𝑖 = 1, 2) (see Fig. 31.1). This means
|𝐹 ′(𝑥𝑖)|𝑑𝑥𝑖 = 𝑑𝑥. Therefore, (31.7) reads

𝑔(𝑥1)
𝑑𝑥

|𝐹 ′(𝑥1)|
+ 𝑔(𝑥2)

𝑑𝑥

|𝐹 ′(𝑥2)|
= 𝑔(𝑥)𝑑𝑥, (31.8)

or
𝑔(𝑥1)

|𝐹 ′(𝑥1)|
+

𝑔(𝑥2)

|𝐹 ′(𝑥2)|
= 𝑔(𝑥). (31.9)
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With the aid of the elementary property of the 𝛿-function,361 regarding 𝑦 as the
independent variable, we have for 𝐹 in 31.3

𝛿(𝑥− 𝐹 (𝑦)) =
1

|𝐹 ′(𝑥1)|
𝛿(𝑦 − 𝑥1) +

1

|𝐹 ′(𝑥2)|
𝛿(𝑦 − 𝑥2), (31.10)

where 𝐹 (𝑥1) = 𝐹 (𝑥2) = 𝑥. Thus can be rewritten as

𝑔(𝑥) =

∫︁
𝐼

𝑑𝑦 𝑔(𝑦)𝛿(𝑥− 𝐹 (𝑦)), (31.11)

which is called the Perron-Frobenius equation. It is a general formula for the invari-
ant density if a 1D-endomorphism (piecewise differentiable).

31.5 Can we solve Perron-Frobenius equation?362

Generally, no, but if we assume that the system (defined on [0,1]) allows an abso-
lutely continuous invariant measure, then its density 𝑔 may be amenable to analytic
approach. We start from the Perron-Frobenius equation (31.11). Using Heaviside’s
step function363

Θ(𝑥) =

{︂
0 𝑥 ≤ 0,
1 𝑥 > 0.

, (31.12)

the delta function may be written as

𝑑

𝑑𝑥
Θ(𝑥− 𝑦) = 𝛿(𝑥− 𝑦). (31.13)

361Let 𝑎 be an isolated (real) zero point (i.e., 𝑓(𝑎) = 0), and 𝑓 be differentiable around it. In
a sufficiently small neighborhood of 𝑎 with the aid of the variable change: 𝑦 = 𝑓(𝑥) we get for
sufficiently small positive 𝜖 ∫︁ 𝑎+𝜖

𝑎−𝜖

𝛿(𝑓(𝑥))𝜙(𝑥)𝑑𝑥 =
1

|𝑓 ′(𝑎)|
𝜙(𝑎).

Here, 𝜙 is a sufficiently smooth test function. Therefore, if 𝑓 has a several isolated real zeros 𝑎𝑖,
we can add each contribution to get∫︁ ∞

−∞
𝛿(𝑓(𝑥))𝜙(𝑥)𝑑𝑥 =

∑︁
𝑖

1

|𝑓 ′(𝑎𝑖)|
𝜙(𝑎𝑖).

362YO talk in Aug 1979 at Res Inst Math Sci, Kyoto
363Its definition at 𝑥 = 0 is subtle, but since we do not care for measure zero sets, we may choose

it for our convenience.
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Introducing this into the Perron-Frobenius equation, we have

𝑔(𝑥) = −
∫︁ 1

0

𝑑𝑦 𝑔(𝑦)
1

𝐹 ′(𝑦)

𝑑

𝑑𝑦
Θ(𝑥− 𝐹 (𝑦)). (31.14)

Performing an integration by parts, this yields

𝑔(𝑥) =
𝑔(0)

𝐹 ′(0)
Θ(𝑥−𝐹 (0))− 𝑔(1)

𝐹 ′(1)
Θ(𝑥−𝐹 (1))+

∫︁ 1

0

𝑑𝑦Θ(𝑥−𝐹 (𝑦)) 𝑑
𝑑𝑦

𝑔(𝑦)

𝐹 ′(𝑦)
. (31.15)

For a map with 𝐹 (1) = 0, we know 𝑔(0) = −𝑔(1)/𝐹 ′(1), this reads

𝑔(𝑥) = 𝑔(0) +
𝑔(0)

𝐹 ′(0)
Θ(𝑥− 𝐹 (0)) +

∫︁ 1

0

𝑑𝑦Θ(𝑥− 𝐹 (𝑦))
𝑑

𝑑𝑦

𝑔(𝑦)

𝐹 ′(𝑦)
. (31.16)

Iterative substitution can solve the above equation for unimodal maps,364 𝛽-transformations,
etc.

𝑔(𝑥) = 𝑔(0)

[︃
1 +

∞∑︁
𝑘=1

Θ(𝑥− 𝐹 𝑘(0))

[𝐹 𝑘(0)]′

]︃
. (31.17)

Here the derivative of 𝐹 𝑘(0) at the breaking point of 𝐹 is computed as the left deriva-
tive: [𝑓(𝑥)− 𝑓(𝑥− 𝜀)]/𝜀 (𝜀 > 0).365

31.6 KS entropy for billiards
17.18 explains the general strategy to compute the KS entropy (= information loss
rate) and the idea is applied to the Sinai billiard in 17.19. For these expansive dy-
namical systems, we have only to pay attention to the stretching rate of the unstable
manifolds. We will see this more systematically, when we study Axiom A systems
later.

31.7 KS entropy of Markov chain
For an ergodic Markov chain366 the extra information required for equi-precision may

364Ito et al. ibid.
365to be consistent with our choice of Θ.
366See, for example, Durrett, ibid.; Z. Brzeźniak and T. Zastawniak, Basic Stochastic Processes, a

course through exercises (Springer, 1998) is a very kind measure-theoretical introduction to stochas-
tic processes.
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be computed by the same idea as explained above. If its transition matrix is given
by Π ≡ {𝑝𝑖→𝑗}, then

ℎ(Π) = −
∑︁
𝑖,𝑗

𝑝𝑖𝑝𝑖→𝑗 log 𝑝𝑖→𝑗, (31.18)

where 𝑝𝑖 is the invariant measure (stationary state) (i.e.,
∑︀

𝑖 𝑝𝑖𝑝𝑖→𝑗 = 𝑝𝑗). In partic-
ular, for a Bernoulli process 𝐵(𝑝1, · · · , 𝑝𝑛), we have

ℎ(𝐵(𝑝1, · · · , 𝑝𝑛)) = −
𝑛∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖. (31.19)

It is easy to understand (31.18). Suppose we are in state 𝑖 now. After one time
step what do we know? With probability 𝑝𝑖→𝑗 we will be in state 𝑗. Thus, we lose
on the average the following amount of information

−
∑︁
𝑗

𝑝𝑖→𝑗 log 𝑝𝑖→𝑗. (31.20)

We should average this over the probability of our being in state 𝑖.

31.8 Sanov’s theorem, a large deviation of observable probabilities
Consider an uncorrelated (= statistically independent) symbol sequence consisting of
𝑛 symbols. The probability to fine symbol 𝑘 is given by 𝑞𝑘 > 0:

∑︀
𝑞𝑘 = 1. Suppose

we know these probabilities. Observing 𝑁 symbols, we can obtain the empirical
distribution of symbols as

𝜋𝑘 =
1

𝑁

𝑁−1∑︁
𝑡=0

𝛿𝑥𝑡,𝑘, (31.21)

where 𝑥𝑡 is the 𝑡-th symbol we actually observe.
The law of large numbers for the symbol distribution tells us for any 𝜀 > 0

lim
𝑁→∞

𝑃

(︃⃦⃦⃦⃦
⃦ 1

𝑁

𝑁−1∑︁
𝑡=0

𝛿𝑥𝑡,𝑘 − 𝑞𝑘

⃦⃦⃦⃦
⃦ > 𝜀

)︃
= 0. (31.22)

If 𝑁 is finite, we inevitably observe fluctuations of {𝜋𝑘} around {𝑞𝑘}. Using the
multinomial distribution, we can estimate the probability to observe {𝜋𝑘}.

If event 𝑖 occurs 𝑛𝑖 times (
∑︀𝑚

𝑖=1 𝑛𝑖 = 𝑁), the empirical probability is 𝑝𝑖 = 𝑛𝑖/𝑁 .
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Therefore, the probability to get this empirical distribution from 𝑁 sampling is given
by the following multinomial distribution:

𝑃 (𝜋 ≃ 𝑝) =
𝑚∏︁
𝑖=1

𝑁 !

(𝑁𝑝𝑖)!
𝑞𝑁𝑝𝑖𝑖 . (31.23)

Taking its log and using Stirling’s approximation, we obtain

log𝑃 (𝜋 ≃ 𝑝) = log𝑁 ! +
𝑚∑︁
𝑖=1

{𝑁𝑝𝑖 log 𝑞𝑖 −𝑁𝑝𝑖 log(𝑁𝑝𝑖) +𝑁𝑝𝑖}. (31.24)

That is, we get a large deviation principle for the probability distribution.

𝑃 (𝜋 ≃ 𝑝) ≈ 𝑒−𝑁
∑︀
𝑖 𝑝𝑖 log(𝑝𝑖/𝑞𝑖). (31.25)

This relation is called Sanov’s theorem.367

If we introduce the following quantity called the Kullback-Leibler entropy

𝐾(𝑝‖𝑞) =
∑︁

𝑝𝑖 log
𝑝𝑖
𝑞𝑖
, (31.26)

Sanov’s theorem reads
𝑃 (𝜋 ≃ 𝑝) ≈ 𝑒−𝑁𝐾(𝑝‖𝑞). (31.27)

As to the nonnegative definite nature of the Kullback-Leibler entropy 𝐾, see 32.7.

31.9 Information via Sanov’s theorem
Since we know the true answer for the symbol distribution, we would not be surprised
if 𝜋 ≃ 𝑞. How should we quantify our surprise?
Suppose we actually observed an event whose probability is 𝑝 < 1. What is the
most rational measure of surprise. It is − log 𝑝 (or − log2 𝑝 bits). This is called the
surprisal.

The ‘extent of surprise’ 𝑓(𝑝) we get, spotting a symbol that occurs with proba-
bility 𝑝 or knowing that an event actually happens whose expected probability
is 𝑝, should be

367 Sanov, I. N. (1957). On the probability of large deviations of random variables, Mat. Sbornik,
42, 11-44. Ivan Nikolaevich Sanov (1919-1968); obituary in (1969). Russ. Math. Surveys, 24, 159.
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(1) A monotone decreasing function of 𝑝 (smaller 𝑝 should give us bigger sur-
prise).
(2) Nonnegative.
(3) Additive: 𝑓(𝑝𝑞) = 𝑓(𝑝) + 𝑓(𝑞).
Therefore, 𝑓(𝑝) = −𝑐 log 𝑝 (𝑐 > 0) is the only choice.368

Thus the average surprise per symbol we get is 𝐾(𝑝‖𝑞). If we know that the
true distribution is flat (even), then the surprisal may be measured by the Shannon
formula:

𝐻(𝑝) = −
∑︁
𝑘

𝑝𝑘 log 𝑝𝑘. (31.28)

368We could invoke the Weber-Fechner law in psychology.
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32 Lecture 32. Kolmogorov-Sinai entropy

32.1 Kolmogorov-Sinai entropy as information loss rate
The identity of the information deficiency rate = the extra information required for
the equi-precise description and the Kolmogorov-Sinai entropy is generally expected,
so the definition of the Kolmogorov-Sinai entropy for a measure-theoretical dynam-
ical system (𝑇, 𝜇,𝑀) is given. This section gives an elementary introduction to
the concept and some basic theorems facilitating its intuitive understanding. Some
preparation is needed.

32.2 Partition
A (finite) partition 𝒜 of a set Γ (Fig. 32.1) is a family of subsets {𝐴1, · · · , 𝐴𝑛} of Γ
satisfying the conditions:

A A

A

1
2

n

Figure 32.1: Partition 𝒜 = {𝐴1, · · · , 𝐴𝑛}. A finite partition 𝒜 of a set Γ is a family of finitely
many subsets of Γ such that its members 𝐴𝑖 do not have any overlap with each other and the total
sum perfectly covers Γ.

(1) For any 𝑖 and 𝑗 ( ̸= 𝑖) 𝐴𝑖 ∩ 𝐴𝑗 = ∅, and
(2) ∪𝑛𝑖=1𝐴𝑖 = Γ

{𝐴𝑖} may be interpreted as the totality of the mutually exclusive observation re-
sults.369 Our observation is always under finite precision. Therefore, if the phase
space is continuous, we can never specify a particular point in it by observation.
Therefore, it is reasonable to introduce such discrete (coarse-grained) observables.370

369Here, each set 𝐴𝑖 may be a collection of discrete pieces or with holes (i.e., it need not be
(singly) connected).

370We could not tell which 𝐴𝑖 the phase point is actually in, so mustn’t 𝐴𝑖 be fuzzy? Here, we
adopt an interpretation that the relation between the values of a macro-observable that can be
observed with a finite precision and the actual microstates of the dynamical system is given by the
system itself independent of our capability of observing each microstate. That is, an element of a
partition 𝒜 consists of a definite set of microstates as an intrinsic property of the system, although
we cannot determine this with our finite precision observations.
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32.3 Composition of partitions
The composition operation ∨ of two partitions of Γ, 𝒜 ≡ {𝐴1, · · · , 𝐴𝑛} and ℬ ≡
{𝐵1, · · · , 𝐵𝑚}, is defined as follows (Fig. 32.2):

𝒜 ∨ ℬ ≡ {𝐴1 ∩𝐵1, 𝐴1 ∩𝐵2, · · · , 𝐴𝑛 ∩𝐵𝑚}. (32.1)

A

A
B

B

1

2
1

2

A B11

A 2B1 A2 B1

A
22
B

U

U

U

U

Figure 32.2: Composition of partitions: {𝐴1, 𝐴2}∨{𝐵1, 𝐵2} = {𝐴1∩𝐵1, 𝐴1∩𝐵2, 𝐴2∩𝐵1, 𝐴2∩𝐵2}

On the right-hand side appear all the nonempty pairs of 𝐴𝑖 and 𝐵𝑗. By definition
𝒜∨ℬ = ℬ∨𝒜. The elements of 𝒜∨ℬ may be interpreted as the mutually exclusive
outcomes obtained by performing two macroscopic observations corresponding to 𝒜
and ℬ simultaneously.

32.4 Information obtainable from observable 𝒜
Let us return to the general measure-theoretical dynamical system (𝑇, 𝜇,Γ). The av-
erage information we can obtain about the system by a single observation of macro-
scopic observable 𝒜 may be written with the aid of Shannon’s formula (31.9) as371

𝐻(𝒜) = −
∑︁
𝐴∈𝒜

𝜇(𝐴) log 𝜇(𝐴). (32.2)

This information implies that unless we have on the average this amount of informa-
tion about the system, we cannot infer in which 𝐴𝑖 the observation result is in.

371The partition must be a measurable partition; 𝜇(𝐴𝑖) must be meaningful. Such a statement
will not be written explicitly in the following.
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32.5 Extra information needed for equi-precise description of observable
𝒜
When a system evolves according to the dynamical law 𝑇 , how much information do
we need to infer its coarse-grained state (one of 𝒜) at the next time (time 𝑡+1) under
the condition that we know the coarse-grained state at present (time 𝑡)? To infer
both the states at time 𝑡 and time 𝑡+1 without any prior knowledge, we need infor-
mation of 𝐻(𝒜 ∨ 𝑇−1𝒜), where 𝑇−1𝒜 = {𝑇−1𝐴1, · · · , 𝑇−1𝐴𝑛}. We can understand
this as follows. An element of 𝑇−1𝒜 coincides with some element of 𝒜 after one time
step. That is, to describe the state of the system after one time step in terms of the
observable 𝒜 is equivalent to knowing in which element of 𝑇−1𝒜 the current state is.
Therefore, to specify both the states at 𝑡 + 1 and at 𝑡 is to specify a single element
in 𝒜 ∨ 𝑇−1𝒜. Consequently, on the average without 𝐻(𝒜 ∨ 𝑇−1𝒜) of information,
we cannot infer in which 𝐴𝑖 at time 𝑡 and in which 𝐴𝑗 at 𝑡+1 the system is in. If we
already know the macrostate at time 𝑡, to predict the macrostate at 𝑡 + 1 we need
𝐻(𝒜∨𝑇−1𝒜)−𝐻(𝒜) extra information. This is the amount of extra information Δ𝐻
(appearing in 31.1) required for equi-precision prediction of the one time step future.

32.6 Steady-state information loss
We need not stick to a particular time 𝑡 and 𝑡 + 1 in the steady state. That is, to
describe the extent of chaos for a measure-theoretical dynamical system we should
consider the average deficiency for a long time:

1

𝑛
[𝐻(𝒜 ∨ 𝑇−1𝒜 ∨ · · · ∨ 𝑇−𝑛𝒜)−𝐻(𝒜)] → ℎ𝜇(𝑇,𝒜), (32.3)

where the existence of this limit in 𝑛 → ∞ is guaranteed by the (intuitively plausi-
ble) subadditivity of 𝐻 32.7 and 𝐻(𝑇−𝑛𝒜) = 𝐻(𝒜) (𝑛 = 1, 2, · · ·; this can be seen
from the invariance of the measure (29.2)).

32.7 Subadditivity of entropy
The following inequality shows the subadditivity of information:

𝐻(𝒜 ∨ ℬ) ≤ 𝐻(𝒜) +𝐻(ℬ). (32.4)

The inequality must be intuitively natural, because in order to describe two observ-
ables 𝒜 and ℬ it is better to use information about the relation between these two as
well than to use information separately from each of the observables. Algebraically,
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we proceed as follows:

𝐻(𝒜 ∨ ℬ) = −
∑︁
𝑖,𝑗

𝜇(𝐴𝑖 ∩𝐵𝑗) log 𝜇(𝐴𝑖 ∩𝐵𝑗), (32.5)

= −
∑︁
𝑖,𝑗

𝜇(𝐴𝑖 ∩𝐵𝑗)

{︂
log

(︂
𝜇(𝐴𝑖 ∩𝐵𝑗)

𝜇(𝐴𝑖)𝜇(𝐵𝑗)

)︂
+ log 𝜇(𝐴𝑖)𝜇(𝐵𝑗)

}︂
,

(32.6)

= −
∑︁
𝑖,𝑗

𝜇(𝐴𝑖 ∩𝐵𝑗) log

(︂
𝜇(𝐴𝑖 ∩𝐵𝑗)

𝜇(𝐴𝑖)𝜇(𝐵𝑗)

)︂
+𝐻(𝒜) +𝐻(ℬ).

(32.7)

If the first term on the right-hand side of (32.7) is non-positive, the proof of 𝐻(𝒜∨
ℬ) ≤ 𝐻(𝒜) +𝐻(ℬ) is over. This is the following important inequality: Let 𝑝 and 𝑞
be probabilities (𝑝𝑖 ≥ 0 and

∑︀
𝑖 𝑝𝑖 = 1, etc., hold)∑︁

𝑖

𝑝𝑖 log
𝑝𝑖
𝑞𝑖

≥ 0. (32.8)

To show this we use the inequality 𝑥 log 𝑥 ≥ 𝑥− 1 for 𝑥 ≥ 0.372 Introduce 𝑥 = 𝑝𝑖/𝑞𝑖
into this and sum over 𝑖 after multiplying 𝑞𝑖:∑︁

𝑖

𝑞𝑖

(︂
𝑝𝑖
𝑞𝑖

log
𝑝𝑖
𝑞𝑖

)︂
≥
∑︁
𝑖

𝑝𝑖 −
∑︁
𝑖

𝑞𝑖 = 0. (32.9)

32.8 Fekete’s lemma
If {𝑓(𝑛)} is subadditive (i.e., 𝑓(𝑛+𝑚) ≤ 𝑓(𝑚)+𝑓(𝑛) holds for any positive integers,
𝑛,𝑚), lim𝑛→∞ 𝑓(𝑛)/𝑛 = inf𝑚 𝑓(𝑚)/𝑚.373

[Demo] Obviously, lim inf 𝑓(𝑛)/𝑛 ≥ inf 𝑓(𝑚)/𝑚. Writing 𝑛 = 𝑠+ 𝑘𝑚 (𝑚 > 0, 𝑠 ≥ 0
are integers), we get

𝑓(𝑛)

𝑛
=
𝑓(𝑠+ 𝑘𝑚)

𝑠+ 𝑘𝑚
≤ 𝑓(𝑠) + 𝑘𝑓(𝑚)

𝑠+ 𝑘𝑚
→ 𝑓(𝑚)

𝑚
. (32.10)

372The minimum value of 𝑓(𝑥) = 𝑥 log 𝑥− 𝑥+ 1 for 𝑥 ≥ 0 is zero as can be seen from the graph.
373⟨⟨Infimum limit (lim inf), supremum limit (lim sup)⟩⟩ lim inf𝑛→∞ 𝑥𝑛 =

lim𝑛→∞ inf{𝑥𝑛, 𝑥𝑛+1, · · ·}. That is, we make the lower bound 𝑦𝑛 of the sequence beyond 𝑥𝑛
and then take its limit 𝑛 → ∞. Since {𝑦𝑛} is monotone increasing, the limit is well-defined (may
not be bounded); similarly, lim sup𝑛→∞ 𝑥𝑛 = lim𝑛→∞ sup{𝑥𝑛, 𝑥𝑛+1, · · ·}.
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Therefore, lim sup 𝑓(𝑛)/𝑛 ≤ inf 𝑓(𝑚)/𝑚. Hence, the infimum and supremum limits
agree, and the limit exists.

32.9 The best observable: definition of Kolmogorov-Sinai entropy
We should look for the ‘best’ observable to observe the system. Here, ‘the best
observable’ should imply the observable that allows us to observe the system max-
imally in detail. Such an observable must be sensitive to the time evolution of the
system, so the increasing rate of the information deficiency for this observable must
be the largest. With this idea the Kolmogorov-Sinai entropy (or measure-theoretical
entropy) is defined as follows:

ℎ𝜇(𝑇 ) ≡ sup
𝒜
ℎ𝜇(𝑇,𝒜), (32.11)

where the supremum is taken over all the finite partitions of Γ (roughly speaking,
we try all the finite-resolving power observations).

32.10 Generator
If all the future data of a certain macro-observable determines the future history
(trajectory) uniquely, we do not need any more detailed observations. Take an
arbitrary history 𝜔. Let us write the element of 𝒜∨𝑇−1𝒜∨· · ·∨𝑇−𝑛+1𝒜 containing
𝜔 as 𝐴𝑛(𝜔) (which is an example of a cylinder set; see 26.5).374 Since 𝜔 ∈ 𝐴𝑛(𝜔) for
any 𝑛 = 0, 1, 2, · · ·, 𝜔 ∈ ∩∞

𝑛=0𝐴
𝑛(𝜔). If this common set does not contain any history

other than 𝜔, in other words, if ∩∞
𝑛=0𝐴

𝑛(𝜔) = {𝜔}, any further detailed observation
is superfluous. If such a relation holds for 𝜇-almost all 𝜔 (i.e., except for 𝜇-measure
zero set), the partition 𝒜 is called a generator. If 𝒜 is a generator, as expected,375

ℎ𝜇(𝑇 ) = ℎ𝜇(𝑇,𝒜). (32.12)

For example, for 𝑇𝑥 = {2𝑥} in Appendix 2.1A {[0, 1/2], (1/2, 1]} is a generator.
If a measurable partition 𝒜 separates all points (precisely speaking, for 𝜇-almost

374An element of 𝒜∨ 𝑇−1𝒜∨ · · · ∨ 𝑇−𝑛+1𝒜 has the form: 𝐴𝑖 ∩ 𝑇−1𝐴𝑗 ∩ · · · ∩ 𝑇−𝑛+1𝐴𝑘, which is
the totality {𝑥 : 𝑥 ∈ 𝐴𝑖, 𝑇𝑥 ∈ 𝐴𝑗 , · · · , 𝑇𝑛−1𝑥 ∈ 𝐴𝑘}. Therefore, around here in the text, 𝑥 ∈ Γ and
a history 𝜔 = {𝑥, 𝑇𝑥, · · ·} are identified.

375P. Walters, An Introduction to Ergodic Theory (Springer, 1982) is an excellent textbook of
the Kolmogorov-Sinai entropy (but students outside mathematics may not be able to read it with
ease). P. Billingsley, Ergodic Theory and Information (Wiley, 1960) is also excellent, but is slightly
dated.
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all points), in other words, for any two points 𝑥 ̸= 𝑦 ∈ Γ, there is a positive integer
𝑛 and an element 𝐴 ∈ 𝒜 such that 𝑇 𝑛(𝑥) ∈ 𝐴 and 𝑇 𝑛(𝑦) ̸∈ 𝐴, 𝒜 is a genera-
tor. Actually, if 𝒜 were not a generator, there are two histories 𝑇 𝑛(𝑥) and 𝑇 𝑛(𝑦)
that are always contained in a single element of 𝒜 ∨ 𝑇−1𝒜 ∨ · · · ∨ 𝑇−𝑛+1𝒜 for any
𝑛 = 0, 1, 2, · · ·. This contradicts the requirement that each point is separated.

32.11 Chaos and information loss/gain rate
A chaotic dynamical system is a dynamical system for which the extra information
required for equi-precise description increases linearly in time.376

For chaos, if we wish to predict its state after 𝑁 time steps with sufficient preci-
sion, we need a tremendous amount of information at present (we need ∼𝑒𝑁ℎ times
as much precision as required to describe the present state, so 𝑁 times as much
information as required to know the state at present; see just below), so there is no
wonder that sooner or later the behavior of the system becomes unpredictable.

32.12 Krieger’s theorem on generator377

Let (𝑇, 𝜇,𝑀) be an ergodic dynamical system. If its Kolmogorov-Sinai entropy sat-
isfies ℎ𝜇(𝑇 ) < log 𝑘 for some integer 𝑘 > 1, there is a generator with 𝑘 elements.

The theorem roughly tells us that if the Kolmogorov-Sinai entropy of the system
is log 𝑘, then we can encode its dynamics using 𝑘 symbols without losing any infor-
mation.

376In contrast to the above explanation, there were people who wished to introduce the
Kolmogorov-Sinai entropy as the rate of generation of information by the dynamical system. Chaotic
dynamical systems often exhibit us details of initial conditions later because of exponential sepa-
ration of nearby trajectories. Consequently, (if noise is completely ignored) continuous observation
of trajectories would tell us increasingly detailed information about the initial condition (in retro-
spect). In this sense, the dynamical system looks as if it is generating information. This observation
itself is correct, but whether this generating rate can be measured by the Kolmogorov-Sinai entropy
is another question. For chaos that may be observed numerically (observable chaos), this is cor-
rect, but, for example, for unimodal endomorphisms of intervals, except for at most one invariant
measure, the assertion does not hold for any of (uncountably many) invariant measures; generally
speaking, the generating rate of information just considered is larger than the Kolmogorov-Sinai
entropy. This fact is captured by Ruelle’s inequality (33.10) we will encounter later. Therefore, it
is quite dangerous to interpret the Kolmogorov-Sinai entropy as the information generating rate.

377W. Krieger, “On entropy and generators of measure-preserving transformations,” Trans. Amer.
Math. Soc. 149, 453 (1970); corrections ibid. 168, 519 (1972).
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32.13 Shannon-McMillan-Breiman’s theorem378

Let (𝑇, 𝜇,Γ) be an ergodic dynamical system and 𝒜 a finite partition of Γ. Let 𝐴𝑛(𝑥)
be an element of 𝒜 ∨ 𝑇−1𝒜 ∨ · · · ∨ 𝑇−𝑛+1𝒜 (a cylinder set of length 𝑛) containing
𝑥 ∈ Γ. For 𝜇-almost all 𝑥

lim
𝑛→∞

[︂
− 1

𝑛
log 𝜇(𝐴𝑛(𝑥))

]︂
= ℎ𝜇(𝑇,𝒜). (32.13)

In the above formula 𝐴𝑛(𝑥) is, as before, the bundle of histories (i.e., cylinder set)
that cannot be distinguished from the history with the initial condition 𝑥 for 𝑛 time
steps with a coarse-grained observation corresponding to the partition 𝒜. 𝜇(𝐴𝑛(𝑥))
is the volume of the initial conditions for the history satisfying the condition (we
could interpret it as the volume of the cylinder set). If the observation time span 𝑛
is increased, the condition becomes increasingly stringent, so the volume decreases
exponentially. (32.13) measures how fast the volume of the cylinder set decreases.
The more chaotic the system is, the harder trajectories to be close to a particular
one starting from 𝑥, so this value must become larger.

It may be more intuitive to rewrite (32.13) as

𝜇(𝐴𝑛(𝑥)) ∼ 𝑒−𝑛ℎ𝜇(𝑇,𝒜). (32.14)

32.14 Asymptotic equipartition theorem
A special case of the Shannon-McMillan-Breiman theorem is the asymptotic equipar-
tition (AEP) theorem of information theory:379

Let {𝑋𝑖} be a sequence of independently and identically distributed stochastic
variables. Let us write the probability for a (consecutive) 𝑛 samples, 𝑋1, 𝑋2, · · · , 𝑋𝑛,
as 𝑝(𝑋1, · · · , 𝑋𝑛). Then,

− 1

𝑛
log 𝑝(𝑋1, · · · , 𝑋𝑛) → 𝐻(𝑋), (32.15)

where 𝐻(𝑋) is the entropy of the individual stochastic variables. Notice that this
is nothing but the weak law of large numbers (footnote 28 in Section 1.2) for the

378For a proof of the Shannon-McMillan-Breiman theorem, see, for example, W. Parry, Entropy
and Generators in Ergodic Theory (Benjamin, New York 1969).

379It is quite important in information theory. See T. M. Cover and J. A. Thomas, Elements of
Information Theory (Wiley, 1991) p50-
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logarithm of probability. 𝑋1, 𝑋2, · · · , 𝑋𝑛, · · · may be interpreted as a history, so the
Shannon-McMillan-Breiman theorem is the extension of the asymptotic equiparti-
tion theorem to histories with correlated events.

32.15 Brin-Katok’s theorem
The Brin-Katok theorem explicitly counts the number of histories in the 𝜀-neighborhood
of the trajectory starting from 𝑥.380

Let the totality of the initial conditions that stay in the 𝜀-neighborhood of the
trajectory starting from 𝑥 ∈ Γ for 𝑁 time steps be (the theorem holds for continuous
dynamical systems as well)

𝐵𝑁(𝑥, 𝜀) = {𝑦 ∈𝑀 : 𝑑(𝑇 𝑛𝑥, 𝑇 𝑛𝑦) ≤ 𝜀, 0 ≤ 𝑛 ≤ 𝑁}. (32.16)

Theorem [Brin-Katok] Let (𝑇, 𝜇,Γ) be an ergodic dynamical system. For 𝜇-almost
all 𝑥 ∈ Γ,

ℎ𝜇(𝑇 ) = − lim
𝜀→0

lim
𝑁→∞

1

𝑁
log 𝜇(𝐵𝑁(𝑥, 𝜀)). (32.17)

32.16 (some) Chaos can be predictable
Chaos may be predictable for a certain time span thanks to its deterministic nature,
in contradistinction to noise, but not for a long time. We can estimate during how
many steps 𝑛 we can predict dynamics with the aid of the Kolmogorov-Sinai entropy
ℎ. According to the Brin-Katok theorem 𝑛 ∼ (log 𝛿𝑥)/ℎ, where 𝛿𝑥 is our resolving
power of the initial condition. However, there are chaotic dynamical systems with
very small ℎ, for which accurate prediction of considerable future is possible.381

32.17 Chaos under noise
As was stated around the Shannon-McMillan-Breiman theorem above, if a system
is chaotic, the bundle of histories close to a given history thins quickly, so it is of-
ten the case that the external noise makes a chaotic system ‘more chaotic.’ This is

380M. Brin and A. Katok, “On local entropy” Lecture Notes Math. 1007, 30 (1983).
381For asteroid 522 Helga the Lyapunov characteristic time (the time needed to magnify the initial

error by 𝑒) is 6,900 years, so accurate prediction is possible. See A. Milani and A. M. Nobili, “An
example of stable chaos in the Solar System,” Nature, 357, 569 (1992). J. J. Lissauer, “Chaotic
motion in the Solar System,” Rev. Mod. Phys. 71, 835 (1999) is a review.



32. LECTURE 32. KOLMOGOROV-SINAI ENTROPY 349

because noise can induce jumps between the elements of a generator that does not
happen with a single time step by the intrinsic dynamics. However, with our crude
description of dynamical systems so far given, we cannot claim anything general as
to the noise response of a chaotic system because the ‘effectiveness’ of noise strongly
depends on its details such as which trajectories actually come close in the phase
space. We cannot conclude that a system with a larger Kolmogorov-Sinai entropy
is more sensitive to noise. For example, due to noise transition into a particular el-
ement 𝐴𝑖 ∈ 𝒜 can become disproportionately frequent. If this element is embedded
by the intrinsic dynamics into a (small portion) of another element, the Kolmogorov-
Sinai entropy could become smaller due to noise. This is indeed the essence of the
noise-induced order discovered by Tsuda.382 More extremely, we could imagine a set
𝐷 outside the range of the intrinsic steady dynamics 𝐵 such that the trajectories
perturbed into 𝐷 from 𝐵 by noise are sent back into a very small subset of 𝐵. Thus,
we see that the noise effect is very sensitively dependent on the details of the system
(Fig. 32.3).

D

B

Figure 32.3: A dynamical system that can order by noise. If a phase point goes out of 𝐵 to 𝐷,
it is sent back to a very small portion of 𝐵. In such a case moderate noise could suppress chaos
that is supported on 𝐵.

32.18 Open cover
A collection of open sets 𝒪 = {𝑂𝜆 ⊂ 𝑀,𝜆 ∈ Λ} is called an open cover of 𝑀 , if
𝑀 = ∪𝜆∈Λ𝑂𝜆.

We define the join 𝒪 ∨𝒫 of two open covers 𝒪 = {𝐴𝑖} and 𝒫 = {𝐵𝑗} just as the
case of the partitions as (removing empty sets)

𝒪 ∨ 𝒫 = {𝐴𝑖 ∩𝐵𝑗}. (32.18)

32.19 Topological entropy
Consider a continuous dynamical system (𝑇,𝑀). Then , if 𝒪 is an open cover of 𝑀 ,

382K. Matsumoto and I. Tsuda, “Noise-induced order,” J. Stat. Mech. 31, 87 (1983).
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𝑇−1𝒪 ≡ {𝑇−1𝐴𝑖} is again an ope cover. Therefore, we can define 𝒪 ∨ 𝑇−1𝒪.
The following limit is called the topological entropy of the open cover 𝒪 of (𝑇,𝑀):

ℎtop(𝑇,𝒪) = lim
𝑛→∞

1

𝑛
log(𝒪 ∨ 𝑇−1𝒪 ∨ · · · ∨ 𝑇−𝑛+1𝒪)∘, (32.19)

where 𝐴∘ denotes the number of elements in the collection 𝐴.
Note that the limit exists just as in the case of te KS entropy, because (𝐴∨𝐵)∘ ≤

𝐴∘𝐵∘.

The topological entropy of (𝑇,𝑀) is defined as

ℎtop(𝑇 ) = sup
𝒪
ℎtop(𝑇,𝒪). (32.20)

Just as in the case of te KS entropy, honestly computing the supremum is hard;

there is a counterpart of generators, if 𝑀 is metrizable.

32.20 Top ent is the lowest upper bound of KS entropies
For a dynamical system (𝑇,𝑀), its topological entropy is given by

ℎtop(𝑇 ) = sup
𝜇
ℎ𝜇(𝑇 ), (32.21)

where 𝜇 is an invariant measure of 𝑇 .

32.21 Number of fixed points and topological entropy If (𝑇,𝑀) is topolog-
ical mixing, and has the pseudo orbit tracing property, then

ℎtop(𝑇 ) = lim sup
𝑛→∞

1

𝑛
log𝑁(𝑇, fixed points). (32.22)

This implies that the convergence radius of the 𝜁-function is given by 𝑒
−ℎtop(𝑇 ).

For a endomorphism of an interval 𝐹 : 𝐼 → 𝐼, if topologically mixing, we have
only to count the number of peaks of 𝐹 𝑛:

ℎtop(𝐹 ) = lim sup
𝑛→∞

1

𝑛
log𝑁(𝐹, fixed points). (32.23)
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33 Lecture 33. Lyapunov characteristic number

33.1 Lyapunov indices
As seen in examples above and from the Brin-Katok theorem, exponential separation
of nearby trajectories may be regarded as a characteristic feature of chaos. Consider
two trajectories starting from 𝑥 and a nearby point 𝑥 + 𝜀𝑣, where 𝜀 is a small
positive number and 𝑣 the directional vector. They tend to separate exponentially
as time increases. At time 𝑡 let us write the separation distance between these two
trajectories as exp(𝑡𝜆(𝑥, 𝑣)). The exponent 𝜆(𝑥, 𝑣) is called the Lyapunov exponent
(or Lyapunov characteristic exponent; A. M. Lyapunov 1857-1918) for the vector 𝑣
at 𝑥 ∈ Γ. Its precise definition is

𝜆(𝑥, 𝑣) = lim sup
𝑛→∞

1

𝑛
log ‖𝐷𝜑𝑛(𝑥)𝑣‖, (33.1)

where 𝐷 is differentiation with respect to 𝑥383 and ‖ ‖ is the norm in the tangent
vector space of Γ. The map 𝑇 defining the dynamical system is written as 𝜑 to avoid
confusion in the present note. At each 𝑥 𝜆(𝑥, 𝑣) as a function of 𝑣 takes 𝑞 (≤ the
dimension of Γ) distinct values:

𝜆(1)(𝑥) > · · · > 𝜆(𝑞)(𝑥). (33.2)

Its existence is guaranteed by the following theorem:

33.2 Oseledec’s theorem384

At each 𝑥 ∈ Γ the tangent vector space 𝑇𝑥Γ (≃ R𝑛) of Γ may be decomposed into a
direct sum of the form

𝑇𝑥Γ =

𝑞(𝑥)⨁︁
𝑖=1

𝐻𝑖(𝑥) (33.3)

and for 𝑣 ∈ 𝐻𝑗(𝑥)

lim sup
𝑛→∞

1

𝑛
log ‖𝐷𝜑𝑛(𝑥)𝑣‖ = 𝜆𝑗(𝑥). (33.4)

383This gives a Jacobi matrix in general.
384For a proof, see, for example, A. Katok and B. Hasselblat, Introduction to the Modern Theory

of Dynamical Systems (Cambridge University Press, 1996) p665. The original theorem is about the
general cocycle of a dynamical system and is called Oseledec’s multiplicative ergodic theorem, but
here it is quoted only in the form directly relevant to our topic.
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If the dynamical system is ergodic, this does not depend on 𝑥.

33.3 Numerical calculation of Lyapunov spectrum385

If we choose an arbitrary vector 𝑣 to compute (33.1), then almost surely we get 𝜆1
as can be clear from the illustration Fig. 33.1.

n
T

Figure 33.1: Fastest-growing direction wins. In this example, the green direction is also expo-
nentially growing, but the ratio of the lengths of the red and green arrows increase exponentially.

If we could consider the dynamics in the tangent space perpendicular to the fastest-
growing direction, then we should obtain the second fastest 𝜆2. However, the fastest-
growing direction rotates as illustrated in 33.1. A natural approach is as follows. Let
us assume 𝑀 to be an 𝑛-manifold. Start from a basis ⟨𝑒1, 𝑒2, · · · , 𝑒𝑛⟩ (of 𝑇𝑥0𝑀). For
example, the time evolution of the vector looks like the following succession of linear
transformations

𝐷𝜑𝑛(𝑥0)𝑒1 = 𝜑′(𝜑𝑛−1(𝑥0)) · · ·𝜑′(𝜑(𝑥0))𝜑
′(𝑥0)𝑒1. (33.5)

The expansion rate for this time span for this initial vector is given by

1

𝑛
log ‖𝐷𝜑𝑛(𝑥0)𝑒1‖. (33.6)

After several (𝑛) time steps, we may order the length of these vectors, and order them
according to the length as 𝑒𝑖1 , · · · , 𝑒𝑖𝑛 . Then, apply the Gram-Schmidt orthonormal-

ization to make a new ON basis ⟨𝑒(1)1 , 𝑒
(1)
2 , · · · , 𝑒(1)𝑛 ⟩. Then, repeat the procedure and

385The original idea is due to Ippei SHIMADA and Tomomasa NAGASHIMA, “A Numerical
Approach to Ergodic Problem of Dissipative Dynamical Systems,” Prog. Theor. Phys. 61 1605
(1979). The exposition here is not for actual calculations. For an actual calculation see for example,
C. Skokos, The Lyapunov characteristic exponents and their computation, arXiv:0882v2 (Jan 26,
(2009).
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compute the expansion rate as follows:

1

𝑁

[︂
1

𝑛
log ‖𝐷𝜑𝑛(𝑥0)𝑒𝑘‖+

1

𝑛
log ‖𝐷𝜑𝑛(𝜑𝑛(𝑥0))𝑒(1)𝑘 ‖+ · · ·+ 1

𝑛
log ‖𝐷𝜑𝑛(𝜑((𝑁−1)𝑛)(𝑥0))𝑒

(𝑁)
𝑘 ‖

]︂
.

(33.7)

33.4 Volume expansion rate calculation
In 33.3 each vector direction is calculated separately. Suppose in Fig. 33.1 we calcu-
late the area spanned by the red and green vectors. Its area exponentially grows
as 𝑒𝑁(𝜆1+𝜆2). This means that calculating the volume of the fastest growing 𝑘-
(rectangular) parallelepiped, we can compute 𝜆1 + 𝜆2 + · · · + 𝜆𝑘 (the sum up to
the 𝑘th largest LCN).

33.5 Some notable properties of LCN
Suppose a continuous dynamical system has a bounded phase space (i.e., bounded
𝑀) and there is no fixed point, then there must be 0 LCN. This is obvious, because
the direction tangent to the orbit cannot grow exponentially and its speed is bounded
from below.

For a Hamiltonian dynamical system, the phase volume is conserved, so 33.4
implies that the total sum of LCN must vanish.

Moreover, if 𝑙𝑎𝑚 (> 0) is a Lyapunov number, then so is −𝜆. This can be shown
with the aid of the canonical invariance of∫︁

𝑑𝑞𝑟𝑑𝑝𝑟𝑑𝑞
𝑠𝑑𝑝𝑠 · · · 𝑑𝑞𝑡𝑑𝑝𝑡. (33.8)

33.6 Pesin’s equality386

For 𝑇 ∈ Diff2(𝑀) a ergodic measure theoretical dynamical system (𝑇, 𝜇,𝑀) (if any).
Then, the following illustration tells us the following equality:

ℎ𝜇(𝑇 ) =
∑︁
+

𝜆, (33.9)

386Ya. B. Pesin, “Characteristic Lyapunov exponents and smooth ergodic theory,” Russ. Math
Surveys 32Z(4) 55 (1977). Section 5. This proves ℎ ≥

∑︀
+ 𝜆; the proof is technical and not

enlightening; besides, the inequality ≤ uses Mather’s paper.
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where
∑︀

+ means the sum over all the positive LCN.

f

x

x
f

Figure 33.2: Pesin illustrated: the cube edges describe the local unstable and stable directions.
Note that these directions are determined by the derivatives of the field. Since the map is 𝐶2,
they are smooth so locally expanding directions nicely agree with the original ‘blocks’ (elements of
partitions). Although we may not be allowed to make Markov partitions, but still the partitions
are geometrically nice and we can determine the expansion rate in the unstable directions.

33.7 Ruelle’s inequality
Generally, if the dynamical system is less smooth, then in Fig. 33.2 nice overlap is
not guaranteed, so the expansion direction of the mapped ‘cube (the slab in the
figure) may no more overlap nicely but only obliquely. Then, the expansion may not
as effectively ‘dilute’ information. Therefore, generally,

ℎ𝜇(𝜑) ≤
∑︁
+

𝜆 (33.10)

which is called Ruelle’s inequality.387

33.8 Kingman’s subadditive ergodic theorem388

Suppose 𝑋𝑚,𝑛 (0 ≤ 𝑚 < 𝑛) satisfy:
(i) 𝑋0,𝑛 ≤ 𝑋0,𝑚 +𝑋𝑚,𝑛.
(ii) For each 𝑘, {𝑋𝑛𝑘,(𝑛+1)𝑘, 𝑛 ≥ 1} is a stationary sequence.
(iii) The distribution of {𝑋𝑚,𝑚+𝑘, 𝑘 ≥ 1} does not depend on 𝑚.
(iv) 𝐸𝑋+

0,1 <∞ and for each 𝑛, 𝐸𝑋0,𝑛 ≥ 𝛾0𝑛, where 𝛾0 > −∞.
Then,

387D. Ruelle, “An inequality for the entropy of differentiable maps,” Bol. Soc. Brasil. Mat. 9, 83
(1978).

388based on R. Durrett, Probability: Theory and examples (Wadsworth & Brooks/Cole 1991).
This is the best advanced introduction to probability.
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(a) lim𝑛→∞𝐸𝑋0,𝑛/𝑛 = inf𝑚𝐸𝑋0,𝑚/𝑚 ≡ 𝛾.
(b) 𝑋 = lim𝑛→∞𝑋0,𝑛/𝑛 exists a.s. and in 𝐿1, so 𝐸𝑋 = 𝛾.
(c) If all the stationary sequences in (ii) are ergodic, then 𝑋 = 𝛾 a.s.

(a) is clear from Fekete’s inequality.

Remark. If we set 𝑋𝑛,𝑚 = 𝑓(𝑇𝑚+1)+ · · · 𝑓(𝑇 𝑛𝑥), then (i)-(iv) hold. The outcome is
the usual ergodic theorem, but we use this theorem to prove the subadditive version.

33.9 Estimate of lim sup𝑋0,𝑛/𝑛
(i) implies, for 𝑛 = 𝑘𝑚+ 𝑙 (𝑙 ∈ [0,𝑚)),

𝑋0,𝑛 ≤ 𝑋0,𝑘𝑚 +𝑋𝑘𝑚,𝑛, 𝑋0,𝑘𝑚 ≤ 𝑋0,(𝑘−1)𝑚 +𝑋(𝑘−1)𝑚,𝑘𝑚, (33.11)

so
𝑋0,𝑛 ≤ 𝑋0,(𝑘−1)𝑚 +𝑋(𝑘−1)𝑚,𝑘𝑚 +𝑋𝑘𝑚,𝑛. (33.12)

Since
𝑋0,(𝑘−1)𝑚 ≤ 𝑋0,(𝑘−2)𝑚 +𝑋(𝑘−2)𝑚,(𝑘−1)𝑚, (33.13)

etc., repeated use of such inequalities to (33.12) gives

𝑋0,𝑛 ≤ 𝑋0,𝑚 +𝑋𝑚,2𝑚 + · · ·+𝑋(𝑘−1)𝑚,𝑘𝑚 +𝑋𝑘𝑚,𝑛. (33.14)

Therefore,

𝑋0,𝑛

𝑛
≤
(︂

𝑘

𝑘𝑚+ 𝑙

)︂
𝑋0,𝑚 +𝑋𝑚,2𝑚 + · · ·+𝑋(𝑘−1)𝑚,𝑘𝑚

𝑘
+
𝑋𝑘𝑚,𝑛

𝑛
. (33.15)

Now, we use the ergodic theorem: there must be a limit

𝑋0,𝑚 +𝑋𝑚,2𝑚 + · · ·+𝑋(𝑘−1)𝑚,𝑘𝑚

𝑘
→ 𝐴𝑚. (33.16)

Thus, assuming nice behaviors of the system,

𝑋 ≡ lim sup
𝑛→∞

𝑋0,𝑛

𝑛
≤ 𝐴𝑚

𝑚
. (33.17)

If we may assume the system to be ergodic, then (a) implies∫︁
𝑑𝜇𝑋 ≤ 𝛾. (33.18)
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33.10 Almost sure convergence of lim𝑋0,𝑛/𝑛
Let

𝑋 ≡ lim inf
𝑛→∞

𝑋0,𝑛

𝑛
(33.19)

We wish to show ∫︁
𝑑𝜇𝑋 ≥ 𝛾. (33.20)

This with (33.18) implies ∫︁
𝑑𝜇 (𝑋 −𝑋) ≥ 0. (33.21)

That is, 𝑋 = 𝑋 a.s., the a.s. convergence of 𝑋0,𝑛/𝑛.

I cannot make the proof of (??) in Durrett understandable easily.
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34 Lecture 34 KS entropy as isomorphism invari-

ant

34.1 Kolmogorov-Sinai entropy as isomorphism invariant
The Kolmogorov-Sinai entropy was originally proposed as an invariant under iso-
morphism of measure theoretical dynamical systems. Suppose there are two measure
theoretical dynamical systems (𝑇, 𝜇,Γ) and (𝑇 ′, 𝜇′,Γ′). Let 𝜑 : Γ → Γ′ be a one-to-
one (except for measure zero sets) correspondent and measure-preserving: 𝜇 = 𝜇′ ∘𝜑
(that is, the measure of any measurable set measured by the measure 𝜇 on Γ and
measured by the measure 𝜇′ on Γ′ after mapping from Γ by 𝜑 are identical).389 If
the following diagram:

Γ
𝑇−→ Γ⎮⎮⌄𝜑 ⎮⎮⌄𝜑

Γ′ 𝑇 ′
−→ Γ′

is commutative (except on measure zero sets of Γ and Γ′), that is, if 𝑇 = 𝜑−1 ∘𝑇 ′ ∘𝜑,
these two measure-theoretical dynamical systems are said to be isomorphic.
It is almost obvious that the Kolmogorov-Sinai entropies of isomorphic measure-
theoretical dynamical systems are identical, because for a partition 𝒜 of Γ 𝐻(𝒜) =
𝐻(𝜑𝒜) and 𝜑 ∘ 𝑇 = 𝑇 ′ ∘ 𝜑. We say that the Kolmogorov-Sinai entropy is an isomor-
phism invariant. If two dynamical systems have different Kolmogorov-Sinai entropies,
then they cannot be isomorphic. For example, as can be seen from (34.2) 𝐵(1/2, 1/2)
and 𝐵(1/3, 2/3) cannot be isomorphic.
An isomorphism invariant that takes the same value if and only if dynamical systems
are isomorphic is called a complete isomorphism invariant. If we find such an invari-
ant, the classification of dynamical systems according to isomorphism is reduced to
the computation of the invariant. Is the Kolmogorov-Sinai entropy such an invariant?
When Meshalkin390 demonstrated the isomorphism between 𝐵(1/4, 1/4, 1/4, 1/4)
and 𝐵(1/2, 1/8, 1/8, 1/8, 1/8) (both have the Kolmogorov-Sinai entropy 2 log 2), the
affirmative answer was expected (also there was a crucial contribution of Sinai: the
weak isomorphism theorem for Bernoulli processes). In 1970391 Ornstein proved that
for Bernoulli processes the Kolmogorov-Sinai entropy is a complete invariant. Fur-

389Precisely, we must assume not only that 𝜑 : Γ → Γ′ is one to one as a map between measurable
spaces, but also that measurable subsets of Γ are mapped on those of Γ′ by 𝜑, and vice versa by
𝜑−1.

390L. D. Meshalkin,“A case of Bernoulli scheme isomorphism,” Dokl. Acad. Sci. USSR, 128(1)
41 (1959).

391[1970: Russel died (1872-), Aswan High Dam, Allende became the President of Chile.]
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thermore, completeness was proved for any finite mixing Markov chain with finite
Kolmogorov-Sinai entropy.392,393

34.2 Ornstein-Weiss’ theorem
Ornstein and Weiss proved the following theorem:394

Theorem 2.7A.1 Not completely predictable systems (= systems with positive Kolmogorov-
Sinai entropy) have Bernoulli flows (continuous dynamical systems whose periodically
sampled sequences become Bernoulli processes) as their factor dynamical systems.

Here, “to have 𝐴 as a factor dynamical system” implies that the original dynami-
cal system behaves as dynamical system 𝐴 if it is reduced to a certain space (more
precisely, there is a homomorphism from the system onto 𝐴). They simply equate
the chaotic system and the system with positive Kolmogorov-Sinai entropy in the
quoted review article.

34.3 Bernoulli system
Let 𝑀 = ZZ

𝑛, where Z𝑛 = {0, 1, · · · , 𝑛− 1}. We can define a shift dynamical system
(actually it is a full shift). We introduce a measure 𝜇 on 𝑀 through the measures
of the cylinder sets as395

𝜇([𝜔𝑘+1 = 𝛼1, · · · , 𝜔𝑘+𝑞 = 𝛼𝑞]) =

𝑞∏︁
𝑚=1

𝑝𝛼𝑚 , (34.1)

where 𝛼𝑚 ∈ Z𝑛 and 𝑝1, · · · , 𝑝𝑛 are 𝑝𝑚 ∈ [0, 1] with
∑︀𝑛

𝑚=1 𝑝𝑚 = 1 (i.e., 𝑝𝑖 is the
probability for a letter in the alphabet Z𝑛.

(𝜎,𝑀, 𝜇) is a measure-theoretical dynamical system called the Bernoulli system
and is denoted as 𝐵(𝑝1, · · · , 𝑝𝑛).
𝐵(1/2, 1/2) corresponds to the coin-tossing process, and is isomorphic to baker’s

transformation (see 27.4). It is also isomorphic to the horseshoe dynamical system
restricted on its nontrivial invariant set (see 28.5).

392I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, (Springer, 1982); D. S. Ornstein,
Ergodic Theory, Randomness, and Dynamical Systems (Yale University Press, 1974).

393However, the cases with zero entropy are different; there are numerous non-isomorphic dynam-
ical systems with zero entropy.

394D. S. Ornstein and B. Weiss, “Statistical Properties of Chaotic Systems,” Bull. Amer. Math.
Soc. 24, 11 (1991), Theorem 1.4.3.

395This can actually uniquely specify 𝜇 on 𝑀 according to Kolmogorov’s extension theorem.
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34.4 Kolmogorov-Sinai entropy of Bernoulli system
The Kolmogorov-Sinai entropy of 𝐵(𝑝1, · · · , 𝑝𝑛) is given by

ℎ = −
𝑛∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖. (34.2)

We can compute the loss of information by 𝜎 easily (see 32.1). It is indeed given
by this formula.

34.5 Central statements of theory of Bernoulli processes396

Two central statements of the theory are the Sinai theorem and the Ornstein theo-
rem:
(I) [Sinai’s weak isomorphism theorem] Every ergodic process with positive entropy
ℎ has any Bernoulli shift of entropy smaller than or equal to ℎ as a measure-theoretic
factor.397

(II) [Ornstein’s isomorphism theorem] Bernoulli shifts with equal entropies are iso-
morphic.

The Ornstein theorem fails for unilateral shifts (but the Sinai theorem holds,
which is less known).

396T. DOWNAROWICZ and J. SERAFIN, A short proof of the Ornstein theorem, Ergod. Th. &
Dynam. Sys. 32 587 (2012). The authors of this note managed to simplify the Burton, Keane and
Serafin method. It is the residual Sinai theorem which is central in our method, and the number
of applications of the Baire theorem is reduced to one. We continue to invoke the elementary
combinatorial ‘marriage lemma.’ I give up to illustrate this paper.

397⟨⟨Factor⟩⟩ A coarse-grained dynamical system is called a factor of the original dynamical
system. Formally, (𝑆, 𝜈,𝑁) is a factor of (𝑇, 𝜇,𝑀), if there is a measurable ‘homomorphism’
𝜙 :𝑀 → 𝑁 such that
(i) 𝑆 ∘ 𝜙 = 𝜙 ∘ 𝑇 ,
(ii) 𝜈(𝐴) = 𝑇 (𝜙−1(𝐴)0 for measurable set in 𝑁
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35 Large deviation approach to dynamical sys-

tems

35.1 Level 1 Large deviation: review
We have already discussed large deviation theory in 31.8 for Bernoulli samples, but
here we wish to be a bit more systematic.

Our starting point is the law of large numbers. Consider a chaotic endomorphism
𝑓 . If it is chaotic enough (e.g., topologically mixing), the law of large numbers holds
for the time average:

lim
𝑁→∞

𝑃

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝑓𝑘(𝑥) ∼ ⟨𝑓⟩

)︃
= 1, (35.1)

where ⟨𝑓⟩ is the average. Here, 𝑓𝑘(𝑥) may be denoted as 𝑥(𝑘, 𝜔) as well (i.e., the
trajectory (specified by) 𝜔 observed at time 𝑘). The long-time average ⟨𝑓⟩ is the
true expectation value (ergodicity).

Now, what happens if time is not long enough? The average should deviate
(fluctuate) from the true average. How? This is expressed as the large-deviation
principle

𝑃

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝑓𝑘(𝑥) ∼ 𝑥

)︃
≈ 𝑒−𝑁𝐼(𝑥), (35.2)

where 𝐼(𝑥) is called the rate function or the large deviation function. It is a convex
function with the unique minimum at 𝑥 = ⟨𝑓⟩. Thus, (35.2) includes the law of large
numbers.

35.2 Level 2 Large deviation: introduction
Sanov’s theorem 31.8 we already discussed for simple cases is actually a ‘level 2’
theory.

We can study the invariant measure empirically, taking statistics, so there must
be a corresponding law of large numbers

lim
𝑁→∞

𝑃

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝛿(𝑥(𝑘, 𝜔)− ·) ∼ 𝑑𝜇(·)
𝑑𝑚(·)

)︃
= 1. (35.3)
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Here, 𝑚 is the basic sampling measure (for the real space, it is usually the Lebesgue
measure 𝜆, so 𝑚 and 𝜆 may be used interchangeably).

There must be a corresponding large deviation principle. The LD for expectation
values is called the level 1 LD, and this one the level 2.

𝑃

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝛿(𝑥(𝑘, 𝜔)− ·) ∼ 𝑑𝜇(·)
𝑑𝑚(·)

)︃
≈ 𝑒−𝑁𝐼

(2)(𝜇). (35.4)

Here 𝐼(2) is the rate function(al) which is a convex functional of the measures with
the unique minimum at the invariant measure compatible with the sampling mea-
sure. As is clear from the definition, 𝜇 must be absolutely continuous with respect
to 𝑚.

35.3 Gärtner-Ellis theorem: level 1
We make a ‘partition function’ (generator)

𝑍(𝑡) =

⟨
exp

(︃
𝑡
𝑁−1∑︁
𝑘=0

𝑥(𝑘, 𝜔)

)︃⟩
, (35.5)

where ⟨ ⟩ implies the average over the sampling measure 𝑚. Let us use (35.2) to
compute this average:

𝑍(𝑡) =

∫︁
𝑑𝑚(𝜔)

∫︁
𝑑𝑥 𝛿

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝑥(𝑘, 𝜔) ∼ 𝑥

)︃
𝑒𝑁𝑡𝑥 =

∫︁
𝑑𝑥 𝑒𝑁 [𝑡𝑥−𝐼(𝑥)] = 𝑒𝑁𝑞(𝑡),

(35.6)
where 𝑞(𝑡) is the (−) free energy. Since 𝑁 is very large, the integral is dominated by
the peak value of the integrand, i.e., ‘max’𝑥[𝑡𝑥− 𝐼(𝑥)]. Therefore, we obtain

𝑞(𝑡) = sup
𝑥
[𝑡𝑥− 𝐼(𝑥)]. (35.7)

Since 𝐼(𝑥) is convex, this is a proper Legendre transformation, and 𝑞(𝑡) is also a
convex function. Thus,

𝐼(𝑥) = sup
𝑡
[𝑡𝑥− 𝑞(𝑡)]. (35.8)

That is, ‘entropy’ (i.e., − log ‘probability’) may be obtained from ‘free energy’
through a Legendre transformation: 𝑞 is much easier to compute than 𝐼, but 𝐼
dictates what you can observe.
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35.4 Gärtner-Ellis theorem: level 2
There must be a level 2 version of ‘statistical mechanics.’ We simply mimic the level
1 35.3. Make the partition function(al):

𝑍(𝜑) =

∫︁
𝑑𝑚(𝜔)

∫︁
𝛿𝜇 𝛿

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝛿(𝑥(𝑘, 𝜔)− ·) ∼ 𝑑𝜇(·)
𝑑𝑚(·)

)︃
𝑒𝑁

∫︀
𝑑𝜇(·)𝜑(·)(35.9)

=

∫︁
𝛿𝜇 𝑒𝑁 [

∫︀
𝑑𝜇(·)𝜑(·)−𝐼(2)(𝜇)] = 𝑒𝑁𝑞(𝜑), (35.10)

where 𝑞(𝜑) is the (−) free energy functional, and
∫︀
𝛿𝜇 is a functional integral. Since𝑁

is very large, the integral is dominated by the peak value of the integrand. Therefore,
we obtain

𝑞(𝜑) = sup
𝜇

[︂∫︁
𝑑𝜇(·)𝜑(·)− 𝐼(2)(𝜇)

]︂
. (35.11)

Since 𝐼(2)(𝜇) is convex, this is a proper Legendre transformation, and 𝑞(𝜑) is also a
convex function(al). Thus,

𝐼(2)(𝜇) = sup
𝜑

[︂∫︁
𝑑𝜇(·)𝜑(·)− 𝑞(𝜑)

]︂
. (35.12)

That is, ‘entropy’ may be obtained from ‘free energy’ through a Legendre transfor-
mation: 𝑞 is much easier to compute than 𝐼, but 𝐼 dictates what you can observe
just as at level 1.

35.5 Sanov’s theorem revisited
Let us compute 𝐼(2)(𝜇) when the sampling measure is 𝑚. Notice that the partition
function (35.9) can be rewritten as

𝑍(𝜑) =

∫︁
𝑑𝑚(𝜔) 𝑒

∑︀𝑁−1
𝑘=0 𝜑(𝑥(𝑘,𝜔)), (35.13)

because 𝜇 is an empirical measure obtained from {𝑥(𝑘, 𝜔)}𝑁−1
𝑘=0 . Let us assume that

𝑥(𝑘, 𝜔) are statistically independent for different 𝑘 (i.e., let us assume the dynamics
is Bernoulli). Then,

𝑍(𝜑) =

∫︁
𝑑𝑚

𝑁−1∏︁
𝑘=0

𝑒𝜑(𝑥(𝑘,𝜔)) = 𝑧𝑁 , (35.14)
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where

𝑧(𝜑) =

∫︁
𝑑𝑚𝑒𝜑(𝑥), (35.15)

Therefore, 𝑞(𝜑) = log 𝑧(𝜑) or

𝐼(2)(𝜇) = sup
𝜑

[︂∫︁
𝑑𝜇(·)𝜑(·)− log 𝑧(𝜑)

]︂
. (35.16)

Let us compute 𝜑 that ‘maximizes’ [ ]. The functional derivative gives398:∫︁
𝑑𝜇(𝑥) 𝛿(𝑥− 𝑦)− 1

𝑧(𝜑)

𝛿𝑧

𝛿𝜑(𝑦)
= 0, (35.17)

where
𝛿𝑧

𝛿𝜑(𝑦)
=

∫︁
𝑑𝑚𝛿(𝑥− 𝑦)𝑒𝜑(𝑥) (35.18)

Therefore, we get

𝑑𝜇(𝑦) =
𝑑𝑚(𝑦)𝑒𝜑(𝑦)

𝑧(𝜑)
⇒ 𝑑𝜇

𝑑𝑚
=
𝑒𝜑(𝑦)

𝑧(𝜑)
. (35.19)

That is,

𝜑(𝑦) = log
𝑑𝜇

𝑑𝑚
+ log 𝑧. (35.20)

Introducing this into (35.16), we obtain

𝐼(2)(𝜇) =

∫︁
𝑑𝜇(·) log 𝑑𝜇

𝑑𝑚
. (35.21)

This is called Sanov’s theorem, justifying the use of information theory to search for
the most probable results.

Notice, however, the result is only for Bernoulli processes. We must relax this
constraint.

35.6 Extension of Sanov-type formula for general level 2
Warning: I identify the actual trajectories in 𝑀 and their counterpart symbol
sequences. In short I identify as measurable spaces the actual dynamical system and
its isomorphic symbolic dynamics.

The easiest way is to regard a chunk of a trajectory (consecutive 𝑛 time points) as a
single state. Thus,

𝐼(2)(𝜇) =

∫︁
𝑑𝜇(·) log 𝑑𝜇

𝑑𝑚
. (35.22)

398The basic measure is 𝑚. That is 𝛿-function is with respect to measure 𝑚
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reads (recall the notation [𝑥] = 𝑥1 · · ·𝑥𝑛)

𝐼(2)(𝜇) =

∫︁
𝑑𝜇([𝑥]𝑛) log

𝑑𝜇

𝑑𝑚
([𝑥]𝑛). (35.23)

The Radon-Nikodym derivative can be rewritten as follows, assuming 𝑛 is sufficiently
large:

𝑑𝜇

𝑑𝑚
([𝑥]𝑛) =

𝜇([𝑥]𝑛)

𝑚([𝑥]𝑛)
. (35.24)

Using the conditional probability

𝑚([𝑥]𝑛) = 𝑚(𝑥1 |𝑥2 · · · 𝑥𝑛)𝑚(𝑥2 · · ·𝑥𝑛) (35.25)

therefore, in the large 𝑛 limit we can write

𝑚([𝑥1 · · ·𝑥𝑛]) =
𝑚([𝑥1𝑥2 · · ·𝑥𝑛])
𝑚([𝑥2 · · ·𝑥𝑛])

𝑚([𝑥2𝑥3 · · ·𝑥𝑛])
𝑚([𝑥3 · · ·𝑥𝑛])

· · · (35.26)

=
𝑚([𝑥1𝑥2 · · ·𝑥𝑛])
𝑚(𝑓 [𝑥1𝑥2 · · · 𝑥𝑛])

𝑚([𝑥2 · · · 𝑥𝑛])
𝑚(𝑓 [𝑥2 · · ·𝑥𝑛])

· · · . (35.27)

Therefore,

1

𝑛
log𝑚([𝑥1 · · · 𝑥𝑛]) =

1

𝑛

𝑛−1∑︁
𝑗=1

log
𝑚([𝑥𝑗 · · ·𝑥𝑛])
𝑚(𝑓 [𝑥𝑗 · · ·𝑥𝑛])

. (35.28)

Analogously we get

1

𝑛
log 𝜇([𝑥1 · · · 𝑥𝑛]) =

1

𝑛

𝑛−1∑︁
𝑗=1

log
𝜇([𝑥𝑗 · · ·𝑥𝑛])
𝜇(𝑓 [𝑥𝑗 · · ·𝑥𝑛])

. (35.29)

Thus, if we consider (1/𝑛)𝐼(2) → 𝐼(3) in the large 𝑛 limit, we get

𝐼(3) =

∫︁
𝑑𝜇(𝑥)

[︂
log

𝑑𝜇

𝑑𝜇 ∘ 𝑓
− log

𝑑𝑚

𝑑𝑚 ∘ 𝑓

]︂
. (35.30)

Recall (31.3). The first term is (−)KS-entropy. Notice that this is the large deviation
function for trajectories (so it is called the level 3 rate function).

Although I said I would identify the real space and the symbol space, and although
the identification is almost perfect (it is perfect for 1D endomorphism, so this im-
mediately gives Rohlin’s formula), the formula must be carefully interpreted. For
a sequence {𝑥1, 𝑥2, 𝑥3, · · ·}, 𝑓({𝑥1, 𝑥2, 𝑥3, · · ·}) = {𝑥2, 𝑥3, · · ·} (cf. the shift). Notice
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that one symbol disappears. This shortening of the cylinder set implies expansion.
That is why the first term is (−)KS-entropy. The second term is the expansion rate;
if we have a nice coding such as Markov partitions, then it is the sum of positive
LCN. That is, (35.30) reads

𝐼(3) =
∑︁
+

⟨𝜒⟩𝜇 − ℎ𝜇 ≥ 0 (35.31)

Thus, Pesin’s equality holds for the most probable state = equilibrium state.

35.7 Energy function
To do study statistical mechanic on the lattice we need an energy function 𝜙 : Σ𝑛 →
R. It is the 1/2 of the total interaction and the self energy of a spin. we impose the
following constraint on 𝜑. Let

var𝑘𝜑 = sup{|𝜑(𝑥)− 𝜑(𝑦)| : 𝑥𝑖 = 𝑦𝑖 for |𝑖| ≤ 𝑘}. (35.32)

Our constraint is
var𝑘𝜙 ≤ 𝑏𝛼𝑘, (35.33)

where 𝑏 > 0 and 𝛼 ∈ (0, 1). Let us explicitly write

ℱ𝐴 = {𝜑 |Σ𝐴 → R, var𝑘𝜙 ≤ 𝑏𝛼𝑘,∀𝑘 ∈ N}. (35.34)

Here Σ𝐴 is a Markov subshift with matrix 𝐴.

35.8 Gibbs measure
For any Hamiltonian 𝜑 ∈ ℱ𝐴, there is a unique shift invariant measure 𝜇𝜑 satisfying
the following inequality for some positive constants 𝐶1, 𝐶2 and 𝑃 (= free energy per
spin)

𝐶1 ≤
𝜇{𝑦 : 𝑦𝑖 = 𝑥𝑖, ∀𝑖 ∈ {0, 1, · · · , 𝑛}
exp(−𝑃𝑚+

∑︀𝑛−1
𝑘=0 𝜑(𝜎

𝑘𝑥))
≤ 𝐶2, (35.35)

35.9 Transfer operator
Consider the totality of the states on the right-half lattice 𝑆+

𝐴 .
399 and 𝜑 ∈ 𝐶(Σ+

𝐴.

399If you read the original math paper, there is a log discussion about how to justify considering
of Σ+ instead of 𝑆.
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Define the transfer operator 𝑇𝜑 as

[𝑇𝜑𝑓 ](𝑥) =
∑︁

𝑦∈𝜎−1𝑥

𝑒𝜑(𝑦)𝑓(𝑦). (35.36)

Notice that 𝑦 = 𝑥*𝑥1𝑥2 · · ·.

35.10 Ruelle-Perron-Frobenius theorem
Let Σ𝐴 be mixing and 𝜑 ∈ ℱ𝐴 ∩ 𝐶(Σ+

𝐴). There is a unique positive eigenvalue
𝜆𝜑 of 𝑇𝜑, and the Gibbs measure is obtained from the partition func tion and the
normalization obtained from 𝜆𝜑

𝜇([𝑥]𝑛) ≃
1

𝜆𝑛𝜑
exp

(︃
𝑛∑︁
𝑖=1

𝜑(𝑥𝑖)

)︃
, (35.37)

where [𝑥]𝑛 = 𝑥1 · · ·𝑥𝑛.

35.11 Variational principle for Gibbs measure
The Gibbs measure 𝜇𝜑 is the unique measure satisfying the following variational
principle:

𝑠(𝜇) +

∫︁
𝜑𝑑𝜇 = 𝑃 (𝜑). (35.38)

where 𝑠 is the entropy per spin.
The 𝑇 -invariant measure satisfying the variational principle is called an equilib-

rium state wrt to 𝑇 and 𝜑.400

400Th 2.7
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36 Thermodynamic formalism

36.1-36.8 summarize the Gibbs measure theory on 1D lattice (for disordered sys-
tems). Mathematically, this measure and the observable measure for chaotic dy-
namical systems are closely related. Here, we wish to maximally abuse functional
analysis and to respect theoretical physics aesthetics.

36.1 Preparatory comments on measures
Let 𝑀(𝑋) be the set of all the Borel measures on 𝑋.
Let 𝑇 be an automorphism on 𝑋. Then, 𝑇 induces a map 𝑇 * on 𝑀(𝑋): for 𝜇 ∈
𝑀(𝑋)

𝜇(𝑇−1𝐸) = (𝑇 *𝜇)(𝐸) = 𝑇 *𝜇(𝐸). (36.1)

Since 𝑇−1(𝐸) the totality of the points coming to 𝐸 after one time step, 𝑇 *𝜇 = 𝜇
means the preservation of measure.

We may introduce a weak topology on 𝑀(𝑋). Actually,
Proposition: 𝑀(𝑋) is a compact convex metrizable space.

36.2 Invariant measure set is nonempty and closed
Proposition: Let 𝑀𝑇 (𝑋) be the set of all the invariant measures. Then, it is non-
empty and is closed in 𝑀(𝑋).

[Demo] Let

𝜇𝑛 =
1

𝑛
(𝜇0 + 𝑇𝜇0 + · · ·+ 𝑇 𝑛𝜇0). (36.2)

Since 𝑀(𝑋) is compact, we can always take a converging subsequence. The result
is invariant.
𝜇 ∈𝑀𝑇 (𝑋) means ∫︁

(𝑓 ∘ 𝑇 )𝑑𝜇 =

∫︁
𝑓𝑑𝜇. (36.3)

36.3 Lattice states
Let 𝑥𝑖 ∈ {0, 1, · · · , 𝑛 − 1} be a state at a single lattice point. A lattice state is de-
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scribed by {𝑥𝑘}∞𝑘=−∞. The totality of these sequences is Σ𝑛.

36.4 Energy function
To do study statistical mechanic on the lattice we need an energy function 𝜙 : Σ𝑛 →
R. It is the 1/2 of the total interaction and the self energy of a spin. We impose the
following constraint on 𝜑. Let

var𝑘𝜑 = sup{|𝜑(𝑥)− 𝜑(𝑦)| : 𝑥𝑖 = 𝑦𝑖 for |𝑖| ≤ 𝑘}. (36.4)

Our constraint is
var𝑘𝜙 ≤ 𝑏𝛼𝑘, (36.5)

where 𝑏 > 0 and 𝛼 ∈ (0, 1). Let us explicitly write

ℱ𝐴 = {𝜑 |Σ𝐴 → R, var𝑘𝜙 ≤ 𝑏𝛼𝑘,∀𝑘 ∈ N}. (36.6)

Here Σ𝐴 is a Markov subshift with matrix 𝐴.

36.5 Gibbs measure
For any Hamiltonian 𝜑 ∈ ℱ𝐴, there is a unique shift invariant measure 𝜇𝜑 satisfying
the following inequality for some positive constants 𝐶1, 𝐶2 and 𝐴 (= free energy per
spin)

𝐶1 ≤
𝜇{𝑦 : 𝑦𝑖 = 𝑥𝑖,∀𝑖 ∈ {0, 1, · · · , 𝑛}

exp(−𝐴𝑛+
∑︀𝑛−1

𝑘=0 𝜑(𝜎
𝑘𝑥))

≤ 𝐶2, (36.7)

36.6 Transfer operator
Consider the totality of the states on the right-half lattice 𝑆+

𝐴 .
401 and 𝜑 ∈ 𝐶(Σ+

𝐴.
Define the transfer operator 𝑇𝜑 as

[𝑇𝜑𝑓 ](𝑥) =
∑︁

𝑦∈𝜎−1𝑥

𝑒𝜑(𝑦)𝑓(𝑦). (36.8)

Notice that 𝑦 = 𝑥*𝑥1𝑥2 · · ·.

401If you read the original math paper, there is a long discussion about how to justify considering
of Σ+ instead of Σ𝐴.
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36.7 Ruelle-Perron-Frobenius theorem
Let Σ𝐴 be mixing and 𝜑 ∈ ℱ𝐴 ∩ 𝐶(Σ+

𝐴). There is a unique positive eigenvalue
𝜆𝜑 of 𝑇𝜑, and the Gibbs measure is obtained from the partition function and the
normalization obtained from 𝜆𝜑

𝜇([𝑥]𝑛) ≃
1

𝜆𝑛𝜑
exp

(︃
𝑛∑︁
𝑖=1

𝜑(𝑥𝑖)

)︃
, (36.9)

where [𝑥]𝑛 = 𝑥1 · · ·𝑥𝑛 is a cylinder set.

36.8 Variational principle for Gibbs measure
The Gibbs measure 𝜇𝜑 is the unique measure satisfying the following variational
principle:

𝑠(𝜇) +

∫︁
𝜑𝑑𝜇 = 𝐴(𝜑). (36.10)

where 𝑠 is the entropy per spin, and 𝐴 = (1/𝑁) log𝑍 = log 𝜆𝜑 (that is, −𝛽𝐴/𝑁 in
the standard statistical thermodynamic notation).

The 𝑇 -invariant measure satisfying the variational principle is called an equilib-
rium state wrt to 𝑇 and 𝜑.402

36.9 Large deviation and thermodynamics
In the following we assume 𝐻 is bounded from above.

The partition function

𝑍(𝛽) =
∑︁

𝑒(−𝛽)
∑︀
ℎ (36.11)

may be interpreted as the generating function for energy with respect to the Liouville
measure (the uniform or equal probability) measure. We ask the energy fluctuation
with respect to this measure (for a portion of the system containing 𝑁 subsystems,
which are assumed to be more or less statistically independent)(. We assume the LD
principle:

𝑃

(︂
1

𝑁

∑︁
ℎ ∼ 𝑒

)︂
≈ 𝑒−𝑁𝐼(𝑒). (36.12)

402Th 2.7
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Its generating function may be written as

𝑍(𝛽)

𝑍(0)
=
⟨︀
𝑒(−𝛽)

∑︀
ℎ
⟩︀
0
, (36.13)

where ⟨ ⟩0 denotes the expectation value with respect to the uniform measure.

(36.13) may be rewritten as

𝑍(𝛽)

𝑍(0)
=

⟨︀
𝑒(−𝛽)

∑︀
ℎ
⟩︀
0
=

∫︁
𝑑𝑦

⟨
𝛿

(︂
𝑦 − 1

𝑁

∑︁
ℎ

)︂⟩
0

𝑒(−𝛽)𝑁𝑦 (36.14)

=

∫︁
𝑑𝑦 𝑃

(︂
1

𝑁

∑︁
ℎ ∼ 𝑦

)︂
𝑒(−𝛽)𝑁𝑦 =

∫︁
𝑑𝑦𝑒−𝑁𝐼(𝑦)𝑒(−𝛽)𝑁𝑦. (36.15)

Using the Laplace-type approximation, we have

1

𝑁
log(𝑍(𝛽)/𝑍(0)) = sup

𝑦
[(−𝛽)𝑦 − 𝐼(𝑦)]. (36.16)

Introduce

[−𝑎](−𝛽) = 1

𝑁
log(𝑍(𝛽)). (36.17)

(36.16) reads
[−𝑎](−𝛽)− [−𝑎](0) = sup

𝑦
[(−𝛽)𝑦 − 𝐼(𝑦)]. (36.18)

In terms of the usual thermodynamic quantity [−𝑎](−𝛽) = −𝛽𝐴/𝑁 , 𝑦 = 𝐸/𝑁 =
𝑒. Also so [−𝑎](0) = − lim𝛽→0 𝛽𝐴/𝑁 = − lim𝑇→∞𝐴/𝑇 = lim𝑇→∞(𝑆 − 𝐸/𝑇 ), but if
we assume 𝐻 to be bounded (as magnets), this converges to 𝑆(∞), the log of the
phase volume, essentially. Therefore, (36.18) reads

−𝛽𝐴/𝑁 = sup
𝑒
[(−𝛽)𝑒− 𝐼(𝑒)] + 𝑆(∞), (36.19)

so 𝐼(𝑒) = 𝛽(𝐴− 𝐸)/𝑁 − 𝑆∞ = 𝑆∞ − 𝑆. The most probable 𝑒 is the internal energy
at 𝛽 = 0. Thus, 𝐼(𝑒) is the information required to characterize the deviated energy
distribution from uniform distribution: That is, the following KL entropy is

𝐼(𝑒) =
1

𝑁

∑︁
𝑖

𝑓𝑖 log(𝑍0𝑓𝑖) = 𝑆∞ − 𝑆. (36.20)

By the way, this can be obtained from Sanov’s theorem + the contraction principle:

𝐼(𝑒) = inf
𝜈:
∫︀
𝑑𝜈 ℎ=𝑒

𝐼(2)(𝜈). (36.21)
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Here 𝐼(2) is the level 2 large deviation functional with respect to the equal probabil-
ity measure on the phase space. This relation is what Jaynes misunderstood as the
principle to found statistical mechanics.

36.10 Perron-Frobenius eigenvalue problem
The Perron-Frobenius equation 31.4 reads

𝜙(𝑥) = (ℒ𝐹𝜙)(𝑥) =
∫︁
𝑚(𝑑𝑦)𝛿(𝑥− 𝐹 (𝑦))𝜙(𝑦) =

∑︁
𝑦∈𝐹−1(𝑥)

𝜙(𝑦)

|𝐹 ′(𝑦)|
. (36.22)

For reasonably chaotic systems (‘(non-uniformly) hyperbolic systems’), the counter-
part should read

𝜙(𝑥) = (ℒ𝐹𝜙)(𝑥) =
∫︁
𝑚+(𝑑𝑦)𝛿(𝑥− 𝐹 (𝑦)) =

∑︁
𝑦∈𝐹−1(𝑥)

𝜙(𝑦)

𝐿+(𝑦)
, (36.23)

where 𝑚+ is the Lebesgue measure (better, the Riemann volume of unstable mani-
folds; red curves in Lecture 39), 𝐿+ is the expansion rate of the unstable manifold
(the sum of all the positive Lyapunov characteristic numbers; cf. 33.6), and 𝛿 must
be defined wrt 𝑚+.

Note the following formula:

(ℒ𝐹𝑛𝜙)(𝑥) =
∑︁

𝑦∈𝐹−𝑛(𝑥)

𝜙(𝑦)

|(𝐹 𝑛)′(𝑦)|
= (ℒ𝑛𝐹𝜙)(𝑥). (36.24)

Following the Fredholm integral equation, the corresponding eigenvalue problem
reads

𝜙(𝑥) = 𝜆(ℒ𝐹𝜙)(𝑥). (36.25)

Note that ℒ𝐹 is a special case of the transfer operator 36.6 with 𝜑 = − log |𝐹 ′|.
The eigenvalue problem used in 35.10 is the reciprocal of 𝜆 in (36.25). The conven-
tions in linear algebra and in integral equations are different.

36.11 Fredholm determinant for Perron-Frobenius operator403

(36.25) may be rewritten as
(1− 𝜆ℒ𝐹 )𝜙 = 0. (36.26)

403Y Oono and Y Takahashi, “Chaos, external noise and Fredholm theory,” Prog Theor Phys 63
1804 (1980).
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Therefore, the eigenvalues should be the zeros of the ‘determinant’𝐷(𝜆, 𝐹 ) of 1−𝜆ℒ𝐹 .
To define this we use an identity det𝐵 = exp(Tr log𝐵):

det (1− 𝜆𝐴) = exp [Tr log(1− 𝜆𝐴)] = exp

[︃
−Tr

∞∑︁
𝑛=1

𝜆𝑛

𝑛
𝐴𝑛

]︃
. (36.27)

This implies that we have to define the trace of ℒ𝑛𝐹 . Looking at (36.24) we define

Trℒ𝑛𝐹 =
∑︁

𝑧∈𝐹−𝑛(𝑧)

1

|(𝐹 𝑛)′(𝑧)|
≡ 𝑄𝑛. (36.28)

Thus, we define

𝐷(𝜆, 𝐹 ) ≡ det (1− 𝜆ℒ𝐹 ) = exp

[︃
−

∞∑︁
𝑛=1

𝜆𝑛

𝑛
𝑄𝑛

]︃
. (36.29)

Recall that the 𝜁-function (Artin-Mazur-Ruelle 𝜁-function) 26.9 is just the recipro-
cal of this quantity.

36.12 Significance of 𝐷(𝜆, 𝐹 )
(1) The expansion of 𝐷(𝜆, 𝐹 ) around 𝜆 = 0 is intimately related to the symbolic
realization of the dynamical system.
(2) If 𝐷(1, 𝐹 ) = 0, then the system has an observable measure.404

(3) At criticality, 𝐷(𝜔, 𝐹 ) = 0 for any 𝜔 such that 𝜔𝑛 = 1. That is, the natural
boundary of 𝐷(𝜆, 𝐹 ) is a unit circle iff 𝐹 is critical (under the condition that 𝐹 ′ is
bounded).

36.13 Free energy
Look at

− log𝐷(𝜆, 𝐹 ) =
∞∑︁
𝑛=1

𝜆𝑛

𝑛
𝑄𝑛. (36.30)

The structure of 𝑄𝑛 is

𝑄𝑛 = Trℒ𝑛𝐹 =
∑︁

fixed points of 𝐹𝑛

𝑒− log |(𝐹𝑛)′(𝑦)|. (36.31)

404Precisely speaking, this is our conjecture.
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Notice that the cain rule means

(𝐹 𝑛)′(𝑦) = 𝐹 ′(𝐹 𝑛−1(𝑥0))𝐹
′(𝐹 𝑛−2(𝑥0)) · · ·𝐹 ′(𝑥0) =

∏︁
𝑖

𝐹 ′(𝑥𝑖), (36.32)

where {𝑥0, 𝑥1, · · · , 𝑥𝑛−1} is a periodic orbit. 1/𝑛 in front of 𝑄𝑛 in (36.30) means that
the actual sum is over the periodic trajectories. You could think that log |𝐹 ′| is the
energy (Hamiltonian) and that the trajectory positions correspond to ‘microstates’
of a statistical equilibrium system (see 35.10), although there is no temperature
(yet) 𝛽. Thus, (36.30) may be interpreted as the grand canonical partition function
by setting the fugacity 𝜆 = 𝑒𝛽𝜇. 𝑄𝑛 is the canonical partition function, so we may
introduce the free energy 𝐴 (per time = lattice point):405

𝐴 = − lim sup
𝑛→∞

1

𝑛
log𝑄𝑛. (36.33)

Notice that 𝜌 = 𝑒𝐴 is the convergence radius of the zeta function = inverse of Perron-
Frobenius eigenvalue.

If the nonwandering set is a stable periodic orbit, then 𝐴 < 0.
If 𝐴 = 0, there is an observable invariant measure.

36.14 Chaotic system under noise
Instead of 𝑥→ 𝐹 (𝑥), let us add an additive noise

𝑥𝑛+1 = 𝐹 (𝑥𝑛) + 𝜈𝑛, (36.34)

where we assume 𝜈𝑛 is a noise (at time 𝑛) which has a density distribution 𝑔. Then,
the Perron-Frobenius equation is converted to

𝜙𝜈(𝑥) =

∫︁
𝑚(𝑑𝑦)𝑔(𝑥− 𝐹 (𝑦))𝜙𝜈(𝑦) ≡ (ℒ̂𝐹𝜙𝜈)(𝑥). (36.35)

We expect that in the 𝜈 → 0 limit (that is, the 𝑔 → 𝛿 limit), the system, if stable,
should recover the noiseless system. Notice that, simply following the computational
rule of the 𝛿-function, we must conclude

lim
𝑔→𝛿

ℒ̂𝑛𝐹 =

∫︁
𝑚(𝑑𝑦)𝛿(𝑦 − 𝐹𝑛(𝑦)) =

∑︁
𝑧∈𝐹−𝑛(𝑧)

1

|(𝐹 𝑛)′(𝑧)− 1|
≡ 𝑄̂𝑛. (36.36)

405Mathematicians do not like ‘−’ in front of the following definition, and from the convex an-
alytical point of view mathematicians’ convention is more rational than statistical-physicists’, but
here we stick to the physics tradition.
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The difference between 𝑄𝑛 and 𝑄̂𝑛 is insignificant, if the system is sufficiently chaotic.
The measure stable under noise is the physical measure defined by Kolmogorov.406

Thus, the statistical properties of a chaotic system is stable against noise. Thus,
we may say that the macroscopic stability is warranted by microscopic instability.
This is very suggestive of the stability of tropical rain forest systems.

36.15 Let us introduce temperature407

Instead of (36.31) let us introduce the canonical partition function

𝑄𝑛(𝛽) =
∑︁

fixed points of 𝐹𝑛

𝑒−𝛽 log |(𝐹𝑛)′(𝑦)|. (36.37)

Accordingly, we may introduce the temperature-dependent free energy

𝐴(𝐹, 𝛽) = −𝛽−1 lim sup
𝑛→∞

log𝑄𝑛(𝛽). (36.38)

36.16 Thermodynamics
The internal energy reads (use the Gibbs-Helmholtz relation)

𝐸(𝛽) =
𝜕𝛽𝐴

𝜕𝛽
= ⟨log |𝐹 ′|⟩𝛽. (36.39)

Entropy is

𝑆(𝛽) = 𝛽2𝜕𝐴

𝜕𝛽
= 𝛽(𝐸(𝛽)− 𝐴(𝐹, 𝛽)). (36.40)

Actually, we know this is a Legendre transformation. If we compare this with the
LD formalism, this entropy is just the Kolmogorov-Sinai entropy.

From 36.12 (2), if 𝐹 allows an observable chaos, 𝐴(1, 𝐹 ) = 0, so we recover
Rohlin’s formula:

𝑆(1) = ⟨log |𝐹 ′|⟩. (36.41)

406Eckmann-Ruelle says: by Kolmogorov (we are not aware of a published reference) a long time
ago.

407Y Takahashi and Y Oono, “Towards he statistical mechanics of chaos,” Prog Theor Phys 71
851 (1984).
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Note that 𝑆(0) is given by

𝑆(0) = lim sup
𝑛→∞

1

𝑛
[#Fix(𝐹 𝑛)] (36.42)

which is the topological entropy.408 Entropy should be an increasing function of
temperature: thus the KS entropy is bounded by topological entropy:

𝑆(0) ≥ 𝑆(1). (36.43)

This is Dinaburg’s theorem.409

36.17 What is 𝛽?
The conjecture is:
The Hausdorff dimension of the support of the observable measure if 𝛽𝑐 such that
𝐴(𝛽𝑐, 𝐹 ) = 0.

36.18 What is the outstanding conjecture theoretical physicists can make?
This is a summary of what I was pursuing.

A necessary and sufficient condition for a dynamical system to have an observ-
able measure defined by the stability against noises (i.e., a physical measure in
Kolmogorov’s sense) is that the Fredholm determinant of the Perron-Frobenius (+-
version) satisfies 𝐷(1, 𝐹+) = 0.

𝐷(𝜆, 𝐹+) may be factorized into holomorphic factors each of which has nondegen-
erate 𝜆 = 1 as its smallest zero and corresponds to the unique observable measure
supported on an invariant set (= basic set). The observable measure can be described
as a Gibbs measure with | log𝐹+| as the energy function.

408R. Bowen, TAMS 184 125 (1973).
409E. I. Dinaburg, Math USSR Izv 5 337 (1971).
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37 Takens embedding theorem

37.1 Original statement of Takens embedding theorem
Let 𝑦 :𝑀 → R be a smooth function (observable), where𝑀 is a smooth 𝑚-manifold.
What can you know about a smooth dynamics 𝜙𝑡 on 𝑀 from 𝑦?

Theorem. It is a generic property that the map Φ :𝑀 → R2𝑚+1:

Φ(𝑥) = (𝑦(𝑥), 𝑦(𝜙(𝑥)), · · · , 𝑦(𝜙2𝑚+1(𝑥))) (37.1)

is an embedding at least 𝐶2.
Technical conditions further required are:
(i) If 𝑥 is periodic, its period is less than 2𝑚+ 1, all eigenvalues of 𝑑𝜙𝑘 are different
and distinct from 1.
(ii) No two fixed points of 𝜙 gives the same 𝑦.
(iii) For Φ to be an immersion near a fixed point 𝑥 the covectors 𝑑𝑦, 𝑑(𝑦𝜙), · · · 𝑑(𝑦𝜙2𝑚)
span 𝑇 *

𝑥 (𝑀).410

Some extension: J. P. Huke and D. S. Broomhead. Embedding theorems for non-
uniformly sampled dynamical systems. Nonlinearity, 20(September):2205, 2007.

https://www.youtube.com/watch?v=6i57udsPKms&frags=pl%2Cwn good

Taken’s paper

37.2 Differential topological rudiments
𝑀 and 𝑁 are manifolds and dim𝑀 = 𝑚 < 𝑛 = dim𝑁 . If 𝐹 : 𝑀 → 𝑁 is 𝐶1, then
𝑁 ∖ 𝑓(𝑀) is dense in 𝑁 .
𝑀 and 𝑁 are manifolds and dim𝑀 = 𝑚 > 𝑛 = dim𝑁 . If 𝐹 : 𝑀 → 𝑁 is 𝐶1, and
submersive411 at every point, then 𝐹−1(𝑝) is a submanifold in 𝑀 with dimension
𝑚− 𝑛.

37.3 Takens’ embedding theorem

410The condition on 𝑑𝑦 means that 𝑑𝑦 = 𝑑𝑥𝑖
𝜕𝑦
𝜕𝑥𝑖

411𝐷𝐹 : 𝑇𝑝𝑀 → 𝑇𝐹 (𝑝)𝑁 is surjective.

https://www.youtube.com/watch?v=6i57udsPKms&frags=pl%2Cwn
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Let 𝑀 be a compact manifold of dimension 𝑚. Let 𝜑 ∈ Diff2(𝑀) (dynamics) and
𝑦 :𝑀 → R be 𝐶2 (observable). Then, Φ(𝜑,𝑦) :𝑀 → R2𝑚+1 defined as

Φ(𝜑,𝑦) = (𝑦(𝑥), 𝑦(𝜑(𝑥)), · · · , 𝑦(𝜑𝑚(𝑥)). (37.2)

is, generically,412 an embedding.

A version for a given diffeo 𝜑.
Let 𝜑 ∈Diff(𝑀) with
(i) only finitely many periodic points of period less than or equal to 2𝑚
(ii) At periodic points of period 𝑘 thje eigenvalues of 𝜑𝑘 are all distinct.
Then, Φ(𝜑,𝑦) is embedding.

37.4 Obvious continuity properties
ℱ : 𝑦 → Φ(𝜑,𝑦) is continuous.

37.5 Obvious openness
Let 𝐾 ⊂𝑀 be compact. The set of 𝑦 such that Φ(𝜑,𝑦) is immersive413 (or injectively
so) on 𝐾 is open in 𝐶2(𝑀,R)).

37.6 Denseness proof
Given 𝑦 ∈ 𝐶2(𝑀,R), in its any nbh is 𝑦′ such that Φ(𝜑,𝑦′) is an embedding of 𝑀 .

Note first that 37.5 implies that if 𝑦 is immersive, then 𝑦′ in its sufficiently small
nbh are all immersive. That is, (injective) immersiveness is not destroyed by pertur-
bation.
(i) Periodic orbits of small periods make Φ(𝜑,𝑦) degenerate. However, if there is only
finitely many undesirable periodic orbits we can kill them with arbitrarily small per-
turbation of 𝑦. This is not enough; we must maintain 𝑦 to be immersive at all the
periodic points. 𝐷(𝑦(𝜑𝑠)) = 𝐷𝑦𝐷(𝜑𝑠) must have rank = dim 𝑀 . This is possible
only if 𝐷(𝜑𝑠) has this property.
(ii) Make Φ immersive. 𝑀 is separated into a finite number of parts, so that the
map is basically R2𝑚 into R2𝑚+1. (chart to chart). Perturb 𝑦 on each patch.
(iii) Make Φ embedding on orbital segments. Let us call 𝑜 = {𝑥, 𝜑𝑥, · · · , 𝜑2𝑚𝑥} the

412open dense
413𝐷𝐹 : 𝑇𝑝𝑀 → 𝑇𝐹 (𝑝)𝑁 is injective (𝐹 need not be). That is, rank𝐷𝐹 = dim𝑀 .
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orbital segment of 𝑥. If there is another orbital segment 𝑜′ of 𝑥′ that overlaps with
𝑜, it could make period 4𝑚 orbits. Thus, 𝑜2 = {𝑥, 𝜑𝑥, · · · , 𝜑4𝑚𝑥} and make all the
points of the orbital segments are separated by a nbh 𝑋𝑥 of x such that 𝜑𝑗(𝑋𝑥)
(𝑗 = 0, 1, · · · 4𝑚) are disjoint. Next, Since 𝑀 is compact, choose a finite cover that
can separate all the orbital segments. (iv) injective immersion on 𝑀 .
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38 Peixoto’s theorem

We consider compact 2-differentiable mfd𝑀 . We introduce a 𝐶1-topology in 𝒳 (𝑀).
As you read from the Wikipedia article of Peixoto414 Peixoto’s theorem was a spring-
board for the study of dynamical systems, Smale was interested in Peixoto’s work,
and defined the Morse-Smale system. Then to cover more generic dynamics, he in-
troduced the horseshoe dynamical system and then the Axiom A system.

In this section, we taste the original proof of Peixoto’s theorem.

38.1 𝜀-homeomorphism
A homeomorphism that does not move points more than 𝜀 is called an 𝜀-homeomorphism.

414Usually, M M Peixoto, “Structural stability on two-dimensional manifolds” Topology, 1 101
(1962) is cited, but a large chunk of the proof is in M C Peixoto and M M Peixoto, “Structural
stability in the plane with enlarged boundary conditions” Ann Acad Bras Sci 31 135 (1959) [MCP
(1921-1960, the first Brazilian woman to receive a doctorate in mathematics) is his wife]. Read
Wikipedia M M Peixoto (1920-):
“Once, while talking with his mentor, Solomon Lefschetz, Mauricio Peixoto commented that no one
cared about structural stability of dynamical systems and that was the main problem in working
with it. But to Peixoto’s surprise Lefschetz’s answer was no less than “No Mauricio, this is no
trouble, this is your luck. Try to work as hard and as fast as you can on this subject because
the day will come when you will not understand a single word of what they will be saying about
structural stability; this happened to me in topology.” Lefschetz’s support was very important to
Peixoto at the time. In 1957, Peixoto went to research the subject with Lefschetz at the Princeton
University, where he spent uncountable hours talking to the Russian professor about Mathematics
and other subjects. Despite of the great age difference (Peixoto was 36 years old and Lefschetz 73),
they became good friends.

With Lefschetz incentive, Peixoto wrote his first paper on structural stability, that would be
later published on the Annals of Mathematics, of which Lefschetz was editor. In 1958, they went
to the International Mathematical Congress, in Edinburgh, Scotland, where Lefschetz introduced
Peixoto to the Russian mathematician Lev Pontryagin, whose work on dynamical systems was used
by Peixoto as a basis for his studies. Pontryagin, though, showed no interest whatsoever in Peixoto’s
work.

Back to Princeton, Peixoto met Steve Smale, the mathematician that would later become a
reference in dynamical systems. Smale was interested in Peixoto’s work and realized he could
extend his own based on it. Their contact intensified and, when Peixoto came back to Brazil,
the American mathematician spent six months at the Instituto Nacional de Matemática Pura e
Aplicada (Institute of Pure and Applied Mathematics or IMPA) at Rio de Janeiro. Through Smale,
Peixoto would meet the French mathematician René Thom, who would help Peixoto to formulate
his theorem, that was finalized during Thom’s visit to IMPA.”
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38.2 Structural stable vector field
𝑋 ∈ 𝒳 (𝑀) is structurally stable, if there is a nbh 𝑈 of 𝑋 such that any 𝑇 ∈ 𝑈 is
homeomorphic to 𝑋.

The original definition by Pontryagin and Andronov required 𝜀-homeomorphy in-
stead of the simple homeomorphy. Peixoto demonstrated that homeomorphy implies
𝜀-homeomorphy at least for 𝒳 (𝑀) with 𝑀 being 2-mfd.

The ‘smallness of perturbation is usually in 𝐶1-topology, since 𝐶0-small pertur-
bations are “too strong and may destroy any singularity or closed orbit.”

38.3 Peixoto’s theorem
The Topology paper contains two theorems:
THEOREM 1. In order that the vector field 𝑋 (at least 𝐶1) be structurally stable
on 𝑀 it is necessary and sufficient that the following conditions be satisfied:
(1) there is only a finite number of singularities, all hyperbolic;
(2) the 𝛼 and 𝜔-limit sets of every trajectory can only be singularities or closed or-
bits;
(3) no trajectory connects saddle points;
(4) there is only a finite number of closed orbits, all hyperbolic.

THEOREM 2. The set Σ of all structurally stable systems is open and dense in
𝒳 (𝑀).

Here, the openness can be shown in any dimension, so the 2D specialty is the
denseness.

38.4 How about higher dimensions?
Does something like 38.3 hold for 𝑑 ≥ 3? The Morse-Smale system 38.5 was intro-
duced to consider this problem.
Theorem415 Morse-Smale systems are dense in Diff(𝑀) for any 𝑑.
Theorem416 For Diff(𝑀) for compact 𝑀 the Morse-Smale systems is structurally
stable.

However, there are structurally stable non-MS systems, the converse is not true.
Incidentally,

Theorem417 In Diff𝑟(𝑀) structurally stable systems are 𝐶0-dense.

415Palis, Topology 8 385 (1969).
416Palis-Smale
417Shub
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38.5 Morse-Smale systems418

A dynamical system is called a Morse-Smale system, if
(MS1) Ω is finite (so Ω consists of periodic orbits).419

(MS2) Periodic points are all hyperbolic.
(MS3) If 𝑝, 𝑞 ∈ Ω, then 𝑊 𝑠(𝑝)⊤∩𝑊 𝑢(𝑞).420

Gradient dynamical systems are Morse-Smale.421

With this terminology
Peixoto’s theorem A compact 2-mfd 𝐶1-vector field is structural stable iff it is
Morse-Smale.

38.6 Outline of the proof of 38.3
⇐
In this proof actually an 𝜀-homeomorphism is constructed to relate perturbed sys-
tems. Thus, Theorem 1 implies that structural stability implies 𝜀-structural stability.

To show vector fields allowing the flow satisfying (1)-(4) are structurally stable,
we must construct homeomorphisms between the original and the perturbed fields.
This is rather tedious and is shown in the AABS paper quoted above.

⇒
Starting from any vector field 𝑋, with a series of approximation lemmas it is shown
that 𝑋 is approximated by 𝑌 (i.e., there is a vector field 𝑌 in any nbh of 𝑋) that
satisfies (1)-(4).

Thus, if 𝑋 is structurally stable, then it must be homeomorphic to its perturbed
version, but a perturbed version must satisfy (1)-(4), so 𝑋 itself must have satisfied
(1)-(4), because these properties are homeomorphism invariant.

Theorem 2 is shown almost simultaneously: Structural stable vector fields make
an open set (in any dimension, actually), but the proof of⇒ implies such vector fields
are dense (exists in any neighborhood of any vector field on a compact 2-manifold).

418M Shub: http://www.scholarpedia.org/article/Morse-Smale_systems.
419Thus, we may say ∪𝑗𝑊

𝑠(𝑃𝑗) =𝑀 , ∪𝑗𝑊
𝑢(𝑃𝑗) =𝑀 .

420Because of (MS1) transversality in this case means: no saddle connection nor homoclinic
tangency. That is, 𝑊 𝑠(𝑝)⊤∩𝑊𝑢(𝑞) means they are not in contact except at separatrices.

421See also K. R. Meyer Energy Functions for Morse Smale Systems, Am J Math 90 1031 (1968).

http://www.scholarpedia.org/article/Morse-Smale_systems
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38.7 Outline of the proof of ⇐422

To explain this several definitions must be introduced:
Definition. A region on which the vector field is homeomorphic to one of the fol-
lowing (i)-(iii) in Fig. 38.1 is called ‘parallel region.’ Note that parallel regions are
arcwisely connected.

Figure 38.1: Parallel regions

Definition. A trajectory is called an ordinary trajectory, if it is in (i) the strip
region. Other trajectories are called separatrices; limit cycles, homo and heteroclinic
orbits, etc., are the examples.
Definition. A region 𝑀 ∖ {separatrices} is called the canonical region. Perhaps it
is better to define separatrix set as the complement of the totality of parallel regions
in 𝑀 .

(i) Canonical regions are classified into five types (I)-(V).
(ii) On each canonical region, flows are structurally stable. This is shown by con-
structing homeomorphisms.
(iii) From these homeos a homeo for 𝑀 is constructed (which is actually 𝜀-homeo).

38.8 There are five types of canonical regions
Trajectories in a single canonical region 𝑅 share 𝛼 and 𝜔 limits (Fig. 38.2).
Note that 𝜕𝑅 consists of separatrices, so when a band of parallel trajectories is
extended none of the trajectories inside the band cannot reach saddles. There-
fore, all the members of the bands must share the same destination.

Figure 38.2: Connecting two trajectories on 𝑅. The connecting curve 𝜎 must always be in 𝑅,
so it is singly connected.

Thus, 𝑅 has one 𝛼 and one 𝜔 limit set on its boundary. Each boundary

422In MCP+MMP
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connecting these limit points cannot have more than one saddle because of
38.3(3), so we have only the following 5 types of 𝑅s (Fig. 38.3):

Figure 38.3: Five types of canonical regions

Their stability against perturbation is obvious.

38.9 Structural stability of separatrix set
Let 𝑋 (separatrix set Λ) and 𝑋̃ (separatrix set Λ̃) are vector fields within 𝛿 in
the 𝐶1-norm. Then, Λ and Λ̃ are one-to-one correspondent:
(i) Corresponding separatrices are of the same type (homeomorphic),
(ii) If a subset of Λ is the boundary of a canonical region 𝑅, then for the cor-
responding canonical region 𝑅̃ its boundary is a homeomorphic subset of Λ̃.

This follows from 38.3(1)-(4) and the usual discussion of the stability of
hyperbolic structures (+, if you wish, degree-theoretical arguments).

38.10 Strategy to prove the structural stability of 𝑋
To show the structural stability we must construct a homeomorphism between
𝑋 and 𝑋̃. The strategy is as follows. Remove small discs 𝐷𝑖 containing fixed
points and tubular neighborhoods 𝑆𝑖 of limit cycles from 𝑀 to make 𝑁 .
(i) For each canonical region 𝑅 on 𝑅* = 𝑅 ∩ 𝑁 a homeomorphism is con-
structed.
(ii) Homeomorphisms are constructed on 𝐷𝑖 and 𝑆𝑖.
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(iii) Connect all these homeo to make a homeo for 𝑋.

Notice that both 𝑋 and 𝑋̃ live on the same manifold 𝑀 and All these local
sets, 𝑅s, 𝐷s and 𝑆s for 𝑋 are perturbed (deformed a bit) to become the coun-
terparts of 𝑋̃. Since 𝐷 and 𝑆 are built around hyperbolic limit sets, they are
stable under perturbation and, e.g., for a 𝐷, there is its counterpart 𝐷̃. Thus,
you can imagine that the structures due to 𝑋 and their perturbed counterparts
are overlapping on 𝑀 ; deformations and displacements are small.

Therefore, first, local homeomorphisms are constructed on these local sets.
This is 38.11 and 38.12.

38.11 Construction of homeo on canonical regions
We wish to show (i) in 38.10.

For type V region 𝑅* (Fig. 38.3), we wish to do the following (Fig. 38.4).
We make a 𝜀-homeomorphism for 𝑅* and 𝑅̃* by constructing 𝜙 and 𝜙′ to a
square.423 The homeo we need is just 𝜙 ∘ 𝜙′−1.

Figure 38.4: Construction of homeo on type V region 𝑅*

In this case, the smooth parallel portion has no problem, since 𝑋 and 𝑋̃ are
close. The only (slightly) unclear situations are around the saddle points 𝐾1

and 𝐾2. This is clear if we note that if we take sufficiently small disk 𝐷𝑖 around
𝐾𝑖, then the lengths 𝐿 of the trajectories of 𝑋̃ in 𝐷𝑖 can be as small as we

423Precisely speaking, between 𝑅 and the square, homeo can be constructed, but not 𝜀-homeo.
Thus, we should say that we use the square to construct homeos, and then we must adjust them
so that 𝜙 ∘ 𝜙′−1 is an 𝜀-homeo.
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wish. Therefore, displacement of the trajectories due to perturbation must be
smaller than the sum of 𝐷− 𝐷̃ displacement + 𝐿, so we can make this as small
as we wish.

Types IV and III are considered as ‘degenerate’ version of type V as illus-
trated in Fig. 38.5.424

Figure 38.5: Construction of homeo on type IV region and III (bottom) is reduced to that of
type V.

Type II should be understood as a portion of V.
For Type I, instead of a square in the type V case, we make maps to a cir-

cular annulus.
All these maps are 𝜀-homeo.

38.12 Construction of homeo on nbh of separatrices
Since saddle points are not in the nonwandering set of the system in our case,
we have only to consider fixed points for 𝐷𝑖. The situation is exactly the case
of Type I.

For limit cycles we can introduce ‘polar coordinates’ specified by the crossing
position on 𝜎 and the distance along the curve from 𝜎 in the tubular nbh as
illustrated in Fig. 38.6. Using such coordinates, we can construct a homeo.

38.13 Completion of homeomorphism
We construct a global homeo by patching the homeos on 𝑅*, 𝐷𝑖 and 𝑆𝑖. To do
so we must glue these along the boundaries, so we need appropriate local defor-
mations. These deformations can be homeos, so we can adjust all the homeos

424If you wish to be precise, for IV you introduce a coordinate system with a periodic boundary
condition along the dotted curve direction, and glue side edges (containing 𝐾s) continuously.
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Figure 38.6: Coordinate system near a limit cycle

with these local deformation homeos and patch them continuously over 𝑀 to
construct a global homeo.

Historically, in this way, Peixoto’s theorem restricted on a disk was proved
first.425

38.14 Outline of the proof of ⇒
As is noted in 38.6, ⇒ is proved by a chain of approximation lemmas.

Start from any 𝑋.
(A) 𝑋 may be approximated by (= 𝑋 has in its sufficiently small nbh) 𝑌1 that satis-
fies 38.3(1), i.e., with finitely many hyperbolic fixed points. Note that we do not pay
any attention to other members of the non-wandering set Ω of 𝑋. Thus, te resultant
𝑌1 may have a ‘horrible’ invariant set 𝜇.426

Definition. A closed invariant set whose genuine subset is not a closed invariant set
is called a minimal set. A minimal set that is neither a fixed point nor a limit cycle
is called a nontrivial minimal set. [Note its closedness.]

(B) 𝑌1 may be approximated by 𝑌 ′
1 without nontrivial minimal sets. Here, minimal

sets are converted to saddle connections and periodic orbits.
(C) 𝑌 ′

1 may be approximated by 𝑌2 with fixed points (sink, source and saddle), closed
orbits and saddle connections as nonwandering sets.
(D) 𝑌2 may be approximated by 𝑌3 satisfying 38.3(1)-(3): We can sever all the saddle
connections, but perhaps new periodic trajectories are created. Note that periodic

425M M Peixoto, On structural stability, Ann Math 69, 199 (1959).
426You might say on 2-mfd not much complicated dynamics is possible. We know chaos requires

three dimensions, and putting trajectories in 2-mfd is like putting noodles on a tray. Indeed on
𝑇 2 there is no flow with positive KS entropy. However, Denjoy constructed a highly non trivial
invariant set whose ‘cross section’ is related to a Cantor set. If the genus 𝑔 of 2-mfd increases (𝑔
is the number of holes: 𝑔(𝑆2) = 0, 𝑔(𝑇 2) = 1, etc. Adding a handle increases 𝑔 by one), then 𝑀
is riddled with holes, so perhaps trajectories could come back through holes and mingle with the
staying trajectories in a nontrivial fashion. Thus, it is safe to assume such 𝜇 exists in the flow due
to 𝑋 (and so in 𝑌1).
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trajectories need not be limit cycles.
(E) 𝑌3 may be approximated by 𝑌4 satisfying 38.3(1)-(4). This step uses Whitney’s
embedding theorem and Weierstrass’ polynomial approximation of continuous func-
tions.

38.15 Any vector field may be approximated by a vector field with
finitely many hyperbolic fixed points
We can make all the singularities as simple by arbitrarily small perturbations.
Simple singularities are isolated (and since𝑀 is compact, there are only finitely
many of them), so we may handle them separately. A nonhyperbolic fixed point
can be converted by sufficiently small deformation to a hyperbolic fixed point.
Thus, 𝑋 may be approximated by a vector field 𝑌1 satisfying 38.3(1).

38.16 Perturbatively nontrivial minimal sets can be killed: outline
Suppose 𝑌1 has a nontrivial minimal set 𝜇. Since there are only finitely many
saddle points, we consider the following two cases (recall that usually dynami-
cal systems are defined on the time range (−∞,+∞))
(A) There is no trajectory connecting 𝜇 and a saddle.427

(B) There is a trajectory connecting 𝜇 and a saddle.

For case (A) we can show (38.17) that for any 𝑝 ∈ 𝜇 there is a coordinate
nbh such that all the trajectories leaving it return to it,428 and the trajectory
going through 𝑝 can be converted into a periodic orbit. For case (B) such a
trajectory can be converted into a saddle connection (38.18).

After these perturbations, if nontrivial minimal sets still remain, we repeat
the procedure. It will be shown (38.19) that only finitely many repetition is
required, so 𝑌1 can be perturbed with an arbitrarily small perturbation into 𝑌 ′

1

without nontrivial minimal set.

38.17 Case A: no saddle connection
For (A) in 38.16 𝑌1 has a closed orbit passing through 𝜇. This closed orbit
does not bound any cell (see Fig. 38.7) [Closing lemma].

427As we will see, this happens only if 𝑀 = 𝑇 2 pf a Klein bottle, so the system actually has no
singularity at all.

428Since 𝜇 is non trivial, there is a trajectory returning to any nbh of 𝑝 infinite times.
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Figure 38.7: Two kinds of closed orbits on 2-mfd.

To show this take a local coordinate square ‘abcd’ around a point P in 𝜇
(Fig. 38.8).

Figure 38.8: Local coordinates for 𝜇; Right illustrates the impossible case for (A)

Since 𝜇 is minimal, at least one trajectory leaving from edge ab must come
back to 𝜇 through edge cd.429 The boundary trajectory between the trajecto-
ries coming back to 𝜇 and those not coming back must go to a saddle point (See
Fig. 38.8 Right).430 However, our assumption is that such 𝜇-saddle connection
does not exist. Therefore, all the trajectories leaving 𝜇 must come back to 𝜇
(infinitely many times to different points on edge cd), since 𝜇 is nontrivial.

Also these orbits cannot encircle a cell (see Fig. 38.7 Right); 𝜇 is a closed
set, so its boundary cannot be a cycle; otherwise, since 𝜇 is a closed set, this
boundary cycle belongs to 𝜇, destroying its minimal nature.

Since trajectories do not cross each other, the ordering of the trajectories is
preserved (or reversed). Consider the perturbation illustrated in Fig. 38.9. We
can create a limit cycle going through P.

Needless to say, this may not totally erase 𝜇; some potion(s) may survive as
nontrivial minimal sets. Thus, we need to repeat the procedure.

429The local square around P is so chosen that the trajectories foliate the square. This is possible,
because there must be a trajectory coming back to any nbh of P infinitely many times, and 𝑀 is a
2-mfd, so near P the returning portion of the trajectory must be almost parallel.

430A formal proof is lengthy. Lemma 3 in the original.
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Figure 38.9: Closing lemma

38.18 Case B: when 𝜇-saddle connection exists
For (B) in 38.16 the 𝜇-saddle point connection can be converted to a saddle-
saddle connection.

Actually, we have only the case of Fig. 38.10 Left. Suppose there is a 𝜇-
saddle connection in the future direction (the right-side edge situation in Fig.
38.10 Left). Then, above and below the connection, the trajectories have dif-
ferent fate. However, these trajectories come back to this coordinate square 𝑅.
Then, reverse the time, we must say there must be a saddle on the left side
just as illustrated in the figure. This saddle 𝛾1 cannot be the same saddle as
𝛾2., because if so the trajectories must cross the unstable manifold of 𝛾1.

We may assume that 𝜔(𝛾1) = 𝛼(𝛾2) = 𝑝. If not, we have a situation like Fig.
38.10 Right, and the curly bracketed portion may be subjected to a surgery as
performed in case (A).

If this surgery fails to connect 𝛾1 and 𝛾2, then the boundary between the
curly bracketed portion and its outside must go to a saddle point as illustrated
in Fig. 38.8 Right. Thus, we get the situation as Fig. 38.10 Left. When 𝛾1 and
𝛾2 are sufficiently close, we can short-circuit them with a small perturbation to
create a saddle connection.

Figure 38.10: Saddle connection case

38.19 Finite repetition of surgeries totally kill nontrivial minimal
sets
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Since the total number of saddle point in 𝑌1 is finite, so the number of surgeries
in (B) must be finite.

If (A) does not end with finitely many surgeries, we have very many closed
orbits. Since𝑀 is a 2-mfd, with a finitely many cuts𝑀 can be expanded into a
2-disk.431 Since trajectories cannot cross closed orbits, all the orbits must be on
this disk. Suppose we still have some 𝜇 on this disk, since all the saddle points
have been used up to make saddle connections, it produces an orbit encircling
a cell, an impossibility as already discussed in 38.17.

Thus, the procedure explained above ends with finite repetitions and an ar-
bitrarily small perturbation can convert 𝑋 into a vector field with finitely many
hyperbolic fixed points without any nontrivial minimal set (but with too many
periodic trajectories and possibly bands of periodic trajectories (as centers)).

38.20 Almost homoclinic orbits are converted to homoclinic orbits
(C) has almost been demonstrated, but there can be a situation where an al-
most homoclinic situation occurs for a saddle (Fig. 38.11), because the situation
does not produce a nontrivial minimal set.

Figure 38.11: With a little perturbation a homoclinic orbit may be created.

If we look at 𝑅, since there is trajectory coming back to any nbh of P, so we can
convert this into a homoclinic trajectory. Since the number of saddle points
is finite, just as discussed in 38.19, we have only to repeat such a procedure
finite times and the perturbation to 𝑌2 is complete.

38.21 Perturbation can remove all the saddle connections
Graphically, we can exhibit the situation as in Fig. 38.12 [Actually such a dia-
gram is called a graph].

431Genus 𝑔 2-mfd may be cut open to a disk (or a polygon) with 2𝑔 cuts, just as 𝑇 2 is converted
to a square by 2 cuts.
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Figure 38.12: Graphic representation of saddle connections

There are two situations:
(1) 𝑆1𝑆2 is not a part of a large graph.
(2) 𝑆1𝑆2 is a part of a large graph

For (1) the following perturbation does not produce a saddle connection
anew.

Figure 38.13: Surgery of saddle connections

However, in case (2) a new saddle connection might be formed (Fig. 38.14),
but, in this case, if perturbed further n (pushed down further in the figure),
the saddle connection would be reconnected to a periodic orbit. Since there are
only finitely many saddle points, this can be done by arbitrarily small pertur-
bation, so we may virtually ignore such cases.

Figure 38.14: Possible emergence of a new saddle connection, but this can be killed by the small
perturbation indicated by an arrow

In any case, we can repeat the above procedure finite times. All the saddle
connections will be gone. Thus 𝑌3 has been produced from 𝑋. That is, except
for the condition for periodic trajectories we are done.
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38.22 Periodic orbits are made hyperbolic by perturbation
To make periodic orbits hyperbolic, we apply the perturbation illustrated in
Fig. 38.15 to box 𝑅:

Figure 38.15: Make orbits hyperbolic

Also marginal periodic orbits can be understood as a degenerate version of
two hyperbolic orbits. Thus, We can make all the separatrices hyperbolic (the
stabilized 𝑌3). However, still there can be infinitely many closed orbits (like a
center).

Peixoto embedded the stabilized 𝑌3 into R5 using Whitney’s embedding the-
orem, and then made a polynomial approximation of the vector field (using
Weierstrass’ theorem). That is, he made an analytic vector field, which has
only isolated periodic trajectories and periodic bands. Then, he constructed
a vector field homeomorphic to this polynomial approximation on 𝑀 . The
resultant vector field is no more analytic, but the topological features are all
preserved. Thus, the vector field satisfies (1) and (3) in 38.3 and isolated peri-
odic trajectories/bands. However, nontrivial minimal sets 𝜇 may reappear by
the approximation procedure.

If this further satisfies (2), that is, no new 𝜇 shows up, then there are two
cases:
(A) All the orbits are closed.
(B) Otherwise.

For (A) if 𝑀 is not a result of gluing a square (i.e., 𝑇 2 or Klein’s bottle),
then we have something like Fig. 38.16.

Figure 38.16: Expanded 𝑀 should not have a hole; the holes mean these peripheries are glued
to make a handle.



38. PEIXOTO’S THEOREM 393

This implies there are saddle points, contradicting the assumption that there
are only closed orbits. If 𝑇 2, for example, we can apply ‘bunching’ as exhibited
in Fig. 38.15 to make a limit cycle.

For (B) even if we have a band of closed orbits (no returning orbits), the
boundary of the band (black dots in Fig. 38.17) goes to a saddle (or comes
from a saddle) just as in Fig. 38.8 Right, so this contradicts 38.3(3), because
𝑌3 has already been constructed to satisfy this and polynomial approximation
does not alter this.432

Figure 38.17: Killing the bands

If (2) is not satisfied, that is, there is nontrivial minimal set 𝜇, then repeat
the above argument (38.16). If, after this repetition, the number of orbits is
finite, we are done. If not, we repeat the polynomial approximation, because
polynomial fields allow only isolated or band of periodic orbits. Since the poly-
nomial approximation maintains all the simple closed orbits, the newly added
simple trajectories during the repetitions are maintained by each polynomial
procedure step. However, as discussed in 38.19, we can repeat the procedure
only finitely many times, and 𝜇 will not show up eventually. We are done.

432need polynomial field check
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39 Axiom A systems

39.1 Axiom A system
𝑓 is an axiom A system, iff Ω(𝑓) is hyperbolic and

Ω(𝑓) = {𝑥 : periodic point of 𝑓} (39.1)

Here, Ω(𝑓) is te totality of the non-wandering set of 𝑓 .

39.2 Hyperbolic set of 𝑓
Let 𝑋 be a compact smooth manifold, 𝑓 : 𝑋 → 𝑋 a diffeomorphism, and 𝐷𝑓 :
𝑇𝑀 → 𝑇𝑀 the differential of 𝑓 . An 𝑓 -invariant subset Λ of 𝑋 (i.e., 𝑓(Λ) = Λ) is
said to be hyperbolic, if the restriction to Λ of the tangent bundle of 𝑋 (i.e., 𝑇Λ𝑋)
admits a splitting into a Whitney sum of two 𝐷𝑓 -invariant subbundles, called the
stable bundle and the unstable bundle (denoted 𝐸𝑠 and 𝐸𝑢. With respect to some
Riemannian metric on 𝑋, the restriction of 𝐷𝑓 to 𝐸𝑠 must be a contraction and the
restriction of 𝐷𝑓 to 𝐸𝑢 must be an expansion.

Figure 39.1: Hyperbolic set: red curves are unstable mfds and green curves are stable mfds.
Dashed straight lines denote 𝐸𝑢 and 𝐸𝑠.

39.3 How a small open set spreads
Let 𝑓 ∈ 𝐶𝑟(𝑀,𝑀), 𝑝 its periodic point and 𝑈 ⊂𝑀 is open.
(a)

𝑈 ∩𝑊 𝑠(𝑝) ̸= ∅ ⇒ ∪𝑚∈N+𝑓𝑚(𝑈) ⊃ 𝑊 𝑢(𝑝). (39.2)

[ If 𝑝 is a sink 𝑊 𝑢(𝑝) = ∅, so the statement is trivially true.]

(b) Let 𝑞 ̸= 𝑝 be a periodic point, and 𝑥 be a heteroclinic point of 𝑞 and 𝑝: 𝑥 ∈
𝑊 𝑢(𝑝) ∩𝑊 𝑠(𝑞)

𝑈 ∩𝑊 𝑠(𝑝) ̸= ∅, 𝑊 𝑢(𝑝)⊤∩𝑥𝑊 𝑠(𝑞) ⇒ (∪𝑚∈N+𝑓𝑚(𝑈)) ∩𝑊 𝑢(𝑞) ̸= ∅. (39.3)
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See the following Fig. 39.2.

(a)

p

U

W (p)
W (p)

s
u

W (pW (p

(b)

p

q

x

Figure 39.2: How small open sets on 𝑊 𝑠 spreads

39.4 Chain of periodic orbits
Let 𝑓 ∈ 𝐶𝑟(𝑀,𝑀), and 𝑝𝑖 (𝑖 = 0, · · · , 𝑛) are hyperbolic periodic orbits (𝑝0 = 𝑝𝑛) such
that 𝑥 ∈ 𝑊 𝑢(𝑝𝑖) ∩𝑊 𝑠(𝑝𝑖+1) implies 𝑊 𝑢(𝑝𝑖)⊤∩𝑥𝑊 𝑠(𝑝𝑖+1). Then, 𝑥 is non-wandering
(i.e., 𝑥 ∈ Ω).

p

x

0

p
1

p
2

p
n -1

Figure 39.3: Chain of periodic orbits

39.5 Stability manifold theorem433

𝑓 ∈ Diff𝑟(𝑋) and Λ is the hyperbolic set of 𝑓 . Then, for small 𝜀 > 0

433Smale BAMS 73 747 (1967) Th(7.3) p781.
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(a) Local stable and unstable mfd of 𝑥 (∈ Λ) is a 𝐶𝑟-disk in Λ and

𝑇𝑥𝑊
𝑠
𝜀 (𝑥) = 𝐸𝑠

𝑥, 𝑇𝑥𝑊
𝑢
𝜀 (𝑥) = 𝐸𝑢

𝑥 . (39.4)

(b) On these local submanifolds 𝑓 is just expanding or contracting as usual.
(c) 𝑊 𝑠

𝜀 (𝑥) and 𝑊
𝑢
𝜀 (𝑥) depend on 𝑥 continuously.

39.6 Existence of canonical coordinate434

Let 𝑓 satisfy Axiom A. Then, for any small 𝜀 (> 0) there is 𝛿 > 0 such that for
𝑥, 𝑦 ∈ Ω(𝑓) and for 𝑑(𝑥, 𝑦) ≤ 𝛿,

𝑊 𝑠
𝜀 (𝑥) ∩𝑊 𝑢

𝜀 (𝑦) = {[𝑥, 𝑦]} ⊂ Ω(𝑓), (39.5)

and the crossing point [ , ] depends on 𝑥 and 𝑦 continuously.

x
y

x, y[ ]

ε

ε

δ

Figure 39.4: If we take 𝑥, 𝑦 ∈ Λ close enough (within 𝛿).

The point is that for any 𝜀 we can find 𝑥 and 𝑦 in Ω(𝑓) connected heteroclinically.
Then, this is based on the following two lemmas (basically 39.3):

p

qqqq

U
f   (U)n

q

Figure 39.5: Lemma 1; Right: near 𝑞 expanded, we can make a local cartesian coordinate system
in the box.

434Bowen 3.3.



39. AXIOM A SYSTEMS 397

Lemma 1: Let 𝑝 and 𝑞 be periodic orbits and 𝑊 𝑢(𝑝)⊤∩𝑊 𝑠(𝑞). Take 𝑈 ∩𝑊 𝑠(𝑝) ̸= ∅.
Then, ∪𝑚>0𝑓

𝑚(𝑈) ∩𝑊 𝑠(𝑞) ̸= ∅. See Fig. 39.5.
Lemma 2: Let 𝑝0, 𝑝1, · · · , 𝑝𝑛 (𝑝0 = 𝑝𝑛) be hyperbolic periodic points and𝑊

𝑢(𝑝𝑖)⊤∩𝑥𝑖𝑊 𝑠(𝑝𝑖+1).
Then, 𝑥𝑖 ∈ Ω(𝑓).

This can be shown by applying Lemma 1 to the successive periodic points. See Fig.
39.6:

p

U

p
i

i+1
p
i−1

Figure 39.6: Lemma 2

The demonstration of the canonical coordinates goes as follows:
Periodic orbits are dense in Ω(𝑓). If we take 𝜀 small enough, then [𝑥, 𝑦] becomes
unique. If 𝑥 and 𝑦 are periodic, then Lemma 2 implies [𝑥, 𝑦] ∈ Ω(𝑓). Even if these
are not periodic, they are dense in Ω(𝑓), [𝑥, 𝑦] must be in Ω(𝑓), because Ω(𝑓) is a
closed set.

39.7 Expansivity of hyperbolic set435

Let Λ be the hyperbolic set for 𝑓 . Then there is 𝜀 > 0 such that 𝑑(𝑓𝑘(𝑥), 𝑓𝑘(𝑦)) > 𝜀
for some 𝑘 ∈ Z for 𝑥 ∈ Λ and 𝑦 ∈𝑀 (𝑥 ̸= 𝑦).

If there is no such 𝜀, then 𝑦 ∈ 𝑊 𝑠
𝜀 (𝑥) ∪𝑊 𝑢

𝜀 (𝑥), but this implies 𝑥 = 𝑦, a contra-
diction.

39.8 Spectral decomposition theorem436

Ω(𝑓) has the following structure:

435Bowen L3.4.
436Bowen Th 3.5



398

Ω(𝑓) = Ω1 ∪ Ω2 ∪ · · · ∪ Ω𝑠 (Ω𝑖 ∩ Ω𝑗 = ∅ for 𝑖 ̸= 𝑗), (39.6)

where
(a) 𝑓(Ω𝑖) = Ω𝑖 and 𝑓 |Ω𝑖 is topologically transitive.
(b) Each Ω𝑖 (called a basic set) has the following partition: Ω𝑖 = 𝑋𝑖,1∨𝑋𝑖,2∨· · ·∨𝑋𝑖,𝑛𝑖

with 𝑓(𝑋𝑖,𝑘) = 𝑓𝑖,𝑘+1(mod 𝑛𝑖)
and 𝑓𝑛𝑖 |𝑋𝑖,𝑗 is topologically mixing.

39.9 Strategy to show spectral decomposition theorem
Let 𝑝 be a periodic point. Make

𝑋𝑝 = 𝑊 𝑢(𝑝) ∩ Ω. (39.7)

𝑓(𝑋𝑝) = 𝑋𝑓(𝑝). If 𝑛 is the period of 𝑝, 𝑓𝑛(𝑋𝑝) = 𝑋𝑝 and this must be topologically
mixing on 𝑋𝑝. We collect 𝑋𝑝 and its images 𝑓𝑘(𝑋𝑝) to make Ω1.

Repeat this until this procedure exhaust Ω to realize (39.6).

39.10 Shadowing = tracing
We say the point sequence 𝑥 = {𝑥𝑖} is 𝛽-shadowed by a trajectory starting from 𝑥
(by 𝑥, for short), if

𝑑(𝑓𝑛𝑥, 𝑥𝑛) ≤ 𝛽 (39.8)

for 𝑖 ∈ [𝑎, 𝑏] (𝑎, 𝑏 ∈ Z).

x 0
f( )x

x

( )x
( )x

( )x

f
f

f

tracing or shadowing orbit

x 1 x 2
x 3

x n
n

3

2β

Figure 39.7: 𝛽-shadowing

39.11 𝛼-pseudo orbit
𝑥 is called an 𝛼-pseudo orbit, if

𝑑(𝑓𝑥𝑛, 𝑥𝑛+1) < 𝛼. (39.9)
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39.12 Shadowing of pseudo orbits
For any 𝛽 > 0, there is a 𝛼 > 0 such that any 𝛼-pseudo orbit 𝑥 is 𝛽-shadowed by
some point 𝑥.

If we choose 𝛼 sufficiently small, then any 𝛼-pseudo orbit 𝑦 satisfies

𝑑(𝑓𝑛𝑦0, 𝑦𝑛) < 𝛿/2, (39.10)

where 𝛿 is the same 𝛿 as in 39.6.

39.13 Strategy to show shadowability of pseudo orbits
(1) Note first that for a finite time span 𝑁 an 𝛼-pseudo orbit 𝑦 = {𝑦𝑖}𝑀𝑖=0, if 𝛼 is
sufficiently small, can satisfy, for all 𝑖 ∈ [0,𝑀 ],

𝑑(𝑓 𝑖𝑦0, 𝑦𝑖) < 𝛿/2. (39.11)

(2) Let us make an 𝛼-pseudo orbit 𝑥 = {𝑥𝑖}𝑟𝑀𝑖=0, connecting such 𝑦.
(3) The shadowing orbit 𝑥′ is chosen as follows:
Starting from 𝑥0 = 𝑥′0, we recursively apply 39.6 as follows

𝑥′(𝑘+1)𝑀 = [𝑥(𝑘+1)𝑀 , 𝑓
𝑀(𝑥′𝑘)]. (39.12)

See Fig. 39.8.
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x
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Figure 39.8: Constructing a orbit shadowing the 𝛼-pseudo orbit (pale green)
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This way, we can find 𝑥𝑟𝑀 . The basic idea is to find the point we should aim at.
That is 𝑥𝑟𝑀 .

Now, choose the initial condition such that 𝑥 = 𝑓−𝑟𝑀(𝑥𝑟𝑀), that is, from there
we reach 𝑥𝑟𝑀 . Although we must carefully show that this orbit indeed 𝛿-shadow th
𝛼-pseudo orbit, intuitively it should be clear by construction.

39.14 Closing 𝛼-pseudo periodic orbit
Let 𝑥 ∈ Ω and 𝑑(𝑓𝑛(𝑥), 𝑥) < 𝛼. For any 𝛽 > 0 we can choose 𝛼 so that there is a
𝛽-shadowing periodic orbit for this not-closed orbit such that 𝑓𝑛(𝑥′) = 𝑥′.

Concatenating {𝑥, 𝑓(𝑥), · · · , 𝑓𝑛−1(𝑥)}, we can make an infinite 𝛼-pseudo orbit
which can be 𝛽-shadowed by 𝑦 for any 𝛽 >. Then,

𝑑[𝑓 𝑖(𝑦), 𝑓 𝑖(𝑓𝑛(𝑦))] ≤ 𝑑[𝑓 𝑖(𝑦), 𝑓 𝑖(𝑥)] + 𝑑[𝑓 𝑖(𝑥), 𝑓 𝑖(𝑓𝑛(𝑦))]

≤ 𝑑[𝑓 𝑖(𝑦), 𝑓 𝑖(𝑥)] + 𝑑[𝑓 𝑖(𝑓𝑛(𝑥)), 𝑓 𝑖(𝑓𝑛(𝑦))] + 𝑑[𝑓 𝑖(𝑥), 𝑓 𝑖(𝑓𝑛(𝑥))].

(39.13)

The first two terms are less than 𝛽 due to shadowing, and the last term is zero by
the periodic concatenation. Thus, for any 𝛽 > 0 𝑑[𝑓 𝑖(𝑦), 𝑓 𝑖(𝑓𝑛(𝑦))] < 2𝛽 for any
𝑖 ∈ Z. However, since 𝑥, 𝑦 ∈ Ω and since Ω is expansive, this means 𝑦 = 𝑓𝑛(𝑦) (due
to the contraposition of 39.7).

39.15 Rectangle, proper rectangle
𝑅 ⊂ Ω𝑠 is a rectangle, if and only if for 𝑥, 𝑦 ∈ 𝑅 [𝑥, 𝑦] ∈ 𝑅. 𝑅 is called a proper
rectangle if 𝑅 = [𝑅∘] (i.e., 𝑅 is identical to the closure of its open kernel).

39.16 Rectangles are ‘registered to’ stable and unstable manifolds
Let 𝜕𝑠𝑅 (resp., 𝜕𝑢𝑅) be the boundary of rectangle 𝑅 parallel to 𝑊 𝑠 (resp., 𝑊 𝑢).
Then,

𝜕𝑅 = 𝜕𝑠𝑅 ∪ 𝜕𝑢𝑅. (39.14)

More precisely,

𝜕𝑠𝑅 = {𝑥 ∈ 𝑅, 𝑥 ̸∈ int 𝑊 𝑢(𝑥,𝑅) ≡ 𝑊 𝑢
𝜀 (𝑥) ∩𝑅}, (39.15)

𝜕𝑢𝑅 = {𝑥 ∈ 𝑅, 𝑥 ̸∈ int 𝑊 𝑠(𝑥,𝑅) ≡ 𝑊 𝑠
𝜀 (𝑥) ∩𝑅}. (39.16)
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39.17 Markov partition
A partition consisting of proper rectanglesℛ = {𝑅1, · · · , 𝑅𝑚} satisfying the following
conditions is called a Markov partition:
(a) int 𝑅𝑖 ∩ int 𝑅𝑗 = ∅ for 𝑖 ̸= 𝑗,
(b) If 𝑥 ∈ int 𝑅𝑖 and 𝑓(𝑥) ∈ int 𝑅𝑗,

𝑓𝑊 𝑢(𝑥,𝑅𝑖) ⊃ 𝑊 𝑢(𝑓𝑥,𝑅𝑗), (39.17)

𝑓𝑊 𝑠(𝑥,𝑅𝑖) ⊂ 𝑊 𝑠(𝑓𝑥,𝑅𝑗). (39.18)
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Figure 39.9: Markov partition

As seen later actually we may demand

𝑓−1(𝜕𝑢𝑅𝑖) ⊂ 𝜕𝑢𝑅𝑘, (39.19)

𝑓(𝜕𝑠𝑅𝑖) ⊂ 𝜕𝑠𝑅𝑙 (39.20)

for some 𝑘 and 𝑙.

39.18 Axiom A system has Markov partition
Let Ω𝑠 be a basic set for an Axiom A diffeomorphism 𝑓 . Then, Ω𝑠 has Markov
partitions ℛ of arbitrarily small diameter.

An outline of the logic to demonstrate this key theorem is as follows:
(1) Cover Ω𝑠 with a net whose mesh size is no more than 𝛾, such that for any 𝑥, 𝑦 ∈ Ω𝑠

if 𝑑(𝑥, 𝑦) < 𝛾, 𝑑(𝑓𝑥, 𝑓𝑦) < 𝛼/2, where 𝛼 is the 𝛼 appearing in the pseudo orbits. Let
𝑃 = {𝑝1, · · · , 𝑝𝑛} be the totality of the net vertices just constructed.
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(2) Make the set Σ(𝑃 ) consisting of all the 𝛼-pseudo orbits using the points in 𝑃 .
Take 𝑝𝑠 ∈ 𝑃 and collect all the 𝛼-pseudo orbits 𝑞 starting from 𝑝𝑠 (do not forget
that we go to the negative time direction as well; the pseudo orbits are defined for
all 𝑗 ∈ Z). For each such pseudo orbit we can choose a unique 𝛽-shadowing orbit:
for any 𝑞 there is a unique point 𝜃(𝑞) that 𝛽-shadows it. This is intuitively clear due
to the expansivity of 𝑓 .
(3) Let 𝑇𝑠 be the totality of 𝜃(𝑞) with 𝑞0 = 𝑝𝑠 ∈ 𝑃 . This is a rectangle (39.15).
(4) 𝑇𝑖 and 𝑇𝑗 may overlap, so choosing smaller 𝛾 to remove the overlaps. Thus ob-
tained 𝑇𝑠s make ℛ.
(5) Finally, we demonstrate (b).

Let us try to understand why 𝑇𝑠’s can make a nice Markov partition.

39.19 How to determine 𝑇𝑠

β

p
s

f(p )s

γ-net

stable

direction

unstable direction

β-shadowing orbit for 

β-shadowing orbit for 

α

θ(  )

θ(  )

Figure 39.10: Construction of 𝑇𝑠. 𝑃 consists of all the lattice points. Larger filled dots denote
pseudo orbits; continuous curves denote shadowing curves; Open big dots give 𝜃(pseudo orbits).
Dotted lines denote 𝑓 .

The illustration here assumes the forward time evolution, but as noted explicitly in
39.18 we must also consider the backward time evolution. The explanation below
is for forward time evolution.

(1) Construct pseudo orbits. As may be guessed from Fig. 39.10 more and more
points in 𝑃 that can make pseudo orbits spread in the unstable direction (expanding
direction) as gray dots indicate.
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(2) The 𝛽-shadowing orbits for these pseudo orbits make a bundle whose width in the
stable direction is basically determined by 𝛼; without this ‘error’ the width converges
to zero. In the unstable direction the width increases exponentially. However, if the
bundle is translated to its initial points (that is, in terms of 𝜃(𝑞)), since backward in
time there is a severe contraction along the unstable direction, the spread of 𝜃(𝑞) is
again determined by 𝛼; again without this ‘error’ the width converges to zero.

39.20 Boundary of 𝑇 𝑠

Let us determine the boundaries transversal to the unstable direction. To do so, we
evolve the system backward in time. A caricature of what happens is in Fig. 39.11.

f
n

stable

direction

unstable direction

Figure 39.11: The green curve mapped backward by 𝑓𝑛 𝑛≫ 1 is (almost parallel to the stable
manifold.

Imagine you come backward from the right situation to the initial conditions (i.e.,
the image of 𝜃). There is a tremendous contraction along the red arrow and ex-
tremely expanded along the gree arrow, so however curvy the boundary transversal
to the unstable direction is, as illustrated by the green line, the boundary becomes
parallel to the stable mfd.

You can apply a parallel argument for 𝑓−𝑛 to conclude that the to and the bottom
boundaries are parallel to the unstable manifolds.

Therefore, 𝑇𝑠 is bounded by stable and unstable manifolds and obviously it is a
proper rectangle in the sense of 39.15.

39.21 Construction of Markov partition
We have constructed 𝑇𝑠s, but they may have overlap.

As illustrated in Fig. 39.12, repartitioning the obtained 𝑇𝑠s into a set of smaller
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Figure 39.12: Constructing Markov components. Left: constructed 𝑇𝑠s. If there is an overlap
we refine partition along the stable and unstable manifolds to mak smaller ‘squares’ with different
colors.

rectangles so that there is no overlap among them, resultant refinement of the par-
tition is a Markov partition. As can be seen from the construction we can make as
fine Markov partition as we wish.

39.22 Markov subshift based on Markov partition
Let ℛ = {𝑅1, · · · , 𝑅𝑛} be a Markov partition. Basic properties of a Markov partition
we use are:

(1) Let 𝜕𝑠ℛ = ∪𝑖𝜕𝑠𝑅𝑖 and 𝜕
𝑢ℛ = ∪𝑖𝜕𝑢𝑅𝑖. Then

𝑓(𝜕𝑠ℛ) ⊂ 𝜕𝑠ℛ, 𝑓−1(𝜕𝑢ℛ) ⊂ 𝜕𝑢ℛ. (39.21)

See Fig. 39.13.
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Figure 39.13: (1) illustrated: Boundaries are mapped onto boundaries; 𝑢-subrectangle is also
illustrated for (2)

(2) A 𝑢-subrectangle 𝑆 of𝑅 ∈ ℛ is defined as a nonempty subset of𝑅 and𝑊 𝑢(𝑦, 𝑆) =
𝑊 𝑢(𝑦,𝑅) (see Fig. 39.13).
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If you can go from 𝑅𝑖 to 𝑅𝑗 and 𝑆 ⊂ 𝑅𝑖 is a 𝑢-subrectangle, then 𝑓(𝑢) ∩ 𝑅𝑗 is a
𝑢-subrectangle of 𝑅𝑗.

R

f R

i

jS
u-subrectangle

Figure 39.14: (2) illustrated

(3) The coding due to ℛ is ‘almost’ one to one. More, precisely, (i) For any 𝑎 ∈ Σ𝐴

𝜋(𝑎) = ∩𝑖∈Z𝑓−𝑗𝑅𝑗 is a map from Σ𝐴 to Ω𝑠 which is continuous and onto.
(ii) 𝜋 ∘ 𝜎 = 𝑓 ∘ 𝜋 It is one to one on 𝑌 = Ω𝑠 ∖ ∩𝑗∈Z𝑓 𝑗(𝜕𝑠ℛ∩ 𝜕𝑢ℛ).
This should be clear from Fig. 39.15:

R fa
0

Ra
1

Ra
2

Ra−1

Ra−2

−1

f −2
f

f 2

Figure 39.15: Markov coding rule: the points in 𝑓−𝑛𝑅𝑎𝑛 ∩𝑅𝑎0 have the code sequence 𝑎0 · · · 𝑎𝑛.
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40 Anosov systems

40.1 Anosov system
𝑓 ∈ 𝐶𝑟(𝑀,𝑀) is Anosov, if Ω(𝑓) =𝑀 and hyperbolic.

In more detailed words:437

An Anosov diffeomorphism 𝑓 : 𝑀 → 𝑀 is a diffeomorphism which satisfies the
following:
(a) There is a continuous splitting of the tangent bundle 𝑇𝑀 = 𝐸𝑠 + 𝐸𝑢 which is
preserved by the derivative 𝐷𝑓 .
(b) There exist constants 𝐶 > 0, 𝐶 ′ > 0 and 𝜆 ∈ (0, 1) (i.e., hyperbolicity) and a
Riemannian metric ‖ ‖ on 𝑇𝑀 such that

‖𝐷𝑓𝑛(𝑣)‖ ≤ 𝐶𝜆𝑛‖𝑣‖ for 𝑣 ∈ 𝐸𝑠, (40.1)

‖𝐷𝑓𝑛(𝑣)‖ ≥ 𝐶 ′𝜆−𝑛‖𝑣‖ for 𝑣 ∈ 𝐸𝑢. (40.2)

40.2 Some properties of Anosov systems
Per(𝑓) is countable and dense in 𝑀 .

Anosov systems are structurally stable.
If the Lebesgue measure may be introduced on 𝑀 , Anosov systems are ergodic with
respect to it.

Thus, clearly being Anosov excludes being Morse-Smale 38.5. Obviously, MS diffeo-
morphisms are not dense for 𝑑 ≥ 2.

40.3 Toral diffeomorphism
Integer matrices 𝐿 with |det𝐿| = 1 on 𝑇 𝑛 (constructed from the unit cube with
periodic boundary conditions) is called toral diffeomorphisms.

For 𝑇𝑀 = 𝐸𝑠⊕𝐸𝑢, if dim𝐸𝑢 or dim𝐸𝑠 = 1, the toral diffeomorphisms is said to
be codimension one.

Theorem [Franks] An Anosov diffeomorphism 𝑓 is homomorphic to a toral diffeo-
morphism, if 𝑓 is codimension 1.

437Taken from J Franks, ‘Anosov diffeomorphisms on tori,” Trans AMS 145, 117 (1969).
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40.4 Group automorphism on 𝑇 2

Let 𝐴 be a regular 2× 2 integer matrix:

𝐴 =

(︂
𝑎 𝑏
𝑐 𝑑

)︂
. (40.3)

This defines a homomorphism 𝑇𝐴 : 𝑇 2 → 𝑇 2:

𝑇𝐴(𝑥, 𝑦) = (𝑎𝑥+ 𝑏𝑦, 𝑐𝑥+ 𝑑𝑦) mod 1. (40.4)

If det𝑇𝐴 = ±1, this is an automorphism (homeomorphism onto itself).
Notice that 𝐴 need not be normal (i.e., 𝐴𝐴* = 𝐴*𝐴), so even if eigenvalues of 𝐴

are distinct, it need not be diagonalizable with an orthogonal transformation. Thus,
the two eigendirections may not be orthogonal. These are well illustrated by Thom’s
diffeomorphism 40.5.

40.5 Thom diffeomorphism
A toral diffeomorphism 𝑇𝐴 : 𝑇 2 → 𝑇 2 with

𝐴 =

(︂
2 1
1 1

)︂
(40.5)

is called th Thom diffeomorphism (physicists often call its ‘Arnold’s cat map, since
they read easy-reading books only).

A

O

Figure 40.1: Thom’s diffeomorphism is obtained from 𝐴 by imposing a periodic boundary
condition on the green square.

The origin corresponds to a hyperbolic fixed point 𝑝. The set of homoclinic points
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𝑊 𝑠(𝑝) ∩ 𝑊 𝑢(𝑝) is dense in 𝑇 2 (as you can guess from Fig. 40.4), so the periodic
points are dense in 𝑇 2. This defines an Anosov system on 𝑇 2. It is called Arnold’s
cat map, because something like Fig. 40.2 was used by Arnold and Avez438 what
horrible things could happen for Anosov system.439

Figure 40.2: Thom’s diffeomorphism

Note that det𝐴 = 1. The eigenvalues and the corresponding eigenvectors of 𝐴
are given by (3 ±

√
5)/2 (respectively) with (1, (−1 ±

√
5)/2)𝑇 . We see that the

Kolmogorov-Sinai entropy is log(3 +
√
2)/2.

438V I Arnold and A Avez, Ergodic Problems of Classical Mechanics (The Mathematical physics
monograph series) (Benjamin 1968). This is a classic.

439A whole cat is kneaded here with 𝑇 2 illustrated: https://upload.wikimedia.org/

wikipedia/commons/9/9e/Arnold%27s_cat_map.png.

https://upload.wikimedia.org/wikipedia/commons/9/9e/Arnold%27s_cat_map.png
https://upload.wikimedia.org/wikipedia/commons/9/9e/Arnold%27s_cat_map.png
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40.6 Markov partition for Thom automorphism
Using the eigendirections in 40.5, we can make a Markov partition consisting of
parallelograms, noting that stable and unstable manifolds must go through lattice
points.

Figure 40.3: Markov partition; lower figures explain how to cover 𝑇 2 with the Markov partition
above and its image. Redlines indicate 𝑊𝑢 and the green 𝑊 𝑠.

Needless to say, we can make many different Markov partitions, specifying the
largest size of the piece.
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Another example with nonnormal 𝐴 is

𝐴 =

(︂
1 2
1 1

)︂
(40.6)

Figure 40.4: Markov partition; lower figures explain how to cover 𝑇 2 with the Markov partition
above and its image. Redlines indicate 𝑊𝑢 and the green 𝑊 𝑠.

40.7 Pseudoorbit traceability
For a pseudoorbit {𝑥0, 𝑥1, · · ·}, we can construct a true trajectory 𝑇 𝑘𝑥 always run-
ning close to it. This is the traceability of pseudoorbits.

For a system to have a traceability, necessary and sufficient condition (for 𝐶1

systems) is that the system has a Markov partition (we have already seen this in
Section 39). If a system has a Markov partition, the system is isomorphic to a sym-
bolic dynamics called a Markovian subshift. Thus, Ornstein’s theorem tells us that
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n−1

xn

yT

n−1x

n−2yT n−1y

2x

1yT 2y

1x

0xT y 1

T n−1x
z=y

n

T−1

T −(n−2)z

z

x T 1x

Figure 40.5: How to construct a shadowing orbit (red points)

the system is actually isomorphic to a Bernoulli system, a maximally chaotic system.
Thus ironically a numerically obtained trajectory can be a true trajectory only if

the system is maximally chaotic.
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41 Spectrum of almost periodic quantum systems

41.1 1D lattice Schrödinger equation
Consider a 1D lattice and a discrete version of the Schrödinger equation:

𝜓𝑛+1 + 𝜓𝑛−1 + 𝜆𝑉 (𝑛𝜔)𝜓𝑛 = 𝐸𝜓𝑛 (41.1)

with the periodic potential
𝑉 (𝑡+ 1) = 𝑉 (𝑡). (41.2)

When 𝜔 ∈ Z, we have extended states and the usual energy band structure.
What happens if 𝜔 ̸∈ Z? It is known to have complicated Cantor-set like spec-

trum. An explicitly provable case of self-similar energy band structure can be studied
with an Axiom A system.

41.2 Related 2D dynamical system
We can write (41.1) may be rewritten as a 2D map problem:

Ψ𝑛+1 =𝑀(𝑛𝜔)Ψ𝑛, (41.3)

where

𝑀(𝑡) =

(︂
𝐸 − 𝑉 (𝑡) −1

1 0

)︂
, Ψ𝑛 =

(︂
𝜓𝑛
𝜓𝑛−1

)︂
. (41.4)

Define
𝑀𝑘(𝑡) =𝑀(𝑡+ (𝑘 − 1)𝜔) · · ·𝑀(𝑡+ 𝜔)𝑀(𝑡). (41.5)

Then, we may write
𝑀𝑘(𝑡)Ψ𝑛 = Ψ𝑛+𝑘 (41.6)

and
𝑀𝑘+𝑙(𝑡) =𝑀𝑘(𝑡+ 𝑙𝜔)𝑀 𝑙(𝑡). (41.7)

If we use the Fibonacci numbers 𝐹𝑚 defined as440

𝐹𝑚+1 = 𝐹𝑚 + 𝐹𝑚−1, (41.8)

440Perhaps, https://www.math.ksu.edu/~cjbalm/Quest/Day7_slides.pdf is the best elemen-
tary page for the Fibonacci numbers.

https://www.math.ksu.edu/~cjbalm/Quest/Day7_slides.pdf
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with 𝐹0 = 𝐹1 = 1. Then,441

𝑀𝐹𝑚+1(𝑡) =𝑀𝐹𝑚(𝑡+ 𝐹𝑚−1𝜔)𝑀
𝐹𝑚−1(𝑡). (41.9)

41.3 Discontinuous potential case mappable to dynamical systems
If the periodic potential is two-valued:

𝑉 (𝑡) =

{︂
−1 for 𝑡 ∈ (−𝜔,−𝜔3],
+1 for 𝑡 ∈ (−𝜔3, 𝜔2],

(41.10)

where 𝜔 = (
√
5− 1)/2 ≃= 0.618.442 Note 𝜔 = lim𝑚 𝐹𝑚−1/𝐹𝑚.

Then, (41.9) reads 𝑀𝑚 ≡𝑀𝐹𝑚(0):

𝑀𝑚+1 =𝑀𝑚−1𝑀𝑚 (41.11)

with 𝑀0 = 𝑀(0) and 𝑀1 = 𝑀(−𝜔3). Notice that 𝐹𝑚𝜔 ≃ 𝐹𝑚−1. This is OK, if, for
all 𝑚 > 1,

−𝜔3 < 𝐹𝑚𝜔 mod 1 ≤ 𝜔2, (41.12)

but 𝜔𝐹𝑚 − 𝐹𝑚−1 = (−𝜔)𝑚+1,443 this is always true.
Thus, (41.11) may be used to study the spectrum. The ‘extended state’ implies

|𝑀𝑚| to be bounded from 0 and from above.

41.4 Trace dynamics
Let

𝑥𝑚 =
1

2
Tr𝑀𝑚. (41.13)

From (41.11) 𝑀𝑚 =𝑀𝑚−2𝑀𝑚−1 ⇒ 𝑀−1
𝑚−2 =𝑀𝑚−1𝑀

−1
𝑚

𝑀𝑚+1 + (𝑀𝑚−2)
−1 =𝑀𝑚−1𝑀𝑚 +𝑀𝑚−1𝑀

−1
𝑚 . (41.14)

441M. Kohmoto, L. P. Kadanoff and C. Tang, Localization problem in one dimension: mapping
and escape, PRL 50 1870 (1983).

442𝜔2 = 0.382, 𝜔3 = 0.236; 𝜔2 + 𝜔 = 1.
443−𝜔 = (−1/𝜔) + 1, (−𝜔)2 = 1 + (−𝜔), (−𝜔)3 = 2(−𝜔) − 1, etc. gives this formula. Set

(−𝜔)𝑛 = 𝐴𝑛(−𝜔) +𝐵𝑛. Then you see 𝐴𝑛 and 𝐵𝑛 are Fibonacci numbers 𝐹𝑛 and 𝐹𝑛−1.
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Since det𝑀𝑚 = 1, the trace of the formula may be obtained after explicit matrix
calculation as

𝑥𝑚+1 = 2𝑥𝑚𝑥𝑚−1 − 𝑥𝑚−2 (41.15)

with

𝑥1 =
1

2
(𝐸 + 𝜆), 𝑥2 =

1

2
(𝐸 − 𝜆), 𝑥3 = 1. (41.16)

41.5 Trace dynamics is (likely to be) Axiom A444

Thus, the trace of 𝑀 obeys the 3D diffeo

𝑇 (𝑥, 𝑦, 𝑧) = (2𝑥𝑦 − 𝑧, 𝑥, 𝑦). (41.17)

This has an invariant (with the initial condition (41.16) 𝐼 = 𝜆2)

𝐼 = 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥𝑦𝑧 − 1 (41.18)

which determines a 2-mfd (Fig.41.2)

Figure 41.1: An example of the manifolds for 𝐼 = 0.2.

Fig. 41.1 An example of the manifolds for 𝐼 = 0.2. The four parts which are cut by a cube of size

6 actually extend to infinity. There are six saddle points, A, B, C, D, E, and F. The points B, D

and F are located at the antipodal positions of E, A and C, respectively. A portion of the unsta-

ble manifold of C is drawn schematically. This crosses the stable manifold of A transversally near A.

444M Kohmoto and Y Oono, Cantor spectrum for an almost periodic Schrödinger equation and
a dynamical map, PL 102A 145 (1984).
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41.6 Determination of the spectrum
(41.17) defines a chaotic dynamics on a 2-mfd. It is Anosov if 𝜆 = 0.445

The most important periodic orbit of the map 𝑇 to account for the spectra is the
following six cycle:

𝐴(0, 0, 𝑎) → 𝐵(−𝑎, 0, 0) → 𝐶(0,−𝑎, 0)𝑛→ 𝐷(0, 0,−𝑎) → 𝐸(𝑎, 0, 0) → 𝐹 (0, 𝑎, 0) → 𝐴,
(41.19)

where 𝑎 = (1 + 𝐼)1/2 = (1 + 𝜆2)1/2. These six points are hyperbolic fixed points of
𝑇 6 whose eigendirections are tangent to the manifold:

𝜅± = {[1 + 4(1 + 𝜆2)2]1/2 ± 2(1 + 𝜆2)}2. (41.20)

The initial points are on 𝑦 = 𝑥−𝜆, 𝑧 = 1 near the fixed point 𝐴. The stable manifold
of 𝐴 crosses this straight line of the initial points. Most orbits starting from these
crossings flow into the six cycle. The crossing point specified by the energy 𝜀0 which
is closest to A along its stable manifold is clearly in the spectrum.

山路を登りながら

Figure 41.2: Horseshoe structure exhibited by the map 𝑇

445Pointed out by Y. Takahashi. This was the key observation; this statement immediately
suggested a horseshoe, and a horseshoe hunt started.
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41.7 Discrete cat map
The second order difference equation like discrete Schrödinger equation can always
be rewritten as a first order 2D and vice versa. For example, Thom’s map is

𝑞𝑡+1 = 2𝑞𝑡 + 𝑝𝑡, (41.21)

𝑝𝑡+1 = 𝑞𝑡 + 𝑝𝑡. (41.22)

Therefore,
𝑞𝑡+1 = 2𝑞𝑡 + (𝑞𝑡−1 + 𝑝𝑡−1) = 2𝑞𝑡 + 𝑞𝑡−1 + (𝑞𝑡 − 2𝑞𝑡−1), (41.23)

so
𝑞𝑡+1 = 3𝑞𝑡 − 𝑞𝑡−1. (41.24)

This may define a dynamics on Z, but we could impose a mod𝑁 condition. Then
this defines a dynamics on an integer ring Z/𝑁 . Needless to say, all the orbits are
periodic (with a period at longest 𝑁). This means the discrete version (41.22) mod𝑁
is also recursive as illustrated here or here.

Figure 41.3: Discrete ‘cat map’ [Fig. 6.107 of Jackson

https://www.youtube.com/watch?v=wgMrM1uSMUc
https://upload.wikimedia.org/wikipedia/commons/5/58/Arnold%27s_Cat_Map_animation_%2874px%2C_zoomed%2C_labelled%29.gif
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42 Newhouse phenomenon

42.1 Homoclinic point in modified linear map
The following an ex[licit example of a homoclinic point found in Palis-de Melo text-
book.

Consider 𝜙(𝑥, 𝑦) = (2𝑥, 𝑦/2) and Ψ(𝑥, 𝑦) = (𝑥− 𝑓(𝑥+ 𝑦), 𝑦 + 𝑓(𝑥+ 𝑦)), where 𝑓
is continuous 𝑓(𝑥) = 0 for 𝑥 < 1 and 𝑓(2) > 2. Then Ψ ∘ 𝜙 has a homoclinic point
on the 𝑦-axis between 𝑦 = 1 and 2.

42.2 Homoclinic bifurcation
If a horseshoe map is slid as in Fig. 42.1, a non-transversal homoclinic orbit is formed.
(b) has a homoclinic tangency.

Figure 42.1: Homoclinic bifurcation ([Fig. 1.6 of Palis de Melo]

If we take a small rectangle 𝑅 near 𝑝, then 𝑅 has invariant foliations, and cross-
ing points of these foliations make an invariant set that is a Cantor set. Poincare
knew that transversal homoclinic points are accumulation points of other homoclinic
points. Birkhoff showed that a transversal homoclinic point is an accumulation point
of periodic orbits.

42.3 Cascade of homoclinic tangency
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Figure 42.2: Homoclinic tangency [Palis-Takens Fig. 3.1]

Let 𝜙𝜇 be a one-=parameter family of diffeomorphisms with a quadratic homoclinic
tangency 𝑞 at 𝜇 = 0 associated to te fixed (periodic) saddle 𝑝 and suppose it unfolds
generically. Then, there is a sequence 𝜇𝑛 → 0 such that 𝜙𝜇𝑛 has homoclinic tangen-
cies 𝑞𝜇𝑛 → 𝑞 associated to 𝑝𝜇𝑛 → 𝑝.

42.4 Measure of homoclinic bifurcation set
We are interested in the measure of the set of 𝜇 in which 𝜙𝜇 has a hyperbolic limit
set. If the sum of the Hausdorff dimensions of 𝑊 𝑠 and 𝑊 𝑢 is less than 1, we can say
this set has a relatively large Lebesgue measure.

Let 𝐵 be the set of 𝜇 such that 𝜙𝜇 is at a bifurcation point (homoclinic tangency).
Then,446

lim
𝜇0→𝜇

𝑚(𝐵 ∩ [0, 𝜇0])

𝜇0

= 0. (42.1)

42.5 Newhouse phenomenon
Newhouse proves:
Let 𝜙 ∈ Diff2(𝑀), 𝑀 a 2-manifold, be with a saddle point 𝑝 whose stable and un-
stable manifolds have an orbit of tangency. Then,
(1) arbitrarily near 𝜙 there is an open set 𝑈 ⊂ Diff2(𝑀) with persistent homoclinic
tangencies.
(2) If moreover |det (𝑑𝜙)𝑝| < 1 (i.e., dissipative), then there is a residual set 𝑅 ⊂ 𝑈
such that each member of which has infinitely many hyperbolic sinks.

This means that hyperbolic systems are not dense in Diff2(𝑀), 𝑀 a 2-manifold.

446Theorem 2 of Palis-Takens p101.
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However, for Diff𝑖(𝑀) nothing is known.

42.6 Persistent homoclinic tangency
Basic set: it is a maximal invariant set in its local) and canonical coordinate system
may be taken if two points 𝑥 𝑦 in it is close.
Persistent tangency: Let Λ1 and Λ2 are basic sets of 𝜙. For any 𝜙 ∈ 𝑈 ⊂ Diff2(𝑀),
for 𝑥1 ∈ Λ1 𝑥2 ∈ Λ2 there is a tangency between 𝑊 𝑠(𝑥1) and 𝑊

𝑢(𝑥2) or 𝐶
2-close 𝜙′.

Thickness of a Cantor set: nongap length/gzp length + 𝜏 . This is not the Hausdorff
dimension.
Overlaps of 𝐾1 and 𝐾2. If 𝜏(𝐾1)𝜏(𝐾2) > 1 then 𝐾1∩𝐾2 ̸= 𝜑 because K’s are closed.

Proposition 1
Let 𝜙 ∈ Diff2(𝑀) wutgh basic sets Λ1 and Λ2, both of saddle type, and let 𝑝𝑖 ∈ Λ𝑖 be
periodic points. Assume 𝜏(𝐿1)𝜏(𝐿2) > 1447 (this condition will be explained 42.9)
in and there is a orbit of tangency of 𝑊 𝑢(𝑝1) and 𝑊

𝑠(𝑝2). Then 𝜙 is in the closure
of some 𝑈 ⊂ Diff2(𝑀), where 𝑈 has persistent tangencies involving Λ1(𝜙) and Λ2(𝜙)
of Λ1 and Λ2 for 𝜙 ∈ 𝑈 .

42.7 Persistence proof
Take 𝜙 near 𝜙, two basic sets Λ1(𝜙) and Λ2(𝜙) and periodic points 𝑝1(𝜙) and 𝑝2(𝜙).
They depend on 𝜙 continuously.
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Figure 42.3:

We assume 𝑊 𝑢(𝑝1) and 𝑊
𝑠(𝑝2) are quadratically tangent (if needed, we can per-

447𝜏𝑢(Λ1, 𝑝1)𝜏
𝑠(Λ2, 𝑝2) > 1 more preciesely in the original book.
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turb the original system to enforce this).
We also have stable and unstable foliations ℱ𝑢 and ℱ 𝑠 (recall a horseshoe). All

these structures depend continuously on 𝜙. If we change 𝜙(𝜙) the tangent point
changes (𝐶1 change) its position transversally to the foliations. We can project
leaves onto this trajectory ℓ of the tangent point.’

Now, take one-sided neighborhood boxes 𝐾1 and 𝐾2 as in Fig. 42.4. Then, we can
consider their projections along the foliation onto ℓ. Generally, the projected images
are Cantor sets.
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Figure 42.4:

These Cantor sets changes continuously with 𝜙. We claim that under the condi-
tion “𝜏𝑢(Λ1, 𝑝1)𝜏

𝑠(Λ2, 𝑝2) > 1”, they persist to overlap (‘really’ as sets).

42.8 𝜆-lemma
If ℓ is a smooth curve intersecting 𝑊 𝑠(𝑝) transversally, then its forward image
ℓ𝑖 = 𝜙𝑖(ℓ) contain compact arcs 𝑚𝑖 ⊂ ℓ𝑖 which approaches differentiably a com-
pact arc 𝑚 in 𝑊 𝑢(𝑝) as in Fig. 42.5.

Figure 42.5: 𝜆-lemma [Palis-Takens Fig. 1.7]
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42.9 Linking Cantor sets
Suppose two Cantor sets ‘generally’ overlap (technical term = linked). Is there any
actual overlap of points?

We define the thickness of a Cantor set 𝐾. A gap of 𝐾 is a connected component
of 𝐾𝑐. Let 𝑈 be a bounded gap, and 𝑢 its boundary point.

Uu

C

gap

bridge

Figure 42.6: Gaps and bridges of a Cantor set

A bridge 𝐶 of 𝐾 at 𝑢 is the maximal interval that does not contain any gap whose
length is not equal or larger than 𝑈 .

The thickness 𝜏(𝐾, 𝑢) of 𝐾 at 𝑢 is defined by ℓ is te length.

𝜏(𝐾, 𝑢) = ℓ(𝐶)/ℓ(𝑈). (42.2)

Then, the thickness 𝜏(𝐾) of 𝐾 is defined as

𝜏(𝐾) = inf
𝑢
𝜏(𝐾, 𝑢). (42.3)

Gap lemma:448 If 𝐾1 and 𝐾2 are two Cantor sets. If

𝜏(𝐾1)𝜏(𝐾2) > 1, (42.4)

then 𝐾1 ∩𝐾2 ̸= ∅, unless one of them is not engulfed in on of the other’s gap.
[Explanation] (42.4) means (see Fig. 42.7)

ℓ(𝐶1)

ℓ(𝑈1)

ℓ(𝐶2)

ℓ(𝑈2)
> 1. (42.5)

As seen in Fig. 42.7 if (42.4) holds, then we see overlaps may occur. Suppose there
is certainly an overlap between some 𝐶 and 𝐶 ′ from the both Cantor sets. If there
is not common point for 𝐶 ∩𝐾 and 𝐶 ′ ∩𝐾 ′, then all the points must be in 𝑈 or 𝑈 ′.
However, 𝑈 and 𝑈 ′ both shrink to zero...

448p63 of Palis and Takens.
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Figure 42.7: Meaning of (42.4).

42.10 Completion of 42.7
Let 𝐿𝑖 be the projection of 𝐾𝑖 in 42.7 onto ℓ along the foliations. These Cantor sets
and the image of 𝐾𝑖 with the dynamics (forward or backward) need not agree in
general.

However, note that if the map is close to ‘scaling’ (i.e., the ratio of the max and
min derivatives is close top unity), then the thickness is preserved. Therefore, we
take 𝐾𝑖 small enough and 𝜙 is close enough to 𝜙, this is realized.

Since 𝐿1 and 𝐿2 have a common set, and it consists of boundary points of Cantor
sets (inevitably, since they do not have no internal point), so we have homoclinic
tangency for 𝜙.

42.11 Infinitely many hyperbolic sinks
Proposition 2.
Let 𝑈 ⊂ Diff2(𝑀) be an open set with persistent homoclinic tangencies, associated
with a basic set Λ(𝜙). Let 𝑝(𝜙) ∈ Λ(𝜙) be a periodic point, say of period 𝑘 and let
|det (𝑑𝜙𝑘)𝑝(𝜙)| < 1. Then, there is a residual subset 𝑅 ⊂ 𝑈 such that each 𝜙 ∈ 𝑅
has infinitely many hyperbolic periodic attractors (sinks). If |det (𝑑𝜙𝑘)𝑝(𝜙)| > 1 , one
gets infinitely may periodic repellers (sources).

The strategy to prove this proposition is to show that if 𝜙 has 𝑛 hyperbolic sinks,
then in its any neighborhood is a map with 𝑛+ 1 such sinks.

42.12 Demonstration of 𝑛 + 1 sinks
Suppose 𝜙 has 𝑛 hyperbolic sinks. They are stable against perturbations. 𝑊 𝑢(𝑝)
and𝑊 𝑠(𝑝) are both dense in𝑊 𝑢(Λ) and𝑊 𝑠(Λ) (resp.), and𝑊 𝑢(Λ) and𝑊 𝑠(Λ) have
tangencies. Therefore, with (if needed) small perturbation we can make 𝑊 𝑢(𝑝) and
𝑊 𝑠(𝑝) in tangency. Let 𝑞 be a point in this tangency orbit. This 𝑞 is not among
the already existing 𝑛 periodic orbits, so we can take a neighborhood 𝑊 of 𝑞 that
excludes 𝑛-periodic orbits.

Now, with an arbitrarily small perturbation, we can make a hyperbolic sink in𝑊 .
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This can be understood from the horseshoe bifurcation 42.13.

42.13 How does a horseshoe appear?449

As seen in Fig. 42.8 initially, there is no fixed point in 𝑅, but there is a horseshoe
with all its hyperbolic fixed points at the ‘right end.’

Figure 42.8: Horseshoe is closely related to the logistic map

What happens in between? It is the ‘standard’ story of bifurcations. We know
there are three kinds of generic bifurcations in a one-parameter family of diffeomor-
phism; saddle-node, period doubling and Hopf. In the present context, the eigenval-
ues around fixed points are real, so we must consider the former two possibilities.
Thus, sinks show up.

42.14 Hénon-like diffeomorphism
The Hénon map450 𝑇 : R2 → R2 is given by

𝑥𝑛+1 = 𝑦𝑛 + 1− 𝑎𝑥2𝑛, (42.6)

𝑦𝑛+1 = 𝑏𝑥𝑛. (42.7)

where 𝑎 = 1.4 and 𝑏 = 0.3 is the original choice of the parameters. This is written
as the composition of the following three maps 𝑇 ′′′ ∘ 𝑇 ′′ ∘ 𝑇 ′ (Fig. 42.9):

𝑇 ′ : 𝑥′ = 𝑥, 𝑦′ = 𝑦 + 1− 𝑎𝑥2, (42.8)

449J. A. Yorke and K. T. Alligood, Cascades of period-doubling bifurcations: a prerequisite for
horseshoe, Bull AMS 9 319 (1983); C. Robinson, Bifurcation to infinitely many sinks, Comm Math
Phys 90 433 (1983) contain useful concrete examples.

450M. Hénon, A Two-dimensional Mapping with a Strange Attractor, CMP 50 69 (1976).
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𝑇 ′′ : 𝑥′′ = 𝑏𝑥′, 𝑦′′ = 𝑦′, (42.9)

𝑇 ′′′ : 𝑥′′′ = 𝑦′′, 𝑦′′′ = 𝑥′′. (42.10)

Figure 42.9: The Hénon map (d) is given by 𝑇 ′′′ ∘𝑇 ′′ ∘𝑇 ′. [Fig. 1 of Hénon CMP 50 69 (1976) ]

There are two fixed points:

𝑥 =
1

2𝑎

[︁
−1(1− 𝑏)±

√︀
(1− 𝑏)2 + 4𝑎

]︁
, 𝑦 = 𝑏𝑥. (42.11)

These points are real for 𝑎 > 𝑎0 = (1 − 𝑏)2/4. One is always a hyperbolic source,
while the other is unstable for

𝑎 > 𝑎1 = 3(1− 𝑏)2/4. (42.12)

Notice that not all the initial conditions give bounded orbits; they escape to infinity.
The remaining set seems to be a Cantor set × smooth curves (locally). It is well-
illustrated in

https://www.youtube.com/watch?v=42oeboRGqTo.

Figure 42.10: from the same YouTube.

See Michael Benedicks, Lai-Sang Young: Sina-Bowen-Ruelle measures for certain
Hénon maps, Inventiones Mathematicae 112 541 (1993).

https://www.youtube.com/watch?v=42oeboRGqTo
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43 Heterodimensional cycles

43.1 Preliminary definitions451

The limit set 𝐿(𝑓) of 𝑓 is

𝐿(𝑓) = ∪𝑥∈𝑀(𝛼(𝑥) ∩ 𝜔(𝑥)) (43.1)

A point 𝑥 is nonwandering if for every neighbourhood 𝑈 of 𝑥 there exists 𝑚, 𝑚 ̸= 0,
such that 𝑓𝑚(𝑈)∩𝑈 ̸= ∅. These points form the nonwandering set Ω(𝑓). Obviously,
𝐿(𝑓) ⊂ Ω(𝑓).452

43.2 Axiom A related definitions and terminology
A diffeomorphism 𝑓 satisfies Axiom A if Ω(𝑓) = Per(𝑓), and Ω(𝑓) is hyperbolic. In
this case 𝐿(𝑓) = Ω(𝑓).

There is a spectral decomposition: Ω(𝑓) = ∪Ω𝑖, where Ω𝑖 is 𝑓 -invariant, transi-
tive (= with a dense orbit), local maximal (i.e., there is a nbh 𝑈𝑖 of Ω𝑖 such that

Ω𝑖 = ∩Z𝑓
𝑛(𝑈𝑖)) and compact. Moreover Ω𝑖 = 𝐻(𝑃 ), where 𝐻(𝑝) is the transversal

homoclinic points related to 𝑃 (i.e,𝐻(𝑃 ) = 𝑊 𝑠(𝑃 )⊤∩𝑊 𝑢(𝑃 )), where 𝑃 ∈ Ω𝑖∩Per(𝑓).
Ω𝑖 is called a basic set, and 𝑈𝑖 isolating nbh of Ω𝑖.

The index of Ω𝑖 is defined by dim𝑊 𝑠(𝑃 ), where 𝑃 is any periodic point in Ω𝑖.
The index does not depend on the choice of 𝑃 in Ω𝑖.

43.3 Local stability due to hyperbolicity
Hyperbolicity implies local stability: given a basic set Ω and its isolating neigh-
bourhood 𝑈 for any 𝑔 𝐶𝑟-close to 𝑓 , 𝑟 > 1, Ω(𝑔) is hyperbolic and there is an
homeomorphism ℎ : Ω → Ω(𝑔). Ω𝑔) is called continuation of Ω.

’43.4 Ω-stability
𝑓 is said to be Ω-stable if it has a conjugate continuation in its sufficiently small 𝐶𝑟

nbh.

451Lan Wen Differentiable Dynamical Systems An Introduction to Structural Stability and Hy-
perbolicity.

452Recall Bowen’s non SBR counterexample.
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43.5 We cannot ignore behaviors off Ω453

This is because we must worry about the mutual relations among basic sets. A sim-
ple examples are454

Figure 43.1: Simple Ω-explosion [Irwin Fig. 7.32]

Inn Fig. 43.1 Left, there is a one-way zero (non-hyperbolic zero). It is a the Ω set of
the system. With a small perturbation we can remove it. The outcome is that the
whole 𝑆1 is Ω now, and example of the Ω-explosion. 43.1 Right, three fixed points
reduce to two (‘implosion’).

43.6 Global explosion of Axiom A systems
Look at Smale’s example (a diffeo in 𝑆2): Its Ω consists of six hyperbolic fixed points
Fig. 43.2.

We must see that the saddle connections are not in Ω, they are wandering. For
example, take 𝑝. Its nbh eventually goes to sinks 𝑐 or 𝑑.

Now, look at colored arrows in the figure. If we make a small surgery to cross
𝑊 𝑢(𝑥) and 𝑊 𝑠(𝑦), then 𝑝 becomes non-wandering. Thus, 𝑊 𝑢(𝑥) ∩𝑊 𝑠(𝑦) is now
non-wandering. However, 𝑊 𝑠(𝑥) ∩𝑊 𝑢(𝑦) is still wandering. Now, the Ω after per-
turbation consists of the previous fixed points + the new saddle connection.

43.7 Cycles
Let 𝑀 be a closed 𝐶∞-manifold and consider 𝒳 𝑟(𝑀) (𝑟 ≥ 1). We say that 𝑋, 𝑌 ∈
𝒳 𝑟(𝑀) are Ω-conjugate if there is a homeomorphism ℎ : Ω(𝑋) → Ω(𝑌 ) sending
trajectories of 𝑋 into those of 𝑌 . 𝑋 ∈ 𝒳 (𝑀) is Ω-stable if for any 𝜀 > 0 there is a

453Proc. Symp. Pure Math. Vol. 14, Amer. Math. Soc: Rhode Island, 1970.
454M C Irwin, Smooth Dynamical Systems (World Scientific, 2001) p185
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Palis entangled both.

Figure 43.2: 𝐴 is a global source and 𝑐 a global sink. [7.35] Rightmost from Palis PAMS paper

neighborhood 𝑁(𝑋) in 𝒳 𝑟(𝑀) such that if 𝑌 ∈ 𝑁(𝑋) then 𝑋 is Ω-conjugate to 𝑌
by a homeomorphism which is 𝜀-𝐶0 close to the identity map in Ω(𝑋).

For an Axiom A system for each basic set we can define its stable and unstable
manifolds.

There is an 𝑛-cycle on Ω, if there is a sequence of basic sets Ω0, · · · ,Ω𝑛−1 with
𝑊0 = 𝑊𝑛, Ω𝑖 ̸= Ω𝑗if 𝑖 ̸= 𝑗 and

𝑊 𝑠(Ω𝑖) ∩𝑊 𝑢(Ω𝑖+1) = ∅. (43.2)

A cycle is called equidimensional if index Ω𝑖 making the cycle are identical and
heterodimensional otherwise.

43.8 Ω-explosion455

For Smale’s Axiom A’ system:
(i) Ω is the disjoint union of the set of critical points 𝐹 and the closure Λ of its
periodic orbits,
(ii) each element of 𝐹 is hyperbolic and Λ is a hyperbolic set.
Theorem: If 𝑋 satisfies Axiom A’ and there is a cycle on Ω, then 𝑋 is not Ω-stable.

455J. Palis, Ω-explosion, Proc AMS 27 85 (1971). The diffeo version is J. Palis, A note on Ω-
stability, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc, Providence, R. I., 1970. In this
paper Palis gives a sufficient condition for Ω-stability as well for special cases: If Ω is the finite union
of hyperbolic critical points and closed orbits and has the no-cycle property, then 𝑋 is Ω-stable.
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That is, no-cycle condition is a necessary condition for Ω-stability.

Notice that so far we discussed the existence of explosive or dangerous cases

43.9 Stable non-Axiom A cycles456

Let 𝑀 be a 3-mfd.

Figure 43.3: [Diaz Fig.1]

(I) Connected interesection
(1) dim𝑊 𝑠(𝑃0)) = 2, dim𝑊 𝑢(𝑄0) = 1.
(2) There is an 0 invariant curve 𝛾0 ⊂ 𝑊 𝑠(𝑃0)) = 2⊤∩𝑊 𝑢(𝑄0).

From now on 0 → 𝑡 indicates continuations.
(II) Creation and generic unfolding of the cycle
There are 𝐶1 curves: 𝑥𝑡 ∈ 𝑊 𝑠(𝑄𝑡) and 𝑥𝑡 ∈ 𝑊 𝑠(𝑄𝑡). (III) Strong foliation condition.

456L J Diaz, Ribust nonhyperbolic dynamics and heterodimensional cycles, Ergod. Th. & Dynam.
Sys. 15 291 (1995).
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THEOREM 1. Let 𝑓𝑡 satisfy the above conditions. Then for 𝑡 ∈ [0, 𝑡0]
(1) 𝛾𝑡 ⊂ 𝐿(𝑓𝑡), so 𝐿(𝑓𝑡) is not hyperbolic,
(2) 𝑓𝑡 is Ω-stable. That is, 𝑓𝑡 can be 𝐶∞-approximated by a diffeo exhibiting a het-
erodimensional cycle.

P
Q

P
Q

P
Q

P
Q

P
Q

P
Q

Figure 43.4: [Diaz Fig.1]
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44 Palis conjecture

44.1 Stability conditions457

As we have seen Axiom A alone is not enough to guarantee the structural stability.
Thus, Smale conjectured that:

Axiom A + no-cycle condition implies 𝐶1-Ω-stability.458

This was proved by Smale (for diffeos) and by Pugh & Shub (for flows). Another
conjecture is

Axiom A + strong transversality implies 𝐶1-stability.
This was proved by Robbin and Robinson.

As in the case of Peixoto’s theorem to show the necessity is much harder: For
a system to be stable the above mentioned conditions are needed. Mañé proved
the necessity for diffeomorphisms.459 Hayashi showed that the 𝐶1-dynamical system
case: a 𝐶1-dynamical system must be hyperbolic to be stable460 A high point in
Hayashi’s work is his connecting lemma461 creating homoclinic orbits by 𝐶1-small
perturbations of flow or diffeomorphism an unstable manifold accumulating on some
stable one can be 𝐶1-perturbed to make it intersect one another (the creation of
homoclinic or heteroclinic orbits).

We usually claim that a phenomenon of a system relevant to natural science must
be structurally stable, because science demands reproducibility. If we stick to this
‘dictum,’ we have only to study ‘nice’ Axiom A systems. However, we already know
if the system dimension is not too low (1 for diffeo and 2 for flow as Peixoto showed
and horseshoes cap.), we have something else as an open set. The members of such
an open set is structurally unstable: we have ‘stable structural instability.’ There
must be corresponding natural phenomena.

44.2 Palis’ global conjecture on metric stability of attractors
I: There is a 𝐶𝑟-dense set 𝐷 of dynamical systems such that any element of 𝐷 has
finitely many attractors whose union of basins of attraction has total probability.
II: The attractors of the elements in 𝐷 support a physical measure.

457Hayashi 1997; J Palis, A GLOBAL VIEW OF DYNAMICS AND A CONJECTURE ON THE
DENSENESS OF FINITUDE OF ATTRACTORS

458That is, the nonwandering sets are preserved.
459R Mañé, A proof of the 𝐶1-stability conjecture, Publ Math IHES 66 161 (1988).
460S Hayashi Connecting invariant manifolds and the solution of the 𝐶1 stability and Ω-stability

conjectures for flows, Annals of Math 145 81 (1997).
461This is explained in his review
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III: These properties are metrically stable (i.e., in 𝐷 any 𝑘-parameter small 𝐶𝑟-
perturbation preserves the dynamics).
IV: The attractors are stochastically stable. (Against noise)
V: For 1D maps the attractors are either sinks or abs cont measures.462

44.3 Palis conjecture 1993463

1. Every 𝐶𝑟-diffeo of a compact mfd 𝑀 can be 𝐶𝑟-approximated by one of the fol-
lowing:

(a) a hyperbolic system (Axiom A with strong transversality)
(b) a system with heterodimensional cycle
(c) a system exhibiting a homoclinic tangency.

2. If 𝑀 is 2D then (a) or (c) occurs (in other words, Palis conjectured that avoiding
homoclinic bifurcation, the generalized Peixotos picture can be recovered).

For 𝑟 = 1 Pujas and Sabarino proved 2.464, 1 is still open.
for 𝑟 ≥ 2 both are wide open. For 𝑟 ≥ 2 this is widely open. even for 2D.

462Lyubitch showed this for quadratic maps.
463A. Katok, B. Hasselblatt, Handbook of dynamical systems vol 1A(2005); E. R. Pujals From

Peixoto’s theorem to Palis’s conjecture (2009).
464E. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomor-

phisms, Ann. of Math. 151 (2000), 961-1023.
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Story Line

Here is a flow of story of Phys510 Fall 2018. Perhaps 6 semester materials are pushed
into one semester, so I give here an overall outline of the flow, and summarize some
important concepts and facts (theoretical) physicists should know. Key concepts are
in boldfaces; you can look up the units relevant to the concepts in the main lecture
notes by clicking the unit numbers (if you use the Story Line appended to the main
body).
v

The course consists of four parts I - IV:
I. Introductory review of differential equations and maps (Lect 1-16).
II. Typical ‘chaotic systems’ and famous dynamical system (Lect 17-22).
III. Conceptual tools to understand dynamical systems (Lect 23-36).
IV. Outline of the modern theory: Peixoto to Palis (Lect 37-44).

Underlined statements are (my) conjectures perhaps theoretical physicists could
look into.

Part Ia: non-conserved systems.

[1] Study of deterministic time evolution is the theory of dynamical systems (see
1.1). Usually, we study flows defined by (sufficiently differentiable) vector fields
on manifolds 2.5, and endomorphisms (into-maps) defined on manifolds 2.2. In
many important cases, a Poincaré map 6.3 and its suspension 6.8 relate the
continuous-time and its discrete-time descriptions.

[2] Theory of dynamical systems uses standard differential topological and geometri-
cal terminologies freely. Therefore, to read the original math papers often demands
some familiarity to differential topology. If you have no ambition to write math pa-
pers, intuitive understanding of the related concepts and theorems is sufficient (see
2.3-2.9). However, the expression of tangent vectors in terms of 𝜕𝑖 (2.5, 2.7) is
highly useful.

[3] As fundamental scientists we wish to have a general ‘universal’ or ‘unified’ under-
standing of many things, so we must properly characterize what we mean by ‘general’,
‘generic’ (= residual 2.28), etc. This is, however, not very simple, because simple
characterizations are plagued with exceptions, and ‘air-tight’ characterizations tend
to be cumbersome. Therefore, we confine ourselves to the study of systems stable
against various perturbations (structurally stable systems; 2.13). If the dimension
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of the base manifold is not too large (2 or 3), then structural stable systems are quite
numerous (generic or even sometimes open generic).

[4] Crudely put, structurally stable systems are characterized by hyperbol-
icity (5.7, 5.8) and transversality (= relations are not ‘tangential’ or critical).

[5] Just as phase transitions, when qualitatively different stable features switch,
structural stability is lost and systems become unstable against perturbations. This
phenomenon is called bifurcation Lect 7, 8) 7.1. Therefore, the theory of dynam-
ical systems studies generic structural stable features and bifurcations exhibited by
a collection of systems.

[6] There are two major ways to study dynamical systems, (i) topological and
(ii) measure-theoretical. (i) is geometrical; we are interested in how trajectories
go around (topologically). (ii) is statistical; we are interested in the average behav-
iors.

[7] Thus, our story line for ‘Part I’ goes as follows: In physics Hamiltonian dy-
namical systems are quite important. However, from the general dynamics point of
view they are very special with the canonical structure. Therefore, first we discuss
general ODE/Diffeo and their elementary bifurcations (Lect 3-9). Then, we go to
Hamiltonian systems including elementary celestial mechanics (Lect 10-16).

[8] ODE (its origin: 3.26) with continuous vector fields define flows 3.7. Peano
noted, however, that the uniqueness of the solution to initial value problems is not
guaranteed as counterexamples show (3.13). Eyink points out such vector fields can
be realized in fully developed turbulence as the flow velocity field (3.14). The spirit
of the proof of Peano’s theorem (3.12) with the aid of Arzela’s compactness theo-
rem (3.11) should be understood: we construct a sequence of approximate solutions,
the totality of which makes a compact set, so we can find a limit which is a solution.

[9] The uniqueness of the flow defined by a vector field is guaranteed if the field
is Lipshitz (Cauchy-Lipshitz theorem 3.18). The reason may be intuitively under-
standable from the local rectifiability (3.19) of the field and its extension (3.20).
The continuous dependence of the solution on its initial condition can be shown
(3.23) almost constructively; Gronwall’s inequality (3.22) is a standard tool.

[10] The uniqueness theorem breaks down at singularities where vector fields vanish.
If the derivative at the singularity is non-singular, we say the singularity is simple
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(simply singularity 4.2); simple singularities are isolated (4.3). We linearize the
ODE around its isolated singular point; the solution to the linearized equation may
be written in terms of a matrix 𝐴 as (4.5)

𝑥̇ = 𝐴𝑥.

[11] Its solution may be computed in terms of the evolution operator 𝑒𝑡𝐴 4.6. Con-
structing the (real or complex) Jordan form of 𝐴 (Appendix 1 to Lect 4 for the
general theory) is the standard way to compute this operator explicitly as a matrix;
see a detailed example 4.17.

[12] If the base manifold is a 2-manifold (2D manifold), then we can illustrate all
the types of simple singularities: sink, source, saddle, focus, center 4.10.

[13] On a given manifold not every vector field can live happily. There must be
a topological consistency (Poincaré-Hopf theorem 4.21): the Euler character-
istics of the manifold must be consistent with the sum of indices of the field (the
degree of the field 4.20).

[14] If 𝐴 in [10] has no eigenvalue with vanishing real part, we say the isolated
singularity 𝑥 is hyperbolic (called a hyperbolic fixed point 5.1). The stable (resp.,
unstable) eigenspace 𝐸𝑠 (resp., 𝐸𝑢) is the subspace of 𝑇𝑥𝑀 (2.5) on which 𝐴 has
eigenvalues whose real parts are negative (resp., positive) (5.7). There is an invariant
submanifold called stable manifold 𝑊 𝑠

𝑥 (resp., unstable manifold 𝑊 𝑢
𝑥 ) of 𝑀 on

which the flow is contracting (resp., expanding) [Stable manifold theorem 5.11].
The renormalization-group flow near the critical point is a typical hyperbolic flow

(5.12).

[15] Near a hyperbolic fixed point, the original dynamics and the linearized dy-
namics are homeomorphic (Hartman’s theorem 5.13). Its proof is nontrivial, but
it uses very standard functional-analytic tools; the basic idea of the proof is to con-
struct the homeomorphism. The theorem justifies the linear stability analysis of
a vector field around a hyperbolic fixed point. [See 5.20 and 5.21 for definitions of
stability.]

[16] When bifurcation occurs, 𝐴 is non-hyperbolic. Then, there is a neutral sub-
space on which eigenvalues of 𝐴 have no real part. There is a manifold tangent to
this subspace called the center manifold (not necessarily unique). The center
manifold theorem 5.19 allows us to make a reduced dynamics that is often with
a smaller number of variables than the original (thus practically useful).



44. PALIS CONJECTURE 435

[17] For ODEs solution curves can be one of the following three: point, ring or
line (6.1). The ring corresponds to a periodic orbit, for which we can construct a
Poincaré map 6.3.

[18] To study the stability of a periodic orbit, we linearize its Poincaré map (6.4).
The resultant matrix is periodic, so we may use Floquet’s theorem to isolate the
non-periodic components (Floquet multiplier or Lyapunov constant 6.5) to study
stability.

[19] Isolated periodic orbits are called limit cycles 6.6. For 𝑆2 (or the domain
embeddable in 𝑆2) Poincaré-Bendixson theorem 6.9 tells us the existence of pe-
riodic orbits. In practice, the use of null-clines (6.17) may also be useful.

[20] When singularities are not hyperbolic, bifurcations 7.1 occur. To study sys-
tematically what can actually happen at or around bifurcation points, we make a
‘standard form’ (normal form 7.6) of the field at the bifurcation point, and then
consider its most general deformation (unfolding). This is the versal unfolding
(7.3) approach. Its first step is to make the lowest order nontrivial normal form
using the cokernel technique (7.7, normal form theorem 7.9). Look at Hopf bifur-
cation as an example (7.14).

[21] Normal form analogue can be constructed for maps as well. Accumulation
of 2𝑛-periodic orbit for a continuous endomorphism (See Sarkovskii’s Theorem 3 in
22.26) is an accumulation of pitchfork bifurcations Feigenbaum critical phenom-
ena 8.7). Feigenbaum constructed an RG theory (8.7-) to study this critical point.
As you will see Sinai’s thermodynamic formalism tells us the correspondence of this
point and the critical phenomenon for 1D Ising model (with long-range interactions)
(Lect 36 36.1-).

[22] The modifications appearing in versal unfoldings are perturbations that give
qualitative changes to the system dynamics. That is, the perturbation series for
such perturbations cannot converge. Such perturbations are called singular per-
turbations 9.1. However, there is a way to obtain the long-time behavior of the
perturbed system systematically. They are collectively called singular perturbation
theory, many of which may be unified as a renormalization group theory (9.10).

[23] The most important observation in the RG approach to singular perturbations
is that the RG equation is the slow time equation that describes the long-time effect
of singular perturbation. If the method is applied to PDE’s, very often the lowest
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nontrivial order RG equations are the ‘named’ equations, e.g., Boltzmann equation,
Burgers equation, Swift-Hohenberg equation, etc. The reliability of RG equations is
demonstrated by Chiba 9.18. My conjecture is: if the original perturbed system is
structurally stable, then the corresponding RG result is homeomorphic to it.465

Part Ib: conserved systems = Hamiltonian systems

[24] The Newton-Laplace determinacy 10.1 and its compatibility with a vari-
ational principle (Veinberg’s theorem 10.3) imply that the equation of motion is
a conserved second-order time-reversal symmetric equation. The action principle
is locally a minimum principle 10.5.

[25] A Legendre transformation of Lagrangian gives the Hamiltonian, and the ac-
tion principle is rewritten as Hamilton’s principle 10.9. In terms of Poisson
brackets 10.10 the Newton’s equation of motion can be written symmetrically as
the canonical equation of motion 10.11. Jacobi’s identity may be demonstrated
easily (10.12), if we introduce the infinitesimal canonical transformations (13.5).

[26] If a system with 𝑛-degrees of freedom466 has a set of 𝑛 independent invari-
ants, then we say the system is completely integrable 11.4. Then, the phase
space is foliated into nested invariant 𝑇 𝑛 (Liouville-Arnold’s theorem 11.6; its
demonstration is not so trivial as seen in 11.8). Each torus is specified by the values
of action variables, and the motion on it is described in terms of the angle variables
11.7.

[27] Most (all?) completely integrable systems may be expressed in terms of a
Lax pair 𝐴 and 𝐿 as (12.1)

𝐿̇ = [𝐴,𝐿].

The eigenvalues of 𝐿 are the invariants. The Toda lattice 12.3 is an example, which
is related to the Kortweg-de Vries equation (12.6; a (not terribly) quick and dirty
derivation 12.8), which is famous for exhibiting solitons. Initially, the equation drew
attention for its closeness to the Fermi-Ulam-Pasta problem 12.5 (but actually, not
so close).

[28] In mechanics we consider only canonical transformations with generators 13.1.
If the transformation is infinitesimal, it is called an infinitesimal canonical trans-

465The discrete time counterpart of this statement is a theorem.
466i.e., with 𝑛 functionally independent variable pairs {𝑞𝑖, 𝑝𝑖}
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formation 13.4. Time evolution is an example, whose generator is the Hamiltonian
(13.6). Noether’s theorem may be understood with its aid (13.7).

[29] To show the invariance of Poisson brackets under canonical transformations, we
introduce Lagrange brackets 13.9. This machinery allows us to prove Liouville’s
theorem 13.15. Also we can show that Poincaré maps preserve cross-sectional areas
(13.11) for Hamiltonian systems.

[30] Note how special the Newtonian potential is (Bertrand’s theorem 14.1). It
is almost impossible to show the stability (no collision, no escape) of 𝑛(> 2)-celestial
body system theoretically (cf. 14.3).

[31] Even the restricted three body problem 14.6 is too complicated to study
analytically. Poincaré showed that there is no integrable of motion functionally in-
dependent of the Hamiltonian that is analytic in the perturbation parameter (14.8).
Thus almost all lost interest in solving the restricted problem.

[32] However, there are two stable fixed point solutions (Lagrangian points; from
the SJ co-rotating coordinate system). These points describe Trojan asteroid group
(14.14 and more with respect to the earth and the moon 14.15).

[33] Although Poincaré realized how complicated the three-body problem is (see
16.3 and the figure), Kolmogorov realized that still many invariant tori (esp highly
non-resonating orbits KAM tori examples in Lect 16) guaranteed by the Liouville-
Arnold theorem survive. There are two obstacles to prove the assertion. One is
the small denominator problem, which was overcome by Siegel (Siegel’s stability
theorem 15.12) with the so-called Diophantine approximation (15.11). The other
is to prove the actual convergence of the perturbation series. The basic idea for the
latter was furnished by Kolmogorov by ‘partial linearization’ (see 15.13; 15.25).

[34] What happens if the tori are deformed? This may be glimpsed from Poincaré-
Birkhoff’s theorem 16.8. We have elliptic and hyperbolic periodic orbits, and the
possible heteroclinic orbits produce chaos as shown in 16.9. In the chaotic region
the system can wander off far away from the original torus (especially if the system
is high-dimensional; called Arnold diffusion 16.13)

[35] The FPU system does not thermalize due to the persistence of the KAM tori
as noted in 16.12. Motion of charged particles in electromagnetic fields is an impor-
tant topic from the accelerator physics and plasma physics. A typical simple case is
illustrated in 16.4 and may be understood in terms of the standard map 16.10.
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Part II: The Zoo

Here is a flow of story for Lectures 17-22. This is a showcase of representative
examples, billiards, coupled relaxation oscillators, Lorenz system, Ruelle-Takens pic-
ture/strange attractors, interval endomorphisms + related concepts and theorems.

[1] Perhaps the simplest Hamiltonian system is a ballistically moving particle per-
fectly elastically colliding with boundaries/obstacles. Usually we discuss such sys-
tems defined on a 2-flat space. They are generally called billiards. Their overall
dynamics may be understood from the mean free time and what happens at colli-
sions (Ambrose-Kakutani representation 17.2; 17.15, mean-free time 17.16;
Abramov formula 17.17).

[2] Noteworthy facts about billiards include:
(1) Even on polygons (triangles) a lot of things are not yet understood. See 17.4.
(2) If the table is convex and if the boundary is sufficiently smooth, there is a caus-
tic, so the system cannot be fully chaotic (even if chaotic) (Lazutkin 17.6).
(3) Sinai billiards (dispersive billiards 17.7) are ‘maximally chaotic.’467 Often they
have, at least conceptually, related to geodesics on negative curvature surfaces 17.12.
These billiards are chaotic (intuitively), because information is lost upon collisions
17.18. Some details about computing information loss rate (the Kolmogorov-Sinai
entropy) is explained towards the end of Lecture 17.
(4) Bunimovich billiards (converging billiards) are also fully chaotic 17.13 [but
the shapes are rather restricted (why? cf Lazutkin above)].

[3] Mutually hindering coupled relaxation oscillators are chaotic 18.1. Methods
to analyze such systems (converting to geometrical models and maps (e.g., 18.7,
19.4) are standard techniques). We can easily understand why the system is not
predictable 18.5.

Coupled relaxation oscillators can be related to the Lorenz system 19.3; the
motivation with its relation to the Rayleigh-Benard problem (Saltzman’s equation
19.2) is explained in 19.1-; the reduction method is an example of the Galerkin
method 20.8.

467They are Bernoulli systems.
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A very similar model is the Rikitake model of the earth dynamo 19.7.

[4] Mathematical properties of the Lorenz model are highly nontrivial to study;
even to establish the existence of the nontrivial attractor is not easy 20.3. The ex-
istence of a physically observable invariant measure (introduction 29.4) is hard to
prove, although the binary Ising spin coding of dynamics on the Lorenz attractor by
Shimada 20.7 was very suggestive.

Therefore, mathematically more transparent geometrical models 20.2/tem-
plates 20.6 were studied. The latter are used to establish the existence of knotted
orbits 20.1.

The Lorenz system is not the usual chaotic system. For example, it is very likely
to lack the tracing property 20.5.

[5] The idea of the strange attractor (Definition, for example, 21.5) was intro-
duced by Ruelle and Takens 21.2 to demonstrate that scenarios different from
Landau’s leading to turbulent flows exist. They constructed an example of a flow
in 𝑇 4 and later in 𝑇 3 21.3 (but actually observing them even numerically is almost
impossible 21.4).

[6] An endomorphism of an interval was used by Lorenz to show that his result
is not due to simple numerical errors 19.4. Also May pointed out such simple sys-
tems exhibit chaotic behaviors 22.1. Li and Yorke published a paper, “Period three
implies chaos’ 22.2. The simplest example of the interval map is illustrated in detail
in 22.4 (you understand the essence of chaos if you understand this unit). Since I did
not like Li-Yorke chaos, I introduced a more natural definition 22.10 equivalent to
now popular definitions and showed necessary and sufficient conditions (e.g., “Period
̸= 2𝑛 implies chaos”) for a 𝐶0-endomorphism to exhibit chaos 22.14, 22.15.

For periodic orbits of a 𝐶0-endomorphism of an interval Sarkovski’s theorem
22.26 tells us the universal ordering of the appearance of periods.

[7] Other famous systems show up with more general discussion: baker’s trans-
formation 27.1, horseshoe 28.1, Bernoulli shift 34.3, etc.

Part III: Conceptual tools

The portion is 23-36, which is more or less conceptual: symbolic dynamics, algorith-
mic randomness, Brudno’s theorem, baker’s transformation and horseshoes, ergod-
icity, entropy, Lyapunov indices, thermodynamic formalism, etc.
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[1] What is the most natural characterization of chaotic dynamical systems (see
24.8)? My intuition is: if (observable) orbits have natural relation to (say, after an
appropriate coding) random number sequences, the system is chaotic.

To make this statement meaningful, we need precise mathematization (conceptual
analysis) of ‘randomness.’ To this end algorithmic random numbers are introduced
23.23; this requires clarification of algorithm and computation. Thus we have to
go all the way back to Church 23.6-23.14 and Turing 23.16-23.19.

[2] We use the most powerful machine UTM 23.20 and compress the number
sequence. If you cannot compress it significantly, the sequence is random 23.23.
Roughly speaking, when we discretize a system along the time axis (say, with the aid
of the Poincaré map 6.3), the needed length of the shortest program to reproduce
the code sequence divided by its duration time (the length of the sequence) is the
complexity of the trajectory.

[3] If we can make faithful mapping (homomorphism) of a dynamical system to
a shift (introduced in 22.6; more formally 26.1), we use the latter as a code se-
quence to analyze the trajectory. If we cannot information-compress it, then the
sequence is random and the trajectory is chaotic.

One problem is that there is no way to judge whether a given sequence is random
or not generally 23.24, but collectively we can say, e.g., a set consists of mostly
random numbers (for example, we can say that binary expansion of 𝜔 ∈ [0, 1] almost
surely gives a random number).

[4] Brudno’s theorem 24.4 tells us that the Kolmogorov-Sinai entropy (infor-
mally introduced in 17.18, 17.19) of a (measure-theoretical) dynamical system is
identical to the (average) complexity of the trajectories.

This is probably the best characterization of chaos, or chaotic dynamical system
at least for measure-theoretical systems (informally 1.2; Lect 29, esp 29.1). (If no
measure is introduced, we can say a dynamical system is chaotic, if its topological
entropy 32.19 is positive.)

[5] Whether a dynamical system itself is computable (e.g., can we compute the
trajectory position at time 10?) is usually not discussed, but if a theory is a part
of physics, its outcome must be compared with observations. If we demand some
quantitative agreements, we must be able to compute the numerical outcomes of a
theory. Thus the question whether the answer is numerically computable becomes
a crucial question (computable analysis Lect 25). The prediction must be given
in terms of computable reals (25.13, effective limits 25.12 of computable rational
sequences 25.11).
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A noteworthy point is that even if a function is twice differentiable, its second
derivative may not be numerically evaluated 25.21. What is its implication in physics
(say, Newton’s equation of motion)?

[6] Although a time-discrete dynamical system always has a time continuous counter-
part (constructed by suspension) whose Poincaré map can give the original system,
a discretized time-continuous system may not be able to recover the original time-
continuous system. However, for almost all natural systems we may go back and forth
freely between the two descriptions (especially for statistical behaviors). Thus, study
of symbol sequences or symbolic dynamics is quite important (as we have already
seen in [III4]). Formally they are shift dynamical systems 26.2. Its subclass
called Markov subshifts 26.6 is quite important. Shift dynamical systems may
be interpreted as 1D lattice equilibrium statistical mechanical models (entropy per
spin = the KS entropy, for example) [Thermodynamic formalism]. Consequently the
theory of Gibbs measures 36.5 becomes crucial. Since it is 1D the transfer matrix
36.6 is important, and the Perron-Frobenius theorem is a key (26.11 or 35.10).

[7] A typical use of symbolic dynamics is illustrated with the aid of baker’s trans-
formation 27.1 and Smale’s horseshoe 28.1. Horseshoes appear everywhere we
see chaotic behavior; as we can see from Poincaré’s celestial mechanical studies 16.3
homo- and heteroclinic crossings are everywhere (e.g., see 16.9).

[8] For a given dynamical system usually there are infinitely (very often uncountably
many) distinct invariant measures 29.5, 29.6 (also a summary: 36.1; For “What
is measure?” see 29.12-). For each invariant measure, that may be interpreted as
a particular stationary state of the underlying dynamical system, we can make a
measure-theoretical dynamical system 29.8.

In physics observability is of superb importance. If an invariant measure is abso-
lutely continuous 29.9, it is very likely to be observable (numerically, or in actual
experiments).

[9] Ergodicity 29.10 and mixing property 29.11 are properties of measure-
theoretical dynamical systems, so invariant measures must be explicitly specified;
topological transitivity and mixing 26.4 are topological counterparts of these con-
cepts, but when we are interested in expectation values as in statistical mechanics
relevant concepts are always measure-theoretical.

[10] Thus, when one says a system is ergodic in classical statistical mechanics, one
means the Liouville measure is ergodic; this is almost never proved for any interest-
ing systems. Although it is an irrelevant question for the foundation of statistical
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thermodynamics, even it were relevant, we must note that an invariant measure
is selected by the initial condition, so the invariant measure is subordinate to the
sampling measure of the initial conditions. Everybody knows that the choice of the
initial condition has nothing to do with the system dynamics. This clearly tells us
the meaninglessness of the ergodicity question in statistical mechanics.

[11] The most important theorems related to the system ergodicity is Birkhoff’s
ergodic theorem 30.4 and Poincaré’s recurrence theorem 30.2. Zermelo used
the latter to unravel Boltzmann’s logical weak point in his second law argument
30.3 (see also its tragicomical history 30.11). Note that Birkhoff’s theorem has no
direct relation to the ergodicity of the system (read the original theorem statements).

[12] We know already (see [III4]) the superb importance of information in under-
standing dynamical systems. An intuitive approach to the Kolmogorov-Sinai en-
tropy 31.2, Rokhlin’s formula, etc., as well as a formal definition through partitions
may be found in Lect 32 (e.g., 32.6). We use a special partition called the generator
32.10.

Around here why information is quantified by Shannon’s formula is explained
through Sanov’s theorem 31.8.

[13] Krieger’s theorem 32.12 about coding of a trajectory anticipates Brudno’s theo-
rem. Practically, the most important theorem is the Shannon-McMillan-Breiman
theorem 32.13 which states the relation between the size (measure) of the elements
of the partition and the KS entropy. The theorem applied to Bernoulli systems is
the asymptotic equipartition theorem 32.14 that justifies the principle of equal
probability.

[14] Chaotic systems exhibit orbit instability: nearby orbits separate from each
other exponentially. This extent (or the parting rate) is measured by the Lyapunov
characteristic number (LCN) or indices 33.1 (related to the Lyapunov exponent
for periodic orbits 6.5). Oseledec’s multiplicative ergodic theorem 33.2 guar-
antees their existence and initial-condition independence (if the system is ergodic);
this theorem may be most conveniently proved with the aid of Kingman’s subad-
ditive ergodic theorem 33.8.

[15] LCN is closely related to the KS entropy as expected from the Shannon-
McMillan-Breiman theorem; if the system is sufficiently smooth, then the sum of
positive LCN is equal to the KS entropy (Pesin’s theorem 33.6).

[16] Introduction of information into dynamical systems by Kolmogorov as an iso-
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morphism invariant 34.1 led to an outstanding question: is it complete? This
culminated in Sinai’s and Ornstein’s theorems 34.5: For Bernoulli systems 34.3
the KS entropy is a complete invariant.

The original proof is very constructive (and long), but recent ‘soft-proofs’ are
much shorter.

[17] We can study empirical time averages of observables as a function of the time
span 35.1, 35.2 (the large deviation approach). Extending Sanov’s theorem to
the current situation 35.6, we can derive Rokhlin’s theorem 31.2 and Pesin’s theo-
rem 33.6.

[18] Since the code sequences and spin configurations on 1-lattices are one-to-one
correspondent, Sinai introduced the thermodynamic formalism, in which entropy
per spin = the KS entropy. This is closely related to the Fredholm theory of the
Perron-Frobenius equation 36.11. Even we could introduce temperature 36.16 that
seems to be related to the Hausdorff dimension 2.25 of the support of the invariant
measure.

In terms of the Fredholm determinant an outstanding conjecture may be 36.18:
the multiplicity of eigenvalue 1 is the number of distinct physical invariant measures
36.14 in the Kolmogorov sense (= stability against adding noises).

This approach tells us 36.13 that log of the expansion rate of the unstable mani-
fold corresponds to the Hamiltonian.

[19] How can we observe strange attractors? This is answered by Takens’ em-
bedding theorem 37.1. For example, plotting (2𝑛 + 1)-vectors consisting of con-
secutively obtained 2𝑛 + 1 observed values of a scalar observable in 2𝑛 + 1-space,
generically we can reconstruct the 𝑛-strange attractor of the system. The theorem
is experimentally useful. Lect 37 is grossly incomplete: I believe a bit more restric-
tive but intuitively provable (i.e., that theoretical physicists can ‘prove’) statement
is possible, but is not yet written up.

Part IV: from Peixoto to Palis

The last part is an outline of the modern theory of dynamical systems from Peixoto
to Palis: Morse-Smale systems, Axiom A and Anosov systems and technical tools
such as shadowing and Markov partition and SRB measures. Palis’ conjecture about
what we can find in the world conclude the lectures.

[1] For 𝐶1 vector fields on 2-manifolds (differentiable), Peixoto asked a necessary
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and sufficient condition for the structural stability 38.2 of the flows. Peixoto proved
(with his wife) Peixoto’s theorem 38.3: A vector field 𝑋 ∈ 𝒳 1(𝑀) is structurally
stable if and only if: (i) there are only finitely many singularities (all hyperbolic),
(ii) the limit set consists of fixed points or hyperbolic limit cycles (iii) without any
saddle connections.

[2] The structural stability of 𝑋 satisfying these condition (that is, the sufficiency
part 38.7) is proved explicitly classifying the possible ‘patches of 𝑋 and studying all
of them one by one.

The sufficiency part 38.14 is proved through showing that any 𝑋 may be con-
verted to a field satisfying the itemized conditions above with arbitrarily small per-
turbations. If the original field 𝑋 is structurally stable, it must have had the same
features as after the perturbation.

[3] Peixoto’s theorem was complete and clean, so it ignited interests of many good
mathematicians including Smale. Smale wondered what happened on high-dimensional
manifolds 38.4. He defined the Morse-Smale system 38.5: (MS) Nonwandering
sets consist of periodic points; (MS2) they are all hyperbolic; (MS3) the stable and
unstable manifolds are always transversal. Peixoto’s theorem may be stated: on
2-mfd flows are structurally stable iff MS.

[4] Since horseshoes can live on 2-mfd, it can be in a Poincaré map of a flow on
3-mfd, and since horseshoes are structurally stable (see Fig. 28.4), already on 3-mfd
Peixoto’s theorem does not hold.

[5] From Peixoto’s theorem (and its proof) we see that hyperbolicity and transver-
sality are crucial. Also horseshoes are structurally stable and appear ‘everywhere,’
Smale introduce another class of dynamical system Axiom A 39.1: a diffeo 𝑓 sat-
isfies Axiom A iff its nonwandering set Ω = Periodic points of 𝑓 and hyperbolic.

[6] The nonwandering set of an Axiom A diffeomorphism consists of invariant pieces
(spectral decomposition theorem 39.8). Intuitively (from the figures in the units) it
is clear that we can introduce local ‘canonical’ coordinate systems consistent with
local stable and unstable manifolds 39.6. Using these coordinates, we can show
the Axiom A systems have the tracing property 39.13. Using this and the local
canonical coordinates, we can construct a Markov partition 39.17. In terms of
this partition we can map 𝑀 to a set of Markov subsequence, and map the original
dynamical system isomorphically to a Markov subshift 39.22.

[7] [This portion has not been explained.] Intuitively speaking the coding due to
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the constructed Markov partition is ‘local’ in the sense that the distance between 𝑥
and 𝑦 in the real space is monotonically reflected on the closeness of the correspond-
ing code sequences. In the original space the ‘Hamiltonian’ − log𝐿+ is a function of
the position (i.e., totally localized in space without any interaction across space) but
dynamics may be strongly correlated. After coding, a function of space spreads over
symbols, but due to the local nature of the map explained above, the new Hamilto-
nian is still short-ranged (decaying exponentially). Thus, we can use the usual 1D
thermodynamics to make the Gibbs state, which mapped back to the original space
is an absolutely continuous invariant measure, which is the Sinai-Ruelle-Bowen
(SRB) measure (mentioned in 2.29), (thanks to Birkhoff’s theorem 30.4) because
it is ergodic.

This is the standard approach, but as a theoretical physicist, I wish to go directly
from the free energy expression to the canonical distribution 36.13.

[8] If Ω = 𝑀 Axiom A systems are called Anosov systems 40.1. The cleanest
example is the linear toral diffeomorphisms (group automorphisms) 40.4 including
the famous Thom’s map (called erroneously Arnold’s cat map) 40.5. In these cases
Markov partitions are rather easy to construct 40.6.

[9] As an example of applications of dynamical systems to ‘standard physics prob-
lems’ self-similar spectrum of almost periodic 1d-lattice discrete Schrödinger problem
is discussed. Although the example uses a rather acrobatic relation between the origi-
nal and the dynamical system descriptions, the Cantor structure is exhibited without
any room for doubt by the presence of Horseshoes or related structure 41.6.

To try to understand difference equations as a diffeo problem is often useful.

[10] Initially, Smale thought Morse-Smale systems are sufficiently general dynamical
systems (generic, hopefully open dense, but at least dense) in the totality of dynam-
ical systems. This was only true on a 2-mfd as Peixoto’s theorem indicates; His own
horseshoe, that can live in a flow of 𝑇 3 and that is structurally stable, destroyed
the idea that Morse-Smale is dense or open in any dimension higher than 2. Thus.
Smale proposed Axiom A, and expected such systems are at least Ω-stable (i.e., the
nonwandering sets are stable, even if the whole system is not).

[11] However, again very soon he realized that if there is a cycle 43.7 connect-
ing the basic sets (see 39.8) of the system, Axiom A systems cannot even Ω-stable:
there is an Ω-explosion 43.8, although such examples are no more dangerous with
arbitrarily small perturbations. Thus, generic picture is intact.

[12] Then, came a surprise: Newhouse phenomenon: if there is a homoclinic or
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heteroclinic tangency 42.2, then there is an open set of dynamical systems that have
infinitely many sinks 42.5.

[13] This is shown by demonstrating two things (1) homoclinic tangency can be
stable under any small perturbations and (2) if s system has a homoclinic tangency
with arbitrary small perturbations it can be converted to a system with infinitely
many sinks,

(1) is shown by crossing of stable and unstable foliations packed close to the tan-
gent point (42.6-42.10). (2) is shown by studying how horseshoe emerges 42.13.

[14] As we will see up to 2-mfd for maps (3-mfd for flows) the Newhouse phe-
nomenon is the ‘worst.’ Then, a multidimensional extension of Smale’s Ω-explosion
example 43.8 was discovered to be made stable: the heterodimensional cycles 43.9.
This time, there is a set of systems with stable saddle connections. Thus, Axiom A
+ no cycle condition is not dense not open.

[15] A separate question is the characterization of structural stability, the Peixoto’s
original question.

Palis and Smale conjectured: Axiom A + strong transversality iff structural sta-
bility. For 𝐶1 dynamical systems (both maps and flows) this is now a theorem
(Robbin+Robinson, Mañe, Hayashi) 44.1.

This means there is a chance for physicists to encounter structurally unstable sys-
tems, since they make an open set.

[16] As to the genericity question or the question about the ‘common’ systems we
encounter in the world, Palis formulated the following conjecture (Palis conjecture)
44.3:
1. Every 𝐶𝑟-diffeo of a compact mfd 𝑀 can be 𝐶𝑟-approximated by one of the fol-
lowing:

(a) a hyperbolic system (Axiom A with strong transversality)
(b) a system with heterodimensional cycle 43.9
(c) a system exhibiting a homoclinic tangency 42.2.

2. If 𝑀 is 2D (for maps), then (a) or (c) occurs (in other words, Palis conjectured
that avoiding homoclinic bifurcation, Peixotos picture can be recovered in one di-
mension higher space).

2 has been proved for 𝑟 = 1.

[17] The YouTube movie Chaos illustrates another Palis conjecture 44.2: There
is a 𝐶𝑟-dense set of dynamical systems with finitely many attractors whose union
of basins of attraction has total probability. These attractors support physical mea-
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sures.
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