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9 Lecture 9: Singular perturbation and renormal-

ization

9.1 Regular and singular perturbations110

Let us consider an ODE whose vector field is 𝑋0 ∈ 𝒳 𝑟(𝑀). When we add a ‘small’
term 𝜀𝑋1 to 𝑋0, where 𝜀 (> 0) is a small number, and 𝑋1 ∈ 𝒳 𝑟(𝑀), the resultant
systems is said to be a perturbed system

�̇� = 𝑋 ≡ 𝑋0 + 𝜀𝑋1. (9.1)

Perturbations may be classified broadly into two classes, regular and singular per-
turbations. Pragmatically speaking, if the result as a power series in 𝜀 is convergent
(for some fixed time range independent of 𝜀), the perturbation is regular; if not, sin-
gular. If the perturbation is regular, there is no qualitative change of the dynamical
system due to perturbation. If singular, generally, the perturbed system exhibit new
features, e.g., new appearance of limit cycles.

Singular perturbations may be classified into two major classes; 𝑋0 is actually
defined on a submanifold of 𝑀 (in other words 𝑋1 requires new vector components;
this is probably the singular perturbation in the original sense) and 𝑋0 and 𝑋 have
no such submanifold structure (e.g., the resonance problems).

Since the perturbation series formally obtained by a straightforward perturbation
calculation for singular perturbation problems give (at best) asymptotic series just
as interacting field theories, it may not be so surprising that renormalization-group

110The best reference book (practical book) of singular perturbation is C. M. Bender and S.
A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, 1978).
Numerous examples and numerical confirmation of the results make this book unrivaled. It is a
book to be kept at one’s side whenever singular perturbation problems are studied. However, the
book is wonderfully devoid of any mathematical theory. To have an overview of various singular
perturbation methods within a short time, E. J. Hinch, Perturbation Methods (Cambridge UP.,
Cambridge, 1991) is recommended. J. Kevorkian and J. D. Cole Perturbation methods in applied
mathematics (Springer, 1981) was a standard reference.
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ideas can be useful.111,112

9.2 Simple example of singular perturbation
Consider

𝜖
𝑑2𝑦

𝑑𝑡2
+

𝑑𝑦

𝑑𝑡
+ 𝑦 = 0, (9.2)

where 𝜖 > 0 is a small constant. If this is zero, the solution decays exponentially; 𝐴𝑒−𝑡

is its general solution, where 𝐴 is a numerical constant. If 𝜖 > 0, for a sufficiently
small time, the second order derivative term is important (notice that however small
the mass may be, the inertial effect is crucial for a short time at the beginning of the
motion). However, after a long time, the system behavior should be similar to the
𝜖 = 0 case. Then, why don’t we take this term into account through perturbation?
This problem is easily solved by hand exactly, but let us pretend that we cannot do
so, and perform a perturbative calculation.

9.3 Naive perturbation and its difficulty
Let us expand the solution to (9.2) formally as

𝑦 = 𝑦0 + 𝜖𝑦1 + · · · (9.3)

and then introduce this into the equation (9.2). Equating the terms with the same
power of 𝜀, we obtain

𝑑𝑦0
𝑑𝑡

+ 𝑦0 = 0, (9.4)

111Key ideas are in N. D. Goldenfeld, O. Martin and Y. Oono, “Intermediate asymptotics and
renormalization group theory,” J. Scientific Comp. 4, 355 (1989); L.-Y. Chen, N. Goldenfeld, Y.
Oono, and G. Paquette, “Selection, stability and renormalization,” Physica A 204, 111 (1993). The
latter clearly recognized the relation between the reductive perturbation theory (fully exploited by
Y. Kuramoto) and RG. Thus, the crux of many singular perturbation methods is to construct the
equation of motion that governs the asymptotic solutions of perturbed systems. A paper with many
examples is the ‘CGO’: Lin-Yuan Chen, Nigel Goldenfeld, and Y. Oono, Renormalization group
and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory,
Phys Rev E 54, 376 (1996). Some misunderstandings (even by my collaborators) were corrected in
Y. Oono and Y. Shiwa, Reductive renormalization of the phase-field crystal equation, Phys. Rev.
E 86, 061138 (2012).

112In these days, applied mathematicians have organized the results of the renormalization group
method as a method of nonlinear variable transformation that requires no idea of renormalization.
I have no interest in this direction.
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𝑑𝑦1
𝑑𝑡

+ 𝑦1 = −𝑑2𝑦0
𝑑𝑡2

, (9.5)

etc. Let us write the solution to the first equation as 𝑦0 = 𝐴0𝑒
−𝑡, where 𝐴0 is an

integration constant. Then, the general solution to the second equation reads

𝑦1 = 𝐴1𝑒
−𝑡 − 𝐴0𝑡𝑒

−𝑡, (9.6)

where 𝐴1 is also an integration constant. Combining these two results, we obtain to
order 𝜖

𝑦 = 𝐴0𝑒
−𝑡 − 𝜖𝐴0𝑡𝑒

−𝑡 + 𝑂(𝜖2). (9.7)

Here, 𝐴0 + 𝜖𝐴1 is redefined as 𝐴0 (we ignore 𝜀2𝐴1 in the second term; as can be seen
from this, in the perturbative expansion we have only to find special solutions).

In this way, we can compute any higher order terms, but this is usually regarded
as a bad solution, because 𝜖 appears with 𝑡 which increases indefinitely. Thus, the
perturbation effect that should be small becomes not small, and the perturbation
method breaks down. In other words, the perturbation result may be used only for
the time span much shorter than 𝜖−1. Mathematically speaking, the convergence is
not uniform in time. The term with multiplicative 𝑡 is traditionally called a secular
term.

9.4 How we extract long time behaviors
The analogy with the standard RG problem (or critical phenomena) is as follows:
We are interested in the long term behavior 𝑡 → ∞ that is insensitive to initial de-
tails (= the long-term qualitative behaviors). In this limit secular terms diverge. If
we could remove such divergences, then naive perturbation series as obtained above
could make sense.

For the present problem to watch the behavior just in front of us (‘at present
time’) corresponds to macroscopic observations and the behaviors long ago corre-
spond to microscopic scales.113 That is, we are interested in the global behavior that
does not change very much even if the initial condition is modified. In the ordinary
renormalization problem, the microscopic-detail-sensitive responses (that diverge in
the 𝐿/ℓ → ∞ limit, where 𝐿 is our scale and ℓ the atomic scale) are separated and
renormalized into materials constants.

113For ordinary deterministic systems it is hard to obtain the initial condition from the observation
result at 𝑡 (it is asymptotically impossible in the 𝑡 → ∞ limit). For chaotic systems, however, this
is not only always possible, but the estimate of the initial condition becomes more accurate if we
observe longer time asymptotic behaviors (however, we assume there is strictly no noise). That is,
in a certain sense, chaos is the antipode of renormalizability.
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Therefore, in the present problem what must be renormalized is the sensitively
dependent behavior on the initial condition, and the place it should be pushed into
must be the integration constants (the quantities connecting what we observe now
and the initial condition); it is a natural observation, because the integration con-
stants are determined by the initial condition.

Notice that what we can renormalize is the relation between what we can ob-
serve and what we cannot. Since there is no arbitrariness in the relationships among
observable quantities, there is no room for renormalization constants for observable
relationships. It is crucial to distinguish what we can observe and what we cannot.114

9.5 Renormalization along time axis
Separate the secular divergence as (𝑡 − 𝜏) + 𝜏 , and then absorb 𝜏 by modifying
unobservable 𝐴0 (since we do not know the precise initial condition) as 𝐴(𝜏), which
is understood as an adjustable parameter to be determined so that the solution agrees
with the behavior we directly observe at present, i.e., around time 𝑡.115 After this
renormalization, the perturbation series (9.7) reads

𝑦 = 𝐴(𝜏)𝑒−𝑡 − 𝜖(𝑡− 𝜏)𝐴(𝜏)𝑒−𝑡 + 𝑂(𝜖2). (9.8)

(As can be seen from this, 𝜏 is actually 𝜏 − initial time, i.e., the time lapse from the
initial time). Such a series is called a renormalized perturbation series.

This equation makes sense only when 𝜖(𝑡 − 𝜏) is small, but it is distinct from
the original perturbation series (9.7) we started with (which is often called a ‘bare’
perturbation series), because we can choose 𝜏 to be large enough.

9.6 Renormalization-group equation
Since 𝜏 is a parameter not existing in the problem itself, 𝜕𝑦/𝜕𝜏 = 0. This is the
renormalization group equation for the current problem:

𝜕𝑦

𝜕𝜏
=

𝑑𝐴

𝑑𝜏
𝑒−𝑡 + 𝜖(𝑡− 𝜏)

𝑑𝐴

𝑑𝜏
+ 𝜖𝐴𝑒−𝑡 + · · · = 0. (9.9)

The equation tells us that 𝑑𝐴/𝑑𝜏 must be of order 𝜖 (the terms proportional to 𝑒−𝑡

must cancel each other), so we may discard the second term of (9.9) as a higher order

114Thus, the following ancient teaching becomes a crucial renormalization instruction: “When
you know a thing, recognize that you know it, and when you do not, recognize that you do not.”
Analects Book 2, 17 [A. Waley, The Analects of Confucius (Vintage, 1989)].

115If you know the ordinary field-theoretic RG, you must have recognized that log(length scale)
corresponds to time; 𝑡− 𝜏 ↔ log(𝐿/ℓ).



9. LECTURE 9: SINGULAR PERTURBATION AND RENORMALIZATION105

term. Therefore, the renormalization group equation reads, to order 𝜀,

𝑑𝐴

𝑑𝜏
= −𝜖𝐴. (9.10)

The renormalized perturbation series (9.8) is simplified if we set 𝜏 = 𝑡 (those who
question this procedure should see the note below):

𝑦 = 𝐴(𝑡)𝑒−𝑡. (9.11)

(9.10) implies that 𝐴(𝑡) obeys the following amplitude equation:

𝑑𝐴(𝑡)

𝑑𝑡
= −𝜖𝐴(𝑡). (9.12)

The equation indicates that 𝐴 changes significantly only in the long time scale of
order 𝑡 ∼ 1/𝜖; only when 𝜖𝑡 has a visible magnitude can 𝐴 change significantly.
Finally, solving (9.12), we get the following asymptotic behavior,

𝑦 = 𝐵𝑒−(1+𝜖)𝑡 + 𝑂(𝜖2), (9.13)

where 𝐵 is an adjustable parameter. This is our conclusion about the asymptotic
behavior.116 Here, notice that the form of 𝐴(𝑡) as a function of 𝑡 is universal in the
sense that it does not directly depend on the initial condition ((9.12) is determined
by the original differential equation itself).

As can be seen from the above example, the core of the renormalization group
method for the problems with secular terms is to derive equations that govern the
slow systematic motions such as (9.12). This may be interpreted as coarse-graining
or reduction of the system behavior.

9.7 More systematic approach
To perform calculation more systematically, we introduce the renormalization constant 𝑍 as
𝐴 = 𝑍𝐴0 or more conveniently as (notice that the following 𝑍 is the reciprocal of the 𝑍 in
𝐴 = 𝑍𝐴0)

𝐴 = 𝑍𝐴𝑅, (9.14)

where 𝐴 is the ‘bare’ microscopic quantity and 𝐴𝑅 the renormalized counterpart (in the
current context it is what we observe long time later). We are performing a perturbation
calculation, so we expand 𝑍 = 1 + 𝜖𝑍1 + · · ·, and the coefficient are determined order by
order to remove divergences. In the lowest order calculation as we have done, there is no
danger of making any mistake, so a simple calculation as explained above is admissible, but,
as we will see in Note 3.7.1, a formal expansion helps systematic studies.

116In terms of the two roots 𝜆± = (−1±
√
1− 4𝜖)/2𝜖 of the characteristic equation 𝜖𝑠2+𝑠+1 = 0

the analytic solution for (9.2) is 𝑦(𝑡) = 𝐴𝑒𝜆+𝑡 + 𝐵𝑒𝜆−𝑡, where for small 𝜖 𝜆+ = −1 − 𝜖 + 𝑂(𝜖2),
𝜆− = −1/𝜖+ 1 + 𝜖+𝑂(𝜖2), so (9.13) is a uniformly correct order 𝜀 solution up to time 𝜖𝑡 ∼ 1.
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9.8 Why we can set 𝑡 = 𝜏
In the above calculation putting 𝜏 = 𝑡 makes everything simple, but there are people who
feel that it is a bit too convenient and ad hoc a procedure, so let us avoid this procedure.
The result of renormalized perturbation series has the following structure:

𝑦(𝑡) = 𝑓(𝑡; 𝜖𝜏) + 𝜖(𝑡− 𝜏)𝑔(𝑡) +𝑂(𝜖2). (9.15)

Since 𝑓 is differentiable with respect to the second variable, with the aid of Taylor’s formula
we may rewrite it as

𝑦(𝑡) = 𝑓(𝑡; 𝜖𝑡) + 𝜖(𝜏 − 𝑡)𝜕2𝑓(𝑡, 𝜖𝑡) + 𝜖(𝑡− 𝜏)𝑔(𝑡) +𝑂(𝜖2), (9.16)

where 𝜕2 denotes the differentiation with respect to the second variable. The second and the
third terms must cancel each other, since the original problem does not depend on 𝜏 . That
is, the procedure to remove the secular term by setting 𝜏 = 𝑡 is always correct.

9.9 RG equation as envelope equations
To construct an envelop is a renormalization procedure.117 Suppose a family of curves {𝑥 =
𝐹 (𝑡, 𝛼)} parameterized with 𝛼 is given. Its envelop is given by

𝑥 = 𝐹 (𝑡, 𝛼),
𝜕

𝜕𝛼
𝐹 (𝑡, 𝛼) = 0. (9.17)

The second equation can be interpreted as a renormalization group equation. The envelop
curve is such a set of points among the points {𝑥, 𝑡} satisfying 𝑥 = 𝐹 (𝑡, 𝛼) that stay invariant
under change of 𝛼 to 𝛼 + 𝛿𝛼. Therefore, it must satisfy the second equation describing the
condition that the (𝑥, 𝑡) relation does not change under perturbation of 𝛼. This is exactly the
same idea as searching features that stay invariant even if microscopic details are perturbed.

However, renormalization group theory must not be misunderstood118 as a mere theory
of special envelop curves. The theory of (or the procedure to make) envelop curves is mean-
ingful only after a one-parameter family of curves is supplied. Thus, from the envelop point
of view, the most crucial point is that renormalization provides a principle to construct the
one parameter family to which the theory of envelop may be applied. Needless to say, the
key to singular perturbation is this principle and not the envelop interpretation, which may
not always be useful.

9.10 What the simple example suggests
The above simple example suggests the following:

117This was pointed out by T. Kunihiro. T. Wall seems to be the first to construct a result
that can be obtained naturally by a renormalization group method as an envelop of approximate
solutions: F. T. Wall, “Theory of random walks with limited order of non-self-intersections used
to simulate macromolecules,” J. Chem. Phys. 63, 3713 (1975); F. T. Wall and W. A. Seitz, “The
excluded volume effect for self-avoiding random walks,” J. Chem. Phys. 70, 1860 (1979). Later,
the same method (called the coherent anomaly method) was systematically and extensively used
by M. Suzuki to study critical phenomena.

118As Kunihiro did
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(1) The secular term is a divergence, and renormalization procedure removes this
divergence to give the same result singular perturbation methods give. Singular per-
turbation methods are ‘renormalized ordinary perturbations.’119

(2) The renormalization group equation is an equation governing slow phenomena.
The core of singular perturbation theories is to extract such a slow motion equation,
which can be obtained in a unified fashion with the aid of renormalization.120

9.11 Resonance due to perturbation
The second class of singular perturbation is due to divergence caused by resonance.
If a harmonic oscillator is perturbed by an external perturbation with the frequency
identical to the oscillator itself, its amplitude increases indefinitely. For a globally
stable nonlinear system, this divergence is checked sooner or later by some nonlinear
effect, so there is no genuine divergence. However, if the nonlinear term is treated as
perturbation, this effect disappears from the perturbation equations, so singularity
due to resonance shows up. Even if the average external force is zero, resonance
has a ‘secular effect.’ That is, there is an effect that accumulates with time. The
etymology of ‘secular term’ lies here.

9.12 Weakly nonlinear oscillators
A typical example illustrating that an ordinary perturbation series is plagued by
resonance is the following weak nonlinear oscillator:

𝑑2𝑦

𝑑𝑡2
+ 𝑦 = 𝜖(1 − 𝑦2)

𝑑𝑦

𝑑𝑡
, (9.18)

where 𝜖 is a small positive constant (so the nonlinearity is weak). This equation
is a famous equation called the van der Pol (1889-1959) equation. Introducing the
following expansion

𝑦 = 𝑦0 + 𝜖𝑦1 + 𝑂(𝜖2) (9.19)

into (9.18), and equating terms with the same power in 𝜀, we obtain

𝑑2𝑦0
𝑑𝑡2

+ 𝑦0 = 0, (9.20)

119As long as the lecturer has experienced, many (almost all?) problems solved by named singular
perturbation methods can be solved by renormalization method in a unified fashion without any
particular prior knowledge.

120Many (all?) famous equations governing phenomenological behaviors (e.g., the nonlinear
Schrödinger equation, the Burgers equation, the Boltzmann equation, etc.) can be derived as
renormalization group equations.
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𝑑2𝑦1
𝑑𝑡2

+ 𝑦1 = (1 − 𝑦20)
𝑑𝑦0
𝑑𝑡

, (9.21)

etc.

9.13 Appearance of secular terms
The general solution to the first equation (9.20) may be written as

𝑦0(𝑡) = 𝐴𝑒𝑖𝑡 + c.c., (9.22)

where 𝐴 is a complex constant and c.c. implies complex conjugate. Using this in the
second equation (9.21), we get

𝑑2𝑦1
𝑑𝑡2

+ 𝑦1 = 𝑖𝐴(1 − |𝐴|2)𝑒𝑖𝑡 − 𝑖𝐴3𝑒3𝑖𝑡 + c.c. (9.23)

We have only to obtain its special solution. To this end it is the easiest to use
Lagrange’s method of varying coefficients.121 Thus, we obtain

𝑦1 =
1

2
𝐴(1 − |𝐴|2)𝑡𝑒𝑖𝑡 +

𝑖

8
𝐴3𝑒3𝑖𝑡 + c.c. (9.24)

We have obtained the naive perturbation series as

𝑦(𝑡) = 𝐴𝑒𝑖𝑡 + 𝜖

[︂
1

2
𝐴(1 − |𝐴|2)𝑡𝑒𝑖𝑡 +

𝑖

8
𝐴3𝑒3𝑖𝑡

]︂
+ c.c. + 𝑂(𝜀2). (9.25)

Clearly, there is a secular term. The reason for it is that the right-hand side of the
equation for 𝑦1 contains the term proportional to 𝑒𝑖𝑡 that has the same frequency as
the harmonic oscillator expressed by the left-hand side.

121For example, a special solution 𝑢 to the second order ordinary differential equation

𝑑2𝑦

𝑑𝑥2
+ 𝑎

𝑑𝑦

𝑑𝑥
+ 𝑏𝑦 = 𝑓

may be constructed as follows in terms of the fundamental solutions of the corresponding homoge-
neous equation 𝜑1 and 𝜑2:

𝑢 = 𝐶1𝜑1 + 𝐶2𝜑2,

where the coefficients (functions) 𝐶1 and 𝐶2 are obtained by solving the following equations:

𝑑𝐶1

𝑑𝑥
= −𝑓𝜑2

𝑊
,

𝑑𝐶2

𝑑𝑥
=

𝑓𝜑1

𝑊
.

Here, 𝑊 is the Wronskian 𝑊 = 𝜑1𝜑
′
2 − 𝜑2𝜑

′
1.
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9.14 Renormalization of resonance
Again, numerous singular perturbation methods have been developed to cure secular
terms, but our procedure is exactly the same as in the simple example above 9.5.
We separate 𝑡 as (𝑡− 𝜏) + 𝜏 , and then absorb 𝜏 into the constant 𝐴 that depends on
the initial condition. The renormalized result is

𝑦(𝑡) = 𝐴(𝜏)𝑒𝑖𝑡+𝜖

[︂
1

2
𝐴(𝜏)(1 − |𝐴(𝜏)|2)(𝑡− 𝜏)𝑒𝑖𝑡 +

𝑖

8
𝐴(𝜏)3𝑒3𝑖𝑡

]︂
+ c.c.+𝑂(𝜖2). (9.26)

Since 𝑦 cannot depend on 𝜏 , the renormalization group equation 𝜕𝑦/𝜕𝜏 = 0 becomes

𝑑𝐴

𝑑𝑡
= 𝜖

1

2
𝐴(1 − |𝐴|2) + 𝑂(𝜖2), (9.27)

where 𝜏 is already replaced with 𝑡. This is an equation governing the long time
behavior of the amplitude. Setting 𝑡 = 𝜏 in (9.26), we get

𝑦(𝑡) = 𝐴(𝑡)𝑒𝑖𝑡 + 𝜖
𝑖

8
𝐴(𝑡)3𝑒3𝑖𝑡 + c.c. + 𝑂(𝜖2). (9.28)

The key result is the amplitude equation (9.27).
In this example, the case 𝜖 = 0 and the case 𝜖 > 0 are qualitatively different. For

a harmonic oscillator, any amplitude is allowed. In contrast, too large or too small
amplitudes are not stable for (9.18) as can be seen from its right-hand side term: if
(1 − 𝑦2) < 0, then it is an acceleration term that reduces the amplitude; otherwise,
it is an acceleration term injecting energy to the oscillator. Indeed, according to the
above approximate calculation, the first order solution slowly converges to a limit
cycle expressed by |𝐴| = 1. Pragmatically, much simpler calculational method called
proto-RG approach exists. See 9.15

Notice that the amplitude equation (9.27) contains 𝜖. As expected from the re-
sult of the preceding section, the renormalization group equation describes a slow
change of the amplitude (the actual motion is a busy rotation of period about 2𝜋).
As already suggested in the preceding section, the renormalization group approach
supplies a new point of view for singular perturbation: to extract such a slow motion
equation is the key point of the singular perturbation problems.

9.15 Proto RG equation
Let us consider an autonomous equation

𝐿𝑦 = 𝜀𝑁(𝑦), (9.29)
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where 𝐿 is a linear operator and 𝑁 is a nonlinear operator. We make a formal
expansion as

𝑦 = 𝑦0 + 𝜀𝑦1 + 𝜀2𝑦2 + · · · . (9.30)

We know these terms generally contain secular terms. Let us renormalize 𝑦0: accord-
ing to the spectrum of 𝐿, we may write

𝑦0 =
∑︁
𝑖

𝐴𝑖𝑒𝑖(𝑡). (9.31)

Each 𝑦𝑘 has its own secular term 𝑌𝑘: let us write 𝑦𝑘 = 𝜂𝑘 + 𝑌𝑘. Let us dissect 𝑌𝑘 as

𝑌𝑘 = 𝑡
∑︁
𝑖

𝑃
(𝑖)
𝑘 (𝐴)𝑒𝑖(𝑡) + 𝑄𝑘(𝑡, 𝐴). (9.32)

Thus, we can write 𝑦 generally as follows:

𝑦(𝑡) =
∑︁
𝑖

𝐴𝑖𝑒𝑖(𝑡) + 𝑡
∑︁
𝑖

𝑃𝑖(𝐴)𝑒𝑖(𝑡) + 𝑄(𝑡, 𝐴) + 𝑅(𝑡, 𝐴), (9.33)

where 𝑄(𝑡, 𝐴) =
∑︀

𝑘 𝜀
𝑘𝑄𝑘(𝑡, 𝐴) is the secular term containing higher powers of 𝑡, and

𝑅 is the rest.
After renormalization (9.33) reads

𝑦(𝑡, 𝜏) =
∑︁
𝑖

𝐴𝑅𝑖(𝜏)𝑒𝑖(𝑡) + 𝑅(𝑡, 𝐴𝑅(𝜏)). (9.34)

Here, note that 𝑦(𝑡, 𝑡) = 𝑦(𝑡). We have

𝐴𝑅𝑖(𝜏) = 𝐴𝐼 + 𝜏𝑃𝑖(𝐴). (9.35)

Let us introduce �̃�𝑖 by

𝐿(𝑓(𝑡)𝑒𝑖(𝑡)) = (�̃�𝑖𝑓(𝑡))𝑒𝑖. (9.36)

Then, (9.35) reads

�̃�𝑖𝐴𝑅𝑖 = �̃�𝑖𝑃𝑖(𝐴𝑅). (9.37)

This is the proto-RG equation. Notice that the RHS is just (−) the perturbation term
containing 𝑒𝑖, so we can read it off from the perturbation equation without solving it.
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9.16 Proto RG applied to van der Pol
As an illustration, let us go back to the van der Pol equation (9.18). We have 𝑒𝑖𝑡

and its conjugate as 𝑒𝑖(𝑡). Thus, (9.21) tells us

−�̃�𝑖𝑃𝑖(𝐴) = 𝑖𝐴(1 − |𝐴|2). (9.38)

From (9.36) we get ℒ𝑖 for this case is[︂
𝑑2

𝑑𝑡2
+ 1

]︂
𝑓(𝑡)𝑒𝑖𝑡 = −𝑓(𝑡)𝑒𝑖𝑡 + 2𝑖𝑒𝑖𝑡

𝑑

𝑑𝑡
𝑓(𝑡) + 𝑒𝑖𝑡

𝑑2

𝑑𝑡
𝑓(𝑡) + 𝑓(𝑡)𝑒𝑖𝑡, (9.39)

so we have

ℒ𝑖 =
𝑑2

𝑑𝑡2
+ 2𝑖

𝑑

𝑑𝑡
. (9.40)

Therefore, the protoRG equation reads[︂
𝑑2

𝑑𝑡2
+ 2𝑖

𝑑

𝑑𝑡

]︂
𝐴𝑅(𝑡) = 𝜀𝑖𝐴𝑅(1 − |𝐴𝑅|2), (9.41)

but differentiation wrt 𝑡 gives 𝑂[𝜀] quantity, so we may keep only the first derivative.
Thus, we have obtained the lowest order amplitude equation (9.27) almost for free.

9.17 How reliable is the renormalization group method?
It is easy to prove that (9.28) stays with the true solution within the error of 𝑂[𝜀] for
the time scale 1/𝜀 by a standard argument with the aid of the Grönwall inequality
3.22. However, such a result never tells us anything definite about the long-term
behavior of the system. For example, even the existence of a limit cycle cannot be
demonstrated.

A recent work by H. Chiba122 considerably clarified this problem. Apart from some
technicality, his conclusion is: “the long-time behavior of the system with small 𝜀 can
be qualitatively inferred from its renormalization group equation.” That is, roughly
speaking, the invariant manifold of the renormalization group equation is diffeomor-
phic to that of the original equation. In the resonance example above, it is trivial that
the renormalization group equation has a hyperbolic limit cycle, so we can conclude
that the original equation also has a hyperbolic limit cycle. At least an intuitive ex-
planation of the qualitative reliability of the RG results is attempted in the following.

122H. Chiba, “𝐶1 approximation of vector fields based on the renormalization group method,”
SIAM J. Appl. Dyn. Syst. 7, 895 (2008).
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9.18 Chiba’s logic123

(1) The invariant manifold of the renormalization group equation and that of the
equation governing the (truncated) renormalized perturbation series are (crudely
put; see 9.19) diffeomorphic.
(2) The differential equation governing the (truncated) renormalized perturbation
series is at least 𝐶1-close to the original differential equation.
With (2) and Fenichel’s theorem (see 9.20),
(3) The invariant manifold of the equation governing the (truncated) renormalized
perturbation series is diffeomorphic to the invariant manifold of the original equa-
tion.

We may expect that the invariant manifolds of 𝐶1-close vector fields are ‘close’ in
some sense. This is, however, a bit delicate question even under hyperbolicity if we
demand 𝐶1-closeness of the manifolds.

At least in the case of diffeomorphisms it is known that normal hyperbolicity (see
below) is a necessary and sufficient condition for an invariant manifold to persist.124

Thus, hyperbolicity of invariant manifolds should not be enough to guarantee the
qualitative similarity of the renormalization group equation to the original equation.

What Chiba demonstrated is that if the original system has a normally hyperbolic
invariant manifold, then the renormalization group equation preserves it. Although
for continuous dynamical systems, the relation between the normal hyperbolicity
and 𝐶1-structural stability seems not known, probably, we can conjecture that if the
original equation is 𝐶1-structurally stable (at least near its invariant manifold), then
its renormalization group equation preserves the invariant manifolds of the original
system.

9.19 Some technical comments as to Chiba’s theory
The relation between the solution 𝐴𝑅(𝑡) to the renormalization group equation and
the renormalized perturbation series solution 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) of the original equation
is given by (here maximally the same notations are used as in Section 3.7) the

123The explanation may oversimplify and may not do justice to the original theory, so those who
are seriously interested in the proof should read the original paper.

124M. Hirsch, C. Pugh and M. Shub, “Invariant manifolds,” Bull. Amer. Math. Soc. 76, 1015
(1970), and R. Mañé, “PERSISTENT MANIFOLDS ARE NORMALLY HYPERBOLIC,” Trans.
Amer. Math. Soc. 246, 271 (1978). These papers discuss the 𝐶1-closeness of the invariant manifolds.
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map 𝛼𝑡 defined as 𝛼𝑡(𝐴) =
∑︀

𝐴𝑖𝑒𝑖(𝑡) + 𝜂(𝑡, 𝐴) (thus 𝛼𝑡(𝐴𝑅(𝑡)) = 𝑦(𝑡, 0, 𝐴𝑅(𝑡)); see
(??)). Here, we are interested in truncated solutions to some power of 𝜀. Thus,
we make a truncated version of 𝛼𝑡 by truncating 𝜂. The differential equation gov-
erning 𝛼𝑡(𝐴𝑅(𝑡)) (both 𝛼𝑡 and 𝐴𝑅(𝑡) are truncated) is the equation 𝑉 ′ governing
the truncated renormalized perturbation series. A technical complication is that the
truncated 𝛼𝑡(𝐴𝑅(𝑡)) is generally explicitly time-dependent (𝛼𝑡(𝑥) is 𝑡-dependent), so
the invariant set of 𝑉 ′ must be considered in the ‘space-time’ (i.e., (𝑡, 𝑦)-space); what
(1) asserts is that the invariant set of the truncated original equation 𝑉 ′ considered
in the (𝑡, 𝑦)-space and the direct product of time and the invariant set of the renor-
malization group equation are diffeomorphic.

(2) should not be a surprise to physicists. The difference between the equation 𝑉 ′

governing 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) (appropriately truncated) and the original equation 𝑉 must
be bounded, since renormalized result is bounded uniformly. Thus, their closeness
should be obvious. Here, we need the closeness of the derivatives as well. The ap-
proximate solution and the exact solution are differentiable (actually 𝐶1). Therefore,
derivatives needed to calculate the derivatives of the vector fields are all bounded (if
the appropriate derivatives of formula with respect to 𝑦 exist). Thus, the equation
governing 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) (appropriately truncated) and the original equation are 𝐶1-
close.

The final step is (3); since the equation 𝑉 ′ governing 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) (appropriately
truncated) and the original equation 𝑉 are 𝐶1-close, if normal hyperbolicity (see the
next note) of the invariant manifold may be assumed, then Fenichel’s theorem con-
cludes the demonstration, if both 𝑉 and 𝑉 ′ are autonomous, but the equation 𝑉 ′ gov-
erning 𝑦(𝑡, 0, 𝐴𝑅(𝑡)) (appropriately truncated) is not generally autonomous. Chiba
overcame this problem as in (1); to consider the systems in space-time. Fenichel’s
theorem can be applied there, and the 𝐶1-closeness of the invariant sets is estab-
lished.

Thus, the invariant manifolds of the renormalization group equation and of the
original equation are diffeomorphic.

9.20 Normal hyperbolicity and Fenichel’s theorem
Let us consider a (continuous time) dynamical system defined on a subset 𝑈 of a vec-
tor space with a (compact) invariant manifold 𝑀 . 𝑀 is assumed to have its unstable
and stable manifolds, and the tangent space is decomposed as 𝑇𝑀𝑈 = 𝑇𝑀⊕𝐸𝑠⊕𝐸𝑢,
where 𝐸𝑠 is the stable bundle and 𝐸𝑢 the unstable bundle. 𝑀 is normal hyperbolic,
if the flow along the manifold 𝑀 is ‘slower’ than the flows in the stable and unsta-
ble manifolds. The illustration (Fig. 9.1) is basically the same in Fenichel’s original
paper.
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Figure 9.1: Why normal hyperbolicity is needed. The thick curve denotes the invariant manifold
and its stable manifold is illustrated. The big white arrow denotes perturbation. ‘NH’ denotes the
normal hyperbolic case, where the flow on the stable manifold is ‘faster’ (double arrows) than the
flow on the invariant manifold. That is, normal direction is ‘more’ hyperbolic. ‘nonNH’ denotes
the hyperbolic but not normally hyperbolic case. In the NH case the perturbation cannot disrupt
the smoothness of the invariant manifold near ‘x,’ but that is not the case for the nonNH case; a
cusp could be formed.

Theorem 3.8.1 [Fenichel]125 Let 𝑋 be a 𝐶𝑟-vector field (𝑟 ≥ 1) on R𝑛. Let 𝑀
be a normally hyperbolic invariant manifold of 𝑋 without boundary. Then, for any
𝐶𝑟-vector field 𝑌 in a certain 𝐶1-neighborhood of 𝑋 is a 𝑌 -invariant manifold 𝐶𝑟-
diffeomorphic to 𝑀 . This diffeomorphism is 𝐶1-close to the identity.

125N. Fenichel, “Persistence and smoothness of invariant manifolds for flows,” Indiana Univ.
Math. J., 21, 193 (1971).
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