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6 Lecture 6: Periodic orbit and limit cycle

6.1 Three types of trajectories
For real ODE �̇� = 𝑣(𝑥) with a smooth vector field, trajectories are diffeomorphic to
a point, a circle (𝑆1) or a line.

Thus a phase curve of an equation always has a simple intrinsic geometry.81

6.2 Periodic orbit (cycle)
A trajectory diffeomorphic to 𝑆1 is called a periodic orbit or a cycle.

6.3 First return map = Poincare map = monodromy transformation
For a smooth vector field, if there is a periodic orbit, we can take a transversal
hypersurface (= codimension one surface perpendicular to the orbit; often called a
Poincare surface) crossing the orbit at a point 𝑝. The orbits starting sufficiently close
to 𝑝 on this surface will return to a neighborhood of 𝑝 and are again transversal to
the surface (Fig. 6.1). Thus, we can locally define a map from the surface into itself.
This map82 is called the first return map, Poincare map or monodromy transforma-
tion.
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p

Figure 6.1: First return map

The periodic orbit corresponds to a fixed point of this map.
The first return map does not depend on the choice of the Poincare surface (all

81However, complicated knots can be formed as we will see in the Lorenz system.
82More precisely, its germ
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diffeomorphic locally).

6.4 Linearization around periodic orbit
In a tubular nbh of a periodic orbit 𝛾 of period 𝑇 we can linearize the flow as

�̇� = 𝐷𝑋(𝛾(𝑡))𝑥 = 𝐴(𝑡)𝑥, (6.1)

where 𝐴(𝑡) = 𝐷𝑋(𝛾(𝑡)) is a linear operator with period 𝑇 : 𝐴(𝑡 + 𝑇 ) = 𝐴(𝑡). Its
solution may be written as

𝑥(𝑡) = 𝐹 (𝑡)𝑥0, (6.2)

where 𝐹 (𝑡) is a linear operator that may be formally written in terms of time ordered
exponential of the integral of 𝐷𝑋(𝛾(𝑡)). 𝐹 is called a fundamental solution matrix.

𝐹 (𝑇 ) must be the linearization of the Poincare map. It is called the monodromy
matrix.

6.5 Floquet’s theorem about fundamental matrix for periodic system83

Theorem. The fundamental matrix 𝐹 (𝑡) in 6.4 maybe written as

𝐹 (𝑡) = 𝐵(𝑡)𝑒2𝜋Λ𝑡, (6.3)

where 𝐵(𝑡 + 𝑇 ) = 𝐵(𝑡) and Λ a constant matrix.
[Demo]
Notice that Φ(𝑡) = 𝐹 (𝑡 + 𝑇 ) is also a fundamental matrix:

𝑑

𝑑𝑡
Φ(𝑡) = 𝐴(𝑡 + 𝑇 )Φ(𝑡) = 𝐴(𝑡)Φ(𝑡). (6.4)

Since 𝐹 (𝑡) is invertible for all 𝑡, so is Φ(𝑡). Therefore, Φ is also a fundamental solution
matrix. Therefore, there is an invertible matrix 𝐶 such that 𝐹 (𝑡 + 𝑇 ) = 𝐹 (𝑡)𝐶 for
all 𝑡 (for example 𝐶 = 𝐹 (𝑇 ) is a possible choice). Its log is well defined, so we can
introduce Λ as

2𝜋𝑇Λ = log𝐶. (6.5)

Let us write
𝐵(𝑡) = 𝐹 (𝑡)𝑒−2𝜋Λ𝑡. (6.6)

83Its 3D version is Bloch’s theorem for solid state physics.
‘Time crystal’ is somewhat related, which is a quantum many-body phenomenon. See Zhang et al.,
Observation of a discrete time crystal, Nature 543, 217 (2017) and papers quoted in its introduction;
I do not recommend the recent Phys Today article.
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Then,

𝐵(𝑡 + 𝑇 ) = 𝐹 (𝑡 + 𝑇 )𝑒−2𝜋Λ(𝑡+𝑇 ) = 𝐹 (𝑡)𝑒2𝜋Λ𝑇 𝑒−2𝜋Λ(𝑡+𝑇 ) = 𝐹 (𝑡)𝑒−2𝜋Λ𝑡 = 𝐵(𝑡). (6.7)

Thus, 𝐵 is invertible and periodic.
The eigenvalues of 𝑒2𝜋𝑇Λ are called the Floquet multipliers governing the behav-

ior of the Poincaré map, and the eigenvalues (×𝜋) of Λ is called the characteristic
exponents.84

We can restate the theorem as
Theorem There is an invertible periodic linear transformation 𝐵(𝑡) such that 𝑥 =
𝐵(𝑡)𝑦 transforms the original equation to

�̇� = Λ𝑦. (6.8)

Thus, the real part of the eigenvalues of Λ is called a Lyapunov exponent. In
terms of Lyapunov exponents, we can discuss asymptotic stability of the periodic
orbit.

6.6 Limit cycle
A limit cycle is an isolated phase curve diffeomorphic to a circle. In other words, a
closed curve is called a limit cycle if it corresponds to an isolated fixed point of the
first return map.

The multiplicity of a limit cycle is the multiplicity of the corresponding fixed point
of its return map.

6.7 Stability of limit cycle
A periodic orbit is orbitally stable (Lyapunov stable), if any orbit staring in a certain
tubular neighborhood of the orbit stays init.

A periodic orbit is orbitally asymptotically stable. if it is orbitally stable and in
the 𝑡 → ∞ limit any orbit stating from a point in its tubular neighborhood converges
to the orbit (its fixed point of the return map is asymptotically stable).85

84In some books, any number 𝜇 such that 𝑒𝜇 becomes a Floquet multiplier is called a character-
istic exponent. In this case its imaginary part is not unique.

85⟨⟨Stability of biological clock⟩⟩ Michele Monti, David K. Lubensky, and Pieter Rein ten
Wolde, Robustness of Clocks to Input Noise, PRL 121 078101 (2018) “Here, using models of the
Kai system of cyanobacteria, we compare a limit-cycle oscillator with two hourglass models, one
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(a) (b) (d)(c)

Figure 6.2: Limit cycle on 2-space and its return maps: 𝐼 → 𝐼, where 𝐼 is an appropriate
interval. (a) Stable limit cycle, (b) Unstable limit cycle, (c) semistable limit cycle which is not
structurally stable, (d) an outcome of perturbation of (c).

As noted already, we can use Lyapunov exponents for the periodic orbit to study
its stability (6.5).

6.8 Poincare-Bendixson’s theorem
Let 𝐷 be a subset of 𝑆2.86 For a flow on 𝐷 if 𝛼 and 𝜔-limit sets of 𝑝 ∈ 𝐷 do not
contain a singular point, it is a periodic orbit.

A proof is given in 6.9-6.10. To begin with we need to know that the limit sets
of a point is a connected set.
https://www.youtube.com/watch?v=uEfB5DG9x9M&frags=pl%2Cwn illustrates the
idea of a proof of the theorem after ca 10 min.

6.9 Limit sets are connected
We consider a flow on a compact manifold 𝑀 or its subset.

Take 𝜔(𝑝) and suppose it is not connected. Limit sets are closed sets, so 𝜔(𝑝)
must consist of at least two closed sets 𝜔1 and 𝜔2. Since they are closed, they have
unoverlapping neighborhoods 𝑈1 and 𝑈2,

87 Since they are 𝜔-limit sets, there must be
a sequence of points on the orbit such that 𝑥𝑖 → 𝑥 ∈ 𝜔1 and 𝑦𝑖 → 𝑦 ∈ 𝜔2. We can

that without driving relaxes exponentially and one that does so in an oscillatory fashion. In the
limit of low input noise, all three systems are equally informative on time, yet in the regime of high
input-noise the limit-cycle oscillator is far superior.”

86or its open subset or 𝑃 2.
87We assume Hausdorff.

https://www.youtube.com/watch?v=uEfB5DG9x9M&frags=pl%2Cwn
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choose these sequences as 𝑥1 < 𝑦1 < 𝑥2 < 𝑦2 < · · · along the orbit. For sufficiently
large 𝑛 𝑥𝑛 ∈ 𝑈1 and 𝑦𝑛 ∈ 𝑈2, so we can choose 𝑧𝑛 on the orbit between 𝑥𝑛 and 𝑦𝑛
but outside 𝑈1 ∪ 𝑈2. Since 𝑀 is compact, we can choose a converging subsequence
from {𝑧𝑘}, but it converges somewhere other than 𝜔1 nor 𝜔2, so this sequence misses
𝜔(𝑝), a contradiction.

6.10 Demonstration of Poincare-Bendixson’s theorem
If 𝑝 is on a periodic orbit, there is nothing to show. Let us assume 𝑝 is not on a
periodic orbit and 𝜔(𝑝) does not contain any singular point.
(i) Let 𝑝′ ∈ 𝜔(𝑝). Then, the orbit 𝐶(𝑝′) going through 𝑝′ is a periodic orbit.
(ii) 𝐶(𝑝′) ⊂ 𝜔(𝑝). If they do not agree, since both must be closed, 𝜔(𝑝) ∖𝐶(𝑝′) is not
a closed set. Since 𝜔 must be connected, there must be a point 𝑎 ∈ 𝜔(𝑝) such that

𝑎 ∈ 𝐶(𝑝′) ∩ 𝜔(𝑝) ∖ 𝐶(𝑝′).

(iii) Take a small neighborhood 𝑈 of 𝑎. Since 𝑎 ∈ 𝐶(𝑝′) ∩ 𝜔(𝑝) ∖ 𝐶(𝑝′), there must
be 𝑏 ∈ 𝑈 ∩ (𝜔(𝑝) ∖𝐶(𝑝′)). Since 𝑎 is not a singular point, we can make a transversal
line ℓ through 𝑎 (see Fig. 6.3). Since 𝑏 ∈ 𝑈 , the vector through it must be close to
that at 𝑎, so the orbit through 𝑏 crosses ℓ at 𝑐 ∈ 𝑈 .
(iv) This 𝑐 ̸∈ 𝐶(𝑝′), since if in 𝐶(𝑝′), so is 𝑏 ∈ 𝐶(𝑝′), contradicting 𝑏 ∈ 𝜔(𝑝) ∖ 𝐶(𝑝′).
Thus, 𝑐 is recurrent and not periodic.
(v) Since 𝑎 ∈ 𝜔(𝑝), there are {𝑎𝑘} converging to 𝑎 and on ℓ in this order along the or-
bit. Take 𝑎1 and 𝑎2. Then the orbit extended beyond 𝑎2 must be in the green shaded
region in Fig. 6.3. Thus, 𝑎3 must be between 𝑎2 and 𝑎, etc. That is, lim 𝑎𝑘 = 𝑎,
implying 𝜔(𝑝) ∩ ℓ = {𝑎}, unique. This contradicts the existence of 𝑐. Therefore,
𝜔(𝑝) = 𝐶(𝑝′) = 𝐶(𝑝), a periodic orbit.

Figure 6.3: [Fig. 3.2 of Tamura, color added]
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6.11 Poincare-Bendixson’s theorem: a more general version
Let 𝑋 ∈ 𝒳 𝑟(𝑆2) be a vector field with a finite number of singularities. For any
𝑝 ∈ 𝑆2 one of the followings holds:
(1) 𝜔(𝑝) is a singularity = fixed point.
(2) 𝜔(𝑝) is a periodic orbit.
(3) 𝜔(𝑝) consists of singularities {𝑝𝑖} and regular orbits 𝛾 such that if 𝛾 ⊂ 𝜔(𝑝), then
𝛼(𝑝𝑖) and 𝜔(𝑝𝑗).

Figure 6.4: Possible 𝜔(𝑝) [Fig. 7 of DS I ]

6.12 Bendixson’s criterion for no closed orbit
On R2, consider �̇� = 𝑋(𝑥). On a simply connected region 𝐷 ⊂ R2, div𝑋 is positive
or negative semidefinite, then there is no closed orbit lying entirely in 𝐷.
[Demo]
For any closed curve 𝛾 Green’s theorem tells us∫︁

𝛾

𝑋 × (𝑑𝑥, 𝑑𝑦) ̸= 0. (6.9)

However, if 𝛾 is a solution curve, then 𝑋 must be parallel to (𝑑𝑥, 𝑑𝑦), so the integral
must vanish.

6.13 How many limit cycles are there?
There are a set of theorems on various kinds of vector fields called the finiteness
theorems. For example,
A polynomial vector field on the real plane has only a finite number of limit cycles.88

This follows from a much more general theorem:

88Theorem 1 on p106 of DS I.
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Limit cycles of an analytic vector field on a 2-surface cannot accumulate to a com-
pound cycle of the field.89.

Hilbert’s 16th problem is to prove:
The number of limit cycles of a polynomial vector field (of order 𝑛) in the real plane
is bounded by a number 𝑁 depending only on 𝑛.

This is still open even for 𝑛 = 2.

6.14 Structurally unstable examples
Although we will pay our main attention to generic cases, we must know simple
structurally unstable behaviors as illustrated in Fig. 6.5

Figure 6.5: Some structurally unstable limit sets (a) homoclinic orbits (saddle loops); (b) Double
saddle loop; (c) Homoclinic cycles; (d) periodic orbit band [Fig. 1.81 of GH]

6.15 Chemical oscillation
Belousov discovered the so-called BZ reaction (Belousov-Zhabotinsky reaction). This
reaction is basically the oxidation of malonic acid by bromic acid HBrO3. If ferroin
is used as a catalyst the oscillation may be observed as a color oscillation of the
solution between blue and red.90

Stirred: https://www.youtube.com/watch?v=eSWyxMWXw00&frags=pl%2Cwn.

89Theorem e of DS I p 106.
90Belousov quit science because he could not publish his fundamental work on this reaction

https://www.youtube.com/watch?v=eSWyxMWXw00&frags=pl%2Cwn
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Not-stirred: https://www.youtube.com/watch?v=IBa4kgXI4Cg&frags=wn

The reaction involves numerous (likely to be > 50) chemical species, but a sim-
plified model based on actual observations was proposed as the Oregonator model:91

Figure 6.6: Outline of th BZ reaction [Fig. of Winfree Sci Am 1974 p82]

Fig. 6.6 TWO SETS OF REACTIONS can account for the oscillation of ferroin from red to blue and

back to red. The concentration of Br− determines which of the two sets of reactions will dominate.

In the first set (left) the bromide and bromate both brominate malonate to form bromomalonate.

During this process ferroin (II) is red. If the concentration of the bromide drops below a threshold

level, then the second set of reactions (right) starts to dominate. The last vestige of bromide is

con sumed and the BrO3
− takes over the bromination of the malonate. Simultaneously it oxidizes

ferroin changing it from red to blue. Accumulated bromomalonate now reduces ferroin(III) back

to its red form ferrous, releasing Br− and carbon dioxide. High concentration of bromide shuts off

in any established journals. Even after this reaction became famous, he never showed up in any
meeting on the reaction. I am sympathetic to Belousov who quit science for the reason that science
(or the science community) was not scientific enough. S. E. Shnoll was interested in the reaction,
to whom Belousov gave the prescription and promised to publish his report in the annual report of
the institute he belonged to. Shnoll told his student Zhabotinski to study the mechanism.

91A = BrO3
−, B = all oxidized organic species, X = HBrO2, Y = Br−, Z = feroin(III).

https://www.youtube.com/watch?v=IBa4kgXI4Cg&frags=wn
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this reaction sequence and restarts the red stage.

A + Y −→ X + P
X + Y −→2P
A+ X −→2X + 2Z
2X −→A + P
B + Z −→(𝑓/2)Y

A further simplification is possible, because 𝑌 is slaved to other concentrations.
Eventually, we get

𝜀�̇� = 𝑥(1 − 𝑥) + 𝑓(𝑞 − 𝑥)𝑧/(𝑞 + 𝑥) = 𝑔(𝑥, 𝑧), �̇� = 𝑥− 𝑧 = ℎ(𝑥, 𝑧). (6.10)

Here 𝜀 ≃ 10−2 and 𝑞 ∼ 10−3. Let us simplify these further to

𝜀�̇� = 𝑥(1 − 𝑥) − 𝑓𝑧 = 𝑔(𝑥, 𝑧), �̇� = 𝑥− 𝑧 = ℎ(𝑥, 𝑧). (6.11)

However, this is an oversimplification, because 𝑥 < 0 must not happen. For very
small 𝑥 (𝑥 < 𝑞) the sign of the coefficient of 𝑧 must be negative. Thus, a simplified
model must be

𝜀�̇� = 𝑥(1 − 𝑥) − 𝑓(𝑥)𝑧 = 𝑔(𝑥, 𝑧), �̇� = 𝑥− 𝑧 = ℎ(𝑥, 𝑧). (6.12)

where 𝑓(𝑥) = 𝑓 − 𝑎𝛿(𝑥) (𝑎 < 0) for 𝑥 ≥ 0 to prevent 𝑥 falling to the negative world.
The fixed points are 𝑥 = 𝑧, 𝑥2 − (1 − 𝑓)𝑥 = 0. Therefore, (𝑥, 𝑧) = (0, 0) and

(1 − 𝑓, 1 − 𝑓) are fixed points. The former is a saddle:

𝑑

𝑑𝑡

(︂
𝑥
𝑧

)︂
=

(︂
1/𝜀 −𝑓/𝜀
1 −1

)︂(︂
𝑥
𝑧

)︂
. (6.13)

Around the other fixed point, we have

𝑑

𝑑𝑡

(︂
𝛿𝑥
𝛿𝑧

)︂
=

(︂
(2𝑓 − 1)/𝜀 −𝑓/𝜀

1 −1

)︂(︂
𝛿𝑥
𝛿𝑧

)︂
. (6.14)

Notice that the characteristic equation is 𝜆2 − 𝜆Tr𝐴 + det𝐴 = 0. In our case
det𝐴 = (1− 𝑓)/𝜀 and (1/𝜀)Tr𝐴 = 2𝑓 − 1− 𝜀. Assume 𝑓 < 1. Then, the eigenvalues
are complex. Therefore, (ignoring the small 𝜀) for 𝑓 = 1/2 the fixed point is a center.
If 𝑓 ∈ (1/2, 1) Tr𝐴 > 0, so orbits near the fixed point spiral out. This bifurcation is
called a Hopf bifurcation as we will discuss later.
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6.16 Nullcline approach
Do we have a limit cycle? In this case the flow is certainly confined: 𝑥 and 𝑧 mut

be positive, and cannot be too large. There is no attracting fixed point anywhere.
To see the situation closer, a good way is to draw the nullclines 𝑔 = 0 and ℎ = 0
(Fig. 6.7).

x

z

h = 0

g = 0

Figure 6.7: Nullclines and vector field for a simplified Oregonator.
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