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5 Lecture 5: Hyperbolicity

5.1 Hyperbolic fixed points
We have already introduced a singular point 𝑥 of a vector field 𝑋 ∈ 𝒳 𝑟(𝑀), where
𝑟 ≥ 1 and 𝑀 is (usually) a compact 𝑛-manifold: 𝑋(𝑥) = 0. Its derivative at 𝑥 is a
linear operator 𝐷𝑥𝑋 = 𝐴. 𝐴 is a 𝑛× 𝑛 matrix71.

If 𝐴 has eigenvalues whose real parts are nonzero (i..e, not neutral), we say 𝑥 is a
hyperbolic fixed point.

5.2 Invariant set
For a flow 𝜑𝑡 for 𝒳 𝑟(𝑀) (or map 𝑓 ∈ 𝐶𝑟(𝑀)), a subset 𝑆 ⊂ 𝑀 is an invariant set,
if for any 𝑥 ∈ 𝑆, 𝜑𝑡(𝑥) ∈ 𝑆 for all 𝑡 ∈ R (𝑓𝑛(𝑥) ∈ 𝑆 for any 𝑛 ∈ Z).

Needless to say, singular points (= fixed points) are in the invariant set of the
dynamical system.

5.3 Non-wandering set72 A nonwandering point of a dynamical system 𝒳 𝑟(𝑀)
(or map 𝑓 ∈ 𝐶𝑟(𝑀)) is a point such that for its any nbh 𝑈 there is 𝑡 such that
𝜑𝑡(𝑈) ∩ 𝑈 ̸= ∅ (𝑛 ∈ Z such that 𝑓𝑛(𝑈) ∩ 𝑈 ̸= ∅). The totality of non-wandering
points is the non-wandering set of the dynamical system.

5.4 𝜔 and 𝛼 limit sets
Long time behaviors of a dynamical system is studied by limit sets describing the
𝑡→ ±∞ behaviors of trajectories.

𝜔-limit set of 𝑥: the set of accumulation points of 𝜑𝑡(𝑥) for 𝑡 > 0. That is,
𝜔(𝑥) = {𝑦 | lim𝑖 𝜑𝑡𝑖(𝑥) = 𝑦, 𝑡𝑖 → ∞}.

𝛼-limit set of 𝑥: the set of accumulation points of 𝜑𝑡(𝑥) for 𝑡 < 0. That is,
𝛼(𝑥) = {𝑦 | lim𝑖 𝜑𝑡𝑖(𝑥) = 𝑦, 𝑡𝑖 → −∞}.

71Of course, we choose an appropriate chart, but as we have discussed at length in Section 2, we
may assume our world is a (bounded) subset of R𝑛.

72There are several different definitions. For example,
(i) 𝑥 is a non-wandering point if there is a nbh 𝑈 and 𝜏 such that 𝜑𝑡(𝑈) ∩ 𝑈 ̸= ∅ for 𝑡 > 𝜏 .
(ii) 𝑥 is a non-wandering point if for any nbh 𝑈 there is 𝑡 > 0 such that 𝜑𝑡(𝑈) ∩ 𝑈 ̸= ∅.

Notice that 𝜑−𝑡(𝜑𝑡(𝑈) ∩ 𝑈) = 𝑈 ∩ 𝜑−𝑡(𝑈), so the direction of time does not matter.
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5.5 Some properties of limit sets
The following statement should be intuitively clear.
Proposition. 𝜔 and 𝛼 limit sets of a point 𝑥 are non-wandering closed sets. [Wan-
dering sets are open.]

Proposition. If 𝑁 is a invariant set, then 𝜕𝑁 , 𝑁∘, 𝑁 and 𝑁 𝑐 are invariant. [This
is due to the continuity of 𝜑𝑡.]

Proposition. The totality of the non-wandering sets is an invariant set.
Any point in periodic orbits and fixed points is non-wandering but there are more

subtle nonwandering points. If an orbit densely fill a domain, then any point in(side)
the domain is non-wandering, although it need not be periodic nor fixed point.

Proposition. For any point in the non-empty compact invariant set, its 𝛼 and 𝜔
limit sets are non-empty. [If 𝑥0 is in a compact invariant set, then {𝜑𝑡(𝑥0)} is in a
compact set, so its accumulation points are in the same compact set.]

5.6 Attracting set
A closed invariant set 𝐴 ⊂ 𝑀 is an attracting set, if there is a nbh of 𝐴 such that
any 𝑥 ∈ 𝑈 stays in 𝑈 (i.e., 𝜑𝑡(𝑥) ∈ 𝑈 for all 𝑡 > 0) and 𝜑𝑡(𝑥) → 𝐴.

The domain of attraction of 𝐴 (basin of 𝐴) is ∪𝑇≤0𝜑𝑡(𝑈).
By reversing time 𝑡→ −𝑡 we can analogously define repelling sets.
Even in 1D an attracting set can be complicated as the following example by

Ruelle shows:

�̇� = −𝑥4 sin
𝜋

𝑥
. (5.1)

5.7 Hyperbolic linear vector field
If the spectrum of 𝐿 ∈ ℒ(R𝑛) is disjoint from the imaginary axis, 𝐿 is called hyper-
bolic. The number of eigenvalues with negative real part is called the index of 𝐿.
Hyperbolic linear fields are open dense in ℒ(R𝑛).

If 𝐿 is hyperbolic, then there are invariant subspaces 𝐸𝑠 and 𝐸𝑢 such that R𝑛 =
𝐸𝑠 ⊕ 𝐸𝑢. 𝐿|𝐸𝑢 has positive real eigenvalues and 𝐿|𝐸𝑠 has negative real eigenvalues.

Two hyperbolic linear vector fields are topologically conjugate iff their indices are
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identical.

5.8 Hyperbolicity
For a hyperbolic fixed point 𝑝 we can linearize the dynamics, and then study the
linearized system as a dynamics on R𝑛. Its eigenspace for stable eigenvalues (on the
left half space for vectors and inside the unit circle for maps) may be understood as a
tangent subspace 𝐸𝑠 of 𝑇𝑝𝑀 . We can collect trajectories tangent to the vectors that
is a locally invariant submanifold of 𝑀 . This is the local stable mfd for 𝑝 denoted

as 𝑊 𝑠
𝑈
loc(𝑝), where 𝑈 is an appropriate nbh of 𝑝 (see 5.9).

Reversing the time we can define a local unstable manifold as well.

We have seen in 4.4 that 𝒢0 the vector fields with only simple singularities) is
open-dense in 𝒳 𝑟(𝑀).73 We can show that

Theorem. The vector fields 𝒢𝜏 whose singularities are all hyperbolic is open-dense
in 𝒳 𝑟(𝑀).74

[Demo’]
We have only to show that 𝒢𝜏 is open-dense in 𝒢0, but at least intuitively this should
not be surprising.

5.9 Local stable manifold
Let 𝑝 be a fixed point of 𝑓 ∈ 𝐶𝑟(𝑀,𝑀) and 𝑈 be a neighborhood. The local

stable manifold 𝑊 loc
𝑈 (𝑝) in 𝑈 is given by

𝑊 𝑠
𝑈
loc(𝑝) = {𝑞 ∈ 𝑈 | 𝑓𝑛(𝑞) ∈ 𝑈 for ∀𝑛 ∈ N}. (5.2)

5.10 Stable manifold
The stable manifold 𝑊 𝑠(𝑝) of 𝑝 is defined as

𝑊 𝑠(𝑝) = ∪∞
𝑛=0𝑓

−𝑛
(︁
𝑊 𝑠

𝑈
loc(𝑝)

)︁
(5.3)

That is, the totality of the points eventually mapped to 𝑝 is its stable manifold.
The stable manifold of 𝑓−1 is the unstable manifold.

Remark: 𝑊 𝑠(𝑝) need not a a submanifold of 𝑀 .

73PdM p56
74PdM p58
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5.11 Stable manifold theorem
Let 𝑝 be a hyperbolic fixed point of 𝑓 ∈ 𝐶𝑟(𝑀,𝑀). Thus, 𝑇𝑝𝑀 = 𝑉 𝑠 ⊕ 𝑉 𝑢,
where 𝑉 𝑠 (resp. 𝑉 𝑢) is the vector space on which 𝑇𝑝𝑓 is contracting (resp.,
expanding). Then, there is a contraction 𝑔 : 𝑊 𝑠(𝑝) → 𝑊 𝑠(𝑝) and embedding
𝐽 : 𝑊 𝑠(𝑝) →𝑀 such that 𝐽𝑔 = 𝑓𝐽 . Furthermore, 𝑇𝑝𝐽 : 𝑇𝑝(𝑊

𝑠(𝑝)) → 𝑉 𝑠 is an
isomorphism.

5.12 Example: Renormalization group flow in the Hamiltonian space
We may interpret the renormalization group transformation as a map from a
(generalized) canonical distribution 𝜇 to another (generalized) canonical dis-
tribution 𝜇′ = ℛ𝜇. We can imagine effective Hamiltonians 𝐻 and 𝐻 ′ (it is
customary that 𝛽 is absorbed in 𝐻’s) according to

𝜇 =
1

𝑍
𝑒−𝐻 , 𝜇′ =

1

𝑍 ′ 𝑒
−𝐻′

. (5.4)

We may write 𝐻 ′ = ℛ𝐻. Therefore, we can imagine that successive applica-
tions of ℛ defines a flow (RG flow) in the space of Hamiltonians (or models or
systems). This idea is illustrated in Fig. 5.1.

In Fig. 5.1 𝐻* is a fixed point with an infinite correlation length of the RG
flow. Its stable manifold is called the critical surface. The Hamiltonian of the
actual material, say, magnet A, changes (do not forget that 𝛽 is included in
the definition of the Hamiltonian in (5.4)) as the temperature changes along
the trajectory denoted by the curve with ‘magnet A.’ It crosses the critical
surface at its critical temperature. The renormalization transformation uses
the actual microscopic Hamiltonian of magnet A at various temperatures as its
initial conditions. Three representative RG flows for magnet A are depicted.
‘a’ is slightly above the critical temperature, ‘b’ exactly at 𝑇𝑐 of magnet A (‘b′’
is the corresponding RG trajectory for magnet B, a different material; both b
and b′’ are on the critical surface), ‘c’ slightly below the critical temperature.
Do not confuse the trajectory (black curve) of the actual microscopic system
as temperature changes and the trajectories (successive arrows; RG flow) pro-
duced by the RG transformation.

If we understand 𝐻*, we understand all the universal features of the critical
behaviors of all the magnets crossing its critical surface.

http://www.youtube.com/watch?v=MxRddFrEnPc a video by Douglas Ashton.

http://www.youtube.com/watch?v=MxRddFrEnPc
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Figure 5.1: A global picture of renormalization group flow in the Hamiltonian space ℋ. The
explanation is in the text. ‘mfd’ = manifold. The thick curves emanating from 𝐻* denote the
direction that the Hamiltonians are driven away from the fixed point by renormalization.
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5.13 Hartman’s theorem
Let 𝑋 ∈ 𝒳 𝑟(𝑀) and 𝑝 ∈ 𝑀 be a hyperbolic singularity of 𝑋. Then, 𝑋 is locally
equivalent to its linearization.

Here equivalence means topological conjugacy. That is, for 𝐴 = 𝐷𝑋𝑝, there is a
continuous map ℎ such that ℎ𝑥(𝑡) = 𝑒𝐴𝑡ℎ𝑥0.

Notice that ℎ is a homeo, not a diffeo. If we wish to have a diffeomorphic con-
jugation, then there is a strong relation between the two flow velocities, but such
relations are already fixed by the two vector fields we are comparing. Thus, such ℎ
may not be chosen.75

To prove this theorem is to construct ℎ.

5.14 Strategy to show Hartman’s theorem
The linearized system has 𝐿𝑡 = 𝑒𝐴𝑡 as the evolution operator. The evolution operator
for the original system may be written as a sum of 𝐿𝑡 and the deviation from it 𝜑𝑡

(i.e., 𝜙𝑡 = 𝐿𝑡 + 𝜑𝑡).
(i) There is a homeo ℎ such that ℎ(𝐿𝜏 + 𝜑𝜏 ) = 𝐿𝜏ℎ for some (perhaps small) 𝜏 .
(ii) The following 𝐻

𝐻 =

∫︁ 𝜏

0

𝑒−𝐴𝑠ℎ𝜙𝑠𝑑𝑠 (5.5)

is actually 𝐻 = ℎ and 𝐻𝜙𝑠 = 𝐿𝑠𝐻 for ∀𝑠 ∈ R.
Let us show the last statement holds, assuming we have constructed ℎ. Its con-

struction is in 5.15-.

𝐿−𝑠𝐻𝜙𝑠 = 𝐿−𝑠

∫︁ 𝜏

0

𝐿−𝑡ℎ𝜙𝑡𝑑𝑡𝜙𝑠 =

∫︁ 𝜏

0

𝐿−𝑡−𝑠ℎ𝜙𝑡+𝑠𝑑𝑡. (5.6)

Let us introduce 𝑢 = 𝑡+ 𝑠− 𝜏 . Then,∫︁ 𝜏

0

𝐿−𝑡−𝑠ℎ𝜙𝑡+𝑠𝑑𝑡 =

∫︁ 𝑠

𝑠−𝜏

𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 (5.7)

=

∫︁ 0

𝑠−𝜏

𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 +

∫︁ 𝑠

0

𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 (5.8)

=

∫︁ 0

𝑠−𝜏

𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 +

∫︁ 𝑠

0

𝑑𝑢𝐿−𝑢𝐿−𝜏ℎ𝜙𝜏𝜙𝑢 (5.9)

75See a comment on p33-4 of Palis-de Melo.
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=

∫︁ 0

𝑠−𝜏

𝑑𝑢𝐿−𝑢−𝜏ℎ𝜙𝑢+𝜏 +

∫︁ 𝑠

0

𝑑𝑢𝐿−𝑢ℎ𝜙𝑢. (5.10)

We have used ℎ(𝐿𝜏 + 𝜑𝜏 ) = ℎ𝜙𝜏 = 𝐿𝜏ℎ. Introduce 𝑣 = 𝑢+ 𝜏 . Thus, we have shown

𝐿−𝑠𝐻𝜙𝑠 =

∫︁ 𝜏

𝑠

𝑑𝑣 𝐿−𝑣ℎ𝜙𝑣 +

∫︁ 𝑠

0

𝑑𝑢𝐿−𝑣ℎ𝜙𝑣 = 𝐻. (5.11)

This equality is true for 𝑠 = 𝜏 , so 𝐻 = ℎ.

5.15 Formal construction of ℎ
Let ℎ = 1 + 𝑢

(1 + 𝑢)(𝐿𝜏 + 𝜙𝜏 ) = 𝐿𝜏 (1 + 𝑢) (5.12)

implies
ℒ𝑢 ≡ 𝐿𝜏𝑢− 𝑢(𝐿𝜏 + 𝜑𝜏 ) = 𝜑𝜏 . (5.13)

We write
ℒ = 𝐿𝜏ℒ* with ℒ*𝑢 = 𝑢− 𝐿−1

𝜏 𝑢(𝐿𝜏 + 𝜑𝜏 ). (5.14)

Since 𝐿𝜏 is invertible and 𝐿𝜏 + 𝜙𝜏 is a homeomorphism, ℒ* is invertible. Thus, 𝑢
exists. We have shown that the formal solution is actually real. However, we have
not guaranteed that ℎ is homeomorphism. that is, invertible.

5.16 ℎ is invertible
We must show that ℎ is a homeo: can we invert 1 + 𝑢? 𝑢 must be small: we must
estimate

‖𝑢‖ ≤ ‖𝐿−1
𝜏 ‖‖(ℒ*)−1‖‖𝜑𝜏‖. (5.15)

‖𝐿−1
𝜏 ‖ is bounded. Therefore, we must show ‖(ℒ*)−1‖ is bounded and ‖𝜑𝜏‖ must be

small.

5.17 ‖(ℒ*)−1‖ is bounded
Let us write ℒ* − 1 = 𝒦. Actually 𝒦𝑢 = −𝐿−1

𝜏 𝑢(𝐿𝜏 + 𝜑𝜏 ). 𝒦 is invertible:
Notice that formally

𝒦−1𝑢 = 𝐿𝜏𝑢(𝐿𝜏 + 𝜑𝜏 )−1. (5.16)

Since 𝐿𝜏 +𝜑𝜏 is the time evolution operator for the system, it is at least locally
homeomorphic. Therefore, its inverse is well defined. Notice that 𝒦 is a linear
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map keeping the stable (𝐸𝑠) and unstable (𝐸𝑢) subspaces at 0 intact.76 𝒦.
Thanks to the hyperbolicity ‖𝒦‖ ≤ 𝑎 < 1 on the stable subspace thanks to

the ‘shrinking nature’ of 𝐿𝜏 . Also ‖𝒦−1‖ ≤ 𝑎 < 1 on the unstable subspace
thanks to the ‘expanding nature’ of 𝐿𝜏 . Then,
(a) 1 + 𝒦 is isomorphic on the stable subspace and ‖(1 + 𝒦)−1‖ ≤ 1/(1 − 𝑎).
(b) 1 +𝒦 is isomorphic on the unstable subspace and ‖(1 +𝒦)−1‖ ≤ 𝑎/(1− 𝑎).
Thus, 1 + 𝒦 = ℒ* is isomorphic and ‖(ℒ*)−1‖ ≤ max{1/(1 − 𝑎), 𝑎/(1 − 𝑎)} =
1/(1 − 𝑎).77In that case We must show (a) and (b).

(a): To compute the norm consider (1 + 𝒦)−1𝑦 = 𝑥 for 𝑦 in the tangen-
tial space of the stable manifold with ‖𝑦‖ = 1. Then 𝑦 = 𝑥 + 𝒦𝑥 implies
1 ≥ ‖𝑥‖ − ‖𝒦‖‖𝑥‖ or ‖𝑥‖ ≤ 1/(1 − ‖𝒦‖). Thus, ‖(1 + 𝒦)−1‖ ≤ 1/(1 − 𝑎).
(b): Analogously, (1+𝒦)−1𝑦 = 𝒦−1(1+𝒦−1)−1𝑦 = 𝑥 implies 𝑦 = (1+𝒦−1)𝒦𝑥.
Therefore, 1 ≥ (1 − ‖𝒦−1‖)‖𝑥‖/‖𝒦−1‖ = (1 − 𝑎)‖𝑥‖/𝑎. Thus, ‖(1 + 𝒦)−1‖ ≤
𝑎/(1 − 𝑎).

5.18 ‖𝜑𝜏‖ is small for small 𝜏
We make 𝜙𝜏 = 𝐿𝜏 + 𝜙𝜏 . We assume 𝑋 is Lipschitz with some constant 𝐾.
(3.25) in 3.23 tells us

‖𝜙𝑡(𝑥) − 𝜙𝑡(𝑦)‖ ≤ 𝑒𝐾𝑡‖𝑥− 𝑦‖. (5.17)

We must evaluate 𝜑𝑡 = 𝜙𝑡 − 𝐿𝑡. Solving the equations formally, we get

𝜙𝑡(𝑥) = 𝑥+

∫︁ 𝑡

0

𝐴𝜙𝑠(𝑥)𝑑𝑠+

∫︁ 𝑡

0

𝜓(𝜙𝑠(𝑥))𝑑𝑠, (5.18)

𝐿𝑡(𝑥) = 𝑥+

∫︁ 𝑡

0

𝐴𝐿𝑠(𝑥)𝑑𝑠, (5.19)

where we write 𝑋 = 𝐴𝑥+ 𝜓. Therefore,

𝜑𝑡(𝑥) =

∫︁ 𝑡

0

𝐴[𝜙𝑠(𝑥)−𝐿𝑠(𝑥)]𝑑𝑠+

∫︁ 𝑡

0

𝜓(𝜙𝑠(𝑥))𝑑𝑠 =

∫︁ 𝑡

0

𝐴𝜑𝑠(𝑥)𝑑𝑠+

∫︁ 𝑡

0

𝜓(𝜙𝑠(𝑥))𝑑𝑠.

(5.20)
Hence, we obtain

‖𝜑𝑡(𝑥) − 𝜑𝑡(𝑦)‖ ≤
∫︁ 𝑡

0

‖𝐴(𝜑𝑠(𝑥) − 𝜑𝑠(𝑦))‖𝑑𝑠+

∫︁ 𝑡

0

‖𝜓(𝜙𝑠(𝑥)) − 𝜓(𝜙𝑠(𝑦))‖𝑑𝑠.

(5.21)

76𝐿𝜏 + 𝜑𝜏 is a homeomorphism at least locally, so it keeps the stable and unstable manifolds
intact. Thus, their tangent spaces at the fixed point are intact. These tangent spaces are just
eigensubspaces of 𝐿𝜏 .

77Here, a convenient norm satisfying ‖𝑥+ 𝑦‖ ≤ max{‖𝑥‖, ‖𝑦‖} is chosen for 𝑥 ∈ 𝐸𝑠 and 𝑦 ∈ 𝐸𝑢

(as in most books), but the usual one is OK if you allow a constant multiple in front of 1/(1− 𝑎).
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Now we use (5.17) and the Lipschitz property of 𝜓 with sufficiently small con-
stant 𝛿 to get

‖𝜓(𝜙𝑠(𝑥)) − 𝜓(𝜙𝑠(𝑦))‖ ≤ 𝛿‖𝜙𝑠(𝑥) − 𝜙𝑠(𝑦)‖ ≤ 𝛿𝑒𝐾𝑡‖𝑥− 𝑦‖ (5.22)

Therefore, (5.21) has the Gronwall form:

‖𝜑𝑡(𝑥) − 𝜑𝑡(𝑦)‖ ≤
∫︁ 𝑡

0

𝛿𝑒𝐾𝑠‖𝑥− 𝑦‖𝑑𝑠+ ‖𝐴‖
∫︁ 𝑡

0

‖𝜑𝑠(𝑥) − 𝜑𝑠(𝑦)‖𝑑𝑠. (5.23)

Or if 𝛿 (and 𝜏) is small enough, we can choose a small positive number 𝜀 and
have

‖𝜑𝜏 (𝑥) − 𝜑𝜏 (𝑦)‖ ≤ 𝜀‖𝑥− 𝑦‖ + ‖𝐴‖
∫︁ 𝜏

0

‖𝜑𝑠(𝑥) − 𝜑𝑠(𝑦)‖𝑑𝑠. (5.24)

We use Gronwall’s inequality 3.22

‖𝜑𝜏 (𝑥) − 𝜑𝜏 (𝑦)‖ ≤ 𝜀𝑒‖𝐴‖𝜏‖𝑥− 𝑦‖ (5.25)

or
‖𝜑𝜏 (𝑥)‖ ≤ 𝜀𝑒𝜏‖𝐴‖‖𝑥‖. (5.26)

Thus, we have shown that 𝜑𝜏 is Lipschitz and sufficiently small.

5.19 What if singularity is not hyperbolic? Center manifold78

If the fixed point (at 0) we consider is not hyperbolic, then the linearization gives
us a matrix with vanishing real parts. Let us consider still the stable case. That is,
the fixed point is not stable linearly but thanks to higher order terms the point is a
𝜔-limit point of itself.

In such a case the ODE looks like

�̇� = 𝐴𝑥+ 𝑓(𝑥, 𝑦), (5.27)

�̇� = 𝐵𝑦 + 𝑔(𝑥, 𝑦), (5.28)

where 𝑥 and 𝑦 correspond to the neutral and stable subspaces: All the eigenvalues
of 𝐴 have no real part, and the eigenvalues of 𝐵 have negative real parts. 𝑓 and 𝑔
are higher order terms and vanish at the origin. If 𝑓 = 𝑔 = 0 then, 𝑥 = 0 is a stable

78A good introduction is J. Carr Applications of canter manifold theory (Springer1981).
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manifold, and 𝑦 = 0 is called a center manifold. More generally, if 𝑦 = ℎ(𝑥) is an
invariant manifold, it is called a center manifold (which is not unique, generally). At
least locally, a center manifold exists which is 𝐶2. Let us proceed formally.

We solve

�̇� = ℎ′(𝑥)�̇� ⇒, 𝐵ℎ(𝑥) + 𝑔(𝑥, ℎ) = ℎ′(𝑥)(𝐴𝑥+ 𝑓(𝑥, ℎ)). (5.29)

to determine ℎ. ℎ(0) = ℎ′(0) = 0 is the auxiliary condition.
On 𝑦 = ℎ(𝑥) the flow 𝑢 is governed by

�̇� = 𝐴𝑢+ 𝑓(𝑢, ℎ(𝑢)). (5.30)

Thus, the dynamics is reduced to the one on a lower dimensional space.
How can we obtain ℎ? Solving (5.29) is equivalent to solving the original system.

However, if we can solve (5.29) approximately, we can get a reasonable approximation
to ℎ. Set

𝑀(ℎ) = 𝐵ℎ(𝑥) + 𝑔(𝑥, ℎ) − ℎ′(𝑥)(𝐴𝑥+ 𝑓(𝑥, ℎ). (5.31)

If 𝑀(𝜑) = 𝑂[|𝑥|𝑞] (𝑞 > 1), then |ℎ− 𝜑| = 𝑂[|𝑥|𝑞].

5.20 Lyapunov stability
A time-independent solution (stationary solution, fixed point 𝑝) of an autonomous
differential equation is said to be Lyapunov stable, if all the trajectories starting from
a neighborhood of 𝑝 is defined for all 𝑡 > 0 and converges uniformly in time to 𝑝.

Thus, 𝑡 → ∞ behavior need not be a convergence to 𝑝. More formally, for any
𝜀 > 0 there is 𝛿 > 0 such that

‖𝑝− 𝑥(0)‖ < 𝛿 ⇒ ‖𝑝− 𝑥(𝑡)‖ < 𝜀 for ∀𝑡 > 0, (5.32)

we say the fixed point 𝑝 is Lyapunov stable.

5.21 Asymptotic stability
A fixed point 𝑝 is asymptotically stable, if it is Lyapunov stable and lim𝑡→∞ 𝑥(𝑡) = 𝑝
for some nbh of 𝑝.

Look at counterexamples in Fig. 5.2.

As can be seen from these examples, convergence to an equilibrium point in the
𝑡→ ∞ limit of all the solutions starting at near 𝑝 is not a sufficient condition for its
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Figure 5.2: Unstable singular points to which all the trajectories which start at nearby points
converge. [Fig. 3 of Arnold DS I ]

asymptotic stability.
Note that a center is Lyapunov stable, but not asymptotically stable. In such a

case the stability is called marginal.

5.22 Stability by linearization
If all the eigenvalues of the linearized equation at a singular point have negative real
parts then the singular point is asymptotically stable.

This is a special case of what Hartman’s theorem implies.

5.23 Lyapunov function79

A differentiable function 𝑓 is called a Lyapunov function for a singular point 𝑥0 of a
vector field 𝑋 if 𝑋𝑓 ≤ 080 and 𝑥0 is its strict local minimum in a neighborhood of 𝑥0.

5.24 Lyapunov’s stability theorem A singlarity of a differentiable vector field
for which a Lyapunov function exists is stable.

79A DS I p24; For other attractors we can define an analogous concept. See p202-3 of DS1 by
Anosov.

80Note that (𝑑/𝑑𝑡)𝑓(𝑥) = 𝑋𝑓(𝑥); We use the ‘standard notation’ 𝑋 =
∑︀

𝑋𝑖
𝜕

𝜕𝑥𝑖
.
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