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4 Lecture 4: Singularity

4.1 General study of flow of vector field
We have studied what happens in the domain where there is no singularity of 𝑋. We
can rectify local patches and then connect them maximally to obtain a unique flow.
Now, we are left with singularities.

Since 𝑋 vanishes there, the flow should be slow in the neighborhood, so we have
only to study it in some small neighborhood of the singularities. Thus, often lin-
earization of the original 𝑋 around singularities is effective.

Especially when the singularity is hyperbolic (i.e., linearized vector field may be
expressed in terms of linear operator whose spectrum is not on the imaginary axis),
the linearized system and the original system are homeomorphic (Hartman’s theo-
rem), so we may study the stability of singularities by linearization.

4.2 Simple singularity53

𝑝 ∈ 𝑀 is a simple singularity of 𝑋 ∈ 𝒳 𝑟(𝑀) if 𝐷𝑋𝑝 : 𝑇𝑝𝑀 → 𝑇𝑝𝑀 does not have
zero as an eigenvalue.54; in other words, the linearized vector field at 𝑝 may be writ-
ten as 𝐴𝑥 (𝐴 = 𝐷𝑋𝑝) and 𝐴 is non-singular.

4.3 Simple singularities are isolated
𝑀 as in 4.2. All the 𝐶𝑟-vector fields on 𝑀 sufficiently close to 𝑋 has a simple sin-
gularity near 𝑝. The position of the zero depends continuously on the vector field.55

This should be intuitively clear, since the solution to 𝑋 = 0 is locally unique, because
𝐴 is non-singular, and the solution should depend continuously on 𝑋.

Since the derivative of 𝑋 ‘does not vanish’, 𝑋 and the vector field everywhere 0
(= the zero section of 𝑇𝑀) should cross transversally.56 Thus, the isolation of simple
singularities should be obvious.

53Palis-de Melo p55-
54hyperbolicity ⇒ simplicity, but not vice versa.
55An official expression is: There exist a neighborhood 𝒩 (𝑋), a neighborhood 𝑈𝑝 of 𝑝 and a

continuous function 𝜌 : 𝒩 (𝑀) → 𝑈𝑝 such that all 𝑌 ∈ 𝒩 (𝑀) has a unique zero 𝜌(𝑌 ) ∈ 𝑈𝑝. Palis-de
Melo Proposition 3.1.

56Proposition 3.2 of Palis-de Melo.
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4.4 Vector fields with only simple singularities are structurally stable
More precisely, vector fields 𝒢0 with only simple singularities are open dense in
𝒳 𝑟(𝑀). This follows from 4.3. Hyperbolic vector fields are also open dense.

The concept for diffeo 𝑓 corresponding to simplicity is being elementary: if 1 (i.e.,
identity) is not an eigenvalue of 𝐷𝑝𝑓 , 𝑓 is elementary.

4.5 Linearization of ODE around singularity

For (̇𝑥) = 𝑋(𝑥) with a smooth 𝑋, near its singularity 𝑋 should be small, so if we
take the singularity at the origin, 𝑥 is small and 𝑥̇ is small. Thus, it is a natural idea
that the linearized equation

𝑥̇ = 𝐴𝑥 (4.1)

with

𝐴 =
𝑑𝑋

𝑑𝑥 𝑥=0
(4.2)

can tell us the local behavior of the system near the singularity.
The justification of the idea is not always possible, but if 𝐴 has no pure imaginary

eigenvalues (the so-called hyperbolic case),57 the idea goes through. Therefore, let
us study linear systems (4.1) fairly in detail first.

You must sense the logical error in the following argument physicists always use:
“Let us assume ‖𝑥‖ is small near the singularity 𝑝. Then, we may use linearization
(4.1) around 𝑝. Since all the eigenvalues have negative real parts, we may conclude
𝑝 is a stable fixed point,” but we have assumed from the start that 𝛿𝑥 doe not grow
(and small to linearize the system!).

4.6 Exponential function of linear operators
If a linear operator is bounded (that is, sup‖𝑥‖=1 ‖𝐴𝑥‖ = ‖𝐴‖ < ∞)

𝑒𝐴 =
∞∑︁
𝑛=0

𝐴𝑛

𝑛!
(4.3)

is well defined (‖𝑒𝐴‖ ≤ 𝑒‖𝐴‖).
if [𝐴,𝐵] = 0, then

𝑒𝐴𝑒𝐵 = 𝑒𝐴+𝐵 = 𝑒𝐵𝑒𝐴. (4.4)

57Such matrices are open dense. Cf,˙ 5.7.
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Using this, the general solution to (4.1) reads

𝑥(𝑡) = 𝑒𝐴𝑡𝑥0. (4.5)

To compute the matrix representation of 𝑒𝐴 it is convenient to ‘diagonalize’ 𝐴.
However, unless 𝐴 is normal (𝐴𝐴* = 𝐴*𝐴) (and also allow the use of complex eigen-
values), this is not possible. If 𝐴 is defined on a complex vector field, we can still
use the Jordan normal form (see appendix). Therefore, we use a trick called ‘com-
plexification.’

4.7 Complexification58

Since eigenvalues of real matrices are generally complex, if we wish to use linear
operator theory fully, it is convenient to consider 𝐴 as an operator on C𝑛 instead of
its original domain R𝑛. To realize this, we introduce ‘complexification’ 𝒞.

Since any vector in C𝑛 may be written as 𝑎 + 𝑖𝑏 (𝑎, 𝑏 ∈ R𝑛), we can complexify
𝐴 → 𝒞(𝐴) = 𝐴 according to

𝒞(𝐴)(𝑎 + 𝑖𝑏) = 𝐴𝑎 + 𝑖𝐴𝑏. (4.6)

Since 𝒞 is linear by definition, to preserve the algebraic (i.e., the ring) structure
of matrices, we should show the following:

𝒞(𝐴𝐵) = 𝒞(𝐴)𝒞(𝐵). (4.7)

From this we know
𝒞(𝑒𝐴) = 𝑒𝒞(𝐴). (4.8)

We can also show (recall the definition of the norm)

‖𝒞(𝐴)‖ = ‖𝐴‖. (4.9)

4.8 Complex and real diagonalization of real matrix
We know normal matrices (satisfying 𝐴𝐴* = 𝐴*𝐴) may be unitary diagonalized on

58A very kind explanation is found in M. W. Hirsch and S. Smale, Differential equations, dy-
namical systems and linear algebra (Academic Press, 1974), Chapter 4.
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the complex vector space.59 However, this is not generally possible on the real vector
space. The eigenvectors corresponding to 𝜆 and 𝜆 𝑒1 and 𝑒2 (respectively):

𝐴𝑒1 = 𝜆𝑒1, 𝐴𝑒2 = 𝜆𝑒2 (4.10)

cannot be chosen in R𝑛. Notice that we may choose 𝑒2 = 𝑒1, so we choose two real
vectors 𝑎 = 𝑒1 + 𝑒2 and 𝑏 = (𝑒1 − 𝑒2)/𝑖 among the basis.60 Diagonalization of 𝐴 is
not possible, but still ‘almost diagonalized’ real matrix may be obtained.

To make the situation crisp clear, consider a 2×2 matrix that can be diagonalized
on C2 as (︂

𝜆 0

0 𝜆

)︂
(4.11)

with the basis {𝑒1, 𝑒2}. 𝜆 = 𝛼+ 𝑖𝛽. If we use the basis {𝑎, 𝑏} the above diagonalized
matrix reads (︂

𝛼 𝛽
−𝛽 𝛼

)︂
(4.12)

Since the ‘real translation’ is straightforward, we consider everything on C𝑛.

4.9 Complexification of linear ODE
(4.1) on R𝑛 can be complexified as

𝑧̇ = 𝒞(𝐴)𝑧, (4.13)

where 𝑧 = 𝑥 + 𝑖𝑦. This consists of two real equations 𝑥̇ = 𝐴𝑥 and 𝑦̇ = 𝐴𝑦.
How to recover the real solution from the full complexified computation is ex-

plained in 4.8.61

4.10 Singularity of 2-real vector field
The singularity of 2-dimensional system may be classified according to the Jordan
normal form of 𝐴.
(1) 0 is a sink: stable fixed point.

(a)

(︂
𝜆 0
0 𝜇

)︂
(𝜆, 𝜇 < 0), (b)

(︂
𝑎 𝑏
−𝑏 𝑎

)︂
, (𝑎 < 0, 𝑏 ̸= 0), (c)

(︂
𝜆 1
0 𝜆

)︂
(𝜆 < 0).

(4.14)

59Normality is a necessary and sufficient condition for 𝐴 to be diagonalized by a unitary trans-
formation.

60If you wish to normalize them, divide them with
√
2.

61Detailed examples can be seen in Hirsch+Smale, so I will not dwell on examples.
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For case (b) the origin is called a focus. (c) is a bicritical node.62

(2) 0 is a source: in any direction it is unstable.

(d)

(︂
𝜆 0
0 𝜇

)︂
(𝜆, 𝜇 > 0), (e)

(︂
𝑎 𝑏
−𝑏 𝑎

)︂
, (𝑎 > 0, 𝑏 ̸= 0), (f)

(︂
𝜆 1
0 𝜆

)︂
(𝜆 > 0).

(4.15)
For case (e) the origin is called a focus. (f) is a bicritical node.

(3) 0 is a saddle: there is one stable direction and one unstable direction.

(g)

(︂
𝜆 0
0 𝜇

)︂
(𝜆 > 0 > 𝜇). (4.16)

These are hyperbolic cases. The phase portraits look like Fig. 4.1.

a

d

b c

e

g

f

λ<μ<0 λ=μ<0 μ<λ<0

λ>μ>0 λ=μ>0 μ>λ>0

λ>0>μ

λ<0

λ>0

a<0<b a,b<0

a,b>0 a>0>b

Figure 4.1: Linear flows on the plane

The non-hyperbolic cases cannot be classified without referring to the higher order
terms. That is, linearization does not preserve qualitative nature of the singularity.

(4) Non-hyperbolic case.

(h)

(︂
0 𝑏
−𝑏 0

)︂
(𝑏 ̸= 0), (i)

(︂
0 1
0 0

)︂
. (4.17)

62In this case the flow looks, e.g., like 𝑥 = 𝑒𝑡𝜆𝑥0 + 𝑡𝑒𝑡𝜆𝑦0, 𝑦 = 𝑒𝑡𝜆𝑦0.
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a b c

Figure 4.2: Another illustration of (hyperbolic) singularities Black ‘before’, Green, ‘after’ The
start is the critical point = fixed points. a: sink, b: source, c: saddle

Classification (see Fig. 4.3 for an example): https://media.pearsoncmg.com/aw/

ide/idefiles/media/JavaTools/lnclppan.html. This demo inevitably includes
non-simple zero cases. Watch what happens.

Figure 4.3: Classification

Appendix 1. Jordan normal form

4.11 Generalized eigenspace63

The eigenvalues are the roots of the characteristic equation

det (𝐴− 𝑥𝐼) =
∏︁
𝑘

(𝜆𝑘 − 𝑥)𝑛𝑘 = 0. (4.18)

63A very kind explanation of the Jordan normal form is found in M. W. Hirsch and S. Smale,
Differential equations, dynamical systems and linear algebra (Academic Press, 1974), Chapter 6.

https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lnclppan.html
https://media.pearsoncmg.com/aw/ide/idefiles/media/JavaTools/lnclppan.html
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Here 𝑛𝑘 is the multiplicity of 𝜆𝑘. Ker(𝐴− 𝜆𝑘𝐼) = 𝑉𝑘 is called the eigenspace of 𝜆𝑘.
64

Ker(𝐴− 𝜆𝑘𝐼)
𝑛𝑘 = 𝑉𝑘 is called the generalized eigenspace of 𝐴 belonging to 𝜆𝑘.

4.12 The fundamental decomposition theorem
Let 𝐴 be a linear operator on 𝑉 = C𝑛. Then, the dimension of the generalized eigenspace
𝑉𝑘 is 𝑛𝑘 and ⊕𝑘𝑉𝑘 = 𝑉 .

This is proved in 4.13 and 4.14.

4.13 Basic decomposition lemma
The key part of 4.12 is: for any linear 𝐴 : 𝑉 → 𝑉

𝑉 = 𝑀 ⊕𝑁, (4.19)

where 𝑀 = ∩𝑗∈N+𝐴𝑗𝑉 and 𝑁 = ∪𝑗∈N+Ker(𝐴𝑗).65

[Demo] Let 𝑀𝑗 = 𝐴𝑗𝑉 and 𝑁𝑗 = Ker(𝐴𝑗). Then,

0 = 𝑁0 ⊂ 𝑁1 ⊂ · · · ⊂ 𝑁𝑗 ⊂ 𝑁𝑗+1 ⊂ · · · ⊂ 𝑉, (4.20)

𝑉 = 𝑀0 ⊃ 𝑀1 ⊃ · · · ⊃ 𝑀𝑗 ⊃ 𝑀𝑗+1 ⊃ · · · ⊃ 0. (4.21)

Since 𝑉 is finite dimensional, there must be 𝑛,𝑚 ∈ N+ such that 𝑗 ≥ 𝑚 ⇒ 𝑀𝑗 = 𝑀𝑚 and
𝑗 ≥ 𝑛 ⇒ 𝑁𝑗 = 𝑁𝑛. Let 𝑀 = 𝑀𝑚 and 𝑁 = 𝑁𝑛. Since 𝐴𝑛𝑀 = 𝑀 , if 𝑥 ∈ 𝑀 is not
zero, then 𝐴𝑛𝑥 ̸= 0. On the other hand, 𝐴𝑛𝑁 = 0, so for any 𝑦 ∈ 𝑁 𝐴𝑛𝑦 = 0. Therefore,
𝑀 ∩𝑁 = {0}.

For any 𝑦 ∈ 𝑉 let 𝑥 ∈ 𝑀 such that 𝐴𝑚𝑥 = 𝐴𝑚𝑦; such 𝑥 exists, because 𝐴𝑚𝑦 ∈ 𝑀 and
𝐴𝑚 is reversible on 𝑀 . Then, 𝑧 = 𝑦 − 𝑥 is in 𝑁𝑚 ⊂ 𝑁 , so 𝑉 = 𝑀 ⊕𝑁 .

4.14 Concluding demo of fundamental decomposition theorem
Instead of 𝐴, let us consider 𝐴𝑘 = 𝐴 − 𝜆𝑘𝐼. Let us define 𝑀𝑘 = ∩𝑗∈N+𝐴𝑗

𝑘𝑉 and 𝑁𝑘 =

∪𝑗∈N+Ker(𝐴𝑗
𝑘). Applying the fundamental decomposition theorem to 𝐴1, we get 𝑉 = 𝑁1 ⊕

𝑀1.
Now, restricting 𝐴2 on 𝑀1 we can repeat the argument above. 𝑀1 = 𝑁2 ⊕ 𝑀 ′

2, where
𝑀 ′

2 is the orthogonal complement of 𝑁2 in 𝑀1. Thus, we would arrive at

𝑉 = ⊕𝑘𝑁𝑘. (4.22)

If we prove 𝑁𝑘 = 𝑉𝑘, we are done. Obviously 𝑉𝑘 ⊂ 𝑁𝑘. This follows from the following
Lemma. We need one definition:

𝑁 is a nilpotent operator if for some 𝑚 ∈ N+ 𝑁𝑚 = 0 (in the domain). Notice that
𝐴𝑘 = 𝐴− 𝜆𝑘𝐼 is a nilpotent operator, if restricted to 𝑁𝑘.

Lemma. Let 𝑛 be the smallest positive integer such that 𝑁𝑛𝑥 = 0 for 𝑥 ∈ 𝑉 . Then,
{𝑥,𝑁𝑥, · · · , 𝑁𝑛−1𝑥} is a basis of subspace 𝑍 = {𝑥,𝑁𝑥, . . . , 𝑁 𝑗𝑥, · · ·} (called a cyclic sub-
space) of 𝑉 .

64If ⊕𝑘𝑉𝑘 = C𝑛, we say 𝐴 is unitary diagonalizable. Notice that, generally speaking, even if you
collect all the eigenvectors, the result can only span a genuine subset of the original vector space.

65Here, the demonstration follows Hirsch-Smale, but if you know the basic theorem of linear
algebra Im(𝐴) + Ker(𝐴) = 𝑉 for any linear operator 𝐴, it is obvious.
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[Demo] Since 𝑁𝑛𝑥 = 0, obviously 𝑄 = {𝑥,𝑁𝑥, · · · , 𝑁𝑛−1𝑥} can generate 𝑍. Thus, we have
only to show that 𝑄 is linearly independent. If not,

𝑛−1∑︁
𝑘=1

𝑎𝑘𝑁
𝑘𝑥 = 0 (4.23)

has a nontrivial solution with the first nonzero coefficient 𝑎𝑗 . Operating 𝑁𝑛−𝑗−1 we have

𝑎𝑗𝑁
𝑛−1𝑥+𝑁𝑛−𝑗−1

𝑛−1∑︁
𝑘=𝑗+1

𝑎𝑘𝑁
𝑘𝑥 = 𝑎𝑗𝑁

𝑛−1𝑥 = 0. (4.24)

This contradicts the definition of 𝑛.

4.15 𝐴 on 𝑉 𝑘

Since 𝑉 is decomposed into the direct sum of 𝑉𝑘, we have handle each subspace separately.
Let us consider 𝐴 restricted on 𝑉𝑘. Let 𝑆 = 𝜆𝑘𝐼 (here 𝐼 is 𝑛𝑘-dimensional identity) and
𝑁 = 𝐴− 𝜆𝑘𝐼. 𝑁 is nilpotent, 𝐴 = 𝑁 + 𝑆 and 𝑆𝑁 = 𝑁𝑆. This decomposition is unique.

This implies that 𝑉 can be decomposed into the diagonal 𝑆 and nilpotent 𝑁 uniquely as
𝐴 = 𝑁 + 𝑆, 𝑁𝑆 = 𝑆𝑁 on 𝑉 .

The lemma in 4.14 tells us that we can choose 𝑈 = {𝑥,𝑁𝑥, · · ·𝑁𝑛𝑘−1𝑥} as the basis of
𝑉𝑘. The subspace spanned by 𝑈−1 = {𝑥,𝑁𝑥, · · ·𝑁𝑛𝑘−2𝑥} is one dimension smaller than 𝑉𝑘,
so we can choose a vector 𝑦 in 𝑉𝑘 but orthogonal to this smaller space 𝑈−1. Now 𝑁𝑦 ∈ 𝑈−1

and is orthogonal to 𝑦, Notice that 𝑁𝑦 is not in 𝑈−2 = {𝑥,𝑁𝑥, · · ·𝑁𝑛𝑘−3𝑥} but may not be
orthogonal to 𝑈−2. Thus we make 𝑦′ such that 𝑁𝑦 = 𝑁𝑦′ + 𝑧, where 𝑁𝑦′ is orthogonal to
𝑈−2 and 𝑧 ∈ 𝑈−2. Repeating this argument, we can make 𝑁 𝑗𝑞 orthogonal to 𝑁𝑘𝑞 (𝑗 ̸= 𝑘).
That is, we can choose 𝑞 such that {𝑞,𝑁𝑞, · · · , 𝑁𝑛𝑘−1𝑞} makes an orthogonal basis. With
this basis, 𝑁 is expressed as an 𝑛𝑘 × 𝑛𝑘 matrix:

𝑁 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0

· · ·
· · ·
· · ·

0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.25)

This means 𝐴 on 𝑉𝑘 has the following 𝑛𝑘 × 𝑛𝑘 matrix:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆𝑘 0 0 · · · 0 0 0
1 𝜆𝑘 0 · · · 0 0 0
0 1 𝜆𝑘 · · · 0 0 0

· · ·
· · ·
· · ·

0 0 0 · · · 1 𝜆𝑘 0
0 0 0 · · · 0 1 𝜆𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.26)
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This is called a Jordan cell.

4.16 Jordan normal form
𝐴 we have been considering can be represented as the direct sum of the Jordan cells. The
number of cells with the same eigenvalue 𝜆 is given by dim Ker(𝐴− 𝜆𝐼).

4.17 Detailed example66

Let us solve the following linear ODE 𝑥̇ = 𝑇𝑥 that reads wrt a coordinate system as
:

𝑑

𝑑𝑡

⎡⎣ 𝑥
𝑦
𝑧

⎤⎦ =

⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠⎡⎣ 𝑥
𝑦
𝑧

⎤⎦ (4.27)

Let us write

𝑇0 =

⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠ (4.28)

The solution is 𝑒𝑇0𝑡𝑥0, where 𝑥0 is the initial condition. We wish to calculate this
explicitly. Notice that⎛⎝ −1 1 −2

0 −1 4
0 0 1

⎞⎠⎛⎝ −1 0 0
1 −1 0
−2 4 1

⎞⎠ =

⎛⎝ 6 −9 −2
−9 17 4
−2 4 1

⎞⎠ (4.29)

which is not equal to⎛⎝ −1 0 0
1 −1 0
−2 4 1

⎞⎠⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠ =

⎛⎝ 1 −1 2
−1 2 −6
2 −8 21

⎞⎠ (4.30)

so we cannot diagonalize 𝑇0 with an orthogonal transformation. The eigenvalues are
obviously −1, −1 and 1. The rank of

𝑇0 + 1 =

⎛⎝ 0 1 −2
0 0 4
0 0 2

⎞⎠ (4.31)

66Hirsh-Smale Ex2 Chapter 6, but all the details are filled so that you do not need any pencil
nor paper for follow all the details.
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is 2, so its kernel is 1 dimension spanned by (1, 0, 0)𝑇 .67 Thus the eigenvalue −1 has
algebraic multiplicity 2 and geometrical multiplicity 1. Thus we need the generalized
eigenspace of −1 defined by

0 = (𝑇0 + 1)2𝑥 =

⎛⎝ 0 1 −2
0 0 4
0 0 2

⎞⎠⎛⎝ 0 1 −2
0 0 4
0 0 2

⎞⎠⎡⎣ 𝑥
𝑦
𝑧

⎤⎦ =

⎛⎝ 0 0 0
0 0 8
0 0 4

⎞⎠⎡⎣ 𝑥
𝑦
𝑧

⎤⎦
(4.32)

Therefore, the generalized eigenspace is spanned by (1, 0, 0)𝑇 and (0, 1, 0)𝑇 . The
(generalized) eigenspace of 1 is given by

0 = (𝑇0 − 1)𝑥 =

⎛⎝ −2 1 −2
0 −2 4
0 0 0

⎞⎠⎡⎣ 𝑥
𝑦
𝑧

⎤⎦ (4.33)

This implies that 𝑧 is arbitrary, say 1, and −𝑦 + 2𝑧 = 0 implies 𝑦 = 2 and 𝑥 = 0:
Thus, {|𝑎⟩, |𝑏⟩, |𝑐⟩} = {(1, 0, 0)𝑇 , (0, 1, 0)𝑇 , (0, 2, 1)𝑇} is a basis (not orthogonal!) wrt
which 𝑇 = 𝑆 +𝑁 , where 𝑆 is diagonal −1⊕−1⊕ 1 and 𝑁 is nilpotent according to
the general theorem.

Let us rewrite 𝑇 wrt to this basis (which is denoted as 𝑇1). 𝑃𝑇1 = 𝑇0𝑃 or
𝑇1 = 𝑃−1𝑇0𝑃 . We need68

⟨𝑎|𝑇 |𝑏⟩ =
∑︁
𝑥,𝑦

⟨𝑎|𝑥⟩⟨𝑥|𝑇 |𝑦⟩⟨𝑦|𝑏⟩ (4.34)

Notice that

𝑃 = ⟨𝑦|𝑏⟩ =

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠ (4.35)

Therefore, 𝑃−1 is given by (Note that det𝑃 = 1 )

𝑃−1 =

⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠ (4.36)

67Here we have used the basic theorem: for a linear map 𝑇 from a vector space V to another
vector space 𝑊 , dim 𝑉 = dim(Im 𝑇 ) + dim(Ker 𝑇 ).

68We use the bra-ket notation for the ‘mnemonic sake’; since our kets are not orthonormal, the
‘transposition’ is actually to compute the transposition of the inverse matrix. The mnemonics works
perfectly. Look at ∑︁

𝑥

⟨𝑎|𝑥⟩⟨𝑥|𝑏⟩ = 𝛿𝑎𝑏.

(𝑃 )𝑥𝑏 = ⟨𝑥|𝑏⟩, (𝑃−1)𝑎𝑥 = ⟨𝑎|𝑥⟩.
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Thus, 𝑇1 = 𝑃−1𝑇0𝑃 :

𝑇1 =

⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠𝑇0

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠ =

⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠
(4.37)

=

⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠⎛⎝ −1 1 0
0 −1 2
0 0 1

⎞⎠ =

⎛⎝ −1 1 0
0 −1 0
0 0 1

⎞⎠ (4.38)

Thus

𝑆1 =

⎛⎝ −1 0 0
0 −1 0
0 0 1

⎞⎠ , 𝑁1 =

⎛⎝ 0 1 0
0 0 0
0 0 0

⎞⎠ (4.39)

Obviously, [𝑆1, 𝑁1] = 0. This implies

𝑁0 = 𝑃𝑁1𝑃
−1 =

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠⎛⎝ 0 1 0
0 0 0
0 0 0

⎞⎠⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠ (4.40)

=

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠⎛⎝ 0 1 −2
0 0 0
0 0 0

⎞⎠ =

⎛⎝ 0 1 −2
0 0 0
0 0 0

⎞⎠ (4.41)

This tells us that

𝑇0 =

⎛⎝ −1 1 −2
0 −1 4
0 0 1

⎞⎠ = 𝑆0 + 𝑁0 =

⎛⎝ −1 0 0
0 −1 4
0 0 1

⎞⎠ +

⎛⎝ 0 1 −2
0 0 0
0 0 0

⎞⎠ (4.42)

Notice that, as the general theory tells us, [𝑆0, 𝑁0] = 0. Therefore,

𝑒𝑡𝑇0 = 𝑒𝑡𝑆0𝑒𝑡𝑁0 . (4.43)

Since 𝑁0 is nilpotent (actually 𝑁2
0 = 0:⎛⎝ 0 1 −2

0 0 0
0 0 0

⎞⎠⎛⎝ 0 1 −2
0 0 0
0 0 0

⎞⎠ =

⎛⎝ 0 0 0
0 0 0
0 0 0

⎞⎠ , (4.44)

we have

𝑒𝑡𝑁0 = 1 + 𝑡𝑁0 =

⎛⎝ 1 𝑡 −2𝑡
0 1 0
0 0 1

⎞⎠ . (4.45)
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To compute 𝑒𝑡𝑆0 , we should use

𝑒𝑡𝑆0 = 𝑃𝑒𝑡𝑆1𝑃−1 =

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠⎛⎝ 𝑒−𝑡 0 0
0 𝑒−𝑡 0
0 0 𝑒𝑡

⎞⎠⎛⎝ 1 0 0
0 1 −2
0 0 1

⎞⎠ (4.46)

=

⎛⎝ 1 0 0
0 1 2
0 0 1

⎞⎠⎛⎝ 𝑒−𝑡 0 0
0 𝑒−𝑡 −2𝑒−𝑡

0 0 𝑒𝑡

⎞⎠ =

⎛⎝ 𝑒−𝑡 0 0
0 𝑒−𝑡 −2𝑒−𝑡 + 2𝑒𝑡

0 0 𝑒𝑡

⎞⎠
(4.47)

Thus we have arrived at the final answer:

𝑒𝑡𝑇0 =

⎛⎝ 𝑒−𝑡 0 0
0 𝑒−𝑡 −2𝑒−𝑡 + 2𝑒𝑡

0 0 𝑒𝑡

⎞⎠⎛⎝ 1 𝑡 −2𝑡
0 1 0
0 0 1

⎞⎠ =

⎛⎝ 𝑒−𝑡 𝑡𝑒−𝑡 −2𝑡𝑒−𝑡

0 𝑒−𝑡 −2𝑒−𝑡 + 2𝑒𝑡

0 0 𝑒𝑡

⎞⎠
(4.48)

Appendix 2. Degree theory

The aim of this appendix is very restricted: to understand the degree of the vector field
with only simple singularities. Illustrations are only in 2-space.

4.18 Index of singularity
Take a ball 𝐵 containing only one singularity of a vector field 𝑋 : 𝐵 → R𝑛. Thus, 𝑋 has
no singularity on 𝜕𝐵 = 𝑆𝑑−1 if the vector field is 𝑑-dimensional. deg(𝑋,𝐵) is defined as the
degree of the map 𝑓 : 𝜕𝐵 → R𝑑, which is defined as follows:

deg(𝑋,𝐵) = 𝑝− 𝑞, (4.49)

where 𝑝 (resp., 𝑞) is the number of points in 𝑓−1(𝑥) (𝑥 ∈ 𝜕𝐵) with det 𝑑𝑓 being positive
(resp., negative).

4.19 Examples of simple singularities
For 2-vector fields,

The indices of a sink, a source or a center is +1.
The index of a hyperbolic saddle is −1.

See Fig. 4.4.

The map 𝑓 : 𝐷 → R2, where 𝐷 is a disk around the origin of the base space, corresponds to
the relation between the red and the black arrows. Thus, to obtain the degrees for 2-space
examples, we have only to see how many times the black arrows rotate when the base vector
rotate once (i.e., when we ground 𝜕𝐷 once).
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(a) (b)

Figure 4.4: (a) with index +1, (b) −1. Red arrows show the base space vectors.

4.20 Total sum of indices = degree
The degree of a vector field 𝑋 with simple singularities is defined as

deg(𝑋,𝐷) =
∑︁
𝑠∈𝐷

index𝑠, (4.50)

where 𝑠 is a singularity.

a
b

Figure 4.5: (a) with degree 0 (index zero), (b) index +2.

In Fig. 4.5 (a) we may interpret the zero due to merging of a sink and a saddle. Thus,
+1 + (−1) = 0 is the degree of the disk in the figure. We get the same answer even if we
follow the original definition. For (b) we could follow the rotation of the vector along a small
circle around the singular point (or from the merging of a sink and a source).

4.21 Poincaré-Hopf’s theorem on degrees
Let 𝑀 be a compact orientable manifold, and 𝑋 be a differentiable vector field on 𝑀 with
finitely many singular points. Then,

∑︁
𝑧∈𝑀

index(𝑧) = 𝜒(𝑀), (4.51)
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where the sum is over all the singular points on 𝑀 , and 𝜒(𝑀) is the Euler index69 That is,
the degree of 𝒳 𝑟(𝑀) is identical to the Euler index of 𝑀 .
[Demo]
If we accept that the LHS of (4.51) does not depend on 𝑋 on 𝑀 , then we can compute it
with a convenient 𝑋. For a polyhedron assign a sink to a vertex, a source to a surface, and
saddle to an edge (Fig. 4.6).

Figure 4.6: Demo of Poincare-Hopf theorem

We can construct 𝑋. For this obviously (4.51) holds.

69or Euler characteristics defined by

𝜒(𝑀) =

∞∑︁
𝑖=0

(−1)𝑖𝑏𝑖,

where 𝑏𝑖 is the 𝑖th Betti number. For a CW complex,

𝜒(𝑀) =

∞∑︁
𝑖=0

(−1)𝑖𝑛𝑖,

where 𝑛𝑖 is the number of 𝑖-simplexes in 𝑀 . In particular, we get 𝜒(𝑀) = 𝑉 − 𝐸 + 𝐹 + · · · +
(−1)𝑛𝑋𝑛 + · · · = 1, where 𝑉 : number of vertices, 𝐸: number of edges, 𝐹 : number of faces, 𝐵:
number of 3-simplexes. In 3-space of a polyhedron (surface) this is always 2. More generally,
𝜒− 2− 2𝑔, where 𝑔 is the genus of the manifold (the number of handles attached to the sphere or
the number of holes; Solid torus has 𝑔 = 1.
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4.22 Degree-theoretical constraints on singularities
Poincare-Hopf’s theorem imposes a strong constraints on the existence of various singulari-
ties of the vector field on a manifold. For example, if the vector field is on 𝑆2, it is impossible
to have a single source or saddle. If there is a saddle, there must be at least three other
sources/sinks. However, on 𝑇 2 a single source-saddle pair can live happily.

In Fig. 4.5 (a) can be on 𝑇 2 without any other singularity, and (b) on 𝑆2. See Fig. 5.1.
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