43 Heterodimensional cycles

43.1 Preliminary definitions⁴⁵⁰

The limit set L(f) of f is

$$L(f) = \overline{\bigcup_{x \in M} (\alpha(x) \cap \omega(x))}$$
(43.1)

A point x is nonwandering if for every neighbourhood U of x there exists $m, m \neq 0$, such that $f^m(U) \cap U \neq \emptyset$. These points form the nonwandering set $\Omega(f)$. Obviously, $L(f) \subset \Omega(f)$.⁴⁵¹

43.2 Axiom A related definitions and terminology

A diffeomorphism f satisfies Axiom A if $\Omega(f) = \overline{\operatorname{Per}(f)}$, and $\Omega(f)$ is hyperbolic. In this case $L(f) = \Omega(f)$.

There is a spectral decomposition: $\Omega(f) = \bigcup \Omega_i$, where Ω_i is *f*-invariant, transitive (= with a dense orbit), local maximal (i.e., there is a nbh U_i of Ω_i such that $\Omega_i = \bigcap_{\mathbb{Z}} f^n(U_i)$) and compact. Moreover $\Omega_i = \overline{H(P)}$, where H(p) is the transversal homoclinic points related to P (i.e., $H(P) = W^s(P) \cap W^u(P)$), where $P \in \Omega_i \cap \text{Per}(f)$. Ω_i is called a basic set, and U_i isolating nbh of Ω_i .

The index of Ω_i is defined by dim $W^s(P)$, where P is any periodic point in Ω_i . The index does not depend on the choice of P in Ω_i .

43.3 Local stability due to hyperbolicity

Hyperbolicity implies local stability: given a basic set Ω and its isolating neighbourhood U for any $g \ C^r$ -close to $f, r > 1, \ \Omega(g)$ is hyperbolic and there is an homeomorphism $h: \Omega \to \Omega(g)$. Ω_g is called continuation of Ω .

'43.4 Ω -stability

f is said to be $\Omega\mbox{-stable}$ if it has a conjugate continuation in its sufficiently small C^r nbh.

⁴⁵⁰Lan Wen *Differentiable Dynamical Systems* An Introduction to Structural Stability and Hyperbolicity.

⁴⁵¹Recall Bowen's non SBR counterexample.

43.5 We cannot ignore behaviors off Ω^{452}

This is because we must worry about the mutual relations among basic sets. A simple examples are^{453}

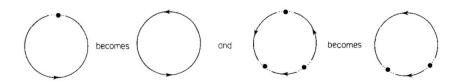


Figure 43.1: Simple Ω -explosion [Irwin Fig. 7.32]

Inn Fig. 43.1 Left, there is a one-way zero (non-hyperbolic zero). It is a the Ω set of the system. With a small perturbation we can remove it. The outcome is that the whole S^1 is Ω now, and example of the Ω -explosion. 43.1 Right, three fixed points reduce to two ('implosion').

43.6 Global explosion of Axiom A systems

Look at Smale's example (a diffeo in S^2): Its Ω consists of six hyperbolic fixed points Fig. 43.2.

We must see that the saddle connections are not in Ω , they are wandering. For example, take p. Its nbh eventually goes to sinks c or d.

Now, look at colored arrows in the figure. If we make a small surgery to cross $W^u(x)$ and $W^s(y)$, then p becomes non-wandering. Thus, $W^u(x) \cap W^s(y)$ is now non-wandering. However, $W^s(x) \cap W^u(y)$ is still wandering. Now, the Ω after perturbation consists of the previous fixed points + the new saddle connection.

43.7 Cycles Let M be a closed C^{∞} -manifold and consider $\mathcal{X}^{r}(M)$ $(r \geq 1)$. We say that $X, Y \in \mathcal{X}^{r}(M)$ are Ω -conjugate if there is a homeomorphism $h : \Omega(X) \to \Omega(Y)$ sending trajectories of X into those of Y. $X \in \mathcal{X}(M)$ is Ω -stable if for any $\varepsilon > 0$ there is a neighborhood N(X) in $\mathcal{X}^{r}(M)$ such that if $Y \in N(X)$ then X is Ω -conjugate to

⁴⁵²Proc. Symp. Pure Math. Vol. 14, Amer. Math. Soc: Rhode Island, 1970.

⁴⁵³M C Irwin, Smooth Dynamical Systems (World Scientific, 2001) p185

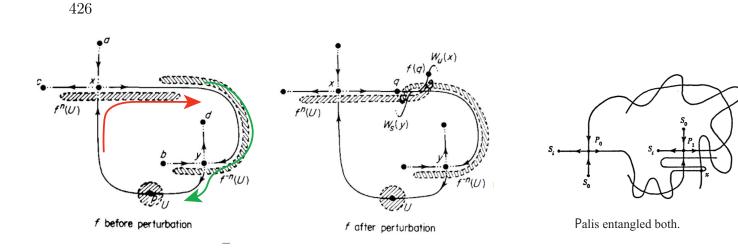


Figure 43.2: A is a global source and c a global sink. [7.35] Rightmost from Palis PAMS paper

Y by a homeomorphism which is ε -C⁰ close to the identity map in $\Omega(X)$.

For an Axiom A system for each basic set we can define its stable and unstable manifolds.

There is an *n*-cycle on Ω , if there is a sequence of basic sets $\Omega_0, \dots, \Omega_{n-1}$ with $W_0 = W_n, \ \Omega_i \neq \Omega_j$ if $i \neq j$ and

$$W^{s}(\Omega_{i}) \cap W^{u}(\Omega_{i+1}) = \emptyset.$$
(43.2)

A cycle is called equidimensional if index Ω_i making the cycle are identical and heterodimensional otherwise.

43.8 Ω -explosion⁴⁵⁴

For Smale's Axiom A' system:

(i) Ω is the disjoint union of the set of critical points F and the closure Λ of its periodic orbits,

(ii) each element of F is hyperbolic and Λ is a hyperbolic set.

Theorem: If X satisfies Axiom A' and there is a cycle on Ω , then X is not Ω -stable.

⁴⁵⁴J. Palis, Ω-explosion, Proc AMS 27 85 (1971). The diffeo version is J. Palis, A note on Ωstability, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc, Providence, R. I., 1970. In this paper Palis gives a sufficient condition for Ω-stability as well for special cases: If Ω is the finite union of hyperbolic critical points and closed orbits and has the no-cycle property, then X is Ω-stable.

43. HETERODIMENSIONAL CYCLES

That is, no-cycle condition is a necessary condition for Ω -stability.

Notice that so far we discussed the existence of explosive or dangerous cases

43.9 Stable non-Axiom A cycles⁴⁵⁵

Let M be a 3-mfd.

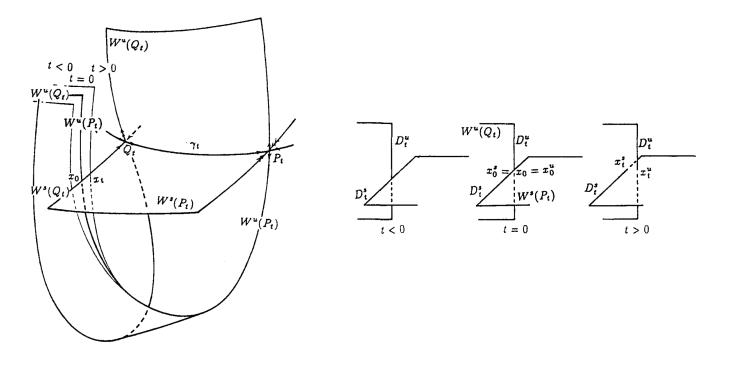


Figure 43.3: [Diaz Fig.1]

(I) Connected interesection

- (1) $\dim W^s(P_0)$) = 2, $\dim W^u(Q_0)$ = 1.
- (2) There is an ₀ invariant curve $\gamma_0 \subset W^s(P_0) = 2 \overline{\cap} W^u(Q_0)$.

From now on $0 \rightarrow t$ indicates continuations.

(II) Creation and generic unfolding of the cycle

There are C^1 curves: $x_t \in W^s(Q_t)$ and $x_t \in W^s(Q_t)$. (III) Strong foliation condition.

⁴⁵⁵L J Diaz, Ribust nonhyperbolic dynamics and heterodimensional cycles, Ergod. Th. & Dynam. Sys. 15 291 (1995).

THEOREM 1. Let f_t satisfy the above conditions. Then for $t \in [0, t_0]$

(1) $\gamma_t \subset L(f_t)$, so $L(f_t)$ is not hyperbolic, (2) f_t is Ω -stable. That is, f_t can be C^{∞} -approximated by a diffeo exhibiting a heterodimensional cycle.

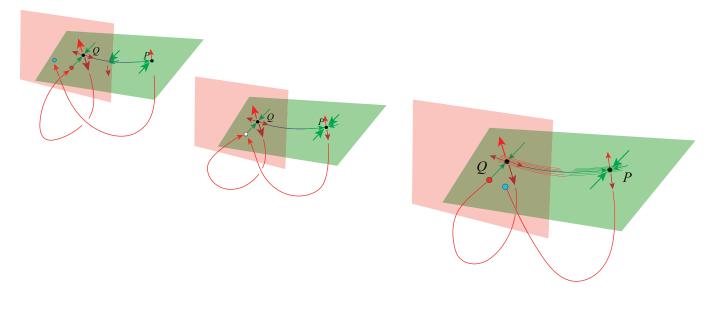


Figure 43.4: [Diaz Fig.1]