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42 Newhouse phenomenon

42.1 Homoclinic point in modified linear map
The following an ex[licit example of a homoclinic point found in Palis-de Melo text-
book.

Consider 𝜙(𝑥, 𝑦) = (2𝑥, 𝑦/2) and Ψ(𝑥, 𝑦) = (𝑥− 𝑓(𝑥 + 𝑦), 𝑦 + 𝑓(𝑥 + 𝑦)), where 𝑓
is continuous 𝑓(𝑥) = 0 for 𝑥 < 1 and 𝑓(2) > 2. Then Ψ ∘ 𝜙 has a homoclinic point
on the 𝑦-axis between 𝑦 = 1 and 2.

42.2 Homoclinic bifurcation
If a horseshoe map is slid as in Fig. 42.1, a non-transversal homoclinic orbit is formed.
(b) has a homoclinic tangency.

Figure 42.1: Homoclinic bifurcation ([Fig. 1.6 of Palis de Melo]

If we take a small rectangle 𝑅 near 𝑝, then 𝑅 has invariant foliations, and cross-
ing points of these foliations make an invariant set that is a Cantor set. Poincare
knew that transversal homoclinic points are accumulation points of other homoclinic
points. Birkhoff showed that a transversal homoclinic point is an accumulation point
of periodic orbits.

42.3 Cascade of homoclinic tangency
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Figure 42.2: Homoclinic tangency [Palis-Takens Fig. 3.1]

Let 𝜙𝜇 be a one-=parameter family of diffeomorphisms with a quadratic homoclinic
tangency 𝑞 at 𝜇 = 0 associated to te fixed (periodic) saddle 𝑝 and suppose it unfolds
generically. Then, there is a sequence 𝜇𝑛 → 0 such that 𝜙𝜇𝑛 has homoclinic tangen-
cies 𝑞𝜇𝑛 → 𝑞 associated to 𝑝𝜇𝑛 → 𝑝.

42.4 Measure of homoclinic bifurcation set
We are interested in the measure of the set of 𝜇 in which 𝜙𝜇 has a hyperbolic limit
set. If the sum of the Hausdorff dimensions of 𝑊 𝑠 and 𝑊 𝑢 is less than 1, we can say
this set has a relatively large Lebesgue measure.

Let 𝐵 be the set of 𝜇 such that 𝜙𝜇 is at a bifurcation point (homoclinic tangency).
Then,445

lim
𝜇0→𝜇

𝑚(𝐵 ∩ [0, 𝜇0])

𝜇0

= 0. (42.1)

42.5 Newhouse phenomenon
Newhouse proves:
Let 𝜙 ∈ Diff2(𝑀), 𝑀 a 2-manifold, be with a saddle point 𝑝 whose stable and un-
stable manifolds have an orbit of tangency. Then,
(1) arbitrarily near 𝜙 there is an open set 𝑈 ⊂ Diff2(𝑀) with persistent homoclinic
tangencies.
(2) If moreover |det (𝑑𝜙)𝑝| < 1 (i.e., dissipative), then there is a residual set 𝑅 ⊂ 𝑈
such that each member of which has infinitely many hyperbolic sinks.

This means that hyperbolic systems are not dense in Diff2(𝑀), 𝑀 a 2-manifold.

445Theorem 2 of Palis-Takens p101.
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However, for Diff𝑖(𝑀) nothing is known.

42.6 Persistent homoclinic tangency
Basic set: it is a maximal invariant set in its local) and canonical coordinate system
may be taken if two points 𝑥 𝑦 in it is close.
Persistent tangency: Let Λ1 and Λ2 are basic sets of 𝜙. For any 𝜙 ∈ 𝑈 ⊂ Diff2(𝑀),
for 𝑥1 ∈ Λ1 𝑥2 ∈ Λ2 there is a tangency between 𝑊 𝑠(𝑥1) and 𝑊 𝑢(𝑥2) or 𝐶2-close 𝜙′.
Thickness of a Cantor set: nongap length/gzp length + 𝜏 . This is not the Hausdorff
dimension.
Overlaps of 𝐾1 and 𝐾2. If 𝜏(𝐾1)𝜏(𝐾2) > 1 then 𝐾1∩𝐾2 ̸= 𝜑 because K’s are closed.

Proposition 1
Let 𝜙 ∈ Diff2(𝑀) wutgh basic sets Λ1 and Λ2, both of saddle type, and let 𝑝𝑖 ∈ Λ𝑖 be
periodic points. Assume 𝜏(𝐿1)𝜏(𝐿2) > 1446 (this condition will be explained 42.9)
in and there is a orbit of tangency of 𝑊 𝑢(𝑝1) and 𝑊 𝑠(𝑝2). Then 𝜙 is in the closure
of some 𝑈 ⊂ Diff2(𝑀), where 𝑈 has persistent tangencies involving Λ1(𝜙) and Λ2(𝜙)
of Λ1 and Λ2 for 𝜙 ∈ 𝑈 .

42.7 Persistence proof
Take 𝜙 near 𝜙, two basic sets Λ1(𝜙) and Λ2(𝜙) and periodic points 𝑝1(𝜙) and 𝑝2(𝜙).
They depend on 𝜙 continuously.
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Figure 42.3:

We assume 𝑊 𝑢(𝑝1) and 𝑊 𝑠(𝑝2) are quadratically tangent (if needed, we can per-

446𝜏𝑢(Λ1, 𝑝1)𝜏
𝑠(Λ2, 𝑝2) > 1 more preciesely in the original book.
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turb the original system to enforce this).
We also have stable and unstable foliations ℱ𝑢 and ℱ 𝑠 (recall a horseshoe). All

these structures depend continuously on 𝜙. If we change 𝜙(𝜙) the tangent point
changes (𝐶1 change) its position transversally to the foliations. We can project
leaves onto this trajectory ℓ of the tangent point.’

Now, take one-sided neighborhood boxes 𝐾1 and 𝐾2 as in Fig. 42.4. Then, we can
consider their projections along the foliation onto ℓ. Generally, the projected images
are Cantor sets.
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Figure 42.4:

These Cantor sets changes continuously with 𝜙. We claim that under the condi-
tion “𝜏𝑢(Λ1, 𝑝1)𝜏

𝑠(Λ2, 𝑝2) > 1”, they persist to overlap (‘really’ as sets).

42.8 𝜆-lemma
If ℓ is a smooth curve intersecting 𝑊 𝑠(𝑝) transversally, then its forward image
ℓ𝑖 = 𝜙𝑖(ℓ) contain compact arcs 𝑚𝑖 ⊂ ℓ𝑖 which approaches differentiably a com-
pact arc 𝑚 in 𝑊 𝑢(𝑝) as in Fig. 42.5.

Figure 42.5: 𝜆-lemma [Palis-Takens Fig. 1.7]
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42.9 Linking Cantor sets
Suppose two Cantor sets ‘generally’ overlap (technical term = linked). Is there any
actual overlap of points?

We define the thickness of a Cantor set 𝐾. A gap of 𝐾 is a connected component
of 𝐾𝑐. Let 𝑈 be a bounded gap, and 𝑢 its boundary point.
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Figure 42.6: Gaps and bridges of a Cantor set

A bridge 𝐶 of 𝐾 at 𝑢 is the maximal interval that does not contain any gap whose
length is not equal or larger than 𝑈 .

The thickness 𝜏(𝐾, 𝑢) of 𝐾 at 𝑢 is defined by ℓ is te length.

𝜏(𝐾, 𝑢) = ℓ(𝐶)/ℓ(𝑈). (42.2)

Then, the thickness 𝜏(𝐾) of 𝐾 is defined as

𝜏(𝐾) = inf
𝑢
𝜏(𝐾, 𝑢). (42.3)

Gap lemma:447 If 𝐾1 and 𝐾2 are two Cantor sets. If

𝜏(𝐾1)𝜏(𝐾2) > 1, (42.4)

then 𝐾1 ∩𝐾2 ̸= ∅, unless one of them is not engulfed in on of the other’s gap.
[Explanation] (42.4) means (see Fig. 42.7)

ℓ(𝐶1)

ℓ(𝑈1)

ℓ(𝐶2)

ℓ(𝑈2)
> 1. (42.5)

As seen in Fig. 42.7 if (42.4) holds, then we see overlaps may occur. Suppose there
is certainly an overlap between some 𝐶 and 𝐶 ′ from the both Cantor sets. If there
is not common point for 𝐶 ∩𝐾 and 𝐶 ′ ∩𝐾 ′, then all the points must be in 𝑈 or 𝑈 ′.
However, 𝑈 and 𝑈 ′ both shrink to zero...

447p63 of Palis and Takens.
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Figure 42.7: Meaning of (42.4).

42.10 Completion of 42.7
Let 𝐿𝑖 be the projection of 𝐾𝑖 in 42.7 onto 𝑒𝑙𝑙 along the foliations. These Cantor
sets and the image of 𝐾𝑖 with the dynamics (forward or backward) need not agree
in general.

However, note that if the map is close to ‘scaling’ (i.e., the ratio of the max and
min derivatives is close top unity), then the thickness is preserved. Therefore, we
take 𝐾𝑖 small enough and 𝜙 is close enough to 𝜙, this is realized.

Since 𝐿1 and 𝐿2 have a common set, and it consists of boundary points of Cantor
sets (inevitably, since they do not have no internal point), so we have homoclinic
tangency for 𝜙.

42.11 Infinitely many hyperbolic sinks
Proposition 2.
Let 𝑈 ⊂ Diff2(𝑀) be an open set with persistent homoclinic tangencies, associated
with a basic set Λ(𝜙). Let 𝑝(𝜙) ∈ Λ(𝜙) be a periodic point, say of period 𝑘 and let
|det (𝑑𝜙𝑘)𝑝(𝜙)| < 1. Then, there is a residual subset 𝑅 ⊂ 𝑈 such that each 𝜙 ∈ 𝑅
has infinitely many hyperbolic periodic attractors (sinks). If |det (𝑑𝜙𝑘)𝑝(𝜙)| > 1 , one
gets infinitely may periodic repellers (sources).

The strategy to prove this proposition is to show that if 𝜙 has 𝑛 hyperbolic sinks,
then in its any neighborhood is a map with 𝑛 + 1 such sinks.

42.12 Demonstration of 𝑛 + 1 sinks
Suppose 𝜙 has 𝑛 hyperbolic sinks. They are stable against perturbations. 𝑊 𝑢(𝑝)
and 𝑊 𝑠(𝑝) are both dense in 𝑊 𝑢(Λ) and 𝑊 𝑠(Λ) (resp.), and 𝑊 𝑢(Λ) and 𝑊 𝑠(Λ) have
tangencies. Therefore, with (if needed) small perturbation we can make 𝑊 𝑢(𝑝) and
𝑊 𝑠(𝑝) in tangency. Let 𝑞 be a point in this tangency orbit. This 𝑞 is not among
the already existing 𝑛 periodic orbits, so we can take a neighborhood 𝑊 of 𝑞 that
excludes 𝑛-periodic orbits.

Now, with an arbitrarily small perturbation, we can make a hyperbolic sink in 𝑊 .
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This can be understood from the horseshoe bifurcation 42.13.

42.13 How does a horseshoe appear?448

As seen in Fig. 42.8 initially, there is no fixed point in 𝑅, but there is a horseshoe
with all its hyperbolic fixed points at the ‘right end.’

Figure 42.8: Horseshoe is closely related to the logistic map

What happens in between? It is the ‘standard’ story of bifurcations. We know
there are three kinds of generic bifurcations in a one-parameter family of diffeomor-
phism; saddle-node, period doubling and Hopf. In the present context, the eigenval-
ues around fixed points are real, so we must consider the former two possibilities.
Thus, sinks show up.

42.14 Hénon-like diffeomorphism
The Hénon map449 𝑇 : R2 → R2 is given by

𝑥𝑛+1 = 𝑦𝑛 + 1 − 𝑎𝑥2
𝑛, (42.6)

𝑦𝑛+1 = 𝑏𝑥𝑛. (42.7)

where 𝑎 = 1.4 and 𝑏 = 0.3 is the original choice of the parameters. This is written
as the composition of the following three maps 𝑇 ′′′ ∘ 𝑇 ′′ ∘ 𝑇 ′ (Fig. 42.9):

𝑇 ′ : 𝑥′ = 𝑥, 𝑦′ = 𝑦 + 1 − 𝑎𝑥2, (42.8)

448J. A. Yorke and K. T. Alligood, Cascades of period-doubling bifurcations: a prerequisite for
horseshoe, Bull AMS 9 319 (1983); C. Robinson, Bifurcation to infinitely many sinks, Comm Math
Phys 90 433 (1983) contain useful concrete examples.

449M. Hénon, A Two-dimensional Mapping with a Strange Attractor, CMP 50 69 (1976).
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𝑇 ′′ : 𝑥′′ = 𝑏𝑥′, 𝑦′′ = 𝑦′, (42.9)

𝑇 ′′′ : 𝑥′′′ = 𝑦′′, 𝑦′′′ = 𝑥′′. (42.10)

Figure 42.9: The Hénon map (d) is given by 𝑇 ′′′ ∘𝑇 ′′ ∘𝑇 ′. [Fig. 1 of Hénon CMP 50 69 (1976) ]

There are two fixed points:

𝑥 =
1

2𝑎

[︁
−1(1 − 𝑏) ±

√︀
(1 − 𝑏)2 + 4𝑎

]︁
, 𝑦 = 𝑏𝑥. (42.11)

These points are real for 𝑎 > 𝑎0 = (1 − 𝑏)2/4. One is always a hyperbolic source,
while the other is unstable for

𝑎 > 𝑎1 = 3(1 − 𝑏)2/4. (42.12)

Notice that not all the initial conditions give bounded orbits; they escape to infinity.
The remaining set seems to be a Cantor set × smooth curves (locally). It is well-
illustrated in

https://www.youtube.com/watch?v=42oeboRGqTo.

Figure 42.10: from the same YouTube.

See Michael Benedicks, Lai-Sang Young: Sina-Bowen-Ruelle measures for certain
Hénon maps, Inventiones Mathematicae 112 541 (1993).

https://www.youtube.com/watch?v=42oeboRGqTo
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