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41 Spectrum of almost periodic quantum systems

41.1 1D lattice Schrodinger equation
Consider a 1D lattice and a discrete version of the Schrodinger equation:

¢n+1 + 1/)n—1 + /\V(ﬂ&))d}n = El/)n (411)

with the periodic potential
V(t+1)=V(t). (41.2)

When w € Z, we have extended states and the usual energy band structure.

What happens if w ¢ Z? It is known to have complicated Cantor-set like spec-
trum. An explicitly provable case of self-similar energy band structure can be studied
with an Axiom A system.

41.2 Related 2D dynamical system
We can write (41.1) may be rewritten as a 2D map problem:

U, = M(nw)V,, (41.3)
where
M(t) = < E_lv(t) —01 ) U, = ( I;ﬁnl ) , (41.4)
Define
ME(t) = M(t+ (K — Dw) -~ M(t 4+ w)M(t). (41.5)
Then, we may write
ME)T, =T, (41.6)
and
MFH () = MF(t + lw) M (t). (41.7)

If we use the Fibonacci numbers F),, defined as*3?

Fm+1 - Fm + mely (418)

439Perhaps, https://www.math.ksu.edu/~cjbalm/Quest/Day7_slides.pdf is the best elemen-
tary page for the Fibonacci numbers.


https://www.math.ksu.edu/~cjbalm/Quest/Day7_slides.pdf
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with Fy = Fy = 1. Then,*°

MEm1(t) = ME™(t + F_qw) MEm=1(2). (41.9)

41.3 Discontinuous potential case mappable to dynamical systems
If the periodic potential is two-valued:

[ =1 forte (—w,—w,
Vit) = { +1  fort € (—w? w?, (41.10)
where w = (v/5 — 1)/2 ~= 0.618.**! Note w = lim,, F,,_1/F},.
Then, (41.9) reads M,, = M (0):
Myps1 = My 1 M, (41.11)

with My = M(0) and M; = M(—w?). Notice that F,,w ~ F,,_;. This is OK, if, for
all m > 1,
—w? < Fwmod 1 < w? (41.12)

but wF,, — F,_1 = (—w)™" 42 this is always true.
Thus, (41.11) may be used to study the spectrum. The ‘extended state’ implies
| M| to be bounded from 0 and from above.

41.4 Trace dynamics
Let

1
Ty = §Tr M,,. (41.13)
From (41.11) M, = My, oM,y = Mty = M, M *

Moy + (Myy—9) ™" = My s My + My, M, (41.14)

440M. Kohmoto, L. P. Kadanoff and C. Tang, Localization problem in one dimension: mapping
and escape, PRL 50 1870 (1983).

44152 = 0.382, w3 = 0.236; w? +w = 1.

M2y = (-1jw) + 1, (~w)? = 1+ (~w), (—w)® = 2(—w) — 1, etc. gives this formula. Set
(—w)® = A, (—w) + B,. Then you see A,, and B,, are Fibonacci numbers F,, and F,,_1.
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Since det M,, = 1, the trace of the formula may be obtained after explicit matrix
calculation as

Toil = 2L Tip_1 — T2 (41.15)
with ! 1

41.5 Trace dynamics is (likely to be) Axiom A*3
Thus, the trace of M obeys the 3D diffeo

T(z,y,2) = (2zy — z,2,y). (41.17)
This has an invariant (with the initial condition (41.16) I = \?)
IT=2"+y* +2° —2xyz— 1 (41.18)

which determines a 2-mfd (Fig.41.2)

Figure 41.1: An example of the manifolds for I = 0.2.

Fig. 41.1 An example of the manifolds for I = 0.2. The four parts which are cut by a cube of size
6 actually extend to infinity. There are six saddle points, A, B, C, D, E, and F. The points B, D
and F are located at the antipodal positions of E, A and C, respectively. A portion of the unsta-
ble manifold of C is drawn schematically. This crosses the stable manifold of A transversally near A.

443M Kohmoto and Y Oono, Cantor spectrum for an almost periodic Schrédinger equation and
a dynamical map, PL 102A 145 (1984).
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41.6 Determination of the spectrum

(41.17) defines a chaotic dynamics on a 2-mfd. It is Anosov if A
The most important periodic orbit of the map T" to account for the spectra is the

following six cycle:

_ A4

A(0,0,a) = B(—a,0,0) - C(0, —a,0)n — D(0,0,—a) — E(a,0,0) — F(0,a,0) — A,

(41.19)
where a = (1 + I)¥/? = (1 + A?)'/2. These six points are hyperbolic fixed points of
T% whose eigendirections are tangent to the manifold:

re = {[1+4(1 4+ A2)2]Y2 £2(1 + \»)}2 (41.20)

The initial points are on y = x — A, z = 1 near the fixed point A. The stable manifold
of A crosses this straight line of the initial points. Most orbits starting from these
crossings flow into the six cycle. The crossing point specified by the energy ¢y which
is closest to A along its stable manifold is clearly in the spectrum.

Figure 41.2: Horseshoe structure exhibited by the map T

444pointed out by Y. Takahashi. This was the key observation; this statement immediately
suggested a horseshoe, and a horseshoe hunt started.
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41.7 Discrete cat map
The second order difference equation like discrete Schrodinger equation can always
be rewritten as a first order 2D and vice versa. For example, Thom’s map is

Qt+1 = 2q1 + i, (41.21)
Pt+1 = G T Dr. (41.22)
Therefore,
Gr+1 = 2q + (@—1 + pe—1) = 2¢¢ + -1 + (@ — 2q-1), (41.23)
SO
Gr+1 = 3G — Gi—1- (41.24)

This may define a dynamics on Z, but we could impose a mod N condition. Then
this defines a dynamics on an integer ring Z/N. Needless to say, all the orbits are
periodic (with a period at longest V). This means the discrete version (41.22) mod N
is also recursive as illustrated here or here.

Figure 41.3: Discrete ‘cat map’ [Fig. 6.107 of Jackson


https://www.youtube.com/watch?v=wgMrM1uSMUc
https://upload.wikimedia.org/wikipedia/commons/5/58/Arnold%27s_Cat_Map_animation_%2874px%2C_zoomed%2C_labelled%29.gif
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