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41 Spectrum of almost periodic quantum systems

41.1 1D lattice Schrödinger equation
Consider a 1D lattice and a discrete version of the Schrödinger equation:

𝜓𝑛+1 + 𝜓𝑛−1 + 𝜆𝑉 (𝑛𝜔)𝜓𝑛 = 𝐸𝜓𝑛 (41.1)

with the periodic potential
𝑉 (𝑡+ 1) = 𝑉 (𝑡). (41.2)

When 𝜔 ∈ Z, we have extended states and the usual energy band structure.
What happens if 𝜔 ̸∈ Z? It is known to have complicated Cantor-set like spec-

trum. An explicitly provable case of self-similar energy band structure can be studied
with an Axiom A system.

41.2 Related 2D dynamical system
We can write (41.1) may be rewritten as a 2D map problem:

Ψ𝑛+1 = 𝑀(𝑛𝜔)Ψ𝑛, (41.3)

where

𝑀(𝑡) =

(︂
𝐸 − 𝑉 (𝑡) −1

1 0

)︂
, Ψ𝑛 =

(︂
𝜓𝑛

𝜓𝑛−1

)︂
. (41.4)

Define
𝑀𝑘(𝑡) = 𝑀(𝑡+ (𝑘 − 1)𝜔) · · ·𝑀(𝑡+ 𝜔)𝑀(𝑡). (41.5)

Then, we may write
𝑀𝑘(𝑡)Ψ𝑛 = Ψ𝑛+𝑘 (41.6)

and
𝑀𝑘+𝑙(𝑡) = 𝑀𝑘(𝑡+ 𝑙𝜔)𝑀 𝑙(𝑡). (41.7)

If we use the Fibonacci numbers 𝐹𝑚 defined as439

𝐹𝑚+1 = 𝐹𝑚 + 𝐹𝑚−1, (41.8)

439Perhaps, https://www.math.ksu.edu/~cjbalm/Quest/Day7_slides.pdf is the best elemen-
tary page for the Fibonacci numbers.

https://www.math.ksu.edu/~cjbalm/Quest/Day7_slides.pdf
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with 𝐹0 = 𝐹1 = 1. Then,440

𝑀𝐹𝑚+1(𝑡) = 𝑀𝐹𝑚(𝑡+ 𝐹𝑚−1𝜔)𝑀𝐹𝑚−1(𝑡). (41.9)

41.3 Discontinuous potential case mappable to dynamical systems
If the periodic potential is two-valued:

𝑉 (𝑡) =

{︂
−1 for 𝑡 ∈ (−𝜔,−𝜔3],
+1 for 𝑡 ∈ (−𝜔3, 𝜔2],

(41.10)

where 𝜔 = (
√

5 − 1)/2 ≃= 0.618.441 Note 𝜔 = lim𝑚 𝐹𝑚−1/𝐹𝑚.
Then, (41.9) reads 𝑀𝑚 ≡𝑀𝐹𝑚(0):

𝑀𝑚+1 = 𝑀𝑚−1𝑀𝑚 (41.11)

with 𝑀0 = 𝑀(0) and 𝑀1 = 𝑀(−𝜔3). Notice that 𝐹𝑚𝜔 ≃ 𝐹𝑚−1. This is OK, if, for
all 𝑚 > 1,

−𝜔3 < 𝐹𝑚𝜔 mod 1 ≤ 𝜔2, (41.12)

but 𝜔𝐹𝑚 − 𝐹𝑚−1 = (−𝜔)𝑚+1,442 this is always true.
Thus, (41.11) may be used to study the spectrum. The ‘extended state’ implies

|𝑀𝑚| to be bounded from 0 and from above.

41.4 Trace dynamics
Let

𝑥𝑚 =
1

2
Tr𝑀𝑚. (41.13)

From (41.11) 𝑀𝑚 = 𝑀𝑚−2𝑀𝑚−1 ⇒ 𝑀−1
𝑚−2 = 𝑀𝑚−1𝑀

−1
𝑚

𝑀𝑚+1 + (𝑀𝑚−2)
−1 = 𝑀𝑚−1𝑀𝑚 +𝑀𝑚−1𝑀

−1
𝑚 . (41.14)

440M. Kohmoto, L. P. Kadanoff and C. Tang, Localization problem in one dimension: mapping
and escape, PRL 50 1870 (1983).

441𝜔2 = 0.382, 𝜔3 = 0.236; 𝜔2 + 𝜔 = 1.
442−𝜔 = (−1/𝜔) + 1, (−𝜔)2 = 1 + (−𝜔), (−𝜔)3 = 2(−𝜔) − 1, etc. gives this formula. Set

(−𝜔)𝑛 = 𝐴𝑛(−𝜔) +𝐵𝑛. Then you see 𝐴𝑛 and 𝐵𝑛 are Fibonacci numbers 𝐹𝑛 and 𝐹𝑛−1.
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Since det𝑀𝑚 = 1, the trace of the formula may be obtained after explicit matrix
calculation as

𝑥𝑚+1 = 2𝑥𝑚𝑥𝑚−1 − 𝑥𝑚−2 (41.15)

with

𝑥1 =
1

2
(𝐸 + 𝜆), 𝑥2 =

1

2
(𝐸 − 𝜆), 𝑥3 = 1. (41.16)

41.5 Trace dynamics is (likely to be) Axiom A443

Thus, the trace of 𝑀 obeys the 3D diffeo

𝑇 (𝑥, 𝑦, 𝑧) = (2𝑥𝑦 − 𝑧, 𝑥, 𝑦). (41.17)

This has an invariant (with the initial condition (41.16) 𝐼 = 𝜆2)

𝐼 = 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥𝑦𝑧 − 1 (41.18)

which determines a 2-mfd (Fig.41.2)

Figure 41.1: An example of the manifolds for 𝐼 = 0.2.

Fig. 41.1 An example of the manifolds for 𝐼 = 0.2. The four parts which are cut by a cube of size

6 actually extend to infinity. There are six saddle points, A, B, C, D, E, and F. The points B, D

and F are located at the antipodal positions of E, A and C, respectively. A portion of the unsta-

ble manifold of C is drawn schematically. This crosses the stable manifold of A transversally near A.

443M Kohmoto and Y Oono, Cantor spectrum for an almost periodic Schrödinger equation and
a dynamical map, PL 102A 145 (1984).
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41.6 Determination of the spectrum
(41.17) defines a chaotic dynamics on a 2-mfd. It is Anosov if 𝜆 = 0.444

The most important periodic orbit of the map 𝑇 to account for the spectra is the
following six cycle:

𝐴(0, 0, 𝑎) → 𝐵(−𝑎, 0, 0) → 𝐶(0,−𝑎, 0)𝑛→ 𝐷(0, 0,−𝑎) → 𝐸(𝑎, 0, 0) → 𝐹 (0, 𝑎, 0) → 𝐴,
(41.19)

where 𝑎 = (1 + 𝐼)1/2 = (1 + 𝜆2)1/2. These six points are hyperbolic fixed points of
𝑇 6 whose eigendirections are tangent to the manifold:

𝜅± = {[1 + 4(1 + 𝜆2)2]1/2 ± 2(1 + 𝜆2)}2. (41.20)

The initial points are on 𝑦 = 𝑥−𝜆, 𝑧 = 1 near the fixed point 𝐴. The stable manifold
of 𝐴 crosses this straight line of the initial points. Most orbits starting from these
crossings flow into the six cycle. The crossing point specified by the energy 𝜀0 which
is closest to A along its stable manifold is clearly in the spectrum.

山路を登りながら

Figure 41.2: Horseshoe structure exhibited by the map 𝑇

444Pointed out by Y. Takahashi. This was the key observation; this statement immediately
suggested a horseshoe, and a horseshoe hunt started.
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41.7 Discrete cat map
The second order difference equation like discrete Schrödinger equation can always
be rewritten as a first order 2D and vice versa. For example, Thom’s map is

𝑞𝑡+1 = 2𝑞𝑡 + 𝑝𝑡, (41.21)

𝑝𝑡+1 = 𝑞𝑡 + 𝑝𝑡. (41.22)

Therefore,
𝑞𝑡+1 = 2𝑞𝑡 + (𝑞𝑡−1 + 𝑝𝑡−1) = 2𝑞𝑡 + 𝑞𝑡−1 + (𝑞𝑡 − 2𝑞𝑡−1), (41.23)

so
𝑞𝑡+1 = 3𝑞𝑡 − 𝑞𝑡−1. (41.24)

This may define a dynamics on Z, but we could impose a mod𝑁 condition. Then
this defines a dynamics on an integer ring Z/𝑁 . Needless to say, all the orbits are
periodic (with a period at longest 𝑁). This means the discrete version (41.22) mod𝑁
is also recursive as illustrated here or here.

Figure 41.3: Discrete ‘cat map’ [Fig. 6.107 of Jackson

https://www.youtube.com/watch?v=wgMrM1uSMUc
https://upload.wikimedia.org/wikipedia/commons/5/58/Arnold%27s_Cat_Map_animation_%2874px%2C_zoomed%2C_labelled%29.gif
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