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40 Anosov systems

40.1 Anosov system
feC"(M,M) is Anosov, if Q(f) = M and hyperbolic.

In more detailed words:*36
An Anosov diffeomorphism f : M — M is a diffeomorphism which satisfies the
following;:
(a) There is a continuous splitting of the tangent bundle TM = E* + E* which is
preserved by the derivative D f.
(b) There exist constants C' > 0, C’ > 0 and A € (0,1) (i.e., hyperbolicity) and a
Riemannian metric || || on 7'M such that
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CA\"||v|| for v € E*, (40.1)

<
> C'X\7"||v]| for v € E. (40.2)

40.2 Some properties of Anosov systems
Per(f) is countable and dense in M.

Anosov systems are structurally stable.
If the Lebesgue measure may be introduced on M, Anosov systems are ergodic with
respect to it.

Thus, clearly being Anosov excludes being Morse-Smale 38.5. Obviously, MS diffeo-
morphisms are not dense for d > 2.

40.3 Toral diffeomorphism
Integer matrices L with |det L| = 1 on T™ (constructed from the unit cube with
periodic boundary conditions) is called toral diffeomorphisms.

For TM = E* & E*, if dim E* or dim E* = 1, the toral diffeomorphisms is said to
be codimension one.

Theorem [Franks| An Anosov diffeomorphism f is homomorphic to a toral diffeo-
morphism, if f is codimension 1.

436Taken from J Franks, ‘Anosov diffeomorphisms on tori,” Trans AMS 145, 117 (1969).
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40.4 Group automorphism on T2
Let A be a regular 2 x 2 integer matrix:

A:(Z Z) (40.3)

This defines a homomorphism T4 : T? — T2
Ta(x,y) = (ax + by, cx + dy) mod 1. (40.4)

If det Ty = £1, this is an automorphism (homeomorphism onto itself).

Notice that A need not be normal (i.e., AA* = A*A), so even if eigenvalues of A
are distinct, it need not be diagonalizable with an orthogonal transformation. Thus,
the two eigendirections may not be orthogonal. These are well illustrated by Thom’s
diffeomorphism 40.5.

40.5 Thom diffeomorphism
A toral diffeomorphism T4 : T? — T? with

A:(? }) (40.5)

is called th Thom diffeomorphism (physicists often call its ‘Arnold’s cat map, since
they read easy-reading books only).

A
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Figure 40.1:  Thom’s diffeomorphism is obtained from A by imposing a periodic boundary
condition on the green square.

The origin corresponds to a hyperbolic fixed point p. The set of homoclinic points
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W#(p) N W¥(p) is dense in T? (as you can guess from Fig. 40.4), so the periodic
points are dense in 72. This defines an Anosov system on 72. It is called Arnold’s
cat map, because something like Fig. 40.2 was used by Arnold and Avez**” what
horrible things could happen for Anosov system.*3
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Figure 40.2: Thom’s diffeomorphism

Note that det A = 1. The eigenvalues and the corresponding eigenvectors of A
are given by (3 & v/5)/2 (respectively) with (1,(—1 4 +/5)/2)7. We see that the
Kolmogorov-Sinai entropy is log(3 + v/2)/2.

43TV T Arnold and A Avez, Ergodic Problems of Classical Mechanics (The Mathematical physics
monograph series) (Benjamin 1968). This is a classic.
438A whole cat is kneaded here with 72 illustrated: https://upload.wikimedia.org/

wikipedia/commons/9/9e/Arnold’27s_cat_map.png.


https://upload.wikimedia.org/wikipedia/commons/9/9e/Arnold%27s_cat_map.png
https://upload.wikimedia.org/wikipedia/commons/9/9e/Arnold%27s_cat_map.png
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40.6 Markov partition for Thom automorphism

Using the eigendirections in 40.5, we can make a Markov partition consisting of
parallelograms, noting that stable and unstable manifolds must go through lattice
points.

Figure 40.3: Markov partition; lower figures explain how to cover T2 with the Markov partition
above and its image. Redlines indicate W* and the green W?*.

Needless to say, we can make many different Markov partitions, specifying the
largest size of the piece.
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Another example with nonnormal A is

A= ( - ) (40.6)

Figure 40.4: Markov partition; lower figures explain how to cover T2 with the Markov partition
above and its image. Redlines indicate W* and the green W?°.

40.7 Pseudoorbit traceability
For a pseudoorbit {xg,z1,- -}, we can construct a true trajectory Tz always run-
ning close to it. This is the traceability of pseudoorbits.

For a system to have a traceability, necessary and sufficient condition (for C!
systems) is that the system has a Markov partition (we have already seen this in
Section 39). If a system has a Markov partition, the system is isomorphic to a sym-
bolic dynamics called a Markovian subshift. Thus, Ornstein’s theorem tells us that
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Tyn 2

Figure 40.5: How to construct a shadowing orbit (red points)

the system is actually isomorphic to a Bernoulli system, a maximally chaotic system.
Thus ironically a numerically obtained trajectory can be a true trajectory only if
the system is maximally chaotic.
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