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40 Anosov systems

40.1 Anosov system
𝑓 ∈ 𝐶𝑟(𝑀,𝑀) is Anosov, if Ω(𝑓) = 𝑀 and hyperbolic.

In more detailed words:436

An Anosov diffeomorphism 𝑓 : 𝑀 → 𝑀 is a diffeomorphism which satisfies the
following:
(a) There is a continuous splitting of the tangent bundle 𝑇𝑀 = 𝐸𝑠 + 𝐸𝑢 which is
preserved by the derivative 𝐷𝑓 .
(b) There exist constants 𝐶 > 0, 𝐶 ′ > 0 and 𝜆 ∈ (0, 1) (i.e., hyperbolicity) and a
Riemannian metric ‖ ‖ on 𝑇𝑀 such that

‖𝐷𝑓𝑛(𝑣)‖ ≤ 𝐶𝜆𝑛‖𝑣‖ for 𝑣 ∈ 𝐸𝑠, (40.1)

‖𝐷𝑓𝑛(𝑣)‖ ≥ 𝐶 ′𝜆−𝑛‖𝑣‖ for 𝑣 ∈ 𝐸𝑢. (40.2)

40.2 Some properties of Anosov systems
Per(𝑓) is countable and dense in 𝑀 .

Anosov systems are structurally stable.
If the Lebesgue measure may be introduced on 𝑀 , Anosov systems are ergodic with
respect to it.

Thus, clearly being Anosov excludes being Morse-Smale 38.5. Obviously, MS diffeo-
morphisms are not dense for 𝑑 ≥ 2.

40.3 Toral diffeomorphism
Integer matrices 𝐿 with |det𝐿| = 1 on 𝑇 𝑛 (constructed from the unit cube with
periodic boundary conditions) is called toral diffeomorphisms.

For 𝑇𝑀 = 𝐸𝑠 ⊕𝐸𝑢, if dim𝐸𝑢 or dim𝐸𝑠 = 1, the toral diffeomorphisms is said to
be codimension one.

Theorem [Franks] An Anosov diffeomorphism 𝑓 is homomorphic to a toral diffeo-
morphism, if 𝑓 is codimension 1.

436Taken from J Franks, ‘Anosov diffeomorphisms on tori,” Trans AMS 145, 117 (1969).
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40.4 Group automorphism on 𝑇 2

Let 𝐴 be a regular 2 × 2 integer matrix:

𝐴 =

(︂
𝑎 𝑏
𝑐 𝑑

)︂
. (40.3)

This defines a homomorphism 𝑇𝐴 : 𝑇 2 → 𝑇 2:

𝑇𝐴(𝑥, 𝑦) = (𝑎𝑥 + 𝑏𝑦, 𝑐𝑥 + 𝑑𝑦) mod 1. (40.4)

If det𝑇𝐴 = ±1, this is an automorphism (homeomorphism onto itself).
Notice that 𝐴 need not be normal (i.e., 𝐴𝐴* = 𝐴*𝐴), so even if eigenvalues of 𝐴

are distinct, it need not be diagonalizable with an orthogonal transformation. Thus,
the two eigendirections may not be orthogonal. These are well illustrated by Thom’s
diffeomorphism 40.5.

40.5 Thom diffeomorphism
A toral diffeomorphism 𝑇𝐴 : 𝑇 2 → 𝑇 2 with

𝐴 =

(︂
2 1
1 1

)︂
(40.5)

is called th Thom diffeomorphism (physicists often call its ‘Arnold’s cat map, since
they read easy-reading books only).

A

O

Figure 40.1: Thom’s diffeomorphism is obtained from 𝐴 by imposing a periodic boundary
condition on the green square.

The origin corresponds to a hyperbolic fixed point 𝑝. The set of homoclinic points
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𝑊 𝑠(𝑝) ∩ 𝑊 𝑢(𝑝) is dense in 𝑇 2 (as you can guess from Fig. 40.4), so the periodic
points are dense in 𝑇 2. This defines an Anosov system on 𝑇 2. It is called Arnold’s
cat map, because something like Fig. 40.2 was used by Arnold and Avez437 what
horrible things could happen for Anosov system.438

Figure 40.2: Thom’s diffeomorphism

Note that det𝐴 = 1. The eigenvalues and the corresponding eigenvectors of 𝐴
are given by (3 ±

√
5)/2 (respectively) with (1, (−1 ±

√
5)/2)𝑇 . We see that the

Kolmogorov-Sinai entropy is log(3 +
√

2)/2.

437V I Arnold and A Avez, Ergodic Problems of Classical Mechanics (The Mathematical physics
monograph series) (Benjamin 1968). This is a classic.

438A whole cat is kneaded here with 𝑇 2 illustrated: https://upload.wikimedia.org/

wikipedia/commons/9/9e/Arnold%27s_cat_map.png.

https://upload.wikimedia.org/wikipedia/commons/9/9e/Arnold%27s_cat_map.png
https://upload.wikimedia.org/wikipedia/commons/9/9e/Arnold%27s_cat_map.png
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40.6 Markov partition for Thom automorphism
Using the eigendirections in 40.5, we can make a Markov partition consisting of
parallelograms, noting that stable and unstable manifolds must go through lattice
points.

Figure 40.3: Markov partition; lower figures explain how to cover 𝑇 2 with the Markov partition
above and its image. Redlines indicate 𝑊𝑢 and the green 𝑊 𝑠.

Needless to say, we can make many different Markov partitions, specifying the
largest size of the piece.
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Another example with nonnormal 𝐴 is

𝐴 =

(︂
1 2
1 1

)︂
(40.6)

Figure 40.4: Markov partition; lower figures explain how to cover 𝑇 2 with the Markov partition
above and its image. Redlines indicate 𝑊𝑢 and the green 𝑊 𝑠.

40.7 Pseudoorbit traceability
For a pseudoorbit {𝑥0, 𝑥1, · · ·}, we can construct a true trajectory 𝑇 𝑘𝑥 always run-
ning close to it. This is the traceability of pseudoorbits.

For a system to have a traceability, necessary and sufficient condition (for 𝐶1

systems) is that the system has a Markov partition (we have already seen this in
Section 39). If a system has a Markov partition, the system is isomorphic to a sym-
bolic dynamics called a Markovian subshift. Thus, Ornstein’s theorem tells us that
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Figure 40.5: How to construct a shadowing orbit (red points)

the system is actually isomorphic to a Bernoulli system, a maximally chaotic system.
Thus ironically a numerically obtained trajectory can be a true trajectory only if

the system is maximally chaotic.
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