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39 Axiom A systems

39.1 Axiom A system
𝑓 is an axiom A system, iff Ω(𝑓) is hyperbolic and

Ω(𝑓) = {𝑥 : periodic point of 𝑓} (39.1)

Here, Ω(𝑓) is te totality of the non-wandering set of 𝑓 .

39.2 Hyperbolic set of 𝑓
Let 𝑋 be a compact smooth manifold, 𝑓 : 𝑋 → 𝑋 a diffeomorphism, and 𝐷𝑓 :
𝑇𝑀 → 𝑇𝑀 the differential of 𝑓 . An 𝑓 -invariant subset Λ of 𝑋 (i.e., 𝑓(Λ) = Λ) is
said to be hyperbolic, if the restriction to Λ of the tangent bundle of 𝑋 (i.e., 𝑇Λ𝑋)
admits a splitting into a Whitney sum of two 𝐷𝑓 -invariant subbundles, called the
stable bundle and the unstable bundle (denoted 𝐸𝑠 and 𝐸𝑢. With respect to some
Riemannian metric on 𝑋, the restriction of 𝐷𝑓 to 𝐸𝑠 must be a contraction and the
restriction of 𝐷𝑓 to 𝐸𝑢 must be an expansion.

Figure 39.1: Hyperbolic set: red curves are unstable mfds and green curves are stable mfds.
Dashed straight lines denote 𝐸𝑢 and 𝐸𝑠.

39.3 How a small open set spreads
Let 𝑓 ∈ 𝐶𝑟(𝑀,𝑀), 𝑝 its periodic point and 𝑈 ⊂ 𝑀 is open.
(a)

𝑈 ∩𝑊 𝑠(𝑝) ̸= ∅ ⇒ ∪𝑚∈N+𝑓𝑚(𝑈) ⊃ 𝑊 𝑢(𝑝). (39.2)

[ If 𝑝 is a sink 𝑊 𝑢(𝑝) = ∅, so the statement is trivially true.]

(b) Let 𝑞 ̸= 𝑝 be a periodic point, and 𝑥 be a heteroclinic point of 𝑞 and 𝑝: 𝑥 ∈
𝑊 𝑢(𝑝) ∩𝑊 𝑠(𝑞)

𝑈 ∩𝑊 𝑠(𝑝) ̸= ∅, 𝑊 𝑢(𝑝)⊤∩𝑥𝑊
𝑠(𝑞) ⇒ (∪𝑚∈N+𝑓𝑚(𝑈)) ∩𝑊 𝑢(𝑞) ̸= ∅. (39.3)
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See the following Fig. 39.2.
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Figure 39.2: How small open sets on 𝑊 𝑠 spreads

39.4 Chain of periodic orbits
Let 𝑓 ∈ 𝐶𝑟(𝑀,𝑀), and 𝑝𝑖 (𝑖 = 0, · · · , 𝑛) are hyperbolic periodic orbits (𝑝0 = 𝑝𝑛) such
that 𝑥 ∈ 𝑊 𝑢(𝑝𝑖) ∩𝑊 𝑠(𝑝𝑖+1) implies 𝑊 𝑢(𝑝𝑖)⊤∩𝑥𝑊

𝑠(𝑝𝑖+1). Then, 𝑥 is non-wandering
(i.e., 𝑥 ∈ Ω).
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Figure 39.3: Chain of periodic orbits

39.5 Stability manifold theorem432

𝑓 ∈ Diff𝑟(𝑋) and Λ is the hyperbolic set of 𝑓 . Then, for small 𝜀 > 0

432Smale BAMS 73 747 (1967) Th(7.3) p781.
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(a) Local stable and unstable mfd of 𝑥 (∈ Λ) is a 𝐶𝑟-disk in Λ and

𝑇𝑥𝑊
𝑠
𝜀 (𝑥) = 𝐸𝑠

𝑥, 𝑇𝑥𝑊
𝑢
𝜀 (𝑥) = 𝐸𝑢

𝑥 . (39.4)

(b) On these local submanifolds 𝑓 is just expanding or contracting as usual.
(c) 𝑊 𝑠

𝜀 (𝑥) and 𝑊 𝑢
𝜀 (𝑥) depend on 𝑥 continuously.

39.6 Existence of canonical coordinate433

Let 𝑓 satisfy Axiom A. Then, for any small 𝜀 (> 0) there is 𝛿 > 0 such that for
𝑥, 𝑦 ∈ Ω(𝑓) and for 𝑑(𝑥, 𝑦) ≤ 𝛿,

𝑊 𝑠
𝜀 (𝑥) ∩𝑊 𝑢

𝜀 (𝑦) = {[𝑥, 𝑦]} ⊂ Ω(𝑓), (39.5)

and the crossing point [ , ] depends on 𝑥 and 𝑦 continuously.
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Figure 39.4: If we take 𝑥, 𝑦 ∈ Λ close enough (within 𝛿).

The point is that for any 𝜀 we can find 𝑥 and 𝑦 in Ω(𝑓) connected heteroclinically.
Then, this is based on the following two lemmas (basically 39.3):
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Figure 39.5: Lemma 1; Right: near 𝑞 expanded, we can make a local cartesian coordinate system
in the box.

433Bowen 3.3.
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Lemma 1: Let 𝑝 and 𝑞 be periodic orbits and 𝑊 𝑢(𝑝)⊤∩𝑊 𝑠(𝑞). Take 𝑈 ∩𝑊 𝑠(𝑝) ̸= ∅.
Then, ∪𝑚>0𝑓

𝑚(𝑈) ∩𝑊 𝑠(𝑞) ̸= ∅. See Fig. 39.5.
Lemma 2: Let 𝑝0, 𝑝1, · · · , 𝑝𝑛 (𝑝0 = 𝑝𝑛) be hyperbolic periodic points and 𝑊 𝑢(𝑝𝑖)⊤∩𝑥𝑖

𝑊 𝑠(𝑝𝑖+1).
Then, 𝑥𝑖 ∈ Ω(𝑓).

This can be shown by applying Lemma 1 to the successive periodic points. See Fig.
39.6:
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Figure 39.6: Lemma 2

The demonstration of the canonical coordinates goes as follows:
Periodic orbits are dense in Ω(𝑓). If we take 𝜀 small enough, then [𝑥, 𝑦] becomes
unique. If 𝑥 and 𝑦 are periodic, then Lemma 2 implies [𝑥, 𝑦] ∈ Ω(𝑓). Even if these
are not periodic, they are dense in Ω(𝑓), [𝑥, 𝑦] must be in Ω(𝑓), because Ω(𝑓) is a
closed set.

39.7 Expansivity of hyperbolic set434

Let Λ be the hyperbolic set for 𝑓 . Then there is 𝜀 > 0 such that 𝑑(𝑓𝑘(𝑥), 𝑓𝑘(𝑦)) > 𝜀
for some 𝑘 ∈ Z for 𝑥 ∈ Λ and 𝑦 ∈ 𝑀 (𝑥 ̸= 𝑦).

If there is no such 𝜀, then 𝑦 ∈ 𝑊 𝑠
𝜀 (𝑥) ∪𝑊 𝑢

𝜀 (𝑥), but this implies 𝑥 = 𝑦, a contra-
diction.

39.8 Spectral decomposition theorem435

Ω(𝑓) has the following structure:

434Bowen L3.4.
435Bowen Th 3.5
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Ω(𝑓) = Ω1 ∪ Ω2 ∪ · · · ∪ Ω𝑠 (Ω𝑖 ∩ Ω𝑗 = ∅ for 𝑖 ̸= 𝑗), (39.6)

where
(a) 𝑓(Ω𝑖) = Ω𝑖 and 𝑓 |Ω𝑖

is topologically transitive.
(b) Each Ω𝑖 has the following partition: Ω𝑖 = 𝑋𝑖,1 ∨𝑋𝑖,2 ∨ · · · ∨𝑋𝑖,𝑛𝑖

with 𝑓(𝑋𝑖,𝑘) =
𝑓𝑖,𝑘+1(mod 𝑛𝑖)

and 𝑓𝑛𝑖|𝑋𝑖,𝑗
is topologically mixing.

39.9 Strategy to show spectral decomposition theorem
Let 𝑝 be a periodic point. Make

𝑋𝑝 = 𝑊 𝑢(𝑝) ∩ Ω. (39.7)

𝑓(𝑋𝑝) = 𝑋𝑓(𝑝). If 𝑛 is the period of 𝑝, 𝑓𝑛(𝑋𝑝) = 𝑋𝑝 and this must be topologically
mixing on 𝑋𝑝. We collect 𝑋𝑝 and its images 𝑓𝑘(𝑋𝑝) to make Ω1.

Repeat this until this procedure exhaust Ω to realize (39.6).

39.10 Shadowing = tracing
We say the point sequence 𝑥 = {𝑥𝑖} is 𝛽-shadowed by a trajectory starting from 𝑥
(by 𝑥, for short), if

𝑑(𝑓𝑛𝑥, 𝑥𝑛) ≤ 𝛽 (39.8)

for 𝑖 ∈ [𝑎, 𝑏] (𝑎, 𝑏 ∈ Z).
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Figure 39.7: 𝛽-shadowing

39.11 𝛼-pseudo orbit
𝑥 is called an 𝛼-pseudo orbit, if

𝑑(𝑓𝑥𝑛, 𝑥𝑛+1) < 𝛼. (39.9)
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39.12 Shadowing of pseudo orbits
For any 𝛽 > 0, there is a 𝛼 > 0 such that any 𝛼-pseudo orbit 𝑥 is 𝛽-shadowed by
some point 𝑥.

If we choose 𝛼 sufficiently small, then any 𝛼-pseudo orbit 𝑦 satisfies

𝑑(𝑓𝑛𝑦0, 𝑦𝑛) < 𝛿/2, (39.10)

where 𝛿 is the same 𝛿 as in 39.6.

39.13 Strategy to show shadowability of pseudo orbits
(1) Note first that for a finite time span 𝑁 an 𝛼-pseudo orbit 𝑦 = {𝑦𝑖}𝑀𝑖=0, if 𝛼 is
sufficiently small, can satisfy, for all 𝑖 ∈ [0,𝑀 ],

𝑑(𝑓 𝑖𝑦0, 𝑦𝑖) < 𝛿/2. (39.11)

(2) Let us make an 𝛼-pseudo orbit 𝑥 = {𝑥𝑖}𝑟𝑀𝑖=0, connecting such 𝑦.
(3) The shadowing orbit 𝑥′ is chosen as follows:
Starting from 𝑥0 = 𝑥′

0, we recursively apply 39.6 as follows

𝑥′
(𝑘+1)𝑀 = [𝑥(𝑘+1)𝑀 , 𝑓𝑀(𝑥′

𝑘)]. (39.12)

See Fig. 39.8.

x =x’
0 0

x’

x

x’

M

M

2M
f M( )x’M

x
2M

f M( )x’2M

x
3M

x’3M

f M( )x’
0 f M( )xM

both less than δ/2

x =
0

x =x =

x
2

x M

x
3M

xMx

Figure 39.8: Constructing a orbit shadowing the 𝛼-pseudo orbit (pale green)
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This way, we can find 𝑥𝑟𝑀 . The basic idea is to find the point we should aim at.
That is 𝑥𝑟𝑀 .

Now, choose the initial condition such that 𝑥 = 𝑓−𝑟𝑀(𝑥𝑟𝑀), that is, from there
we reach 𝑥𝑟𝑀 . Although we must carefully show that this orbit indeed 𝛿-shadow th
𝛼-pseudo orbit, intuitively it should be clear by construction.

39.14 Closing 𝛼-pseudo periodic orbit
Let 𝑥 ∈ Ω and 𝑑(𝑓𝑛(𝑥), 𝑥) < 𝛼. For any 𝛽 > 0 we can choose 𝛼 so that there is a
𝛽-shadowing periodic orbit for this not-closed orbit such that 𝑓𝑛(𝑥′) = 𝑥′.

Concatenating {𝑥, 𝑓(𝑥), · · · , 𝑓𝑛−1(𝑥)}, we can make an infinite 𝛼-pseudo orbit
which can be 𝛽-shadowed by 𝑦 for any 𝛽 >. Then,

𝑑[𝑓 𝑖(𝑦), 𝑓 𝑖(𝑓𝑛(𝑦))] ≤ 𝑑[𝑓 𝑖(𝑦), 𝑓 𝑖(𝑥)] + 𝑑[𝑓 𝑖(𝑥), 𝑓 𝑖(𝑓𝑛(𝑦))]

≤ 𝑑[𝑓 𝑖(𝑦), 𝑓 𝑖(𝑥)] + 𝑑[𝑓 𝑖(𝑓𝑛(𝑥)), 𝑓 𝑖(𝑓𝑛(𝑦))] + 𝑑[𝑓 𝑖(𝑥), 𝑓 𝑖(𝑓𝑛(𝑥))].

(39.13)

The first two terms are less than 𝛽 due to shadowing, and the last term is zero by
the periodic concatenation. Thus, for any 𝛽 > 0 𝑑[𝑓 𝑖(𝑦), 𝑓 𝑖(𝑓𝑛(𝑦))] < 2𝛽 for any
𝑖 ∈ Z. However, since 𝑥, 𝑦 ∈ Ω and since Ω is expansive, this means 𝑦 = 𝑓𝑛(𝑦) (due
to the contraposition of 39.7).

39.15 Rectangle, proper rectangle
𝑅 ⊂ Ω𝑠 is a rectangle, if and only if for 𝑥, 𝑦 ∈ 𝑅 [𝑥, 𝑦] ∈ 𝑅. 𝑅 is called a proper
rectangle if 𝑅 = [𝑅∘] (i.e., 𝑅 is identical to the closure of its open kernel).

39.16 Rectangles are ‘registered to’ stable and unstable manifolds
Let 𝜕𝑠𝑅 (resp., 𝜕𝑢𝑅) be the boundary of rectangle 𝑅 parallel to 𝑊 𝑠 (resp., 𝑊 𝑢).
Then,

𝜕𝑅 = 𝜕𝑠𝑅 ∪ 𝜕𝑢𝑅. (39.14)

More precisely,

𝜕𝑠𝑅 = {𝑥 ∈ 𝑅, 𝑥 ̸∈ int 𝑊 𝑢(𝑥,𝑅) ≡ 𝑊 𝑢
𝜀 (𝑥) ∩𝑅}, (39.15)

𝜕𝑢𝑅 = {𝑥 ∈ 𝑅, 𝑥 ̸∈ int 𝑊 𝑠(𝑥,𝑅) ≡ 𝑊 𝑠
𝜀 (𝑥) ∩𝑅}. (39.16)
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39.17 Markov partition
A partition consisting of proper rectangles ℛ = {𝑅1, · · · , 𝑅𝑚} satisfying the following
conditions is called a Markov partition:
(a) int 𝑅𝑖 ∩ int 𝑅𝑗 = ∅ for 𝑖 ̸= 𝑗,
(b) If 𝑥 ∈ int 𝑅𝑖 and 𝑓(𝑥) ∈ int 𝑅𝑗,

𝑓𝑊 𝑢(𝑥,𝑅𝑖) ⊃ 𝑊 𝑢(𝑓𝑥,𝑅𝑗), (39.17)

𝑓𝑊 𝑠(𝑥,𝑅𝑖) ⊂ 𝑊 𝑠(𝑓𝑥,𝑅𝑗). (39.18)
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Figure 39.9: Markov partition

As seen later actually we may demand

𝑓−1(𝜕𝑢𝑅𝑖) ⊂ 𝜕𝑢𝑅𝑘, (39.19)

𝑓(𝜕𝑠𝑅𝑖) ⊂ 𝜕𝑠𝑅𝑙 (39.20)

for some 𝑘 and 𝑙.

39.18 Axiom A system has Markov partition
Let Ω𝑠 be a basic set for an Axiom A diffeomorphism 𝑓 . Then, Ω𝑠 has Markov
partitions ℛ of arbitrarily small diameter.

An outline of the logic to demonstrate this key theorem is as follows:
(1) Cover Ω𝑠 with a net whose mesh size is no more than 𝛾, such that for any 𝑥, 𝑦 ∈ Ω𝑠

if 𝑑(𝑥, 𝑦) < 𝛾, 𝑑(𝑓𝑥, 𝑓𝑦) < 𝛼/2, where 𝛼 is the 𝛼 appearing in the pseudo orbits. Let
𝑃 = {𝑝1, · · · , 𝑝𝑛} be the totality of the net vertices just constructed.
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(2) Make the set Σ(𝑃 ) consisting of all the 𝛼-pseudo orbits using the points in 𝑃 .
Take 𝑝𝑠 ∈ 𝑃 and collect all the 𝛼-pseudo orbits 𝑞 starting from 𝑝𝑠 (do not forget
that we go to the negative time direction as well; the pseudo orbits are defined for
all 𝑗 ∈ Z). For each such pseudo orbit we can choose a unique 𝛽-shadowing orbit:
for any 𝑞 there is a unique point 𝜃(𝑞) that 𝛽-shadows it. This is intuitively clear due
to the expansivity of 𝑓 .
(3) Let 𝑇𝑠 be the totality of 𝜃(𝑞) with 𝑞0 = 𝑝𝑠 ∈ 𝑃 . This is a rectangle (39.15).
(4) 𝑇𝑖 and 𝑇𝑗 may overlap, so choosing smaller 𝛾 to remove the overlaps. Thus ob-
tained 𝑇𝑠s make ℛ.
(5) Finally, we demonstrate (b).

Let us try to understand why 𝑇𝑠’s can make a nice Markov partition.

39.19 How to determine 𝑇𝑠

β

p
s

f(p )s

γ-net

stable

direction

unstable direction

β-shadowing orbit for 

β-shadowing orbit for 

α

θ(  )

θ(  )

Figure 39.10: Construction of 𝑇𝑠. 𝑃 consists of all the lattice points. Larger filled dots denote
pseudo orbits; continuous curves denote shadowing curves; Open big dots give 𝜃(pseudo orbits).
Dotted lines denote 𝑓 .

The illustration here assumes the forward time evolution, but as noted explicitly in
39.18 we must also consider the backward time evolution. The explanation below
is for forward time evolution.

(1) Construct pseudo orbits. As may be guessed from Fig. 39.10 more and more
points in 𝑃 that can make pseudo orbits spread in the unstable direction (expanding
direction) as gray dots indicate.
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(2) The 𝛽-shadowing orbits for these pseudo orbits make a bundle whose width in the
stable direction is basically determined by 𝛼; without this ‘error’ the width converges
to zero. In the unstable direction the width increases exponentially. However, if the
bundle is translated to its initial points (that is, in terms of 𝜃(𝑞)), since backward in
time there is a severe contraction along the unstable direction, the spread of 𝜃(𝑞) is
again determined by 𝛼; again without this ‘error’ the width converges to zero.

39.20 Boundary of 𝑇 𝑠

Let us determine the boundaries transversal to the unstable direction. To do so, we
evolve the system backward in time. A caricature of what happens is in Fig. 39.11.

f
n

stable

direction

unstable direction

Figure 39.11: The green curve mapped backward by 𝑓𝑛 𝑛 ≫ 1 is (almost parallel to the stable
manifold.

Imagine you come backward from the right situation to the initial conditions (i.e.,
the image of 𝜃). There is a tremendous contraction along the red arrow and ex-
tremely expanded along the gree arrow, so however curvy the boundary transversal
to the unstable direction is, as illustrated by the green line, the boundary becomes
parallel to the stable mfd.

You can apply a parallel argument for 𝑓−𝑛 to conclude that the to and the bottom
boundaries are parallel to the unstable manifolds.

Therefore, 𝑇𝑠 is bounded by stable and unstable manifolds and obviously it is a
proper rectangle in the sense of 39.15.

39.21 Construction of Markov partition
We have constructed 𝑇𝑠s, but they may have overlap.

As illustrated in Fig. 39.12, repartitioning the obtained 𝑇𝑠s into a set of smaller
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Figure 39.12: Constructing Markov components. Left: constructed 𝑇𝑠s. If there is an overlap
we refine partition along the stable and unstable manifolds to mak smaller ‘squares’ with different
colors.

rectangles so that there is no overlap among them, resultant refinement of the par-
tition is a Markov partition. As can be seen from the construction we can make as
fine Markov partition as we wish.

39.22 Markov subshift based on Markov partition
Let ℛ = {𝑅1, · · · , 𝑅𝑛} be a Markov partition. Basic properties of a Markov partition
we use are:

(1) Let 𝜕𝑠ℛ = ∪𝑖𝜕𝑠𝑅𝑖 and 𝜕𝑢ℛ = ∪𝑖𝜕𝑢𝑅𝑖. Then

𝑓(𝜕𝑠ℛ) ⊂ 𝜕𝑠ℛ, 𝑓−1(𝜕𝑢ℛ) ⊂ 𝜕𝑢ℛ. (39.21)

See Fig. 39.13.
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Figure 39.13: (1) illustrated: Boundaries are mapped onto boundaries; 𝑢-subrectangle is also
illustrated for (2)

(2) A 𝑢-subrectangle 𝑆 of 𝑅 ∈ ℛ is defined as a nonempty subset of 𝑅 and 𝑊 𝑢(𝑦, 𝑆) =
𝑊 𝑢(𝑦,𝑅) (see Fig. 39.13).
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If you can go from 𝑅𝑖 to 𝑅𝑗 and 𝑆 ⊂ 𝑅𝑖 is a 𝑢-subrectangle, then 𝑓(𝑢) ∩ 𝑅𝑗 is a
𝑢-subrectangle of 𝑅𝑗.
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Figure 39.14: (2) illustrated

(3) The coding due to ℛ is ‘almost’ one to one. More, precisely, (i) For any 𝑎 ∈ Σ𝐴

𝜋(𝑎) = ∩𝑖∈Z𝑓
−𝑗𝑅𝑗 is a map from Σ𝐴 to Ω𝑠 which is continuous and onto.

(ii) 𝜋 ∘ 𝜎 = 𝑓 ∘ 𝜋 It is one to one on 𝑌 = Ω𝑠 ∖ ∩𝑗∈Z𝑓
𝑗(𝜕𝑠ℛ∩ 𝜕𝑢ℛ).

This should be clear from Fig. 39.15:
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Figure 39.15: Markov coding rule: the points in 𝑓−𝑛𝑅𝑎𝑛 ∩𝑅𝑎0 have the code sequence 𝑎0 · · · 𝑎𝑛.
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