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35 Large deviation approach to dynamical sys-

tems

35.1 Level 1 Large deviation: review
We have already discussed large deviation theory in 31.8 for Bernoulli samples, but
here we wish to be a bit more systematic.

Our starting point is the law of large numbers. Consider a chaotic endomorphism
𝑓 . If it is chaotic enough (e.g., topologically mixing), the law of large numbers holds
for the time average:

lim
𝑁→∞

𝑃

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝑓𝑘(𝑥) ∼ ⟨𝑓⟩

)︃
= 1, (35.1)

where ⟨𝑓⟩ is the average. Here, 𝑓𝑘(𝑥) may be denoted as 𝑥(𝑘, 𝜔) as well (i.e., the
trajectory (specified by) 𝜔 observed at time 𝑘). The long-time average ⟨𝑓⟩ is the
true expectation value (ergodicity).

Now, what happens if time is not long enough? The average should deviate
(fluctuate) from the true average. How? This is expressed as the large-deviation
principle

𝑃

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝑓𝑘(𝑥) ∼ 𝑥

)︃
≈ 𝑒−𝑁𝐼(𝑥), (35.2)

where 𝐼(𝑥) is called the rate function or the large deviation function. It is a convex
function with the unique minimum at 𝑥 = ⟨𝑓⟩. Thus, (35.2) includes the law of large
numbers.

35.2 Level 2 Large deviation: introduction
Sanov’s theorem 31.8 we already discussed for simple cases is actually a ‘level 2’
theory.

We can study the invariant measure empirically, taking statistics, so there must
be a corresponding law of large numbers

lim
𝑁→∞

𝑃

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝛿(𝑥(𝑘, 𝜔) − ·) ∼ 𝑑𝜇(·)
𝑑𝑚(·)

)︃
= 1. (35.3)
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Here, 𝑚 is the basic sampling measure (for the real space, it is usually the Lebesgue
measure 𝜆, so 𝑚 and 𝜆 may be used interchangeably).

There must be a corresponding large deviation principle. The LD for expectation
values is called the level 1 LD, and this one the level 2.

𝑃

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝛿(𝑥(𝑘, 𝜔) − ·) ∼ 𝑑𝜇(·)
𝑑𝑚(·)

)︃
≈ 𝑒−𝑁𝐼(2)(𝜇). (35.4)

Here 𝐼(2) is the rate function(al) which is a convex functional of the measures with
the unique minimum at the invariant measure compatible with the sampling mea-
sure. As is clear from the definition, 𝜇 must be absolutely continuous with respect
to 𝑚.

35.3 Gärtner-Ellis theorem: level 1
We make a ‘partition function’ (generator)

𝑍(𝑡) =

⟨
exp

(︃
𝑡
𝑁−1∑︁
𝑘=0

𝑥(𝑘, 𝜔)

)︃⟩
, (35.5)

where ⟨ ⟩ implies the average over the sampling measure 𝑚. Let us use (35.2) to
compute this average:

𝑍(𝑡) =

∫︁
𝑑𝑚(𝜔)

∫︁
𝑑𝑥 𝛿

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝑥(𝑘, 𝜔) ∼ 𝑥

)︃
𝑒𝑁𝑡𝑥 =

∫︁
𝑑𝑥 𝑒𝑁 [𝑡𝑥−𝐼(𝑥)] = 𝑒𝑁𝑞(𝑡),

(35.6)
where 𝑞(𝑡) is the (−) free energy. Since 𝑁 is very large, the integral is dominated by
the peak value of the integrand, i.e., ‘max’𝑥[𝑡𝑥− 𝐼(𝑥)]. Therefore, we obtain

𝑞(𝑡) = sup
𝑥

[𝑡𝑥− 𝐼(𝑥)]. (35.7)

Since 𝐼(𝑥) is convex, this is a proper Legendre transformation, and 𝑞(𝑡) is also a
convex function. Thus,

𝐼(𝑥) = sup
𝑡

[𝑡𝑥− 𝑞(𝑡)]. (35.8)

That is, ‘entropy’ (i.e., − log ‘probability’) may be obtained from ‘free energy’
through a Legendre transformation: 𝑞 is much easier to compute than 𝐼, but 𝐼
dictates what you can observe.
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35.4 Gärtner-Ellis theorem: level 2
There must be a level 2 version of ‘statistical mechanics.’ We simply mimic the level
1 35.3. Make the partition function(al):

𝑍(𝜑) =

∫︁
𝑑𝑚(𝜔)

∫︁
𝛿𝜇 𝛿

(︃
1

𝑁

𝑁−1∑︁
𝑘=0

𝛿(𝑥(𝑘, 𝜔) − ·) ∼ 𝑑𝜇(·)
𝑑𝑚(·)

)︃
𝑒𝑁

∫︀
𝑑𝜇(·)𝜑(·)(35.9)

=

∫︁
𝛿𝜇 𝑒𝑁 [

∫︀
𝑑𝜇(·)𝜑(·)−𝐼(2)(𝜇)] = 𝑒𝑁𝑞(𝜑), (35.10)

where 𝑞(𝜑) is the (−) free energy functional, and
∫︀
𝛿𝜇 is a functional integral. Since 𝑁

is very large, the integral is dominated by the peak value of the integrand. Therefore,
we obtain

𝑞(𝜑) = sup
𝜇

[︂∫︁
𝑑𝜇(·)𝜑(·) − 𝐼(2)(𝜇)

]︂
. (35.11)

Since 𝐼(2)(𝜇) is convex, this is a proper Legendre transformation, and 𝑞(𝜑) is also a
convex function(al). Thus,

𝐼(2)(𝜇) = sup
𝜑

[︂∫︁
𝑑𝜇(·)𝜑(·) − 𝑞(𝜑)

]︂
. (35.12)

That is, ‘entropy’ may be obtained from ‘free energy’ through a Legendre transfor-
mation: 𝑞 is much easier to compute than 𝐼, but 𝐼 dictates what you can observe
just as at level 1.

35.5 Sanov’s theorem revisited
Let us compute 𝐼(2)(𝜇) when the sampling measure is 𝑚. Notice that the partition
function (35.9) can be rewritten as

𝑍(𝜑) =

∫︁
𝑑𝑚(𝜔) 𝑒

∑︀𝑁−1
𝑘=0 𝜑(𝑥(𝑘,𝜔)), (35.13)

because 𝜇 is an empirical measure obtained from {𝑥(𝑘, 𝜔)}𝑁−1
𝑘=0 . Let us assume that

𝑥(𝑘, 𝜔) are statistically independent for different 𝑘 (i.e., let us assume the dynamics
is Bernoulli). Then,

𝑍(𝜑) =

∫︁
𝑑𝑚

𝑁−1∏︁
𝑘=0

𝑒𝜑(𝑥(𝑘,𝜔)) = 𝑧𝑁 , (35.14)
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where

𝑧(𝜑) =

∫︁
𝑑𝑚𝑒𝜑(𝑥), (35.15)

Therefore, 𝑞(𝜑) = log 𝑧(𝜑) or

𝐼(2)(𝜇) = sup
𝜑

[︂∫︁
𝑑𝜇(·)𝜑(·) − log 𝑧(𝜑)

]︂
. (35.16)

Let us compute 𝜑 that ‘maximizes’ [ ]. The functional derivative gives398:∫︁
𝑑𝜇(𝑥) 𝛿(𝑥− 𝑦) − 1

𝑧(𝜑)

𝛿𝑧

𝛿𝜑(𝑦)
= 0, (35.17)

where
𝛿𝑧

𝛿𝜑(𝑦)
=

∫︁
𝑑𝑚𝛿(𝑥− 𝑦)𝑒𝜑(𝑥) (35.18)

Therefore, we get

𝑑𝜇(𝑦) =
𝑑𝑚(𝑦)𝑒𝜑(𝑦)

𝑧(𝜑)
⇒ 𝑑𝜇

𝑑𝑚
=

𝑒𝜑(𝑦)

𝑧(𝜑)
. (35.19)

That is,

𝜑(𝑦) = log
𝑑𝜇

𝑑𝑚
+ log 𝑧. (35.20)

Introducing this into (35.16), we obtain

𝐼(2)(𝜇) =

∫︁
𝑑𝜇(·) log

𝑑𝜇

𝑑𝑚
. (35.21)

This is called Sanov’s theorem, justifying the use of information theory to search for
the most probable results.

Notice, however, the result is only for Bernoulli processes. We must relax this
constraint.

35.6 Extension of Sanov-type formula for general level 2
Warning: I identify the actual trajectories in 𝑀 and their counterpart symbol
sequences. In short I identify as measurable spaces the actual dynamical system and
its isomorphic symbolic dynamics.

The easiest way is to regard a chunk of a trajectory (consecutive 𝑛 time points) as a
single state. Thus,

𝐼(2)(𝜇) =

∫︁
𝑑𝜇(·) log

𝑑𝜇

𝑑𝑚
. (35.22)

398The basic measure is 𝑚. That is 𝛿-function is with respect to measure 𝑚
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reads (recall the notation [𝑥] = 𝑥1 · · ·𝑥𝑛)

𝐼(2)(𝜇) =

∫︁
𝑑𝜇([𝑥]𝑛) log

𝑑𝜇

𝑑𝑚
([𝑥]𝑛). (35.23)

The Radon-Nikodym derivative can be rewritten as follows, assuming 𝑛 is sufficiently
large:

𝑑𝜇

𝑑𝑚
([𝑥]𝑛) =

𝜇([𝑥]𝑛)

𝑚([𝑥]𝑛)
. (35.24)

Using the conditional probability

𝑚([𝑥]𝑛) = 𝑚(𝑥1 |𝑥2 · · ·𝑥𝑛)𝑚(𝑥2 · · · 𝑥𝑛) (35.25)

therefore, in the large 𝑛 limit we can write

𝑚([𝑥1 · · ·𝑥𝑛]) =
𝑚([𝑥1𝑥2 · · ·𝑥𝑛])

𝑚([𝑥2 · · · 𝑥𝑛])

𝑚([𝑥2𝑥3 · · ·𝑥𝑛])

𝑚([𝑥3 · · ·𝑥𝑛])
· · · (35.26)

=
𝑚([𝑥1𝑥2 · · ·𝑥𝑛])

𝑚(𝑓 [𝑥1𝑥2 · · ·𝑥𝑛])

𝑚([𝑥2 · · ·𝑥𝑛])

𝑚(𝑓 [𝑥2 · · ·𝑥𝑛])
· · · . (35.27)

Therefore,

1

𝑛
log𝑚([𝑥1 · · ·𝑥𝑛]) =

1

𝑛

𝑛−1∑︁
𝑗=1

log
𝑚([𝑥𝑗 · · ·𝑥𝑛])

𝑚(𝑓 [𝑥𝑗 · · ·𝑥𝑛])
. (35.28)

Analogously we get

1

𝑛
log 𝜇([𝑥1 · · ·𝑥𝑛]) =

1

𝑛

𝑛−1∑︁
𝑗=1

log
𝜇([𝑥𝑗 · · ·𝑥𝑛])

𝜇(𝑓 [𝑥𝑗 · · ·𝑥𝑛])
. (35.29)

Thus, if we consider (1/𝑛)𝐼(2) → 𝐼(3) in the large 𝑛 limit, we get

𝐼(3) =

∫︁
𝑑𝜇(𝑥)

[︂
log

𝑑𝜇

𝑑𝜇 ∘ 𝑓
− log

𝑑𝑚

𝑑𝑚 ∘ 𝑓

]︂
. (35.30)

Recall (31.3). The first term is (−)KS-entropy. Notice that this is the large deviation
function for trajectories (so it is called the level 3 rate function).

Although I said I would identify the real space and the symbol space, and although
the identification is almost perfect (it is perfect for 1D endomorphism, so this im-
mediately gives Rohlin’s formula), the formula must be carefully interpreted. For
a sequence {𝑥1, 𝑥2, 𝑥3, · · ·}, 𝑓({𝑥1, 𝑥2, 𝑥3, · · ·}) = {𝑥2, 𝑥3, · · ·} (cf. the shift). Notice
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that one symbol disappears. This shortening of the cylinder set implies expansion.
That is why the first term is (−)KS-entropy. The second term is the expansion rate;
if we have a nice coding such as Markov partitions, then it is the sum of positive
LCN. That is, (35.30) reads

𝐼(3) =
∑︁
+

⟨𝜒⟩𝜇 − ℎ𝜇 ≥ 0 (35.31)

Thus, Pesin’s equality holds for the most probable state = equilibrium state.

35.7 Energy function
To do study statistical mechanic on the lattice we need an energy function 𝜙 : Σ𝑛 →
R. It is the 1/2 of the total interaction and the self energy of a spin. we impose the
following constraint on 𝜑. Let

var𝑘𝜑 = sup{|𝜑(𝑥) − 𝜑(𝑦)| : 𝑥𝑖 = 𝑦𝑖 for |𝑖| ≤ 𝑘}. (35.32)

Our constraint is
var𝑘𝜙 ≤ 𝑏𝛼𝑘, (35.33)

where 𝑏 > 0 and 𝛼 ∈ (0, 1). Let us explicitly write

ℱ𝐴 = {𝜑 |Σ𝐴 → R, var𝑘𝜙 ≤ 𝑏𝛼𝑘,∀𝑘 ∈ N}. (35.34)

Here Σ𝐴 is a Markov subshift with matrix 𝐴.

35.8 Gibbs measure
For any Hamiltonian 𝜑 ∈ ℱ𝐴, there is a unique shift invariant measure 𝜇𝜑 satisfying
the following inequality for some positive constants 𝐶1, 𝐶2 and 𝑃 (= free energy per
spin)

𝐶1 ≤
𝜇{𝑦 : 𝑦𝑖 = 𝑥𝑖,∀𝑖 ∈ {0, 1, · · · , 𝑛}

exp(−𝑃𝑚 +
∑︀𝑛−1

𝑘=0 𝜑(𝜎𝑘𝑥))
≤ 𝐶2, (35.35)

35.9 Transfer operator
Consider the totality of the states on the right-half lattice 𝑆+

𝐴 .399 and 𝜑 ∈ 𝐶(Σ+
𝐴.

399If you read the original math paper, there is a log discussion about how to justify considering
of Σ+ instead of 𝑆.
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Define the transfer operator 𝑇𝜑 as

[𝑇𝜑𝑓 ](𝑥) =
∑︁

𝑦∈𝜎−1𝑥

𝑒𝜑(𝑦)𝑓(𝑦). (35.36)

Notice that 𝑦 = 𝑥*𝑥1𝑥2 · · ·.

35.10 Ruelle-Perron-Frobenius theorem
Let Σ𝐴 be mixing and 𝜑 ∈ ℱ𝐴 ∩ 𝐶(Σ+

𝐴). There is a unique positive eigenvalue
𝜆𝜑 of 𝑇𝜑, and the Gibbs measure is obtained from the partition func tion and the
normalization obtained from 𝜆𝜑

𝜇([𝑥]𝑛) ≃ 1

𝜆𝑛
𝜑

exp

(︃
𝑛∑︁

𝑖=1

𝜑(𝑥𝑖)

)︃
, (35.37)

where [𝑥]𝑛 = 𝑥1 · · ·𝑥𝑛.

35.11 Variational principle for Gibbs measure
The Gibbs measure 𝜇𝜑 is the unique measure satisfying the following variational
principle:

𝑠(𝜇) +

∫︁
𝜑𝑑𝜇 = 𝑃 (𝜑). (35.38)

where 𝑠 is the entropy per spin.
The 𝑇 -invariant measure satisfying the variational principle is called an equilib-

rium state wrt to 𝑇 and 𝜑.400

400Th 2.7
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