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34 Lecture 34 KS entropy as isomorphism invari-
ant

34.1 Kolmogorov-Sinai entropy as isomorphism invariant

The Kolmogorov-Sinai entropy was originally proposed as an invariant under iso-
morphism of measure theoretical dynamical systems. Suppose there are two measure
theoretical dynamical systems (7, u, ') and (7", p/,I"). Let ¢ : I' — I be a one-to-
one (except for measure zero sets) correspondent and measure-preserving: = p' o ¢
(that is, the measure of any measurable set measured by the measure p on I' and
measured by the measure p’' on I” after mapping from I' by ¢ are identical).>™ If
the following diagram:

I — T
] o]
r o

is commutative (except on measure zero sets of I' and ), that is, if T = ¢~1 0T 0 ¢,
these two measure-theoretical dynamical systems are said to be isomorphic.

It is almost obvious that the Kolmogorov-Sinai entropies of isomorphic measure-
theoretical dynamical systems are identical, because for a partition A of I' H(A) =
H(pA) and ¢oT = T" o ¢p. We say that the Kolmogorov-Sinai entropy is an isomor-
phism invariant. If two dynamical systems have different Kolmogorov-Sinai entropies,
then they cannot be isomorphic. For example, as can be seen from (34.2) B(1/2,1/2)
and B(1/3,2/3) cannot be isomorphic.

An isomorphism invariant that takes the same value if and only if dynamical systems
are isomorphic is called a complete isomorphism invariant. If we find such an invari-
ant, the classification of dynamical systems according to isomorphism is reduced to
the computation of the invariant. Is the Kolmogorov-Sinai entropy such an invariant?
When Meshalkin®*° demonstrated the isomorphism between B(1/4,1/4,1/4,1/4)
and B(1/2,1/8,1/8,1/8,1/8) (both have the Kolmogorov-Sinai entropy 2log 2), the
affirmative answer was expected (also there was a crucial contribution of Sinai: the
weak isomorphism theorem for Bernoulli processes). In 1970%! Ornstein proved that
for Bernoulli processes the Kolmogorov-Sinai entropy is a complete invariant. Fur-

379Precisely, we must assume not only that ¢ : I' — I'/ is one to one as a map between measurable
spaces, but also that measurable subsets of I" are mapped on those of IV by ¢, and vice versa by

-1

3801, D. Meshalkin,“A case of Bernoulli scheme isomorphism,” Dokl. Acad. Sci. USSR, 128(1)
41 (1959).

38111970: Russel died (1872-), Aswan High Dam, Allende became the President of Chile.]
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thermore, completeness was proved for any finite mixing Markov chain with finite
Kolmogorov-Sinai entropy.?3%3%3

34.2 Ornstein-Weiss’ theorem
Ornstein and Weiss proved the following theorem:*%*
Theorem 2.7A.1 Not completely predictable systems (= systems with positive Kolmogorov-
Sinai entropy) have Bernoulli flows (continuous dynamical systems whose periodically

sampled sequences become Bernoulli processes) as their factor dynamical systems.

Here, “to have A as a factor dynamical system” implies that the original dynami-
cal system behaves as dynamical system A if it is reduced to a certain space (more
precisely, there is a homomorphism from the system onto A). They simply equate
the chaotic system and the system with positive Kolmogorov-Sinai entropy in the
quoted review article.

34.3 Bernoulli system

Let M = ZZ where Z, = {0,1,---,n — 1}. We can define a shift dynamical system
(actually it is a full shift). We introduce a measure p on M through the measures
of the cylinder sets as®

q
plwisr = a1, Wiyg = ag) = H P » (34.1)
m=1

where o, € Z, and py,---,p, are p,, € [0,1] with > " _ p, = 1 (ie., p; is the
probability for a letter in the alphabet Z,,.

(o, M, 1) is a measure-theoretical dynamical system called the Bernoulli system
and is denoted as B(p1, -+, pn)-

B(1/2,1/2) corresponds to the coin-tossing process, and is isomorphic to baker’s
transformation (see 27.4). It is also isomorphic to the horseshoe dynamical system
restricted on its nontrivial invariant set (see 28.5).

3821, P. Cornfeld, S. V. Fomin, and Ya. G. Sinai, Ergodic Theory, (Springer, 1982); D. S. Ornstein,
Ergodic Theory, Randomness, and Dynamical Systems (Yale University Press, 1974).

383However, the cases with zero entropy are different; there are numerous non-isomorphic dynam-
ical systems with zero entropy.

384D, S. Ornstein and B. Weiss, “Statistical Properties of Chaotic Systems,” Bull. Amer. Math.
Soc. 24, 11 (1991), Theorem 1.4.3.

385This can actually uniquely specify u on M according to Kolmogorov’s extension theorem.
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34.4 Kolmogorov-Sinai entropy of Bernoulli system
The Kolmogorov-Sinai entropy of B(py,---,py,) is given by

h=—Y pilogp;. (34.2)
=1

We can compute the loss of information by o easily (see 32.1). It is indeed given
by this formula.

34.5 Central statements of theory of Bernoulli processes*®¢

Two central statements of the theory are the Sinai theorem and the Ornstein theo-
rem:
(I) [Sinai’s weak isomorphism theorem| Every ergodic process with positive entropy
h has any Bernoulli shift of entropy smaller than or equal to h as a measure-theoretic
factor.3%7
(IT) [Ornstein’s isomorphism theorem] Bernoulli shifts with equal entropies are iso-
morphic.

The Ornstein theorem fails for unilateral shifts (but the Sinai theorem holds,
which is less known).

3867, DOWNAROWICZ and J. SERAFIN, A short proof of the Ornstein theorem, Ergod. Th. &
Dynam. Sys. 32 587 (2012). The authors of this note managed to simplify the Burton, Keane and
Serafin method. It is the residual Sinai theorem which is central in our method, and the number
of applications of the Baire theorem is reduced to one. We continue to invoke the elementary
combinatorial ‘marriage lemma.’ I give up to illustrate this paper.

387 (Factor)) A coarse-grained dynamical system is called a factor of the original dynamical
system. Formally, (S,v,N) is a factor of (T, u, M), if there is a measurable ‘homomorphism’
@ : M — N such that
(i) Sop=¢oT,

(i) v(A) = T(¢(A)0 for measurable set in N
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