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33 Lecture 33. Lyapunov characteristic number

33.1 Lyapunov indices
As seen in examples above and from the Brin-Katok theorem, exponential separation
of nearby trajectories may be regarded as a characteristic feature of chaos. Consider
two trajectories starting from 𝑥 and a nearby point 𝑥 + 𝜀𝑣, where 𝜀 is a small
positive number and 𝑣 the directional vector. They tend to separate exponentially
as time increases. At time 𝑡 let us write the separation distance between these two
trajectories as exp(𝑡𝜆(𝑥, 𝑣)). The exponent 𝜆(𝑥, 𝑣) is called the Lyapunov exponent
(or Lyapunov characteristic exponent; A. M. Lyapunov 1857-1918) for the vector 𝑣
at 𝑥 ∈ Γ. Its precise definition is

𝜆(𝑥, 𝑣) = lim sup
𝑛→∞

1

𝑛
log ‖𝐷𝜑𝑛(𝑥)𝑣‖, (33.1)

where 𝐷 is differentiation with respect to 𝑥375 and ‖ ‖ is the norm in the tangent
vector space of Γ. The map 𝑇 defining the dynamical system is written as 𝜑 to avoid
confusion in the present note. At each 𝑥 𝜆(𝑥, 𝑣) as a function of 𝑣 takes 𝑞 (≤ the
dimension of Γ) distinct values:

𝜆(1)(𝑥) > · · · > 𝜆(𝑞)(𝑥). (33.2)

Its existence is guaranteed by the following theorem:

33.2 Oseledec’s theorem376

At each 𝑥 ∈ Γ the tangent vector space 𝑇𝑥Γ (≃ R𝑛) of Γ may be decomposed into a
direct sum of the form

𝑇𝑥Γ =

𝑞(𝑥)⨁︁
𝑖=1

𝐻𝑖(𝑥) (33.3)

and for 𝑣 ∈ 𝐻𝑗(𝑥)

lim sup
𝑛→∞

1

𝑛
log ‖𝐷𝜑𝑛(𝑥)𝑣‖ = 𝜆𝑗(𝑥). (33.4)

375This gives a Jacobi matrix in general.
376For a proof, see, for example, A. Katok and B. Hasselblat, Introduction to the Modern Theory

of Dynamical Systems (Cambridge University Press, 1996) p665. The original theorem is about the
general cocycle of a dynamical system and is called Oseledec’s multiplicative ergodic theorem, but
here it is quoted only in the form directly relevant to our topic.
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If the dynamical system is ergodic, this does not depend on 𝑥.

33.3 Numerical calculation of Lyapunov spectrum377

If we choose an arbitrary vector 𝑣 to compute (33.1), then almost surely we get 𝜆1

as can be clear from the illustration Fig. 33.1.

n
T

Figure 33.1: Fastest-growing direction wins. In this example, the green direction is also expo-
nentially growing, but the ratio of the lengths of the red and green arrows increase exponentially.

If we could consider the dynamics in the tangent space perpendicular to the fastest-
growing direction, then we should obtain the second fastest 𝜆2. However, the fastest-
growing direction rotates as illustrated in 33.1. A natural approach is as follows. Let
us assume 𝑀 to be an 𝑛-manifold. Start from a basis ⟨𝑒1, 𝑒2, · · · , 𝑒𝑛⟩ (of 𝑇𝑥0𝑀). For
example, the time evolution of the vector looks like the following succession of linear
transformations

𝐷𝜑𝑛(𝑥0)𝑒1 = 𝜑′(𝜑𝑛−1(𝑥0)) · · ·𝜑′(𝜑(𝑥0))𝜑
′(𝑥0)𝑒1. (33.5)

The expansion rate for this time span for this initial vector is given by

1

𝑛
log ‖𝐷𝜑𝑛(𝑥0)𝑒1‖. (33.6)

After several (𝑛) time steps, we may order the length of these vectors, and order them
according to the length as 𝑒𝑖1 , · · · , 𝑒𝑖𝑛 . Then, apply the Gram-Schmidt orthonormal-

ization to make a new ON basis ⟨𝑒(1)1 , 𝑒
(1)
2 , · · · , 𝑒(1)𝑛 ⟩. Then, repeat the procedure and

377The original idea is due to Ippei SHIMADA and Tomomasa NAGASHIMA, “A Numerical
Approach to Ergodic Problem of Dissipative Dynamical Systems,” Prog. Theor. Phys. 61 1605
(1979). The exposition here is not for actual calculations. For an actual calculation see for example,
C. Skokos, The Lyapunov characteristic exponents and their computation, arXiv:0882v2 (Jan 26,
(2009).
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compute the expansion rate as follows:

1

𝑁

[︂
1

𝑛
log ‖𝐷𝜑𝑛(𝑥0)𝑒𝑘‖ +

1

𝑛
log ‖𝐷𝜑𝑛(𝜑𝑛(𝑥0))𝑒

(1)
𝑘 ‖ + · · · +

1

𝑛
log ‖𝐷𝜑𝑛(𝜑((𝑁−1)𝑛)(𝑥0))𝑒

(𝑁)
𝑘 ‖

]︂
.

(33.7)

33.4 Volume expansion rate calculation
In 33.3 each vector direction is calculated separately. Suppose in Fig. 33.1 we calcu-
late the area spanned by the red and green vectors. Its area exponentially grows
as 𝑒𝑁(𝜆1+𝜆2). This means that calculating the volume of the fastest growing 𝑘-
(rectangular) parallelepiped, we can compute 𝜆1 + 𝜆2 + · · · + 𝜆𝑘 (the sum up to
the 𝑘th largest LCN).

33.5 Some notable properties of LCN
Suppose a continuous dynamical system has a bounded phase space (i.e., bounded
𝑀) and there is no fixed point, then there must be 0 LCN. This is obvious, because
the direction tangent to the orbit cannot grow exponentially and its speed is bounded
from below.

For a Hamiltonian dynamical system, the phase volume is conserved, so 33.4
implies that the total sum of LCN must vanish.

Moreover, if 𝑙𝑎𝑚 (> 0) is a Lyapunov number, then so is −𝜆. This can be shown
with the aid of the canonical invariance of∫︁

𝑑𝑞𝑟𝑑𝑝𝑟𝑑𝑞
𝑠𝑑𝑝𝑠 · · · 𝑑𝑞𝑡𝑑𝑝𝑡. (33.8)

33.6 Pesin’s equality378

For 𝑇 ∈ Diff2(𝑀) a ergodic measure theoretical dynamical system (𝑇, 𝜇,𝑀) (if any).
Then, the following illustration tells us the following equality:

ℎ𝜇(𝑇 ) =
∑︁
+

𝜆, (33.9)

378Ya. B. Pesin, “Characteristic Lyapunov exponents and smooth ergodic theory,” Russ. Math
Surveys 32Z(4) 55 (1977). Section 5. This proves ℎ ≥

∑︀
+ 𝜆; the proof is technical and not

enlightening; besides, the inequality ≤ uses Mather’s paper.
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where
∑︀

+ means the sum over all the positive LCN.

f

x

x
f

Figure 33.2: Pesin illustrated: the cube edges describe the local unstable and stable directions.
Note that these directions are determined by the derivatives of the field. Since the map is 𝐶2,
they are smooth so locally expanding directions nicely agree with the original ‘blocks’ (elements of
partitions). Although we may not be allowed to make Markov partitions, but still the partitions
are geometrically nice and we can determine the expansion rate in the unstable directions.

33.7 Ruelle’s inequality
Generally, if the dynamical system is less smooth, then in Fig. 33.2 nice overlap is
not guaranteed, so the expansion direction of the mapped ‘cube (the slab in the
figure) may no more overlap nicely but only obliquely. Then, the expansion may not
as effectively ‘dilute’ information. Therefore, generally,

ℎ𝜇(𝜑) ≤
∑︁
+

𝜆 (33.10)

which is called Ruelle’s inequality.379

33.8 Kingman’s subadditive ergodic theorem380

Suppose 𝑋𝑚,𝑛 (0 ≤ 𝑚 < 𝑛) satisfy:
(i) 𝑋0,𝑛 ≤ 𝑋0,𝑚 + 𝑋𝑚,𝑛.
(ii) For each 𝑘, {𝑋𝑛𝑘,(𝑛+1)𝑘, 𝑛 ≥ 1} is a stationary sequence.
(iii) The distribution of {𝑋𝑚,𝑚+𝑘, 𝑘 ≥ 1} does not depend on 𝑚.
(iv) 𝐸𝑋+

0,1 < ∞ and for each 𝑛, 𝐸𝑋0,𝑛 ≥ 𝛾0𝑛, where 𝛾0 > −∞.
Then,

379D. Ruelle, “An inequality for the entropy of differentiable maps,” Bol. Soc. Brasil. Mat. 9, 83
(1978).

380based on R. Durrett, Probability: Theory and examples (Wadsworth & Brooks/Cole 1991).
This is the best advanced introduction to probability.
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(a) lim𝑛→∞𝐸𝑋0,𝑛/𝑛 = inf𝑚 𝐸𝑋0,𝑚/𝑚 ≡ 𝛾.
(b) 𝑋 = lim𝑛→∞𝑋0,𝑛/𝑛 exists a.s. and in 𝐿1, so 𝐸𝑋 = 𝛾.
(c) If all the stationary sequences in (ii) are ergodic, then 𝑋 = 𝛾 a.s.

(a) is clear from Fekete’s inequality.

Remark. If we set 𝑋𝑛,𝑚 = 𝑓(𝑇𝑚+1)+ · · · 𝑓(𝑇 𝑛𝑥), then (i)-(iv) hold. The outcome is
the usual ergodic theorem, but we use this theorem to prove the subadditive version.

33.9 Estimate of lim sup𝑋0,𝑛/𝑛
(i) implies, for 𝑛 = 𝑘𝑚 + 𝑙 (𝑙 ∈ [0,𝑚)),

𝑋0,𝑛 ≤ 𝑋0,𝑘𝑚 + 𝑋𝑘𝑚,𝑛, 𝑋0,𝑘𝑚 ≤ 𝑋0,(𝑘−1)𝑚 + 𝑋(𝑘−1)𝑚,𝑘𝑚, (33.11)

so
𝑋0,𝑛 ≤ 𝑋0,(𝑘−1)𝑚 + 𝑋(𝑘−1)𝑚,𝑘𝑚 + 𝑋𝑘𝑚,𝑛. (33.12)

Since
𝑋0,(𝑘−1)𝑚 ≤ 𝑋0,(𝑘−2)𝑚 + 𝑋(𝑘−2)𝑚,(𝑘−1)𝑚, (33.13)

etc., repeated use of such inequalities to (33.12) gives

𝑋0,𝑛 ≤ 𝑋0,𝑚 + 𝑋𝑚,2𝑚 + · · · + 𝑋(𝑘−1)𝑚,𝑘𝑚 + 𝑋𝑘𝑚,𝑛. (33.14)

Therefore,

𝑋0,𝑛

𝑛
≤

(︂
𝑘

𝑘𝑚 + 𝑙

)︂
𝑋0,𝑚 + 𝑋𝑚,2𝑚 + · · · + 𝑋(𝑘−1)𝑚,𝑘𝑚

𝑘
+

𝑋𝑘𝑚,𝑛

𝑛
. (33.15)

Now, we use the ergodic theorem: there must be a limit

𝑋0,𝑚 + 𝑋𝑚,2𝑚 + · · · + 𝑋(𝑘−1)𝑚,𝑘𝑚

𝑘
→ 𝐴𝑚. (33.16)

Thus, assuming nice behaviors of the system,

𝑋 ≡ lim sup
𝑛→∞

𝑋0,𝑛

𝑛
≤ 𝐴𝑚

𝑚
. (33.17)

If we may assume the system to be ergodic, then (a) implies∫︁
𝑑𝜇𝑋 ≤ 𝛾. (33.18)
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33.10 Almost sure convergence of lim𝑋0,𝑛/𝑛
Let

𝑋 ≡ lim inf
𝑛→∞

𝑋0,𝑛

𝑛
(33.19)

We wish to show ∫︁
𝑑𝜇𝑋 ≥ 𝛾. (33.20)

This with (33.18) implies ∫︁
𝑑𝜇 (𝑋 −𝑋) ≥ 0. (33.21)

That is, 𝑋 = 𝑋 a.s., the a.s. convergence of 𝑋0,𝑛/𝑛.

Let

𝑋𝑚 = lim inf
𝑛→∞

𝑋𝑚,𝑚+𝑛

𝑛
, (33.22)

but this agrees with 𝑋 (ergodicity).
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