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32 Lecture 32. Kolmogorov-Sinai entropy

32.1 Kolmogorov-Sinai entropy as information loss rate
The identity of the information deficiency rate = the extra information required for
the equi-precise description and the Kolmogorov-Sinai entropy is generally expected,
so the definition of the Kolmogorov-Sinai entropy for a measure-theoretical dynam-
ical system (𝑇, 𝜇,𝑀) is given. This section gives an elementary introduction to
the concept and some basic theorems facilitating its intuitive understanding. Some
preparation is needed.

32.2 Partition
A (finite) partition 𝒜 of a set Γ (Fig. 32.1) is a family of subsets {𝐴1, · · · , 𝐴𝑛} of Γ
satisfying the conditions:
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Figure 32.1: Partition 𝒜 = {𝐴1, · · · , 𝐴𝑛}. A finite partition 𝒜 of a set Γ is a family of finitely
many subsets of Γ such that its members 𝐴𝑖 do not have any overlap with each other and the total
sum perfectly covers Γ.

(1) For any 𝑖 and 𝑗 (̸= 𝑖) 𝐴𝑖 ∩ 𝐴𝑗 = ∅, and
(2) ∪𝑛

𝑖=1𝐴𝑖 = Γ

{𝐴𝑖} may be interpreted as the totality of the mutually exclusive observation re-
sults.369 Our observation is always under finite precision. Therefore, if the phase
space is continuous, we can never specify a particular point in it by observation.
Therefore, it is reasonable to introduce such discrete (coarse-grained) observables.370

369Here, each set 𝐴𝑖 may be a collection of discrete pieces or with holes (i.e., it need not be
(singly) connected).

370We could not tell which 𝐴𝑖 the phase point is actually in, so mustn’t 𝐴𝑖 be fuzzy? Here, we
adopt an interpretation that the relation between the values of a macro-observable that can be
observed with a finite precision and the actual microstates of the dynamical system is given by the
system itself independent of our capability of observing each microstate. That is, an element of a
partition 𝒜 consists of a definite set of microstates as an intrinsic property of the system, although
we cannot determine this with our finite precision observations.
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32.3 Composition of partitions
The composition operation ∨ of two partitions of Γ, 𝒜 ≡ {𝐴1, · · · , 𝐴𝑛} and ℬ ≡
{𝐵1, · · · , 𝐵𝑚}, is defined as follows (Fig. 32.2):

𝒜 ∨ ℬ ≡ {𝐴1 ∩𝐵1, 𝐴1 ∩𝐵2, · · · , 𝐴𝑛 ∩𝐵𝑚}. (32.1)
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Figure 32.2: Composition of partitions: {𝐴1, 𝐴2}∨{𝐵1, 𝐵2} = {𝐴1∩𝐵1, 𝐴1∩𝐵2, 𝐴2∩𝐵1, 𝐴2∩𝐵2}

On the right-hand side appear all the nonempty pairs of 𝐴𝑖 and 𝐵𝑗. By definition
𝒜∨ℬ = ℬ∨𝒜. The elements of 𝒜∨ℬ may be interpreted as the mutually exclusive
outcomes obtained by performing two macroscopic observations corresponding to 𝒜
and ℬ simultaneously.

32.4 Information obtainable from observable 𝒜
Let us return to the general measure-theoretical dynamical system (𝑇, 𝜇,Γ). The av-
erage information we can obtain about the system by a single observation of macro-
scopic observable 𝒜 may be written with the aid of Shannon’s formula (31.9) as371

𝐻(𝒜) = −
∑︁
𝐴∈𝒜

𝜇(𝐴) log 𝜇(𝐴). (32.2)

This information implies that unless we have on the average this amount of informa-
tion about the system, we cannot infer in which 𝐴𝑖 the observation result is in.

371The partition must be a measurable partition; 𝜇(𝐴𝑖) must be meaningful. Such a statement
will not be written explicitly in the following.
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32.5 Extra information needed for equi-precise description of observable
𝒜
When a system evolves according to the dynamical law 𝑇 , how much information do
we need to infer its coarse-grained state (one of 𝒜) at the next time (time 𝑡+1) under
the condition that we know the coarse-grained state at present (time 𝑡)? To infer
both the states at time 𝑡 and time 𝑡+ 1 without any prior knowledge, we need infor-
mation of 𝐻(𝒜 ∨ 𝑇−1𝒜), where 𝑇−1𝒜 = {𝑇−1𝐴1, · · · , 𝑇−1𝐴𝑛}. We can understand
this as follows. An element of 𝑇−1𝒜 coincides with some element of 𝒜 after one time
step. That is, to describe the state of the system after one time step in terms of the
observable 𝒜 is equivalent to knowing in which element of 𝑇−1𝒜 the current state is.
Therefore, to specify both the states at 𝑡 + 1 and at 𝑡 is to specify a single element
in 𝒜 ∨ 𝑇−1𝒜. Consequently, on the average without 𝐻(𝒜 ∨ 𝑇−1𝒜) of information,
we cannot infer in which 𝐴𝑖 at time 𝑡 and in which 𝐴𝑗 at 𝑡+ 1 the system is in. If we
already know the macrostate at time 𝑡, to predict the macrostate at 𝑡 + 1 we need
𝐻(𝒜∨𝑇−1𝒜)−𝐻(𝒜) extra information. This is the amount of extra information ∆𝐻
(appearing in 31.1) required for equi-precision prediction of the one time step future.

32.6 Steady-state information loss
We need not stick to a particular time 𝑡 and 𝑡 + 1 in the steady state. That is, to
describe the extent of chaos for a measure-theoretical dynamical system we should
consider the average deficiency for a long time:

1

𝑛
[𝐻(𝒜 ∨ 𝑇−1𝒜 ∨ · · · ∨ 𝑇−𝑛𝒜) −𝐻(𝒜)] → ℎ𝜇(𝑇,𝒜), (32.3)

where the existence of this limit in 𝑛 → ∞ is guaranteed by the (intuitively plausi-
ble) subadditivity of 𝐻 32.7 and 𝐻(𝑇−𝑛𝒜) = 𝐻(𝒜) (𝑛 = 1, 2, · · ·; this can be seen
from the invariance of the measure (29.2)).

32.7 Subadditivity of entropy
The following inequality shows the subadditivity of information:

𝐻(𝒜 ∨ ℬ) ≤ 𝐻(𝒜) + 𝐻(ℬ). (32.4)

The inequality must be intuitively natural, because in order to describe two observ-
ables 𝒜 and ℬ it is better to use information about the relation between these two as
well than to use information separately from each of the observables. Algebraically,
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we proceed as follows:

𝐻(𝒜 ∨ ℬ) = −
∑︁
𝑖,𝑗

𝜇(𝐴𝑖 ∩𝐵𝑗) log 𝜇(𝐴𝑖 ∩𝐵𝑗), (32.5)

= −
∑︁
𝑖,𝑗

𝜇(𝐴𝑖 ∩𝐵𝑗)

{︂
log

(︂
𝜇(𝐴𝑖 ∩𝐵𝑗)

𝜇(𝐴𝑖)𝜇(𝐵𝑗)

)︂
+ log 𝜇(𝐴𝑖)𝜇(𝐵𝑗)

}︂
,

(32.6)

= −
∑︁
𝑖,𝑗

𝜇(𝐴𝑖 ∩𝐵𝑗) log

(︂
𝜇(𝐴𝑖 ∩𝐵𝑗)

𝜇(𝐴𝑖)𝜇(𝐵𝑗)

)︂
+ 𝐻(𝒜) + 𝐻(ℬ).

(32.7)

If the first term on the right-hand side of (32.7) is non-positive, the proof of 𝐻(𝒜∨
ℬ) ≤ 𝐻(𝒜) + 𝐻(ℬ) is over. This is the following important inequality: Let 𝑝 and 𝑞
be probabilities (𝑝𝑖 ≥ 0 and

∑︀
𝑖 𝑝𝑖 = 1, etc., hold)∑︁

𝑖

𝑝𝑖 log
𝑝𝑖
𝑞𝑖

≥ 0. (32.8)

To show this we use the inequality 𝑥 log 𝑥 ≥ 𝑥− 1 for 𝑥 ≥ 0.372 Introduce 𝑥 = 𝑝𝑖/𝑞𝑖
into this and sum over 𝑖 after multiplying 𝑞𝑖:∑︁

𝑖

𝑞𝑖

(︂
𝑝𝑖
𝑞𝑖

log
𝑝𝑖
𝑞𝑖

)︂
≥

∑︁
𝑖

𝑝𝑖 −
∑︁
𝑖

𝑞𝑖 = 0. (32.9)

32.8 Fekete’s lemma
If {𝑓(𝑛)} is subadditive (i.e., 𝑓(𝑛+𝑚) ≤ 𝑓(𝑚)+𝑓(𝑛) holds for any positive integers,
𝑛,𝑚), lim𝑛→∞ 𝑓(𝑛)/𝑛 = inf𝑚 𝑓(𝑚)/𝑚.373

[Demo] Obviously, lim inf 𝑓(𝑛)/𝑛 ≥ inf 𝑓(𝑚)/𝑚. Writing 𝑛 = 𝑠 + 𝑘𝑚 (𝑚 > 0, 𝑠 ≥ 0
are integers), we get

𝑓(𝑛)

𝑛
=

𝑓(𝑠 + 𝑘𝑚)

𝑠 + 𝑘𝑚
≤ 𝑓(𝑠) + 𝑘𝑓(𝑚)

𝑠 + 𝑘𝑚
→ 𝑓(𝑚)

𝑚
. (32.10)

372The minimum value of 𝑓(𝑥) = 𝑥 log 𝑥− 𝑥+ 1 for 𝑥 ≥ 0 is zero as can be seen from the graph.
373⟨⟨Infimum limit (lim inf), supremum limit (lim sup)⟩⟩ lim inf𝑛→∞ 𝑥𝑛 =

lim𝑛→∞ inf{𝑥𝑛, 𝑥𝑛+1, · · ·}. That is, we make the lower bound 𝑦𝑛 of the sequence beyond 𝑥𝑛

and then take its limit 𝑛 → ∞. Since {𝑦𝑛} is monotone increasing, the limit is well-defined (may
not be bounded); similarly, lim sup𝑛→∞ 𝑥𝑛 = lim𝑛→∞ sup{𝑥𝑛, 𝑥𝑛+1, · · ·}.
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Therefore, lim sup 𝑓(𝑛)/𝑛 ≤ inf 𝑓(𝑚)/𝑚. Hence, the infimum and supremum limits
agree, and the limit exists.

32.9 The best observable: definition of Kolmogorov-Sinai entropy
We should look for the ‘best’ observable to observe the system. Here, ‘the best
observable’ should imply the observable that allows us to observe the system max-
imally in detail. Such an observable must be sensitive to the time evolution of the
system, so the increasing rate of the information deficiency for this observable must
be the largest. With this idea the Kolmogorov-Sinai entropy (or measure-theoretical
entropy) is defined as follows:

ℎ𝜇(𝑇 ) ≡ sup
𝒜

ℎ𝜇(𝑇,𝒜), (32.11)

where the supremum is taken over all the finite partitions of Γ (roughly speaking,
we try all the finite-resolving power observations).

32.10 Generator
If all the future data of a certain macro-observable determines the future history
(trajectory) uniquely, we do not need any more detailed observations. Take an
arbitrary history 𝜔. Let us write the element of 𝒜∨𝑇−1𝒜∨· · ·∨𝑇−𝑛+1𝒜 containing
𝜔 as 𝐴𝑛(𝜔) (which is an example of a cylinder set; see 26.5).374 Since 𝜔 ∈ 𝐴𝑛(𝜔) for
any 𝑛 = 0, 1, 2, · · ·, 𝜔 ∈ ∩∞

𝑛=0𝐴
𝑛(𝜔). If this common set does not contain any history

other than 𝜔, in other words, if ∩∞
𝑛=0𝐴

𝑛(𝜔) = {𝜔}, any further detailed observation
is superfluous. If such a relation holds for 𝜇-almost all 𝜔 (i.e., except for 𝜇-measure
zero set), the partition 𝒜 is called a generator. If 𝒜 is a generator, as expected,375

ℎ𝜇(𝑇 ) = ℎ𝜇(𝑇,𝒜). (32.12)

For example, for 𝑇𝑥 = {2𝑥} in Appendix 2.1A {[0, 1/2], (1/2, 1]} is a generator.
If a measurable partition 𝒜 separates all points (precisely speaking, for 𝜇-almost

374An element of 𝒜∨ 𝑇−1𝒜∨ · · · ∨ 𝑇−𝑛+1𝒜 has the form: 𝐴𝑖 ∩ 𝑇−1𝐴𝑗 ∩ · · · ∩ 𝑇−𝑛+1𝐴𝑘, which is
the totality {𝑥 : 𝑥 ∈ 𝐴𝑖, 𝑇𝑥 ∈ 𝐴𝑗 , · · · , 𝑇𝑛−1𝑥 ∈ 𝐴𝑘}. Therefore, around here in the text, 𝑥 ∈ Γ and
a history 𝜔 = {𝑥, 𝑇𝑥, · · ·} are identified.

375P. Walters, An Introduction to Ergodic Theory (Springer, 1982) is an excellent textbook of
the Kolmogorov-Sinai entropy (but students outside mathematics may not be able to read it with
ease). P. Billingsley, Ergodic Theory and Information (Wiley, 1960) is also excellent, but is slightly
dated.
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all points), in other words, for any two points 𝑥 ̸= 𝑦 ∈ Γ, there is a positive integer
𝑛 and an element 𝐴 ∈ 𝒜 such that 𝑇 𝑛(𝑥) ∈ 𝐴 and 𝑇 𝑛(𝑦) ̸∈ 𝐴, 𝒜 is a genera-
tor. Actually, if 𝒜 were not a generator, there are two histories 𝑇 𝑛(𝑥) and 𝑇 𝑛(𝑦)
that are always contained in a single element of 𝒜 ∨ 𝑇−1𝒜 ∨ · · · ∨ 𝑇−𝑛+1𝒜 for any
𝑛 = 0, 1, 2, · · ·. This contradicts the requirement that each point is separated.

32.11 Chaos and information loss/gain rate
A chaotic dynamical system is a dynamical system for which the extra information
required for equi-precise description increases linearly in time.376

For chaos, if we wish to predict its state after 𝑁 time steps with sufficient preci-
sion, we need a tremendous amount of information at present (we need ∼𝑒𝑁ℎ times
as much precision as required to describe the present state, so 𝑁 times as much
information as required to know the state at present; see just below), so there is no
wonder that sooner or later the behavior of the system becomes unpredictable.

32.12 Krieger’s theorem on generator377

Let (𝑇, 𝜇,𝑀) be an ergodic dynamical system. If its Kolmogorov-Sinai entropy sat-
isfies ℎ𝜇(𝑇 ) < log 𝑘 for some integer 𝑘 > 1, there is a generator with 𝑘 elements.

The theorem roughly tells us that if the Kolmogorov-Sinai entropy of the system
is log 𝑘, then we can encode its dynamics using 𝑘 symbols without losing any infor-
mation.

376In contrast to the above explanation, there were people who wished to introduce the
Kolmogorov-Sinai entropy as the rate of generation of information by the dynamical system. Chaotic
dynamical systems often exhibit us details of initial conditions later because of exponential sepa-
ration of nearby trajectories. Consequently, (if noise is completely ignored) continuous observation
of trajectories would tell us increasingly detailed information about the initial condition (in retro-
spect). In this sense, the dynamical system looks as if it is generating information. This observation
itself is correct, but whether this generating rate can be measured by the Kolmogorov-Sinai entropy
is another question. For chaos that may be observed numerically (observable chaos), this is cor-
rect, but, for example, for unimodal endomorphisms of intervals, except for at most one invariant
measure, the assertion does not hold for any of (uncountably many) invariant measures; generally
speaking, the generating rate of information just considered is larger than the Kolmogorov-Sinai
entropy. This fact is captured by Ruelle’s inequality (33.10) we will encounter later. Therefore, it
is quite dangerous to interpret the Kolmogorov-Sinai entropy as the information generating rate.

377W. Krieger, “On entropy and generators of measure-preserving transformations,” Trans. Amer.
Math. Soc. 149, 453 (1970); corrections ibid. 168, 519 (1972).
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32.13 Shannon-McMillan-Breiman’s theorem378

Let (𝑇, 𝜇,Γ) be an ergodic dynamical system and 𝒜 a finite partition of Γ. Let 𝐴𝑛(𝑥)
be an element of 𝒜 ∨ 𝑇−1𝒜 ∨ · · · ∨ 𝑇−𝑛+1𝒜 (a cylinder set of length 𝑛) containing
𝑥 ∈ Γ. For 𝜇-almost all 𝑥

lim
𝑛→∞

[︂
− 1

𝑛
log 𝜇(𝐴𝑛(𝑥))

]︂
= ℎ𝜇(𝑇,𝒜). (32.13)

In the above formula 𝐴𝑛(𝑥) is, as before, the bundle of histories (i.e., cylinder set)
that cannot be distinguished from the history with the initial condition 𝑥 for 𝑛 time
steps with a coarse-grained observation corresponding to the partition 𝒜. 𝜇(𝐴𝑛(𝑥))
is the volume of the initial conditions for the history satisfying the condition (we
could interpret it as the volume of the cylinder set). If the observation time span 𝑛
is increased, the condition becomes increasingly stringent, so the volume decreases
exponentially. (32.13) measures how fast the volume of the cylinder set decreases.
The more chaotic the system is, the harder trajectories to be close to a particular
one starting from 𝑥, so this value must become larger.

It may be more intuitive to rewrite (32.13) as

𝜇(𝐴𝑛(𝑥)) ∼ 𝑒−𝑛ℎ𝜇(𝑇,𝒜). (32.14)

32.14 Asymptotic equipartition theorem
A special case of the Shannon-McMillan-Breiman theorem is the asymptotic equipar-
tition (AEP) theorem of information theory:379

Let {𝑋𝑖} be a sequence of independently and identically distributed stochastic
variables. Let us write the probability for a (consecutive) 𝑛 samples, 𝑋1, 𝑋2, · · · , 𝑋𝑛,
as 𝑝(𝑋1, · · · , 𝑋𝑛). Then,

− 1

𝑛
log 𝑝(𝑋1, · · · , 𝑋𝑛) → 𝐻(𝑋), (32.15)

where 𝐻(𝑋) is the entropy of the individual stochastic variables. Notice that this
is nothing but the weak law of large numbers (footnote 28 in Section 1.2) for the

378For a proof of the Shannon-McMillan-Breiman theorem, see, for example, W. Parry, Entropy
and Generators in Ergodic Theory (Benjamin, New York 1969).

379It is quite important in information theory. See T. M. Cover and J. A. Thomas, Elements of
Information Theory (Wiley, 1991) p50-
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logarithm of probability. 𝑋1, 𝑋2, · · · , 𝑋𝑛, · · · may be interpreted as a history, so the
Shannon-McMillan-Breiman theorem is the extension of the asymptotic equiparti-
tion theorem to histories with correlated events.

32.15 Brin-Katok’s theorem
The Brin-Katok theorem explicitly counts the number of histories in the 𝜀-neighborhood
of the trajectory starting from 𝑥.380

Let the totality of the initial conditions that stay in the 𝜀-neighborhood of the
trajectory starting from 𝑥 ∈ Γ for 𝑁 time steps be (the theorem holds for continuous
dynamical systems as well)

𝐵𝑁(𝑥, 𝜀) = {𝑦 ∈ 𝑀 : 𝑑(𝑇 𝑛𝑥, 𝑇 𝑛𝑦) ≤ 𝜀, 0 ≤ 𝑛 ≤ 𝑁}. (32.16)

Theorem [Brin-Katok] Let (𝑇, 𝜇,Γ) be an ergodic dynamical system. For 𝜇-almost
all 𝑥 ∈ Γ,

ℎ𝜇(𝑇 ) = − lim
𝜀→0

lim
𝑁→∞

1

𝑁
log 𝜇(𝐵𝑁(𝑥, 𝜀)). (32.17)

32.16 (some) Chaos can be predictable
Chaos may be predictable for a certain time span thanks to its deterministic nature,
in contradistinction to noise, but not for a long time. We can estimate during how
many steps 𝑛 we can predict dynamics with the aid of the Kolmogorov-Sinai entropy
ℎ. According to the Brin-Katok theorem 𝑛 ∼ (log 𝛿𝑥)/ℎ, where 𝛿𝑥 is our resolving
power of the initial condition. However, there are chaotic dynamical systems with
very small ℎ, for which accurate prediction of considerable future is possible.381

32.17 Chaos under noise
As was stated around the Shannon-McMillan-Breiman theorem above, if a system
is chaotic, the bundle of histories close to a given history thins quickly, so it is of-
ten the case that the external noise makes a chaotic system ‘more chaotic.’ This is

380M. Brin and A. Katok, “On local entropy” Lecture Notes Math. 1007, 30 (1983).
381For asteroid 522 Helga the Lyapunov characteristic time (the time needed to magnify the initial

error by 𝑒) is 6,900 years, so accurate prediction is possible. See A. Milani and A. M. Nobili, “An
example of stable chaos in the Solar System,” Nature, 357, 569 (1992). J. J. Lissauer, “Chaotic
motion in the Solar System,” Rev. Mod. Phys. 71, 835 (1999) is a review.
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because noise can induce jumps between the elements of a generator that does not
happen with a single time step by the intrinsic dynamics. However, with our crude
description of dynamical systems so far given, we cannot claim anything general as
to the noise response of a chaotic system because the ‘effectiveness’ of noise strongly
depends on its details such as which trajectories actually come close in the phase
space. We cannot conclude that a system with a larger Kolmogorov-Sinai entropy
is more sensitive to noise. For example, due to noise transition into a particular el-
ement 𝐴𝑖 ∈ 𝒜 can become disproportionately frequent. If this element is embedded
by the intrinsic dynamics into a (small portion) of another element, the Kolmogorov-
Sinai entropy could become smaller due to noise. This is indeed the essence of the
noise-induced order discovered by Tsuda.382 More extremely, we could imagine a set
𝐷 outside the range of the intrinsic steady dynamics 𝐵 such that the trajectories
perturbed into 𝐷 from 𝐵 by noise are sent back into a very small subset of 𝐵. Thus,
we see that the noise effect is very sensitively dependent on the details of the system
(Fig. 32.3).

D

B

Figure 32.3: A dynamical system that can order by noise. If a phase point goes out of 𝐵 to 𝐷,
it is sent back to a very small portion of 𝐵. In such a case moderate noise could suppress chaos
that is supported on 𝐵.

32.18 Open cover
A collection of open sets 𝒪 = {𝑂𝜆 ⊂ 𝑀,𝜆 ∈ Λ} is called an open cover of 𝑀 , if
𝑀 = ∪𝜆∈Λ𝑂𝜆.

We define the join 𝒪 ∨𝒫 of two open covers 𝒪 = {𝐴𝑖} and 𝒫 = {𝐵𝑗} just as the
case of the partitions as (removing empty sets)

𝒪 ∨ 𝒫 = {𝐴𝑖 ∩𝐵𝑗}. (32.18)

32.19 Topological entropy
Consider a continuous dynamical system (𝑇,𝑀). Then , if 𝒪 is an open cover of 𝑀 ,

382K. Matsumoto and I. Tsuda, “Noise-induced order,” J. Stat. Mech. 31, 87 (1983).



32. LECTURE 32. KOLMOGOROV-SINAI ENTROPY 355

𝑇−1𝒪 ≡ {𝑇−1𝐴𝑖} is again an ope cover. Therefore, we can define 𝒪 ∨ 𝑇−1𝒪.
The following limit is called the topological entropy of the open cover 𝒪 of (𝑇,𝑀):

ℎtop(𝑇,𝒪) = lim
𝑛→∞

1

𝑛
log(𝒪 ∨ 𝑇−1𝒪 ∨ · · · ∨ 𝑇−𝑛+1𝒪)∘, (32.19)

where 𝐴∘ denotes the number of elements in the collection 𝐴.
Note that the limit exists just as in the case of te KS entropy, because (𝐴∨𝐵)∘ ≤

𝐴∘𝐵∘.

The topological entropy of (𝑇,𝑀) is defined as

ℎtop(𝑇 ) = sup
𝒪

ℎtop(𝑇,𝒪). (32.20)

Just as in the case of te KS entropy, honestly computing the supremum is hard;

there is a counterpart of generators, if 𝑀 is metrizable.

32.20 Top ent is the lowest upper bound of KS entropies
For a dynamical system (𝑇,𝑀), its topological entropy is given by

ℎtop(𝑇 ) = sup
𝜇

ℎ𝜇(𝑇 ), (32.21)

where 𝜇 is an invariant measure of 𝑇 .

32.21 Number of fixed points and topological entropy If (𝑇,𝑀) is topolog-
ical mixing, and has the pseudo orbit tracing property, then

ℎtop(𝑇 ) = lim sup
𝑛→∞

1

𝑛
log𝑁(𝑇, fixed points). (32.22)

This implies that the convergence radius of the 𝜁-function is given by 𝑒
−ℎtop(𝑇 )

.

For a endomorphism of an interval 𝐹 : 𝐼 → 𝐼, if topologically mixing, we have
only to count the number of peaks of 𝐹 𝑛:

ℎtop(𝐹 ) = lim sup
𝑛→∞

1

𝑛
log𝑁(𝐹, fixed points). (32.23)


	Lecture 32. Kolmogorov-Sinai entropy

